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Abstract
Background: Understanding how individual genes contribute towards the fitness of an organism
is a fundamental problem in biology. Although recent genome-wide screens have generated
abundant data on quantitative fitness for single gene knockouts, very few studies have systematically
integrated other types of biological information to understand how and why deletion of specific
genes give rise to a particular fitness effect. In this study, we combine quantitative fitness data for
single gene knock-outs in yeast with large-scale interaction discovery experiments to understand
the effect of gene deletion on the modular architecture of protein complexes, under different
growth conditions.

Results: Our analysis reveals that genes in complexes show more severe fitness effects upon
deletion than other genes but, in contrast to what has been observed in binary protein-protein
interaction networks, we find that this is not related to the number of complexes in which they are
present. We also find that, in general, the core and attachment components of protein complexes
are equally important for the complex machinery to function. However, when quantifying the
importance of core and attachments in single complex variations, or isoforms, we observe that this
global trend originates from either the core or the attachment components being more important
for strain fitness, both being equally important or both being dispensable. Finally, our study reveals
that different isoforms of a complex can exhibit distinct fitness patterns across growth conditions.

Conclusion: This study presents a powerful approach to unveil the molecular basis for various
complex phenotypic profiles observed in gene deletion experiments. It also highlights some
interesting cases of potential functional compensation between protein paralogues and suggests a
new piece to fit into the histone-code puzzle.
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Background
Determining the fitness of an organism upon deletion of
individual genes is a key strategy to decipher their func-
tion and relative contribution to survival. In the last years,
several large-scale gene knock-out experiments in the bud-
ding yeast Saccharomyces cerevisiae identified genes which
are essential for survival, and delivered quantitative fitness
information for almost all inessential genes under a range
of different growth conditions [1-6]. Although the effects
of single gene knockouts have been analyzed in the con-
text of binary protein-protein interaction networks [7,8],
their interpretation with respect to protein complexes has
not yet been systematically carried out. Such study is cru-
cial to improve our understanding of living systems, sim-
ply because most major cellular processes, such as DNA
transcription, translation, metabolism or replication, are
not carried out by single proteins, but by dedicated molec-
ular machines made of large protein assemblies.

Recently, two large-scale proteomics initiatives identified
many novel macromolecular complexes in yeast consist-
ing of up to several dozens of components [9,10]. With
this new data it now becomes possible to interpret the
results of gene deletion experiments in the light of a large
set of protein complexes and their importance for cell sur-
vival.

We based our study on the set of 491 protein complexes,
involving 1487 proteins, that Gavin et al. identified from
over 2000 successful tandem affinity purifications [9]. In
their study, the authors suggested a modular and hierar-
chical organization for the yeast cell machinery, where
each complex is in reality a dynamic ensemble of complex
variations, or isoforms. It is important to note that Gavin et
al. [9] derived complex isoforms computationally and,
although some have been proved to be biologically rele-
vant, many could be ill-defined or mere artifacts from
their genome-wide affinity purification screen. Com-
plexes and isoforms are then composed of a mostly invar-
iable set of proteins, which they defined as the complex
core, and a number of peripheral proteins, the attach-
ments, that complement and modulate the main complex
function. This modular architecture of protein complexes
in yeast has recently been supported by several types of
proteomics data [11]. As the second prop of our study, we
used fitness information of yeast single-gene deletion
strains as determined by Steinmetz et al. for five major
growth conditions of yeast, covering both fermentable
(yeast extract peptone dextrose, YPD, and yeast extract
peptone dextrose glycerol ethanol, YPDGE) as well as
non-fermentable media (yeast extract peptone glycerol,
YPG, yeast extract peptone ethanol, YPE, and yeast extract
peptone lactate, YPL) [3].

In the last years, several studies used synthetic genetic
interaction data, determined either through synthetic
genetic arrays (SGAs) [12,13] or epistatic miniarray pro-
files (EMAPs) [14,15], to deduce functional relationships
between gene pairs, identify sets of genes which function
within the same complex or pathway and to predict the
function of uncharacterized genes. Quantifying genetic
interactions made it possible to identify sets of proteins
acting together to perform a single function and provided
insights into the functional organization of biological
processes and their interdependencies [14]. One of the
main areas of application for genetic interaction data is
thus to discover sets of proteins which belong to the same
pathway or complex. However, as sets of protein com-
plexes in yeast have already been determined using tan-
dem-affinity purification (TAP) data, and as Collins et al.
[15] recently demonstrated that large-scale TAP data has a
higher sensitivity at detecting proteins which belong to
the same complex than genetic interaction data, we
decided to integrate the TAP complexes data of Gavin et al.
[9] with quantitative data of single gene deletions. More
recently, Collins et al. [15] employed the EMAP approach
to divide physical interactions into those in which the
proteins function coherently and those where the proteins
carry out distinct functions. They then used this separa-
tion of physical interactions to dissect protein complexes
involved in yeast chromosome biology into functionally
coherent modules [15]. As the complexes data of Gavin et
al. already provides a separation into functionally coher-
ent cores, modules and attachments [9], we did not have
to use genetic interaction data to try to identify those
modules. Instead, we focused on determining if and in
which way the presence of genes in complexes and their
modular components influences the fitness of yeast
strains.

Several studies have provided the first hints that the pres-
ence of genes in protein complexes might affect strain fit-
ness. For instance, Sarah Teichmann and colleagues
[16,17] have demonstrated that proteins which are
involved in important biological processes, such as tran-
scription, translation and replication, are less dispensable
than other genes, and that those proteins are often part of
protein complexes (e.g. the RNA polymerase, the ribos-
ome and the DNA polymerase). Recently, several studies
have started to investigate the occurrence of essential
genes in protein complexes [18-20]. In particular, Dezso et
al. [18] studied the essentiality, functional role and sub-
cellular localisation of proteins in the set of complexes
defined by Gavin et al. from their first TAP experiment in
2002 [21]. As for those complexes, no modular architec-
ture had been described, they defined highly coexpressed
proteins of a complex as its core and showed that proteins
in those cores often display the same deletion phenotype
(i.e. essential or inessential). The authors then used this
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observation to classify complexes into essential and ines-
sential ones [18]. Hart et al. [19] and Wang et al. [20], on
the other hand, merged the raw TAP data of Gavin et al. [9]
and Krogan et al. [10] to define their own sets of protein
complexes using different clustering procedures. Based on
their observation that essential genes tend to cluster in
large complexes, they then suggested that essentiality is in
many cases a product of complex function [19,20]. In
contrast to those studies, we used the new complexes data
of Gavin et al. [9] which, together with its description of
the modular architecture of protein complexes based on
the raw TAP data, allows us to investigate in detail the role
of protein complex components, cores and attachments
in establishing strain fitness. Importantly, we also use
quantitative fitness data to demonstrate that many trends
which we observe remain significant when looking only at
the deletion effects of inessential genes.

According to the prevalent view, protein hubs (i.e. pro-
teins with many interaction partners) tend to be more
essential than non-hub proteins in interaction networks
[22-25]. Although this so-called centrality-lethality rule
had been questioned in the past [26,27], no clear conclu-
sions could be extracted. Only very recently, Yu et al. [28]
have presented clear evidence for a high-quality binary
interaction network, constructed from Y2H data, that pro-
tein connectivity does not correlate with essentiality and
argue that this discrepancy with earlier findings originates
from biases towards essential and well-studied proteins in
the original datasets used in those studies. Here we inves-
tigated this property specifically for proteins in large sta-
ble complexes. Pereira-Leal et al. [17] observed a trend
that proteins belonging to multiple complexes seem to be
more likely essential than proteins which are part of only
one complex. However, they performed their analysis on
the small set of complexes in the MIPS database [29],
which show almost no overlap in their components (i.e.
only 15 proteins are part of more than three MIPS com-
plexes), as well as on the first generation of TAP data. The
set of complexes defined by Gavin et al. [9] which we used
to perform our analyses is much larger with many pro-
teins belonging to multiple complexes and thus allows to
test the statistical significance of observations.

Here, we systematically compare fitness information for
genes which are part of complexes to those which are not,
and investigate the distributions of essential and inessen-
tial genes within and across protein complexes in yeast.
Moreover, we find convincing evidence that centrality in
protein complexes does not correlate with essentiality and
present the first attempt to quantify the importance of sin-
gle complex isoforms, which we believe are the functional
complex units, on strain fitness under different growth
conditions.

Results
Genes in complexes show more severe fitness effects upon 
deletion
As most processes in a cell are carried out not by single
proteins, but by protein complexes, we first compared the
fitness of yeast strains upon deletion of genes which are
part of complexes to the fitness when deleting genes
which are not. We partitioned the fitness values of indi-
vidual genes into four categories: 'strong negative effect',
'moderate negative effect', 'weak or no effect' and 'positive
effect', based on the distribution of all fitness values deter-
mined for a particular growth condition (see Methods). For
YPD medium, the deletion of 49% of the genes in com-
plexes leads to a strong negative fitness effect, whereas the
same is true for only 17% of genes not present in com-
plexes. Although the fraction of genes in complexes which
lead to a moderate negative fitness effect upon deletion is
considerably smaller with 13%, there is still a significant
enrichment compared to the 7% of genes not in com-
plexes (Fig. 1). Importantly, the enrichment of genes in
complexes in the strong and moderate negative fitness
effect categories is present in all growth conditions consid-
ered (see Additional file 1: Fig. S1) and is highly statisti-
cally significant (all p-values in the range [3.58 · 10-120,
7.37 · 10-5], one-sided Fisher's exact test).

To investigate whether the observed enrichment in the
strong negative effect category originates only from the
large fraction of essential genes (36% of genes in com-
plexes are essential compared to only 10% of genes not
part of complexes), we repeated the experiment excluding
all essential genes from our calculations. As expected, the
enrichment decreased in most media (see Additional file
1: Fig. S2), but it is still present and highly significant (all
p-values in the range [3.95 · 10-26, 3.75 · 10-9], one-sided
Fisher's exact test), meaning that the deletion of genes in
complexes has overall a stronger negative effect on strain
fitness than the deletion of genes not part of complexes.

In order to ensure that our findings are not restricted to
the set of complexes defined by Gavin et al. [9], we applied
the same analysis to the hand-curated set of 266 yeast
complexes in the Munich Information Center for Protein
Sequences (MIPS) database [29], as well as to the set of
547 complexes defined by Krogan et al. [10]. Our results
hold with 52% and 17% of the genes in MIPS complexes
leading to a strong and moderate negative effect in YPD
medium, respectively (see Additional file 1: Fig. S3), com-
pared to only 18% and 6% of genes not part of MIPS com-
plexes (all p-values in the range [1.34 · 10-117, 6.88 · 10-

5], one-sided Fisher's exact test). Considering only ines-
sential genes (35% of the genes in MIPS complexes are
essential compared to only 11% of the remaining genes),
the enrichment for genes in MIPS complexes in the strong
negative fitness effect category even increases (see Addi-
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tional file 1: Fig. S4), while remaining significant (all p-
values in the range [1.32 · 10-47, 1.83 · 10-12], one-sided
Fisher's exact test). Also for the set of 547 Krogan com-
plexes our results hold, as the enrichment of genes in Kro-
gan complexes in the strong and moderate negative fitness
effect categories, compared to genes not part of those
complexes, although a bit lower are still present and sig-
nificant, both when considering essential and inessential
genes (see Additional file 1: Fig. S5; all p-values in the
range [2.28 · 10-46, 7.26 · 10-3], one-sided Fisher's exact
test), as well as when considering only inessential genes
(see Additional file 1: Fig. S6; all p-values in the range
[5.05 · 10-11, 5.45 · 10-3], one-sided Fisher's exact test).

Although both, the definition of protein complexes and
the fitness data, come from high-throughput studies, we
nevertheless considered the possibility that these datasets

could be biased towards well-studied proteins. Such a bias
could influence our analysis, as many well-studied pro-
teins are part of important biological processes or path-
ways and might thus be enriched in essential genes. To
assess this issue, we repeated the analysis, excluding the
153 complexes in the Gavin et al. set with a significant
overlap to known complexes in the hand-curated MIPS
database. We found that for the remaining 338 com-
plexes, there is still a significant enrichment of genes in
complexes in the strong negative effect category for all
media (all p-values in the range [1.66 · 10-73, 3.56 · 10-

55], one-sided Fisher's exact test). Excluding also all essen-
tial genes shows that the enrichment in the strong nega-
tive effect category remains significant (all p-values in the
range [1.11 · 10-20, 1.88 · 10-7], one-sided Fisher's exact
test) and thus does not originate only from the large frac-
tion of essential genes (see Additional file 1: Table S1).

Comparison of the fitness of yeast strains upon deletion of genes in complexes and other genesFigure 1
Comparison of the fitness of yeast strains upon deletion of genes in complexes and other genes. Distributions of 
strain fitness upon deletion of genes in complexes (red) and genes not part of complexes (blue) in YPD medium. Genes with a 
fitness of zero are essential. The fitness values of individual genes are partitioned into four categories: 'strong negative effect' (-
-), 'moderate negative effect' (-), 'weak or no effect' (0) and 'positive effect' (+). Different shades of red illustrate the percentage 
of genes in complexes (for which we have essentiality data) in the four fitness categories, with deep red corresponding to 100% 
(1404 genes). Different shades of blue illustrate the percentage of genes not in complexes (for which we have essentiality data) 
in the four fitness categories, with deep blue corresponding to 100% (3770 genes). Enrichments are given on a log2-scale.
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To make sure that the fitness data was also unbiased, we
repeated the analysis described above, but excluding all
known genes and keeping only those which are annotated
as "Uncharacterized ORF". We found that our results hold
with the enrichments of genes in complexes in the strong
negative fitness effect category still being significant in all
media (all p-values in the range [1.71 · 10-5, 2.26 · 10-4],
one-sided Fisher's exact test). Excluding, in addition, also
all essential genes, the observed enrichment of genes in
complexes in the strong negative effect category remains
significant in YPD and YPDGE medium (p-values = (1.60
· 10-2, 2.20 · 10-2), one-sided Fisher's exact test). The fact
that the p-values are higher than in the original analysis
and become insignificant for the non-fermentable media
(p-values in the range [5.42 · 10-2, 1.32 · 10-1], one-sided
Fisher's exact test), might well result from the fact that
merely 1335 out of 5895 non-dubious genes in yeast are
yet unknown (997 of them are inessential), and only 74
of them (62 inessential) are present in complexes, which
greatly reduces the expressiveness of the statistical analysis
(see Additional file 1: Table S2).

Although we have used a very stringent definition of
"extensively studied protein" or complex (i.e. any protein
that has ever been annotated or a complex that resembles
any other complex in MIPS), our results still hold and we
observe similar effects when considering only those com-
plexes or proteins with little or no annotation, which
demonstrates that they are not hampered because of any
bias in the complexes data of Gavin et al. or in the fitness
data determined by Steinmetz et al.

Protein hubs do not show a higher degree of essentiality
Proteins that belong to many complexes generally have
significantly more interaction partners than those present
in only one or a few complexes (see Additional file 1: Fig.
S7), and thus correspond to connection hubs in many
protein-protein interaction network representations.
Based on the current view on binary interaction networks
that hubs tend to be more essential than non-hub pro-
teins [22-25], one would expect the fraction of essential
genes which are present in many complexes to be signifi-
cantly higher than the fraction of inessential genes. How-
ever, we found that the distribution of essential genes
across complexes is not significantly different from that of
inessential genes (p-value = 0.34, one-sided Fisher's exact
test), with both distributions showing an exponential
decay in the fraction of genes with increasing number of
complexes in which they are present (Fig. 2). This compar-
ison of the distributions shows that genes which are part
of many complexes (i.e. the hubs) are not more likely to
be essential than genes which are present in only one or a
few complexes (i.e. non-hub proteins), independent of
any cutoff chosen for distinguishing hubs in protein com-
plexes from non-hub proteins. Moreover, the fraction of

essential genes which are part of more than 12 complexes
(top fifth percentile), and which could thus be defined as
hubs in protein complexes, is with 6% only slightly higher
than the fraction of inessential genes, 5%, and, compared
to the fractions of essential and inessential genes part of
only one complex (bottom fifth percentile), this differ-
ence is not significant (p-value = 0.25, one-sided Fisher's
exact test). We also binned the genes into two sets, those
which are part of more than 12 complexes (top fifth per-
centile) vs. all other genes, again finding no significant
difference (p-value = 0.29, one-sided Fisher's exact test).

Thus, in our analyses, shared components between many
complexes (i.e. the hubs) are not more likely to be essen-
tial than non-hub proteins.

When looking at the quantitative fitness data for inessen-
tial genes, we further observed that strain fitness upon
deletion of an inessential gene does not depend on the
number of complexes in which the gene is present either
(Fig. 3). The results are consistent in all five media consid-
ered (see Additional file 1: Fig. S8), suggesting that the
deletion of protein hubs in complex networks does not
have a more severe effect than deletion of non-hub pro-
teins.

Protein abundance might have an effect on interaction
properties and thus influence our analyses. To control for
this possibility, we checked whether the abundance of
yeast proteins in general, or of only those proteins which
are part of complexes, is correlated with fitness data. As
reported by Gavin et al. for the protein complexes data
used in this study, their tandem affinity purification pro-

Distributions of essential and inessential genes across com-plexesFigure 2
Distributions of essential and inessential genes across 
complexes. Distributions of the fraction of essential (red) 
and inessential genes (blue) which are present in a given 
number of complexes.
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cedure favoured more abundant proteins, but, neverthe-
less, they still detected some proteins with low abundance
[9]. Analysis of the yeast protein abundance data originat-
ing from Ghaemmaghami et al. [30] revealed that,
although significant (all p-values < 10-4, Monte Carlo per-
mutation test), the correlation between strain fitness
upon deletion of protein-coding genes and protein abun-
dance is very small, both when considering all yeast pro-
teins (γ ≈ -0.12, see Methods), and when taking only those
proteins into account that are part of complexes (γ ≈ -0.08;
see Additional file 1: Fig. S9). When comparing the abun-
dance distributions of essential and inessential genes in
complexes, we found that the average abundance of essen-
tial genes (21,182 +/- 84,818) is only slightly higher than
the one of inessential genes (19,616 +/- 52,782) with very
large standard deviations (p-value = 0.04, two-sided
Mann-Whitney U test). Thus, even if protein abundance
correlates with interaction properties, as the correlation
between abundance and essentiality is very small, and as
we do not observe a significant correlation between cen-
trality and essentiality in protein complexes, we can con-
clude that protein abundance does not significantly
influence our analyses.

We could not repeat the analyses for the curated set of
yeast complexes in the MIPS database [29] since, by defi-

nition, those complexes show almost no overlap in their
components (only 15 proteins are present in more than
three MIPS complexes). The same is true for the Krogan
complexes, as the clustering procedure used by Krogan et
al. to define the complexes from the raw TAP data does
not allow proteins to belong to several complexes [10].

Genes within the modular components of complexes show 
similar fitness effects
In their genome-wide study of protein complexes in yeast,
Gavin et al. defined 5979 complex variations, which they
termed complex isoforms, and suggested a modular archi-
tecture for protein complexes: a complex consists of a core
of proteins which determine the basic machinery, invaria-
ble in most isoforms, and certain attachment proteins,
depending on the cellular conditions, that complement
and modulate the main function [9]. Both core and
attachment proteins are equally necessary for complexes
to function. However, each complex exists in several dif-
ferent variations (i.e. isoforms) in a cell, with only the
core proteins being common to most of them. Thus, if a
gene encoding a core protein is deleted, it affects many
more complex isoforms than if a gene coding for an
attachment protein is deleted (which is part of only one or
a few isoforms). One could consequently hypothesize
that genes within cores might show a stronger negative fit-
ness effect upon deletion than genes in attachments.
When comparing the sets of core and attachment pro-
teins, we found a substantial overlap of 791 genes
between the 1148 non-redundant core genes and the
1130 non-redundant attachment genes (i.e. core compo-
nents in one complex might well be attachments in
another). We thus excluded those overlapping genes,
when testing for an enrichment of genes with a negative
fitness effect upon deletion in cores. For YPD medium,
44% of genes unique to cores are in the strong negative
effect category, while the same is true for about an equal
fraction of genes, 45%, that are unique to attachments
(Fig. 4). The same holds for all five media considered (see
Additional file 1: Fig. S10), with no significant enrich-
ments (all p-values in the range [0.69,1.0], two-sided
Fisher's exact test). The slight enrichment for genes in
attachments in the moderate negative effect category that
we found here turned out to be statistically significant
only in YPD, YPDGE and YPG medium (p-values in the
range [7.48 · 10-3, 1.37 · 10-2], two-sided Fisher's exact
test), but not in YPE and YPL medium (p-values =
(0.53,0.81), two-sided Fisher's exact test). As many genes
are present both in cores and attachments, and because we
observe no significant difference between the fraction of
genes unique to cores and the fraction of genes unique to
attachments that lead to a strong negative fitness effect
upon deletion, we conclude that, in general, core and
attachment components are equally important for the
complex cellular machinery.

Fitness of yeast strains upon deletion of inessential genes present in multiple complexesFigure 3
Fitness of yeast strains upon deletion of inessential 
genes present in multiple complexes. Box-and-whisker 
plots of strain fitness upon deletion of inessential genes 
which are part of multiple complexes, measured in YPD 
medium. Start and end of the boxes indicate the first and 
third quartile of the fitness distribution of inessential genes 
present in a given number of complexes, and whiskers 
denote the respective minimum and maximum fitness values. 
The medians of the respective distributions are shown as 
black bars. As only 21 inessential genes are present in more 
than 16 complexes, we grouped them together.
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Single isoforms feature distinct fitness patterns across 
media
As described before, complex isoforms consist of core
components and certain attachment proteins, depending
on the given cellular conditions, and are thus the func-
tional biological entities [9]. To be able to quantify the
importance of single isoforms and their cores and attach-
ments under different growth conditions, we explored the
possibility of assigning a single fitness value to each iso-
form and to its core and attachment proteins, which
would represent the fitness of the respective modular
components. This is, to test the coherence of fitness values
within each set of genes across the five media studied and
check whether it is possible to convert experimental data
obtained for individual genes into a global figure repre-

sentative of a particular complex core, set of attachments
or isoform. As the coherence highly depends on the size of
the given gene set, we first employed a size-correction pro-
cedure (see Methods) which ensures that the different frac-
tions of coherent isoforms, cores, attachments and MIPS
complexes we determined are comparable. Then we com-
puted the coherence based on raw fitness values, as well as
based on fitness categories (i.e. strong negative, moderate
negative, weak or no effect and positive), respectively. We
found only 26–36% of the isoforms, 38–50% of isoform
cores and 25–33% of isoform attachments to be coherent,
as well as 41–49% of MIPS complexes and 33–41% of
Krogan complexes. Thus, we concluded that for the major-
ity of them, one cannot simply assign the most prevalent
fitness category of the given gene set, as the fitness values
of the individual genes can differ too much. So, we used
the average fitness value of the given set of genes, as it rep-
resents the expected fitness of a yeast strain when deleting
a random gene of the respective isoform, core or attach-
ments. This measure encompasses all individual fitness
values of a given set and thus provides a more justifiable
measure for the fitness of whole groups of genes.

The analysis of individual isoforms then revealed that the
general trend of genes in cores and attachments displaying
similar fitness effects upon deletion (see above and Fig. 4)
is in reality the net result of either the core components or
the attachments of a given isoform being more important
for strain fitness, both being equally important or both
being dispensable in all five media considered (Fig. 5; see
Additional file 2: Fitness of cores, attachments). The con-
trary effects observed for some isoforms, that either the
deletion of core or of attachment components leads to
worse strain fitness, cancel each other out in the more gen-
eral analysis depicted in Fig. 4. When looking at single iso-
forms, however, it becomes apparent that sometimes the
core components are more important for strain fitness
and sometimes the attachments, while for other isoforms
both types of components are equally important or even
dispensable. For example, the latter include isoforms of
the arginine-specific carbamoyl-phosphate synthase com-
plex, which takes part in arginine biosynthesis (not
required in amino-acid rich media), while for all isoforms
of the 20S core particle of the proteasome, which repre-
sents the main character in the protein degradation
machinery, both core (i.e. different alpha- and beta-type
subunits) and attachment components (e.g. regulatory
subunits of the 26S proteasome) are equally important for
cell survival. On the other hand, for isoforms of the MIND
kinetochore complex, necessary for sister chromatid segre-
gation during mitosis and meiosis, the core consists of
essential components which join kinetochore subunits
contacting DNA to those contacting microtubules and is
thus more important for strain fitness than the attach-
ments which merely contain non-essential kinetochore

Comparison of the fitness of yeast strains upon deletion of genes unique to complex cores and genes unique to attach-mentsFigure 4
Comparison of the fitness of yeast strains upon dele-
tion of genes unique to complex cores and genes 
unique to attachments. Distributions of strain fitness 
upon deletion of genes only present in cores (red) and genes 
only present in attachments (blue) in YPD medium. Genes 
with a fitness of zero are essential. The fitness values of indi-
vidual genes are partitioned into four categories: 'strong neg-
ative effect' (--), 'moderate negative effect' (-), 'weak or no 
effect' (0) and 'positive effect' (+). Different shades of red 
illustrate the percentage of genes in cores (for which we 
have essentiality data) in the four fitness categories, with 
deep red corresponding to 100% (337 genes). Different 
shades of blue illustrate the percentage of genes in attach-
ments (for which we have essentiality data) in the four fitness 
categories, with deep blue corresponding to 100% (320 
genes). Enrichments are given on a log2-scale.
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proteins. By contrast, for isoforms of the complex of pro-
teins associated with Set1 (COMPASS) histone H3 meth-
yltransferase, involved in transcriptional regulation, the
attachments are more important, as they are, for example,
also part of the cleavage and polyadenylation factor, a
complex involved in RNA polymerase II transcription ter-
mination, or contain the ubiquitin hydrolase Doa4/Ubp4
which is required for ubiquitin recycling from ubiquiti-
nated proteins bound to the proteasome.

When investigating the expected fitness effect upon dele-
tion of a random gene of whole isoforms, we found dis-

tinct patterns of expected strain fitness across the five
growth conditions considered (Fig. 6; see Additional file
2: Fitness of whole isoforms). The majority of isoforms
(71%) show a strong negative expected fitness effect upon
deletion of a random component in all five media. Those
include isoforms of the RNA polymerases I to III, which
are necessary for all transcription processes in a yeast cell,
and isoforms of both the small and the large ribosomal
subunit, required for translation of messenger RNAs to
proteins. Another 5% of the isoforms display a moderate
negative effect upon deletion of a random component,
and 10% of the isoforms seem to be dispensable in all five

Fitness of the complex core and attachments of single isoforms across different growth conditionsFigure 5
Fitness of the complex core and attachments of single isoforms across different growth conditions. Expected fit-
ness effects upon deletion of a random component of the given core or set of attachment proteins for all 5979 isoforms across 
the two fermentable and the three non-fermentable media considered. The fitness values are partitioned into four categories: 
'strong negative effect' (--/blue), 'moderate negative effect' (-/light-blue), 'weak or no effect' (0/white) and 'positive effect' (+/
orange). Each line represents the fitness profile of a given isoform, treating the core and the attachments (att.) separately. 'n/a': 
the expected fitness effect is unknown due to a lack of quantitative fitness information for the genes in the respective core or 
attachments. When grouping the fitness profiles, we gave priority to n/a, positive, strong negative and moderate negative fit-
ness effect in that order. Arrows indicate isoform fitness profiles of complexes given as examples in the main text.
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Fitness of complex isoforms across different growth conditionsFigure 6
Fitness of complex isoforms across different growth conditions. Expected fitness effects upon deletion of a random 
gene of whole isoforms across the two fermentable and the three non-fermentable media considered. The fitness values are 
partitioned into four categories: 'strong negative effect' (--/blue), 'moderate negative effect' (-/light-blue), 'weak or no effect' (0/
white) and 'positive effect' (+/orange). Each line represents the fitness profile of a given isoform. 'n/a': the expected fitness 
effect is unknown due to a lack of quantitative fitness information for the genes in the respective isoform. When grouping the 
fitness profiles, we gave priority to n/a, positive, strong negative and moderate negative fitness effect in that order. Arrows 
indicate isoform fitness profiles of complexes given as examples in the main text.

--

-

0

+

F
itn

es
s 

ca
te

go
ry

Y
P

D

Y
P

D
G

E

Y
P

G

Y
P

E

Y
P

L

Non−fermentableFermentable

Positive fitness
effect in at least
one medium: 
51 isoforms (0.9%)

Weak or no fitness
effect in all media: 
552 isoforms (9.2%)

Moderate negative 
fitness effect in at 
least one medium: 
770 isoforms (12.9%)

Strong negative
fitness effect in at
least one medium: 

effect in all media: 
4222 isoforms (70.6%)

381 isoforms (6.4%)

Strong negative fitness

n/a in at least 

Not shown

one medium: 
3 isoforms (0.1%)

Not shown
ribosomal subunits

RNA polymerases I to III

2−oxoglutarate
dehydrogenase

pyruvate dehydrogenase

Cytochrome bc1 complex

F0/F1 ATP synthase

small and large

anthranilate synthase



BMC Systems Biology 2009, 3:74 http://www.biomedcentral.com/1752-0509/3/74
growth conditions. The latter include, for instance, iso-
forms of the anthranilate synthase complex which cata-
lyzes the initial step of tryptophan biosynthesis
(unnecessary in amino acid-rich media). Deletion of a
random component of the remaining 14% of the iso-
forms leads to different fitness effects, depending on the
respective growth condition. For instance, when compar-
ing fermentable and non-fermentable media, we found
several complex isoforms that are more important for cell
survival in the non-fermentable media (i.e. YPG, YPE and
YPL), in which yeast has to rely on aerobic respiration
because of a lack of glucose. Those isoforms cover key ele-
ments of the respiratory pathway: the Pyruvate dehydro-
genase complex, which transforms pyruvate into Acetyl
CoA, the 2-oxoglutarate dehydrogenase complex, an
enzyme of the tricarboxylic acid cycle, the Cytochrome
bc1 complex, which is part of the electron transport chain
and participates in establishing a proton gradient across
the mitochondrial inner membrane, and the F0/F1 ATP
synthase, which finally uses that gradient for the genera-
tion of ATP.

In order to find out whether the isoforms of individual
complexes all have the same or different fitness profiles,
we compared for each complex the number of isoforms
and the number of distinct isoform fitness profiles (Fig.
7). This comparison revealed that, for 253 (52%) of the
complexes, all isoforms have the same fitness profile and
that only 9% of the complexes feature more than five dis-
tinct isoform fitness profiles. For 91 of the 253 complexes
(36%), the fact that they feature only one fitness profile
can easily be explained, as they have only one isoform.
Notably, there exists only a moderate positive correlation
between the number of isoforms and the number of dis-
tinct profiles (γ ≈ 0.48 (see Methods), p-value < 10-4,

Monte Carlo permutation test), because even when a
complex has many isoforms, they can still exhibit the
same fitness profile. For instance, the RNA polymerase II
and the Translation initiation factor eIF3 complex have 64
and 63 isoforms, respectively, but all isoforms share the
same fitness profile (strong negative effect in all media).

Significantly more isoforms than expected contain no 
essential genes
Considering the distribution of essential genes across the
5979 isoforms, we found out that 74% of the isoforms
contain at least one essential gene. As essential genes are
enriched in complexes, it is indeed striking that 1539 iso-
forms (26%) include no essential gene at all (p - value <
10-4, Monte Carlo permutation test). We considered the
possibility that this observation could, at least partially, be
explained by direct backups in the form of duplicate (i.e.
paralogous) genes, and searched for duplicates in the
yeast genome (see Methods). We then checked the number
of isoforms without essential genes for which a duplicate
exists for every component. We found duplicates for 1562
genes in the yeast genome (27%) and discovered that 211
of the 1539 complex isoforms which contain no essential
gene (14%) have duplicates for every component, which
is statistically significant (p-value = 5.04 · 10-61, one-sided
Fisher's exact test). Thus, for a significant number of iso-
forms without essential genes there exist duplicates in the
yeast genome for every component, which might explain
the lack of essential genes in those isoforms.

Discussion
Based on the large set of protein complexes in yeast that
Gavin et al. recently identified [9], we compared the fit-
ness of yeast strains upon deletion of genes which are part
of complexes to those which are not, and found out that
there exists a significant enrichment of genes with a strong
negative or moderate negative effect on strain fitness upon
deletion in complexes. This enrichment, which is inde-
pendent of the respective growth condition, could be
explained by the fact that most processes in a cell are car-
ried out not by single proteins, but by protein complexes
and thus, knocking-out only one protein can damage the
whole molecular machine. The work of Sarah Teichmann
and colleagues [16,17] supports this explanation by dem-
onstrating that proteins which are involved in important
biological processes, such as transcription, translation and
replication, are less dispensable than other genes, as well
as more conserved in evolution and often part of protein
complexes (e.g. the RNA polymerase, the ribosome and
the DNA polymerase). Since most proteins in a cell spend
at least part of their time in a complex with other proteins,
it is worth clarifying that the study of Gavin et al. mainly
captured stable multi-protein complexes, which they
termed molecular machines. The components of these
molecular machines usually spend most of their life form-

Comparison of the number of isoforms and the number of distinct isoform fitness profiles for each complexFigure 7
Comparison of the number of isoforms and the 
number of distinct isoform fitness profiles for each 
complex. Comparison of the number of isoforms and the 
number of distinct isoform fitness profiles for all 491 com-
plexes. The number of complexes is indicated by a color 
scheme.
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ing part of the complex and have no function in isolation.
It has been estimated that there are some 800 of these sta-
ble complexes in yeast [9], containing about 2,400 pro-
teins, which would leave some 3,000 proteins free, even if
they transiently associate with other proteins or com-
plexes.

Although it has been already suggested that essential
genes are enriched in complexes [18,19,21], our findings
show that the enrichment of genes with a strong negative
fitness effect upon deletion in complexes does not solely
originate from those essential genes, but remains signifi-
cant when considering only inessential genes. Application
of the same analyses to the smaller, but hand-curated, set
of yeast complexes in the MIPS database [29] and the large
set of protein complexes defined by Krogan et al. [10]
revealed that our results are not restricted to the set of
complexes defined by Gavin et al., but actually represent a
more general finding.

Concerning the on-going debate whether there exists a
correlation between protein centrality and essentiality
[17,22-27], only very recently, Yu et al. [28] have pre-
sented clear evidence for a high-quality binary interaction
network, that protein centrality (or hubness) does not cor-
relate with essentiality and argue that this discrepancy
with earlier findings originates from biases towards essen-
tial and well-studied proteins in the original datasets used
in those studies. Here we investigated this property specif-
ically for proteins in large stable complexes. We discov-
ered that the distribution of essential genes across
complexes is not significantly different from the distribu-
tion of inessential genes. In fact, the fraction of essential
genes which are part of many complexes is not signifi-
cantly higher than the fraction of inessential genes.
Importantly, when considering quantitative fitness data
instead, we found that strain fitness upon deletion of an
inessential gene is also independent of the number of
complexes in which the gene is present, supporting our
observation. Thus, complementing the recent findings of
Yu et al. [28], our study provides clear evidence that hubs
in protein complexes are neither more likely to be essen-
tial, nor do they tend to show more severe fitness effects
upon deletion than non-hub proteins.

Gavin et al. suggested that protein complexes in yeast have
a modular architecture with each complex consisting of a
core of proteins found in most complex variations (i.e.
complex isoforms) and certain attachments depending on
the particular cellular conditions [9]. They also suggested
that complex isoforms are most likely the functional
forms of complexes, representing slight variations on the
same molecular machine, and that core and attachment
proteins are equally important to fulfill the biological
functions.

Here, we tested whether gene deletion experiments would
support this view or rather highlight a hierarchy, in terms
of functional essentiality, among complex components.
Our results indicate that the fraction of genes in the differ-
ent fitness categories is virtually identical for genes in
cores and genes in attachments across all growth condi-
tions considered, placing them on the same level of
importance within the complex hierarchy. When exclud-
ing all genes from the analysis which can be present both
in cores and attachments, there is still little to no enrich-
ment in the strong negative fitness effect category, and the
slight enrichment for genes in attachments in the moder-
ate negative effect category that we observed is not statis-
tically significant in all media. We thus conclude that, in
general, attachment proteins are equally important as core
components for the complex machinery to function.

As complex isoforms represent the biological entities
which act as molecular machines to fulfill particular tasks
in a cell, we investigated the importance of single isoforms
and their core and attachment components under differ-
ent growth conditions. In contrast to previous studies
[18,19], which did not consider quantitative fitness data,
we found out that the majority of those gene sets are not
coherent in terms of the fitness values of their compo-
nents. This discrepancy can be explained by the different
types of data used in those studies. Specifically, Dezso et
al. based their analysis on the set of complexes originating
from the first TAP study of Gavin et al. [21], performed in
2002, and defined their own set of core proteins for each
complex based on coexpression data [18]. Hart et al., on
the other hand, merged the raw TAP data of Gavin et al. [9]
and Krogan et al. [10] to define their own set of protein
complexes [19]. More importantly, both Dezso et al. and
Hart et al. only compare the fractions of essential and ines-
sential genes in each complex or core, but they do not con-
sider quantitative fitness data and treat all inessential
genes equally, independent of whether deleting them
leads to a negative, no or positive fitness effect. The fact
that complex isoforms, cores and attachments are not
coherent when considering quantitative fitness data
shows, that, although interacting proteins have more sim-
ilar fitness effects upon deletion than random pairs of pro-
teins [31], the fitness values of the individual components
of isoforms, cores and attachments can still differ signifi-
cantly. Indeed, we discovered that the global trend of
genes in cores and attachments displaying similar fitness
effects upon deletion is actually the net result of either the
core components or the attachments of a given isoform
being more important for strain fitness, both being
equally important or both being dispensable. Thus, the
general effect that we observed when comparing the
importance of genes in cores to genes in attachments orig-
inates from a combination of several effects that only
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Proposed model for the regulation of histone trimethylation by COMPASS through the recruitment of the attachment protein Doa4Figure 8
Proposed model for the regulation of histone trimethylation by COMPASS through the recruitment of the 
attachment protein Doa4. The COMPASS methyltransferase protein complex methylates lysine 4 at histone H3 (H3-K4), 
regulated by ubiquitination of lysine 123 at histone H2B (H2B-K123) [32-35]. H3-K4 can be mono-, di- and tri-methylated and 
COMPASS is required for all three levels of methylation, while only tri-methylated H3-K4 leads to the activation of gene tran-
scription [39,40]. The two COMPASS components Spp1 and Bre2 are required for tri-methylation activity of the complex [40], 
but both belong to the core of COMPASS (shown in blue) and are present in all isoforms of the complex. The attachment pro-
tein Swd2 (orange) mediates the cross-talk between H2B-K123 monoubiquitination and H3-K4 di- and trimethylation [41]. 
Some isoforms of COMPASS contain the ubiquitin hydrolase Doa4 (magenta) as an attachment, and we thus propose that the 
addition of the third methyl group (green) to di-methylated H3-K4 by COMPASS is regulated by the recruitment of Doa4 to 
the complex. Removal of ubiquitin (purple) from H2B-K123 by Doa4 (indicated with scissors) would disrupt the association of 
Swd2 (orange) with chromatin (histones shown in grey with a black DNA string wrapped around), inhibiting H3-K4 trimethyl-
ation.



BMC Systems Biology 2009, 3:74 http://www.biomedcentral.com/1752-0509/3/74
become apparent when looking at single complex iso-
forms.

A particularly intriguing example (Fig. 8), where the
attachments are more important for strain fitness (i.e.
deletion of attachments leads to a negative fitness effect,
while deletion of core components does not seem to affect
strain fitness), is the COMPASS methyltransferase protein
complex which methylates lysine 4 at histone H3 (H3-
K4), regulated by ubiquitination of lysine 123 at histone
H2B (H2B-K123) [32-35]. The last years have provided
many new insights into the complex process of epigenetic
regulation of transcription by covalent histone modifica-
tions [36-38], and the COMPASS complex represents a
key player in the establishment of this so-called 'histone-
code'. It has been found that H3-K4 can be mono-, di- and
tri-methylated and that the COMPASS complex is
required for all three levels of methylation [39,40]. How-
ever, Santos-Rosa et al. discovered that tri-methylated H3-
K4 is present only at active genes and thus suggested that
there exists a mechanism which regulates the addition of
a third methyl group by the COMPASS complex [39]. Sch-
neider et al. hypothesized that this regulation could be
mediated by the presence or absence of the two COM-
PASS components Spp1/Cps40 and Bre2/Cps60, as they
observed that these two subunits are required for tri-meth-
ylation activity of the complex [40], but we found both
components to belong to the core of COMPASS and to be
actually present in all isoforms of the complex. Recently,
Lee et al. [41] demonstrated that Swd2/Cps35, an attach-
ment of the COMPASS complex, mediates the cross-talk
between H2B-K123 monoubiquitination and H3-K4 di-
and trimethylation. They found out that the association of
Swd2/Cps35 with chromatin, dependent on H2B-K123
ubiquitination, allows COMPASS to di- and trimethylate
H3-K4, leading to gene activation [41]. On the other
hand, we discovered that some isoforms of the COMPASS
complex contain the ubiquitin hydrolase Doa4/Ubp4 as
an attachment which, although it is not an essential gene
like Swd2/Cps35, also leads to a negative fitness effect
upon deletion. We thus propose that the addition of the
third methyl group to di-methylated H3-K4 by COMPASS
is regulated by the recruitment of Doa4/Ubp4 to the com-
plex, representing a potential new piece to complete the
histone-code puzzle. Removal of ubiquitin from H2B-
K123 by Doa4/Ubp4 would disrupt the association of
Swd2/Cps35 with chromatin, inhibiting H3-K4 trimethyl-
ation (Fig. 8). Although this is only a hypothesis which
requires experimental validation, it is supported by the
fact that Ubp8, a remote paralog of Doa4/Ubp4, has
already been shown to be responsible for Spt-Gcn5-acetyl-
transferase (SAGA) complex mediated deubiquitination
of H2B-K123 [41-45]. If our hypothesis is correct, Doa4/
Ubp4 would as an attachment of COMPASS, in the same
way as the association of Ubp8 to SAGA, result in one

complex performing two posttranslational modification
functions (i.e. methylation and deubiquitination).

When determining the expected fitness effect upon dele-
tion of a random gene of whole isoforms, we found dis-
tinct patterns of expected strain fitness across the five
growth conditions considered. More than two thirds of
the isoforms show a strong negative expected fitness effect
upon deletion of a random component in all five media.
This could signify that most complex variations mediate
cellular functions that are important for strain fitness
independent of the growth conditions. Our results indi-
cate that those isoforms which we observed to be dispen-
sable in all five media are most probably required for cell
survival in other growth conditions not considered in our
analysis [6,46]. Furthermore, we found multiple isoforms
which cover different key elements of the respiratory path-
way to be more important in the non-fermentable media,
where yeast has to use aerobic respiration for metabolism.
This demonstrates that our approach for quantifying the
importance of protein complex variations is able to detect
those media-specific effects.

Comparing the number of isoforms and the number of
distinct isoform fitness profiles for each complex, we
observed that, for more than half of the complexes, all iso-
forms of the respective complex show the same fitness
profile across the five media. Additionally, as there exists
only a moderate positive correlation between the number
of isoforms and the number of distinct fitness profiles, we
suggest that many cellular conditions, for which the dif-
ferent isoforms of a complex get assembled, are internal
states of the cell which are independent of the given car-
bon source.

Finally, by investigating the distribution of essential genes
across isoforms, we found out that 74% of the isoforms
have at least one essential gene. The lethal effect on the
yeast strain when deleting one of those genes thus might
originate from the given isoform not being able to fulfill
its particular task in the cell. On the other hand, it has
recently been observed for a set of 390 protein complexes
in yeast, that essential genes are absent in significantly
more complexes than expected [19]. Indeed, as essential
genes are enriched in complexes, it is striking that 27% of
the isoforms have no essential gene. A possible explana-
tion for this could be the occurrence of compensatory
effects with either direct backups for all genes in the
respective isoform via duplicates, which we actually found
to be the case for a significant fraction of those isoforms
(14%), or alternative protein assemblies that are similar
enough to provide the same functionality in the cell.
Those compensatory effects would then leave more room
for evolution-driven mutations to adapt the complex
Page 13 of 18
(page number not for citation purposes)



BMC Systems Biology 2009, 3:74 http://www.biomedcentral.com/1752-0509/3/74
machinery of the cell to different environmental condi-
tions.

Conclusion
We have shown in this study how the integrated analysis
of gene deletion fitness data and complex modular archi-
tecture can be a powerful approach to unveil the molecu-
lar bases responsible for some unexpected phenotypic
profiles for a given knock-out. The challenge is now to
extend these analyses to higher eukaryotes, and to develop
computational models able to predict the functional
behaviour, under different nutritional conditions, upon
single or double-gene deletions in those organisms for
which data is scarce or unavailable.

Methods
Databases of protein complexes in yeast
The current study is based on the large set of 491 protein
complexes and 5979 isoforms (i.e. complex variations)
that Gavin et al. recently identified in yeast from over
2000 successful tandem-affinity purifications [9] (see
Additional file 3: Gavin complexes and Gavin complex
isoforms). To ensure that our findings for protein com-
plexes are not restricted to the set of complexes defined by
Gavin et al., we applied the same analyses to the hand-
curated set of 266 yeast complexes in the MIPS database
[29] (see Additional file 3: MIPS complexes), which is
often used as a 'gold standard'. Moreover, we also
repeated the analyses for the large set of 547 yeast protein
complexes that Krogan et al. [10] defined from tandem-
affinity purification data (see Additional file 3: Krogan
complexes). As the modular architecture of protein com-
plexes described by Gavin et al. is neither available for the
MIPS nor for the Krogan complexes, we could not repeat
those analyses which depend on the description of such
an architecture. However, we performed the controls
using the MIPS and Krogan complexes, whenever possi-
ble.

Quantitative fitness data for inessential genes
We used quantitative fitness data from the yeast gene dele-
tion study conducted by Steinmetz et al., which provides
fitness information for 4218 non-dubious inessential
genes across nine different media [3] (see Additional file
3: Quantitative fitness data). The high-throughput nature
of the screen ensures that the data is not biased towards
extensively-studied genes.

In this study, we considered only the five major media:
YPD (2% yeast extract, 1% Bacto-peptone and 2% glu-
cose), YPDGE (2% yeast extract, 1% Bacto-peptone, 0.1%
glucose, 3% glycerol and 2% ethanol), YPG (2% yeast
extract, 1% Bacto-peptone and 3% glycerol), YPE (2%
yeast extract, 1% Bacto-peptone and 2% ethanol) and YPL
(2% yeast extract, 1% Bacto-peptone and 2% lactate). This

is because in these media the organism is able to grow
exponentially, matching thus the conditions used in
Gavin et al. [9] to define the complexes. Although other
exciting work on gene deletion fitness has been recently
reported [4-6], we decided not to include these data in our
study because these studies mostly considered severe
stress conditions, which makes unclear whether the com-
position of complexes in those media might differ from
their composition under exponentially growing condi-
tions used in Gavin et al. [9]. Another advantage of using
the five major media reported in Steinmetz et al., [3] is
that, for these conditions, the yeast gene deletion screen
experiments were performed twice, which allowed the
authors to check for reproducibility of the results. After
confirming that both time-course experiments indeed
report similar fitness values for the different deletion
strains (see Additional file 1: Fig. S11), we took the aver-
age fitness value from time-course one and two as the
quantitative fitness of the respective deletion strain. In
case the strain fitness could only be measured in one time-
course, we used that measurement directly.

The negative growth rate for the YOL139C deletion strain,
measured in time-course two for the medium YPL, is only
an artifact from the fitting of regression lines to the loga-
rithm of the hybridization intensities, which Steinmetz et
al. employed to calculate fitness values for each deletion
strain, and as such, we treated this negative growth rate as
zero.

Determination of essential genes
Genes of homozygous diploid yeast strains with zero
measurements on the hybridization array, used in the
molecular barcode technique employed by Steinmetz et
al., are potentially essential for growth in YPD medium
[3]. As they could also be measurement errors, we fol-
lowed the approach of Gu et al. [47] by taking the intersec-
tion of three lists of genes, namely the two lists of genes
with zero measurements of time-course one and two from
Steinmetz et al. [3] and the list of essential genes reported
by Giaever et al. [2], as a confident list of essential genes
for this work (956 non-dubious genes; see Additional file
3: Essential genes). As all yeast strains were grown on YPD
medium, before they got transferred onto different growth
conditions, and no additional essential genes were
detected in those other media, the final list of essential
genes applies to all five growth conditions considered.

Combining data about all non-dubious essential and
inessential genes, information on the fitness of deletion
strains in the five media considered is known for 1404
(536 essential and 868 inessential genes) of the 1487 dif-
ferent genes in the Gavin et al. complexes and for 3770
(420 essential and 3350 inessential genes) of the 4408
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yeast genes that have not been reported to belong to any
macromolecular assembly.

Partitioning of fitness values into fitness categories
Using a similar approach as Gu et al. [47], we partitioned
the fitness values into four categories: 'strong negative
effect' (f < 0.8), 'moderate negative effect' (0.8 ≤ f < 0.95),
'weak or no effect' (0.95 ≤ f < 1.05) and 'positive effect'
(1.05 ≤ f), considering essential genes to be part of the
'strong negative effect' category by assigning them a fitness
value of zero. We chose the upper threshold for the 'weak
or no effect' category symmetrically to the lower thresh-
old, because in this range the data is normally distributed,
and we did not want to lose information about gene dele-
tions resulting in a strain fitness better than the pool aver-
age.

Calculation of enrichments
We calculated the enrichments for genes in complexes in
the different fitness categories compared to genes not part
of complexes by taking the ratio of the fraction of genes
which are present in complexes in a given fitness category
and the fraction of genes in that same fitness category
which are not in complexes, followed by log2 -transforma-
tion to get a symmetrical range of values. For instance, a
ratio of 4 in a given category would thus equal an enrich-
ment of 2, whereas a ratio of 0.25 would equal an enrich-
ment of -2. We used the same calculation of enrichment
when comparing the strain fitness upon deletion of genes
in cores and genes in attachments and when assessing
whether isoform attachments are more likely to show a
positive expected fitness effect upon deletion of a random
component than isoform cores.

Computation of p-values
To assess the statistical significance of our findings, we
computed p-values using Fisher's exact test. For the com-
putation of a p-value for the correlation coefficient
between strain fitness upon deletion of protein-coding
genes and protein abundance, we used a Monte Carlo per-
mutation test. This test was based on a random back-
ground of 10,000 sets of fitness and abundance
annotations, constructed by shuffling the original gene
annotations, which ensures that the fitness and abun-
dance distributions remain unchanged. Similarly, we also
used a Monte Carlo permutation test to calculate a p-value
for the correlation coefficient between the number of iso-
forms and the number of distinct isoform fitness profiles.
This permutation test was based on a random background
of 10,000 sets of annotations, shuffling the number of iso-
forms and the number of distinct isoform fitness profiles
for each complex, which retains the distributions of those
values. When comparing the average abundance of essen-
tial and inessential genes, we employed a Mann-Whitney
U test to assess the statistical significance.

Determination of the coherence of fitness values in a given 
gene set
We computed the coherence of a given isoform, core, set
of attachment proteins, MIPS or Krogan complex based
on the raw fitness values, by calculating the fraction of
gene pairs in the respective gene set which have a suffi-
ciently small fitness distance. Our definition of "suffi-
ciently small fitness distance" was motivated by the fact
that experimental variability has led to slightly different
measurements of fitness in the two time-course experi-
ments conducted by Steinmetz et al. [3] (see Additional
file 1: Fig. S11). To account for this variability, we con-
sider two genes as having highly similar fitness values, if
their fitness distance (measured as the Euclidean distance
in the fitness space of all five media) is not bigger than the
average fitness distance between the time-course one and
two measurements plus one standard deviation (to con-
sider the spread of the data). To rationalize this definition,
we calculated the following supporting data: First, most
pairs of genes with a sufficiently small fitness distance fall
into the same fitness category. Depending on the growth
condition this means 68% (YPE) to 95% (YPD) of those
gene pairs. And second, 82–84% of gene pairs in the same
fitness category have a sufficiently small fitness distance
according to the above definition, compared to only 43%
of all gene pairs. Thus, the fraction of gene pairs in the
same fitness category that have a sufficiently small fitness
distance is about twice as high as the fraction of all gene
pairs. We then defined those sets of genes as coherent, for
which more than 2/3 of all gene pairs have a sufficiently
small fitness distance.

For comparison, we also computed the coherence of a
given isoform, core, set of attachment proteins, MIPS or
Krogan complex based on the fitness categories, by calcu-
lating for each growth condition the fraction of gene pairs
in the respective gene set for which both genes fall into the
same fitness category, again defining those gene sets as
coherent for which this is the case for more than 2/3 of all
gene pairs. We employed both coherence definitions
independently and report the ranges of coherent gene sets
of each type. In general, the larger any set of genes is, the
smaller the probability for the fitness values of its individ-
ual gene components to be coherent. As the different
types of sets (i.e. isoforms, cores, attachments, MIPS and
Krogan complexes) have different distributions of the
number of components, to avoid this bias, we first size-
corrected the different sets. We created a 'minimal com-
mon distribution', which contains the minimum number
of gene sets of a given size across all different types of sets.
Then, we constructed 1,000 sets of size-corrected iso-
forms, cores, attachments, MIPS and Krogan complexes
based on this 'minimal common distribution', by random
sampling from the original sets. Finally, we computed the
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coherences of those 1,000 sample sets of each type and
report the average values.

Quantification of the fitness of whole isoforms, cores and 
attachments
To quantify the fitness of a whole isoform, as well as its
core and attachments, we used the average fitness value of
the given gene set, because it represents the expected fit-
ness of the yeast strain when deleting a random gene of
the respective isoform, core or attachments under the
assumption that each gene has the same probability for
being selected for deletion.

Computation of correlation coefficients
As neither the number of complex isoforms nor the
number of distinct isoform fitness profiles per complex
are normally distributed, we did not use the Pearson cor-
relation coefficient. Instead, we employed Goodman and
Kruskal's gamma coefficient which is a non-parametric
(i.e. distribution-free) measure of correlation based on the
difference between the number of concordant and dis-
cordant pairs, ignoring ties (which is important here,
because many complexes have the same number of iso-
forms or the same number of distinct isoform fitness pro-
files). We used the same coefficient for analyzing the
correlation between strain fitness upon deletion of pro-
tein-coding genes and protein abundance, as determined
by Ghaemmaghami et al. [30] (see Additional file 3: Pro-
tein abundances).

Identification of duplicate genes in the yeast genome
To identify gene duplicates (i.e. paralogues) in yeast, we
performed a BLASTP [48] search of every single yeast gene
against the whole yeast genome (5895 non-dubious
genes), using an E-value threshold of 10-10 to filter out
insignificant results and a coverage threshold of 85% to
ensure that a sufficiently large part of the gene could be
aligned. We then considered those pairs of genes as dupli-
cates which found each other in the BLASTP search.
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Additional file 1
Supplementary tables S1 and S2 show the fraction and enrichment in the 
strong negative effect category of genes in unknown complexes and of 
unknown genes in complexes, respectively. Supplementary figures S1-6 
depict the comparison of the fitness of yeast strains upon deletion of genes 
in complexes and those not in complexes in all five growth conditions, also 
when excluding essential genes, as well as for the MIPS and Krogan sets 
of complexes. Supplementary figure S7 shows the correlation between the 
number of complexes in which a gene is present and the number of poten-
tial interactors, while supplementary figure S8 depicts the fitness of yeast 
strains in all five growth conditions upon deletion of inessential genes 
present in multiple complexes. Supplementary figure S9 compares strain 
fitness upon deletion of protein-coding genes and protein abundance, and 
supplementary figure S10 compares the fitness of yeast strains upon dele-
tion of genes unique to complex cores and genes unique to attachments in 
all five growth conditions. Finally, supplementary figure S11 illustrates 
the similarity of the fitness values for the different yeast deletion strains 
measured in time-course one and two.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-74-S1.pdf]

Additional file 2
This file provides tables containing the expected fitness effects upon dele-
tion of a random component of the given core or set of attachment proteins 
for all 5979 isoforms across different growth conditions and the expected 
fitness effects upon deletion of a random component of whole isoforms, 
which are visualized in Fig. 5 and Fig. 6, respectively.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-74-S2.xls]

Additional file 3
This file provides tables containing the set of 491 complexes and the set of 
5979 complex isoforms defined by Gavin et al. [9], as well as the set of 
266 hand-curated yeast complexes in the MIPS database [29] and the set 
of 547 yeast complexes defined by Krogan et al. [10]. This file also pro-
vides the quantitative fitness data for 4218 non-dubious inessential genes 
across two fermentable and three non-fermentable media, measured by 
Steinmetz et al. [3], the confident list of 956 non-dubious essential genes 
used in this work and the protein abundances determined by Ghaemma-
ghami et al. [30].
Click here for file
[http://www.biomedcentral.com/content/supplementary/1752-
0509-3-74-S3.xls]
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