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Abstract  

Pre-clinical models often fail to capture the diverse heterogeneity of human malignancies 

and as such lack clinical predictive power. Patient-derived tumour xenografts (PDXs) 

have emerged as a powerful technology: capable of retaining the molecular heterogeneity 

of their originating sample. However, heterogeneity within a tumour is governed by both 

cell-autonomous (e.g. genetic and epigenetic heterogeneity) and non-cell-autonomous 

(e.g. stromal heterogeneity) drivers. Whilst PDXs can largely recapitulate the polygenomic 

architecture of human tumours, they do not fully account for heterogeneity in the tumour 

microenvironment. Hence, these models have substantial utility in basic and translational 

research in cancer biology; but study of stromal or immune drivers of malignant 

progression may be limited. Similarly, PDX models offer the ability to conduct patient 

specific in vivo and ex vivo drug screens, but stromal contributions to treatment responses 

may be under-represented. This review discusses the sources and consequences of 

intratumour heterogeneity and how these are recapitulated in the PDX model. Limitations 

of the current generation of PDXs are discussed and strategies to improve several aspects 

of the model with respect to preserving heterogeneity are proposed.   

Key Words  

Patient-Derived Tumour Xenograft, Clonal dynamics, Tumour Heterogeneity, Humanized mice, 

Tumour Microenvironment, Cancer Associated Fibroblasts   

 



 2 

Introduction  

Despite remarkable advances in our understanding of the progression of human 

malignancies and the molecular events that underpin tumour survival, new therapies 

often fail to show significant efficacy in clinical trials. Projects such as The Cancer Genome 

Atlas and METABRIC have demonstrated the remarkable heterogeneity across tumours 

previously believed to be of the same subtype (1). It could be argued that clinical trials fail 

to sufficiently stratify patients based on relevant biomarkers of drug response: the 

response rate of an unscreened population to a molecularly targeted therapy typically lies 

between 10 and 20% (2). Patient stratification based on molecular determinants of drug 

efficacy and tumour heterogeneity allows for significantly greater responses - exemplified 

by the success of ALK kinase inhibitors in EML4-ALK positive non small cell lung cancers 

(3). However, even with patient stratification, clinical responses can be fleeting, often 

adding only 6-12 months before disease progression (2). Thus, understanding 

intertumour heterogeneity is the first step toward improved drug efficacy but cannot fully 

account for tumour relapse.  

 

Intratumour heterogeneity is governed by both cell-autonomous (e.g. genomic and 

epigenomic heterogeneity) and non-cell-autonomous (e.g. stromal heterogeneity) factors. 

This heterogeneity has clinical implications in patient specific responses to therapy and 

the rapid emergence of resistance to targeted therapies (4). By capturing intra as well as 

intertumour heterogeneity, PDX models have a clear advantage over traditional models, 

supporting their use in oncological drug discovery and preclinical development. PDX 

models largely recapitulate cell-autonomous drivers of heterogeneity: exhibiting genomic 

clonal dynamics reminiscent of their originating tumour sample (5,6). Moreover, 

phenotypically distinct isogenic cellular clones have been shown to drive resistance to 

chemotherapy in colorectal PDX models (7). The tumour microenvironment has long been 

known to play an essential role in tumour progression and its role in drug response is 

becoming apparent (8,9). Although PDXs retain the 3D architecture found in human 

tumours, stromal and immune interactions may be altered by inter-species compatibility 

and cellular component deficiencies in host models.  

 

The poor performance of so many investigational drugs suggests preclinical tumour 

models lack clinical predictive power. Indeed, one of the most often cited reasons for 
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clinical failure is a lack of preclinical models that recapitulate the complexity of human 

cancers. It is with this in mind that many research and pharmaceutical groups alike have 

turned to PDX models (10,11). The establishment and predictive power of PDXs has been 

reviewed recently elsewhere (11). This review will focus on the limitations of current 

PDX models and how these can be addressed in the future, specifically in terms of 

maintaining the heterogeneous nature of human cancers (summarized in Table 1). PDXs 

are arguably the best models of tumour heterogeneity, and therefore perhaps the most 

powerful tools for investigating tumour biology. However, they may fail to fully account 

for many non-cell-autonomous drivers of heterogeneity (Figure 1A), and should be 

adapted if they are to reach their full potential as predictors of clinical efficacy in cancer 

drug development.  
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Clonal dynamics and tumour heterogeneity in PDX models  
 

Through the course of tumour initiation and progression, cancerous cells undergo 

repeated mutational events that may or may not result in increased fitness relative to 

neighbouring cells. Dramatic increases in fitness are seen with the acquisition of key 

driver mutations early in a tumours evolution, for example the loss of TP53 may lead to 

clonal dominance. However, selection operates on phenotypes in response to stress 

inducing events, which may be stable or transient (12). A gain of fitness in one clone 

relative to another does not necessarily imply the loss of the latter in favour of the former. 

Rather, clonal populations within the tumour exist dynamically in space and time; 

competing, and perhaps cooperating, to further increase fitness of the tumour population 

as a whole (13) . Clonal dynamics derived from tumours’ inherent heterogeneity are thus 

extremely complex and can play key roles in tumour progression and development.  

 

This conceptual framework of clonal evolution in cancer predicts several clinically 

observable features (14). Firstly, every mutation or copy number aberration (CNA) 

present in the bulk tumour need not be present in all cells; indeed, spatial variation exists 

in a tumour’s clonal composition. The existence of multiple subclones explains variable 

response rates to therapy, even within a single tumour mass, and the rapid emergence of 

drug resistance. For instance, the presence of a minor KRAS mutant clone can predict 

colorectal cancer patients who will develop resistance to epidermal growth factor 

receptor (EGFR) targeted therapy (4).  

 

Our group has previously shown breast cancer consists of at least 10 distinct molecular 

subtypes with significant differences in disease outcome and treatment responses (1). 

Furthermore, we have helped delineate the diverse, variable clonal composition of triple 

negative breast cancers (TNBCs) (15). By allelic frequency measurements of 2,414 

somatic mutations in 104 TNBCs, a complete spectrum of molecular and clonal 

compositions were characterised at diagnosis. Aside from the prognostic features of 

specific rare subclones (4), there is an association between clonal diversity and treatment 

resistance for at least some tumour types – notably ovarian (16) and oesophageal (17). 

Basal-like TNBCs have previously been linked with shorter disease free survival 

compared to non-basal-like TNBCs and tend to be associated with higher clonal diversity 

(15). Furthermore, integration of genomic and drug response data from breast cancer 
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PDX models generated in our lab, show polygenomically engrafted tumours are more 

resistant to therapy than monogenomically engrafted tumours (Bruna et al., (2015) 

manuscript in preparation). Clearly more work is still to be done, but it seems likely that 

the clonal composition of tumours will have future utility in predicting disease outcome 

and informing treatment choice.  

 

Multiple groups have attempted to define clonal dynamics based on either lentiviral 

barcoding (cellular clones) or mutational clustering (genomic clones) by population and 

single cell based computational approaches (5,18).  For example, Eirew et al., 

reconstructed the genomic clonal dynamics of a panel of breast cancer PDX models using 

PyClone; a Bayesian clustering method for grouping somatic mutations (5). In each of the 

15 cases examined, clonal diversity was reduced by xenotransplantation. This varied from 

extreme engraftment bias, selecting minor clones present in the sample of origin, to only 

moderate clonal selection. Remarkably, similar clonal dynamics were observed in parallel 

xenografts established from the same sample. In a separate study, Ding et al., found PDX 

models established from a basal like breast cancer were more representative of the 

patient’s metastatic lesion than the primary tumour (19). These observations suggest 

deterministic mechanisms underline the clonal selection found on engraftment. Eirew et 

al., further observed variable clonal dynamics between PDXs established from different 

molecular subtypes; underscoring the need for better representation of tumour molecular 

subtypes (1,5). In summary, PDX models can at least partially recapitulate the complex 

clonal dynamics of human malignancies and engraftment biases may represent non-

stochastic selection events, which define a PDX model rather than limit its utility. The 

variable tumour- and subtype-dependent engraftment rates (low for some tumour types) 

and frequencies in the population mean that PDX programs representative of intertumour 

heterogeneity may require large multicentre collaborative efforts (such as the EuroPDX 

consortium (10)) and centralization of models.  

 

Clonal evolution is a continuous process, and may be substantially altered by the selective 

pressures applied during chemo- and targeted therapy. Coupled with spatial 

heterogeneity within the tumour this may result in the need for multiple-site repeat 

biopsies to decipher the clonal composition and dynamics of a tumour and inform 

treatment choice. Clearly these procedures will be highly invasive and may not be 

technically possible; it is with this in mind that many researchers have turned to liquid 
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biopsies (14,20). If our hypotheses are correct, modelling of clonal evolution in patient 

and matched PDX by computational approaches (such as PyClone (5) or CloneHD (18)) 

will allow unprecedented basic and translational research into clonal drivers of tumour 

progression and treatment response. Such studies will also be necessary to determine the 

longevity of PDX models of each cancer subtype, as it is unlikely that PDXs will remain 

patient-relevant and genomically stable in perpetuity.  

 

It has been proposed that aberrant DNA methylation patterns in cancer can blur the lines 

between distinct phenotypic ‘attractor states’ (21). Thus, it may be important to consider 

cellular clones as drivers of malignant progression, independent of their genetic 

background. To track these isogenic cellular clones, lentiviral tagging has been utilised to 

mark individual cells, and their progeny, in breast and colorectal PDX models (6,7). In an 

elegant study by Kreso et al., it was found that minor ‘type IV’ subclones in colorectal 

PDXs were able to repopulate the tumour bulk after treatment with chemotherapy (7). 

These quiescent cell populations were genetically similar to their highly proliferative 

counterparts, and were later linked to the BMI1+ population thought to act as reserve 

stem cells of the intestinal and colonic crypts (22). As the cellular clones defined in this 

study were isogenic, their phenotype may have been driven by microenvironmental cues 

capable of modulating cellular transition between distinct gene expression patterns or 

epigenetic attractor states (23). Hence, the microenvironment’s composition could 

profoundly alter both a cells propensity to malignancy and the heterogeneity we hope to 

preserve in PDX models. Regardless, we should not underestimate the significance of even 

a partial translation of vastly heterogeneous human diseases into experimental model 

systems.  
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Limitations of the PDX model: tumour-extrinsic sources of 
heterogeneity   

Aside from clonal dynamics driven by intrinsic differences in a cell’s genetic or epigenetic 

background, intratumour heterogeneity can be influenced by tumour-extrinsic factors in 

the non-cell-autonomous compartment (Figure 1A and Table 1) (23). Cellular interactions 

with the extracellular matrix (ECM) can alter gene expression programs, drive 

differentiation and profoundly alter cell behaviour. As cancers develop, tight regulation of 

the ECM is lost and tissue architecture begins to degrade (8). A recent study by Wang et 

al., provides direct evidence that ECM dependent signalling confers dynamic switching 

between TGFBR3 (transforming growth factor β receptor 3) and JUND (jun D proto-

oncogene) related expression signatures (24). ECM driven oscillations between signalling 

pathways such as those described could have profound effects on propensity to 

malignancy. Furthermore, solid state ECM interactions are necessary for cells to maintain 

stem cell properties and regulated ECM helps maintain the stem cell niche (25). As cancer 

is often associated with a blurring of the boundaries between stem and differentiated 

cells, it is possible that a loss of structured ECM is essential for the stability of multiple 

sub-dominant cellular clones within a tumour (21). In PDX models, MatrigelTM is often 

used to increase the engraftment efficiency, however it is worth noting that this is a 

murine basement membrane extract and suitable synthetic human alternatives are 

available. The presence of growth factors in Matrigel may favour the engraftment of one 

cell type over another. Finally, as ECM structure is tissue specific (25), researchers should 

consider the use of orthotopic transplantations where possible. 

The tumour microenvironment is further characterised by an influx of stromal cells. 

Infiltrating cancer associated fibroblasts (CAFs) can often confer resistance to cytotoxic 

and targeted therapies (9), however, recent studies confer on fibroblasts a degree of 

plasticity, with anti-tumour properties observed in some populations (26). Due to the 

high levels of CAF infiltrates seen in some tumour types, heterogeneity within their 

population would undoubtedly confer differential properties to the tumour bulk. We, and 

others, have found that human stromal cells are gradually replaced by murine equivalents 

upon engraftment in the mouse, suggesting that implanted human cells retain the ability 

to recruit murine accessory cells to their niche. However, it should be noted that some 

differences exist between ligand repertoires of human and murine fibroblasts (27). 
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Clearly stromal architecture and activity is mimicked in the murine host, however it is 

currently unclear how this reflects human stroma with regards supporting tumour 

growth and development.  

 

It is with this in mind that many have begun to investigate the co-engraftment of human 

mesenchymal stem cells (MSCs) or CAF cell lines in PDXs (Figure 1B and C). Here, care 

must be taken; the role of MSCs in tumour development is still controversial and may 

represent patient (or tissue) specific differences (28). If non-patient-matched sources of 

stromal cells are implanted, heterogeneity between tumours derived from different 

patients could be lost. Moreover, fibroblast cell lines vary considerably in their ability to 

confer resistance to cytotoxic therapies through hepatocyte growth factor (HGF)/c-Met 

signalling (9,27). Patient-derived fibroblasts can be isolated from tumour samples and 

expanded in vitro, thus, co-engraftment of matched stromal components should be 

considered wherever possible. This would significantly increase the advantages these 

models already have in retaining the complex heterogeneity found in patient samples.  

 

Considering the crucial role of the immune system in tumour progression, perhaps the 

most obvious disadvantage of PDX models is the necessity for severely immunodeficient 

host animals. Tumour cells are broadly thought to be antigenic: point mutations in coding 

exons in a developed tumour results in a large repertoire of neoantigens. Targeting of 

these neoantigens can lead to significant CD8+ cytotoxic T-cell infiltration and tumour cell 

death. However, most tumours eventually progress and evade the immune system - often 

through the dominant inhibitory effects of suppressive pathways (so called ‘immune 

checkpoints’ such as CTLA-4/B7 and PD-1/PD-L1). This is supported by the prognostic 

value of the CD8+ to FOXP3+ (Cytotoxic to Regulatory T-cell) ratio in many solid tumours, 

and the recently reported clinical efficacy of a variety of checkpoint inhibitors (29,30).  

 

The pro-inflammatory microenvironment established by CD8+ T-cells, M1 polarised 

tumour associated macrophages (TAMs), NK cells and others can lead to the recruitment 

of numerous immune suppressive components. TAMs and myeloid derived suppressor 

cells have been implicated in resistance to anti-angiogenic therapy. Additionally, 

macrophage and CD4+ T-cell recruitment following intensive chemotherapy in breast 

cancer patients is associated with significantly reduced recurrence free survival (30). 

Clearly, the co-engraftment of immune components into PDX models (Figure 1B) would 
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facilitate both the study of novel therapies targeting tumour-immune interactions and 

allow for basic research into patient specific cross-talk between tumour progression and 

immune surveillance. Clone or patient specific differences in tolerization of dendritic cells, 

macrophage and neutrophil polarity and regulatory T-cell (Treg) infiltration could 

provide multiple novel insights into tumour biology.  

 

The most robust reconstitution of the human immune system in immunodeficient mice is 

seen when bone marrow derived stem cells are co-engrafted along with liver and thymus 

fragments (BMT model) (31). However, the highly invasive multi-site biopsy required 

renders this model impractical for patient-matched humanised PDX models (huPDXs). 

CD34 marks a population of hematopoietic stem and progenitor cells (HSPCs) found in 

the blood and bone marrow. Mice implanted with CD34+ cells from umbilical cord blood 

show robust multilineage engraftment of human immune populations, though with 

reduced functionality relative to BMT mice. During chemotherapy, CD34+ cells leave the 

bone marrow and enter the circulation. If patients are given Granulocyte-Macrophage 

Colony Stimulating Factor (GM-CSF; LeukineTM) to aid recovery from chemotherapy, 

numbers of CD34+ cells in the circulation have been known to exceed the bone marrow 

itself.  Hence, CD34+ cells could potentially be harvested from patient’s blood to 

reconstitute a functional, patient-matched, immune system in mouse models (huCD34 

model). As such an immune system would mature in the mouse and human immune cells 

would undergo central tolerance to mouse antigens during development. However, as 

they would not be exposed to patient antigens during this process, it is likely that they 

would mount a rapid non-self response to any subsequently engrafted human tissue. One 

possible solution comes from a recent study by Cosgun et al., showing immunodeficient 

adult mice carrying a mutation in the Kit receptor could support robust, uniform and 

sustained engraftment of CD34+ cells (32). If patient-matched CD34+ HSPCs were 

engrafted in adult Kit mutant mice with an established PDX tumour, it is possible that a 

functional immune system could develop in the presence of both human and mouse 

antigens. 

 

The alternative, to engraft fully mature human immune cells, is used in the huPBMC 

model. Here, mononuclear cells from the peripheral blood (PBMCs) are isolated and 

implanted in immunodeficient mice. PBMCs comprise around 75% CD4/CD8+ T cells with 

the remainder primarily containing B and NK cells. As such, these models are well suited 
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to short-term experiments where lymphocyte function is of primary concern. Aside from 

the lifetime of circulating cells, the major limitation of the huPBMC model is the rapid 

onset of graft versus host disease (GVHD) as engrafted cells mount an immune response 

against host murine tissue. The onset of GVHD can be delayed somewhat by the use of 

NOD scid gamma (NSG) strains lacking MHC I (33).  

 

Undoubtedly the reconstitution of a patient-matched immune system in PDX models 

would be extremely valuable in the development of novel oncological drugs and in 

particular immunotherapeutics. The extent to which findings would be valid in the 

context of immune hyperactivation (against mouse in huPBMC or against tumour in 

huCD34) is unclear.  
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Conclusions and future prospects – toward a huPDX model 
 
The PDX is arguably the most faithful model of cell-autonomous drivers of malignant 

progression. Sharing of expertise and resources through collaborative initiatives such as 

the EuroPDX consortium will lead to improved engraftment efficiencies and increase the 

breadth of tumour subtypes available in these model systems, contributing to a better 

representation of cancer heterogeneity in the lab (10).  

 

Cooperation and competition between genetically or phenotypically distinct subclonal 

populations is thought to drive tumour growth, resistance to therapy and recurrence. 

While cell-autonomous sources of heterogeneity are clearly recapitulated in PDX models, 

current techniques fail to properly account for non-cell-autonomous factors. The 

microenvironment has long been known to play a significant role in tumour progression, 

but an incomplete understanding of stromal influences makes co-engraftment of non-

patient-matched cell compartments a risky strategy. In order to maintain PDXs as models 

of diversity of human malignancies we must take care to engraft only patient-matched 

stromal components. CAFs have known roles in resistance to targeted therapy. It should, 

therefore, be a priority to ensure patient fibroblasts are maintained in the tumour 

xenograft.  

 

Reconstituting a patient-matched immune system in PDX models is a significant 

challenge. Standard methods of engrafting either CD34+ HSPCs or mature circulating 

PBMCs will likely lead to inappropriate immune responses against human or murine 

tissues respectively. In order to study long-term tumour-immune interactions, a 

reconstituted immune system must simultaneously maintain tolerance to its human 

donor and acquire tolerance to its new host. A solution could come from engrafting both 

mature and naïve cell types. Maturing cells in the thymus and bone marrow would 

acquire central tolerance to murine tissues whilst mature cells in the periphery could act 

to suppress inappropriate responses against human antigens.  

 

PDX models are capable of recapitulating the complexity of human malignancy 

remarkably well. These models have extraordinary utility in basic cancer research and 

beyond this have demonstrated clinical predictive power, allowing multiplexed screening 
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of novel therapeutics in vivo. However, the aforementioned limitations of this model must 

be carefully considered when interpreting data. Although a significant amount of research 

is still needed, patient-matched huPDX models with co-engrafted stromal and immune 

components would offer unprecedented opportunity to study tumour biology and would 

be invaluable models in oncological drug development. In the future, huPDX models could 

allow researchers and clinicians to both predict and explain tumour response to novel 

targeted therapies.  
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Figure Legend  
 
Figure 1 A shows a primary breast tumour including some sources of heterogeneity found 

in the native microenvironment. Reciprocal signalling pathways between tumour cells 

and tumour associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are 

highlighted. Extracellular matrix (ECM) is shown as collagen fibres with associated 

fibroblasts and macrophage/dendritic cells with T/B Lymphocytes are shown as part of 

the immune infiltrate, though other cell types (NK cells, myeloid derived suppressors etc.) 

have been omitted for simplicity.  

Panel B highlights patient matched fibroblasts and immune cells as possible candidates 

for co-engraftment in the next generation of PDX models. Current PDXs established in 

NSG mice lack an adaptive immune system and may have impaired innate immune cell 

infiltrates and cytokine signalling due to defective IL-2 receptor (33). Cancer associated 

fibroblasts are known to contribute to treatment response, although murine fibroblasts 

are present in PDX models, it is unclear how faithfully these recapitulate their human 

counterparts (26). 

Panel C shows a PDX tumour in its native microenvironment. Questions over whether 

pro- and anti- tumour CAF/TAM signalling pathways are present to the same extent in 

PDX models as in the primary tumour are highlighted. Stromal and tissue architecture can 

have profound effects on transcriptional regulation but are often overlooked in the 

establishment of PDX models (25). To highlight potential differences in ECM organisation 

between the native microenvironment and that of the PDX, here the ECM is shown as 

highly organised collagen fibres with closely associated myofibroblasts. 

 

 
Table Legend  
 
Table 1 shows sources of tumour heterogeneity, their consequences in translational and 

basic cancer biology and how they are currently represented in PDX models. Strategies to 

improve the model, by better representation of both cell-autonomous (genomic and 

epigenomic clones etc.) and non-cell-autonomous (stroma, immune infiltrate etc.) drivers 

of heterogeneity are proposed.  
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