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Abstract 4 

Two groups of cylindrical CFRP tendons were exposed in distilled water at 23°C and 60 5 

°C to study the diffusion mechanisms and the effect of moisture uptake on the tendon 6 

shear modulus. The two tendon groups had different manufacturing processes, so DMA 7 

tests and optical microscopy were used to help characterise the materials. Mass uptake 8 

readings of tendon samples were recorded and the uptake generally agreed with Fickian 9 

predictions. To study the time-dependent changes in the matrix stiffness due to exposure, 10 

torsion tests within the elastic range of loading were conducted. The tendon shear modulus 11 

was then derived from the torque versus twist plots. For both groups of tendons the 12 

measured shear modulus decreased due to exposure in water. A long-term shear modulus 13 

prediction model was developed to relate the tendon torsional shear stiffness and the 14 

moisture concentration and the results appeared to agree well with the experimental 15 

findings.  16 
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Introduction 19 

Recent high-profile incidents of the corrosion of steel reinforcement in prestressed 20 

concrete bridge structures, e.g. the Mid Bay Bridge in Florida (Hartt and Venugopalan 21 

2002) and Hammersmith Flyover Bridge in London (Lynch 2012), have exemplified the 22 

extensive disruption and costs associated with steel corrosion. The use of fibre reinforced 23 

polymer (FRP) tendons as internal concrete reinforcement is a proactive means to avoid 24 

chemical corrosion. Despite their high initial cost, FRP tendons can be effective in terms 25 

of the whole life costing of a structure and the full strain capacity can be exploited if the 26 

tendons are prestressed (Burgoyne and Balafas 2007). However, a lack of confidence in 27 

the adoption of new structural materials has limited the wider field applications of FRPs. 28 

Moreover, the long term durability of FRPs in wet environments remains an area of active 29 

research. It is important to ensure that FRP tendons are not adversely affected due to 30 

moisture absorption in the resin matrix material. 31 

 32 

To date, design guidelines and codes for concrete reinforced with carbon FRP (CFRP) 33 

have proposed strength reduction factors for environmental exposure, but due to the 34 

complexities of the interactions there can be a lack of a firm experimental or analytical 35 

basis to support these recommendations (Huang and Aboutaha 2010). Furthermore, the 36 

strength reduction factors tend to relate to fibre dominated properties, such as tensile 37 

strength (ACI 2006), but do not necessarily reflect matrix dominated properties, such as 38 

the bond performance, shear strength, dowel strength and creep, all of which can be 39 

degraded from exposure in wet environments. Another factor not explicitly considered by 40 

standards is the manufacturing process of the CFRP tendons and in particular the curing 41 

(Krishna et al. 2010).  42 

 43 
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Manufacturing process in CFRP tendons 44 

The most suitable manufacturing process for cylindrical FRP bars used as prestressing 45 

tendons is the pultrusion method.  Pultrusion offers a high speed of production for constant 46 

circular cross sections with high fibre volume fractions. The resulting bars have a high 47 

stiffness through the alignment of unidirectional fibres (Mayer 1996). The final quality of 48 

the CFRP tendons is regulated by a low void percentage and a high crosslinking density of 49 

the epoxy matrix.  50 

 51 

The die length and temperature, the pull out speed and the heat power input influence both 52 

the presence and percentage of voids in pultruded FRPs (Li et al. 2002; Lam et al. 2003). 53 

The fibre sizing, coupling agent and resin viscosity also play a role (Kelly 1989). The 54 

effect of the void content has been mainly studied in aerospace engineering, since 55 

increased porosity has been reported in laminate structures. This most commonly occurs in 56 

the resin rich interface layers as a result of the lay-up manufacturing process. Voids have a 57 

greater effect on the interlaminar shear (ILSS) and flexural strength than on the tensile 58 

modulus and strength (Olivier et al. 1995; Liu et al. 2006). This is because pores replace 59 

the matrix material and develop preferentially in the fibre-matrix interface. Even for the 60 

same absolute void percentage large variations in performance have been reported due to a 61 

dependency on the width to length aspect ratio of the voids (Huang and Talreja 2005; Zhu 62 

et al. 2009). Hancox (1977) reported a 70% decrease in shear modulus and strength of wet 63 

moulded CFRP rods with a 5% void content and observed that interconnected void regions 64 

enable the shear crack paths to initiate and develop. Zhu et al. (2009) recorded a drop of up 65 

to 16% in the ILSS of carbon/epoxy laminates with 8% porosity relative to laminates with 66 

0.2% porosity. 67 

 68 
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The curing temperature and curing time in the manufacturing process controls the degree 69 

of molecular crosslinking in a resin matrix and consequently influences the chemical 70 

stability and mechanical performance on the macroscale. The polymerisation of epoxy 71 

groups is the result of three principal curing reactions. The first curing reaction is between 72 

an epoxide group and the primary amine group of the curing agent. The second reaction 73 

has a lower rate and a second curing run is often required for the full conversion of the 74 

secondary amines (Vanlandingham et al. 1999a). The etherification of the remaining 75 

unreacted and reacted epoxy groups is the final stage of the curing process and takes place 76 

only at high temperatures and longer times (Vanlandingham et al. 1999a) or in the 77 

presence of catalysts (Wu 1992) . In practice the experimental detection of the degree of 78 

crosslinking in epoxies is difficult and consequently the molecular structure and 79 

mechanical properties cannot be directly related. The most commonly used methods to 80 

infer the crosslinking density are by determining the glass transition temperature (Tg) 81 

values using Dynamic Mechanical Analysis (DMA) (e.g. Vanlandingham et al. 1999a) and 82 

Differential Scanning Calorimetry (DSC) (e.g. Wu 1992) . A higher crosslinking density is 83 

believed to result in a higher Tg value (Wu 1992; Vanlandingham et al. 1999a).  84 

 85 

Exposure to moisture 86 

In humid environments, the matrix component of a CFRP tendon is the main source of 87 

degradation, since carbon fibres are generally considered to be impermeable due to their 88 

highly aligned and crystalline structure. The moisture diffusion process in epoxies is 89 

governed by two factors. The first is the availability of molecular sized holes (free volume) 90 

which is inherently dependent on the crosslinking density (Diamant et al. 1981; 91 

Vanlandingham et al. 1999b) and hence on the hardener type and extent of cure (Diamant 92 

et al. 1981; Wright 1981). This process is reversible upon drying.  The second factor is the 93 
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hydrogen bonding of the water molecules in the sorption sites in the polymer such as the 94 

hydroxyl groups (bound molecules).  This process is irreversible and leads to the swelling 95 

of the epoxy matrix material (Adamson 1980). The water uptake in epoxies is also affected 96 

by a number of other parameters including the polymer polarity,  unreacted amine groups, 97 

and the development of a two phase structure (Diamant et al. 1981). All these factors are 98 

related to the manufacturing variables, such as the stoichiometry, mixing conditions, 99 

temperature, extent of cure and pressure. A decrease in the diffusivity of epoxy systems 100 

(Marais et al. 2000) and the water saturation levels in CFRPs (Ankara et al. 1986) have 101 

been attributed to a higher degree of cure and additional crosslinking. However, Min et al. 102 

(1993) have found that additional crosslinking does not necessarily result in a lower 103 

diffusivity.   104 

 105 

Accelerated ageing can be used to obtain long-term data from short exposure times. The 106 

most widely accepted method based on the Arrhenius principles is to accelerate moisture 107 

uptake with the application of elevated temperatures in conjunction with exposure in 108 

humid environments. It is assumed that one chemical degradation mechanism exists and 109 

accelerates by elevating the temperature. However, longer exposure times and longer 110 

exposure temperatures may cause hydrolysis resulting in mass loss. In general, CFRP 111 

tendons exhibit a good chemical resistance against hydrolysis (chain scission) due to the 112 

stability of the epoxy resin and carbon fibres when subjected to wet environments. 113 

Nevertheless, hydrolysis has been observed in epoxy matrices exposed in distilled water at 114 

high temperatures near the glass transition temperature of the exposed sample (Xiao and 115 

Shanahan 1997). Therefore, the temperature applied should be much lower than the Tg 116 

value of the unexposed epoxy to avoid additional degradation mechanisms that are not 117 

representative. However, moisture absorption decreases the Tg of the epoxies and hence a 118 
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safe threshold should be defined. Dolan et al. (2008) suggested that an elevated exposure 119 

temperature should be at least 15°C lower than the Tg value. However, a reduction in Tg of 120 

up to 30°C has been reported in a CFRP laminate exposed at 95% RH and 50°C for 1.7% 121 

moisture uptake and with a reference Tg value of 135°C (Birger et al. 1989). Furthermore, 122 

Robert et al. (2010) observed additional degradation mechanisms in GFRP bars immersed 123 

in distilled water at 80°C, even though the Tg of an unexposed specimen was 96°C. 124 

According to ACI (2006), 60°C is recommended as an accelerated ageing temperature for 125 

structural FRP materials. 126 

 127 

Effect of moisture on strength and stiffness 128 

A common test method to assess the long-term durability of matrix dominated properties 129 

in FRPs is the short beam test method. This method can provide insight into both the 130 

stiffness and strength implications of moisture exposure.  In the context of a matrix 131 

strength assessment, the test is more directly applicable to laminate structures, where the 132 

failure takes place mostly between laminas and so the interlaminar shear stress (ILSS) can 133 

be derived.  In durability tests on unidirectional carbon/epoxy laminates manufactured 134 

with a wet lay-up method, Abanilla et al. (2006) reported a 33.4% reduction in 135 

interlaminar shear strength after 100 weeks of exposure in alkaline solution and a 20% 136 

reduction in interlaminar shear modulus after 100 weeks of exposure in deionised water at 137 

23°C. Interlaminar shear strength reductions in CFRP rods of 14-35% have been reported 138 

after exposure in alkali solution at 60°C for 42 days (Micelli and Nanni 2001). Scott and 139 

Lees (2012) conducted short beam shear tests on CFRP tendons that had been immersed in 140 

either water (W), salt water (SW) or concrete pore solution (CPS) for roughly 1.5 years at 141 

60 °C. For specimens without axial stress loaded transversely with flat plates, the ultimate 142 

shear load of the SW and W specimens did not differ significantly from the unexposed 143 
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control samples but a 7% loss of strength was noted after CPS exposure. The average 144 

measured stiffnesses of the exposed tendons were less than the unexposed samples and, for 145 

example, the load versus deflection slope for the water-exposed samples was around 30% 146 

lower at small displacements. Transverse shear tests on CFRP tendons using rounded 147 

plates were also conducted. However, it was postulated that the inference of the matrix 148 

strength from the peak load may result in misleading conclusions since in these tests the 149 

failure process can shift from a matrix-dominated to fiber-dominated mechanism (Scott 150 

and Lees, 2012). Such fiber-dominated effects also have ramifications for the measured 151 

matrix stiffness. Scott and Lees (2012) noted three stages of behaviour from the rounded 152 

plate load deflection results. The first stage at small displacements was felt to be the most 153 

representative of the matrix stiffness. The tendons then delaminated which led to a second 154 

phase of behavior associated with further delamination and an increase in displacement 155 

under constant load. A final phase, after large displacements, was characterized by a stiffer 156 

response associated with fiber-stiffening mechanisms. In short beam tests on GFRP rods, 157 

Chen et al. (2007a) observed a lower slope in the load versus deflection plots for 158 

deflections up to 0.5 mm and attributed this to the low matrix strength and stiffness. But 159 

the slope then increased with increasing load up to failure.    160 

 161 

Torsion testing 162 

To study changes in matrix stiffness due to moisture exposure and to mitigate the fibre 163 

stiffening mechanisms prevalent in short beam shear tests, the current work investigates 164 

the testing of CFRP rods in torsion. In a torsion test, the shear modulus of an FRP rod, in a 165 

plane perpendicular to the fibre direction, can be measured while minimising stress 166 

concentrations and normal bending stresses. Studies on the torsional mechanical behaviour 167 

of CFRP rods (Hancox 1972; Hiermer et al. 1998) and laminates (Ogasawara et al. 2007) 168 
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have been carried out, but have primarily focused on the elastic-plastic behaviour and the 169 

ultimate strength properties. For cylindrical tendons, the stiffness of the epoxy matrix can 170 

be derived from the torsional shear modulus values and at small rotations fibre stiffening 171 

effects are minimised. A further advantage is that, after exposure, the moisture uptake 172 

occurs first in the outer perimeters of the CFRP cross-section. In a torsion test, it is the 173 

outer perimeter where the maximum torsional shear stresses act and contribute most to the 174 

shear stiffness. Therefore, any degradation of these regions can be observed after relatively 175 

short exposure times. CFRP tendons, produced using two different manufacturing 176 

methods, are studied. To characterise the tendon moisture uptake properties, the diffusion 177 

behaviour is studied with short tendon samples immersed in water at 23°C and 60°C. 178 

CFRP tendons are tested elastically in torsion after different exposure times to investigate 179 

the relationship between the moisture uptake and shear modulus degradation. A model 180 

relating the radial diffusion to the change in shear modulus is developed to predict the 181 

shear modulus degradation with time. 182 

 183 

Experimental Program 184 

Materials 185 

The CFRP tendons used in this research are categorised into two groups C and D, based on 186 

their manufacturing details. Both groups of tendons had the same Bakelite EPR 4434 187 

epoxy and EPH 943 hardener, Tenax UTS 5631 fibres and fibre volume fraction, Vf=64%. 188 

However, the nominal tendon diameters differed and were 4.2 mm and 5.4 mm for groups 189 

C and D respectively. These values refer to the nominal diameter of the core tendon as 190 

provided by the manufacturer and were adopted in the following calculations. The core 191 

diameters of both groups C and D tendons were also measured with a micrometer and 192 
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found to be Ф=4.15 ±0.06 mm and Ф=5.44 ±0.014 mm respectively. The group C tendons 193 

were manufactured specifically for research purposes and were uncoated. In contrast, the 194 

group D specimens were commercial products and so had a sand coating layer to improve 195 

the bond between the tendon and concrete. This means that there was an additional in-line 196 

production step during pultrusion, where an additional epoxy layer was applied, sand 197 

particles were sprayed and further curing followed. For this experimental series the sand 198 

coating layer was gently scraped off with a sharpened blade from the group D CFRP 199 

tendons. The exact details of the cure cycle are confidential but during the curing process 200 

the group C and D tendons were heated to a maximum temperature of 195°C.  201 

 202 

Material characterization: Optical Microscopy and DMA tests 203 

To verify the quality of the manufacture, the fibre size and the fibre-matrix interface, 204 

samples were studied using a Leica DMLM Optical Microscope (Leica Microsystems, 205 

Germany). Unexposed tendon samples were cut with a Dremel 398 tool (Dremel Europe, 206 

UK) and cast into a resin matrix (Acri-kleer cold mounting). The samples were later 207 

polished with P800 (22 μm) and P400 (5 μm) abrasive silicon paper.  208 

 209 

Dynamical Mechanical Analysis (DMA) tests were conducted to measure the Tg values of 210 

the CFRP tendons and to infer the crosslinking density of the epoxy, since these two 211 

properties are felt to be interrelated (Min et al. 1993; Vanlandingham et al. 1999a).  Two 212 

samples from group C (C1 & C2) and one sample from group D (D1) were tested. The 213 

number of the tested specimens is limited and not sufficient for a full statistical analysis. 214 

Nonetheless, the DMA results can help to identify fundamental differences between the 215 

two tendon groups. The specimens were 40 mm long and were machined to square 216 
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sections of 3.10mm × 3.10 mm for group C and 3.60 mm × 3.60 mm for group D. The 217 

dimensions varied at most by 1% along the length of the specimens. All specimens were 218 

preconditioned at 23°C ± 2°C and RH = 50% ± 5 % for at least 7 days before testing in a 3 219 

point bending mode. The ramp rate was 2°C/min, the frequency was fixed at 10 Hz, the 220 

temperature ranged from 23°C – 210°C and strain amplitude of 0.02 mm was applied. The 221 

Tg values were measured from the peak of the tanδ plot.  222 

 223 

Exposure and moisture absorption 224 

A number of 100 mm tendon samples were immersed for moisture absorption tests, where 225 

the mass weight was recorded at different times. Five 100mm length CFRP samples from 226 

both groups C and D were fully immersed in distilled water in separate polypropylene 227 

containers and were stored in the lab at room temperature (23°C). In addition, four 228 

immersed samples from group C and two samples from group D were stored in the oven at 229 

60°C to accelerate the ageing process. The 60°C exposure conditions are well below the 230 

measured Tg values of the epoxy used (see next section) and so this temperature was 231 

unlikely to invoke unrepresentative degradation mechanisms. The mass uptake in the 100 232 

mm samples was regularly recorded using an Oertling R20 (Oertling Ltd, UK) analogue 233 

balance machine with a 0.0001 g resolution. Before each measurement the specimens were 234 

blotted dry with a tissue paper and left at room temperature for 5 min. The average of three 235 

separate mass readings was recorded as the mass weight at a given time.  236 

 237 

Torsion rig and torsion testing procedure 238 

The torsion rig set-up is shown in Figure 1a. The torsion tests were carried out according 239 

to ASTM E143-02. One end of a 300 mm long tendon is gripped in a three jaw chuck, 240 



 

11 
 

while the other end is free to twist. At the right hand support, a fixed bearing enables axial 241 

movement through a long recess which extends beyond the length required to support the 242 

tendon (Figure 1b). A perpendicular lever arm is attached to the tendon using the clamp 243 

shown in Figure 1c. A rubber layer is inserted between the tendon and the clamp to 244 

enhance the friction and avoid slipping. A spirit level fixed on the lever arm ensures the 245 

tendon is correctly aligned before testing. Loading weights of 50 g are applied to the lever 246 

arm through a wire.  The torque was calculated as the load multiplied by the lever arm 247 

(162 mm) but was corrected for the change in the angle of the lever arm. Inclinometers 248 

with a range -15˚ to 15˚ and with a 0.0006˚ resolution measured the rotation of the 249 

specimens. The inclinometers were calibrated before every torsion test and the resulting 250 

calibration factors were validated against a specified nominal range. Each inclinometer is 251 

attached through a mounting plate to a hexagonal section at the midpoint of the 252 

inclinometer that is secured with three bolts to the tendon. The relative twist was 253 

calculated at each loading step as the difference between the readings of two inclinometers 254 

over a distance of 105 mm. To investigate the accuracy of the experimental set up, initial 255 

torsion tests were carried out on a steel rod with a diameter of 4.76 mm. The 256 

experimentally measured modulus was found to deviate from the nominal shear modulus 257 

of steel by 1.6-4%. To assess the inherent material variability between CFRP tendons, 258 

three unexposed specimens from group C, derived from the same length of the tendon roll, 259 

were tested and the shear modulus values were found to vary by 2.5%. 260 

 261 

Experimental series 262 

The experimental programme consisting of two test series is summarised in Table 1. The 263 

main experimental variables were: specimen type (group C or D), drying time, exposure 264 

time, exposure temperature (23°C and/or 60°C), and the effects of repeated testing.  265 
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 266 

All the specimens had been previously stored in lab conditions and dried in an oven at 267 

60C prior to exposure. In series I, the specimens were dried for 2 years. However, after 268 

204 days a mass loss of up to 0.54% for groups C and 0.58% for group D was recorded 269 

and thereafter no further mass loss was observed. At the end of the drying period, no 270 

cracks or discolouration were visually observed, so we assume no thermo-oxidative ageing 271 

effects took place. For series II, the specimens were dried for only 4 months but the mass 272 

was found to differ by about 0.10% from series I. In the following discussion, the drying 273 

period is not taken as a differentiator. 274 

 275 

Control specimens (C-II-3 and D-I-7) were used to measure the baseline dry shear 276 

modulus.  For the exposed specimens, a 200 mm central region of the 300 mm long sample 277 

was immersed in distilled water. This was to protect the region that will be clamped in the 278 

torsion test and avoid a premature failure since CFRPs are susceptible to lateral 279 

compression when exposed to humid environments.  The majority of the specimens were 280 

exposed continuously to either 23°C or 60°C.  The exceptions were specimens D-I-9 and 281 

C-I-8 which were moved after exposure for 141 days at 23°C to an oven at 60°C under 282 

similar immersion conditions.  This was done to further investigate the equivalency of the 283 

total moisture uptake regardless of exposure temperature. 284 

   285 

For all the exposed specimens, the same tendon specimen was tested at two or more 286 

different time intervals. But there was a concern that if microcracking occurred during a 287 

torsion test at a given time interval, this could then precipitate additional moisture uptake 288 

such that a greater stiffness degradation might be observed at the next time interval. A 289 

range of comparable specimens were therefore tested such that the second time of testing 290 
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coincided with the first testing of another specimen at the same exposure time (e.g. C-II-9 291 

to C-II-12 and C-II-4 to C-II-7). Hence, if the shear moduli differed beyond the 292 

experimental error range allowing for a degree of material variability, this would indicate 293 

that microcracking could play a role. In addition, since the exposure time at first testing 294 

also varied, any dependency of the microcracking on moisture uptake could also be 295 

ascertained.    296 

 297 

Specimens C-I-6 and D-I-6 were the first specimens to be tested and used a torsion test set-298 

up with a slightly different right hand support condition. C-I-6 also used a flat plate 299 

clamping system which was subsequently changed since there were signs of damage in the 300 

clamping region near the exposed area after testing at 112 days. The clamping system used 301 

in all the other tests had a curved profile (see Figure 1c) that provided a more uniform 302 

radial stress distribution.   303 

 304 

The aim was to ensure that under the applied torsional stress, the tendons remained in the 305 

elastic range. Based on research work by Hancox (1972) on unidirectional CFRP bars and 306 

Ogasawara et al. (2007) who studied unidirectional CFRP laminates, the maximum values 307 

of torsion shear stresses τ in the elastic range were 24 and 32 MPa respectively. Failure 308 

trial tests on group C specimens showed a linear relationship up to approximately 31 MPa. 309 

In the experimental procedure, group C specimens were loaded up to maximum total 310 

weight of 200 g whereas a maximum of 250 g was used for group D. The theoretical 311 

maximum values of τ at the maximum loading are 21 MPa for group C and 13 MPa for 312 

group D so should remain in the elastic range.  313 

 314 
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Results and Discussion 315 

Optical Microscopy 316 

Figure 2a shows a section of a group C sample at a magnification of 1000 μm. The 317 

percentage of voids is significant and extends to long interconnected regions within the 318 

resin matrix with a length up to 500 μm and width in the order of 20-30 μm (Figure 2b). 319 

Furthermore, a region of different morphology is observed that is characterised by a dense 320 

distribution of smaller fibre sizes (Figure 2c, 2d). Similar findings have also been reported 321 

in commercially available GFRP tendons by Davalos et al. (2008). Optical microscope 322 

pictures for Group D samples reveal a solid matrix distribution and a uniform size of fibres 323 

as shown in Figures 3a & b. The only abnormalities are small areas of different ‘glassy’ 324 

morphology (Figures 3 c and d) that have also been observed in group C. This is more 325 

pronounced in Figure 3d, where a dark field is applied for comparison. This might be 326 

indicative of a two-phase morphology with phases of lower crosslinked structure in the 327 

order of 10-20 μm. Soft phases of lower crosslinked structure have been reported by 328 

Vanlandingham et al. (1999a) in Atomic Force Microscope pictures of stoichiometric 329 

compositions of high crosslink density Epoxy EPON-828 and PACM 20. 330 

 331 

DMA tests 332 

Figure 4 illustrates the storage modulus E´ and tanδ values with respect to temperature. 333 

The DMA tests yielded Tg-tanδ=163 and 170°C for the two group C samples and 334 

 Tg-tanδ=147°C for the group D specimen. The higher group C Tg values would suggest a 335 

higher crosslink density. This is contradictory to what was expected, since group D was 336 

additionally heated during production when the sand coating was applied. Although an 337 

increase in Tg values due to post-curing has been reported elsewhere (Wu 1992) this is not 338 
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observed here and the group D specimens have a Tg which is 15°C lower than group C. 339 

However, group D has a higher absolute peak tanδ value and a narrow α-relaxation that is 340 

indicative of a higher crosslink density (Meyer et al. 1995). In group C the tanδ vs 341 

temperature plot has a wider α-relaxation that is shifted to higher temperatures resulting in 342 

higher Tg values. Meyer et al. (1995) observed a slight increase in width of α- relaxation in 343 

connection with lower Tg-tanδ values in epoxy rich samples that exhibited lower crosslink 344 

density. Furthermore, the sample C1 exhibits a small relaxation phase in the range of 345 

60°C-80°C. This phase is denoted as the ω-relaxation phase for the purposes of this paper. 346 

A ω-relaxation phase at lower temperature ranges has been reported elsewhere (Meyer et 347 

al. 1995; Cavaille et al. 1987) and attributed to a lower crosslink density structure with two 348 

phase morphologies in epoxy systems. It is not yet possible to conclude whether this is the 349 

case for group C. The relaxation phase might also be indicative of moisture evaporation 350 

acting as a plasticising agent but it is not observed in group D. The presence of voids in 351 

group C could affect the results, although a lower storage modulus would be expected.  352 

 353 

Moisture Absorption 354 

The average mass uptake readings due to exposure in distilled water at 23°C and 60°C for 355 

Group C and D are illustrated in Figure 5. The mass uptake behaviour is characterised by a 356 

high initial rate that decreases progressively with immersion time. For both temperatures, 357 

the group C specimens exhibit a greater mass uptake than the group D specimens at a 358 

given time. Both specimen groups concurrently reached the saturation point after 359 

approximately 250 days at 60°C. The saturation point at 23°C cannot be clearly identified 360 

for either group even after nearly 2 years of exposure and longer exposure times will be 361 

required to clarify if the 23°C specimens approach the same mass at saturation, Msat, 362 

measured at 60°C. Many researchers argue that Msat depends only on the RH levels and 363 
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should be constant irrespective of the accelerated ageing temperature (Diamant et al. 1981; 364 

Marais et al. 2000; Papanicolaou et al. 2006). Wright (1981) suggests a small correlation 365 

between Msat and temperature, whereas increased Msat values at elevated temperatures have 366 

been attributed to either exposure at temperatures close to the wet Tg value (Robert et al. 367 

2010) or weakening of the fibre matrix interface (Davies et al. 1996).   368 

 369 

For comparison purposes, Fickian models have been plotted on Figure 5 for each tendon 370 

group and exposure temperature. Fickian diffusion is based on the principle of the random 371 

motion of molecules. In long cylinders the radial diffusion governs and by integrating the 372 

concentration gradient of the solution along the radius of the specimen, Fick’s laws can be 373 

expressed in terms of mass uptake (Crank 1975): 374 

4 21- exp(- )
2 21

Mt Da tn
M n a asat n


 


                                                                                        (1)  375 

where Mt is the mass uptake at time t, Msat is the mass uptake at the saturation level, a is 376 

the radius of the cylindrical specimen, an are the roots of zero Bessel function and D is the 377 

diffusion coefficient.  378 

The Fickian process is dependent on two inherent material variables; Msat and the diffusion 379 

rate D. The most common method to calculate the diffusion rate is to calculate the gradient 380 

of the experimental mass uptake Mt versus √t plot, and substitute into the equation: 381 

4 1/2( )
2

M Dtt

M asat 
                                                                                                            (2)  382 

However, Crank (1975) noted that the simplified form of equation (1) represented by 383 

equation (2) is more valid, when Mt≤ 0.6Msat and is not as robust for cylinders as for the 384 

equivalent expression for plane sheets. Therefore, in this study an iterative process was 385 

implemented to find the diffusion coefficient by using the immersion time and the 386 
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respective mass uptake reading Mt as input variables. One problem is that the mass at 387 

saturation Msat and D are interrelated and the selected value of Msat at 23°C is a source of 388 

uncertainty, since saturation may not yet have been reached. Adopting as Msat the latest 389 

mass uptake reading at 23°C (Msat=1.43% and Msat=1.00% for groups C and D 390 

respectively after 670 days) and 60°C (Msat =2.1% for group C and Msat =1.3% for group 391 

D after 400 days), the derived diffusion rates are 
-10 114.04 10  6.72 10D     cm

2
/sec 392 

and
10 114.18 10   8.15 10D      cm

2
/sec at 23°C, and 

09 101.57 10   5.61 10D     393 

cm
2
/sec and 

09 102.18 10   1.63 10D       cm
2
/sec at 60°C for groups C and D 394 

respectively. If instead it is assumed that the Msat values at 23°C reach the corresponding 395 

saturation levels obtained at 60°C, the average diffusivities at 23°C are then396 

-10 11
 1.38 10  2.40 10D     cm

2
/sec and 

10 112.16 10   2.16 10D      cm
2
/sec for 397 

group C and D respectively and display a lower standard deviation. These latter values will 398 

be used in all subsequent calculations relating to the 23°C behaviour and the related 399 

Fickian model predications are plotted in Figure 5. The Fickian model predictions agree 400 

well with the experimental data. The group D specimens have a solid matrix with no voids 401 

and are more likely to comply with Fick’s laws assumptions. However, in spite of the high 402 

void content observed in the group C optical microscopy photos, the mass uptake 403 

behaviour generally agrees with the Fickian model although a small divergence between 404 

the Fickian model and the experimental data can be observed for group C at 60°C for 405 

exposure between 70 and 154 days. The group C experimental data has a greater standard 406 

deviation when compared with Group D. Although the group C samples have higher Msat 407 

values, they have lower average diffusivity values. Despite the inconclusive DMA test 408 

results on the additional heating effect in group D, Krishna et al. (2010) reported decreased 409 

values of Msat with increased post-cure (increase of curing time and temperature) for 410 
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glass/epoxy specimens, whereas the diffusivity values and the time of saturation point 411 

were similar. The mass uptake rate in group C during the early exposure times is higher 412 

than in group D and gradually drops to lower values. This behaviour might indicate the 413 

synergistic effects of voids and a two phase structure, where a lower crosslink density with 414 

a higher free volume dominates during the initial exposure times. Vanlandingham et al. 415 

(1999b) contended that the free volume is the governing factor in the moisture absorption 416 

mechanism in epoxy-amine systems. Regardless of any crosslinking, the extent of the 417 

voids in group C would be expected to dominate the mass uptake behaviour. 418 

 419 

Torsion tests 420 

The exposed specimens were removed from solution and tested within an hour.  To 421 

determine the extent of evaporation between exposure and testing, trial specimens that had 422 

been exposed at 23°C for 119 days were left to dry in lab conditions. After an hour, a 423 

maximum mass loss of 0.0065% and 0.004% was measured for Groups C and D 424 

respectively. So the influence of evaporation was not felt to be significant.   425 

For each torsion experiment, three load-unload cycles were carried out. For each load 426 

cycle the graph of the torque versus twist was drawn and the shear modulus was back-427 

calculated from the gradient of the linear best fit line. The shear modulus was taken as the 428 

average from the three load cycles. The unloading steps were also recorded as the weights 429 

were gradually removed. Figure 6 shows the load-unload curves of a dried and saturated 430 

specimen from C-II series. The loading behaviour can be approximated as linear-elastic 431 

although some non-linearity is observed in the saturated specimen and attributed to the 432 

softening of the matrix. The hysteresis in the unloading curve was found to increase with 433 

exposure time. 434 

 435 
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The measured torsional shear modulus of the group C and D CFRP tendons exposed in 436 

distilled water at either 23°C or 60°C, can be seen in Figure 7. In this figure, the predicted 437 

Fickian mass uptake was calculated for each exposure time and plotted. Group C and D 438 

have different diffusion coefficient values and therefore have different mass uptake values 439 

for the same exposure time. The error bars plotted correspond to one standard deviation 440 

representing the variation between the three experimental load runs.  441 

 442 

The dried shear modulus for group D-I is Go= 5.91 GPa, whereas the dried shear modulus 443 

for group C-II is Go= 5.19 GPa, which is 12% lower. Groups C and D have the same 444 

epoxy, fibre type and fibre volume, so this deviation is attributed primarily to the void 445 

content in group C. For both groups the shear modulus decreased with moisture ingression 446 

but the reduction was greater for Group C. A 17% decrease in shear modulus for the group 447 

D specimens (D-I-9 sample) is observed after 141 days of exposure at 23°C plus 71 days 448 

of exposure at 60°C. This exposure regime is equivalent to 1.05% moisture absorption. A 449 

drop of around 29% is observed in group C (C-I-8 sample) for the same exposure 450 

conditions and exposure time period that corresponds to a higher mass uptake Mt =1.77%. 451 

By defining the shear modulus degradation as Gt/Go, the results for groups C and D for 452 

similar mass uptakes are listed in the Table 2. Even for a given percentage of Mt/Msat, 453 

Group C shows a somewhat greater degradation than group D and again this is attributed 454 

to the voids and differences in the production process. Note that for similar mass uptakes 455 

the C-I-6 specimen shows a greater degradation than C-II-4 and -5 perhaps due to 456 

microcracking in the clamping region with the flat profile clamps. As discussed, this 457 

phenomenon was avoided in subsequent tests by changing the clamping system. 458 

For the C-II specimens exposed at 60°C the shear modulus appears to reduce gradually at 459 

around 3.70 GPa for Msat=2.1% and it is deduced there exists a shear modulus at saturation 460 
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Gsat (as illustrated in Figure 10). This phenomenon is attributed to the softening of the 461 

matrix material. The shear modulus at the saturation point is not clearly defined in group 462 

D-I but it seems to approach G= 4.94 GPa for Mt=1.05%. The Gsat values will be verified 463 

for both groups by testing further a CFRP specimen, when full saturation at 23°C is 464 

reached.  465 

 466 

Specimens in the C-II series with the same predicted mass uptakes after exposure at either 467 

23°C or 60°C exhibit similar shear moduli values. This consistency generates confidence 468 

in the 60°C accelerated ageing process and suggests the higher temperature does not 469 

exacerbate any material deterioration. Insignificant changes in shear moduli are observed 470 

in the C-II specimens with the same Fickian mass uptakes, regardless of whether that time 471 

point represented the first or second time of testing. Consequently, it can be inferred that, 472 

within the experimental load range, there is a negligible correlation between any 473 

microcracking from repetitive testing and subsequent degradation mechanisms in the 474 

epoxy material.  475 

 476 

Prediction model 477 

Design models have been developed to predict the mechanical degradation behaviour of 478 

FRPs due to exposure in wet environments. However, the main focus tends to be on fibre 479 

dominated properties. The formulations described here (Papanicolaou et al. 2006; Phani 480 

and Bose 1987; Chen et al. 2007b) include an exponential term that potentially reflects the 481 

exponential Fickian mass uptake behaviour. The substantive difference between the 482 

models lies in the value of the exponential term that represents the rate of mechanical 483 

degradation. 484 
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Phani and Bose (1987) studied E-glass Chopped Strand Mat (CSM) laminates HSR 8131 485 

(Bakelite Hylam Ltd, India) under hygrothermal conditions and showed that the flexural 486 

strength can be expressed as: 487 

( ) ( - )exp(- / )t t                                                                                              (3)  488 

Where σ(t) is the flexural strength at exposure time t, σο and σ∞ are the flexural strength at 489 

zero and infinite time respectively and τ is a time variable that increases with increasing 490 

temperature according to: 491 

1/ 1/ exp(- )
Ea

o RT
                                                                                                      (4) 492 

where Ea is the activation energy, R is the Universal gas constant and T is the temperature 493 

in Kelvin. Chen et al. (2007b) studied the long-term durability of glass FRP bars in 494 

concrete pore solution and assumed a total loss of the tensile strength at infinite time by 495 

adopting the relationship: 496 

100exp(- )tY


                                                                                                                 (5)                                                                                                497 

where Y is the tensile strength retention (%), t is the exposure time, τ is 1/k and k is the 498 

degradation rate. Consequently, the steepness of the exponential curve is a function of the 499 

degradation rate k. However, equation 5 was developed for glass FRP bars with a polyester 500 

matrix where the matrix decomposes under longer exposure times and at higher 501 

temperatures, and the glass fibres leach out. A generic model to describe the mechanical 502 

degradation in different types of unreinforced polymers was proposed by Papanicolaou et 503 

al. (2006) and called the RPM model  504 

(1 )exp( )
Pt s s sMtPo

                                                                                                     (6)                                                                                                              505 

where Pt represents the mechanical property at exposure time t, Mt is the percentage mass 506 

uptake at exposure time t and s=P∞/Po at the saturation point. The model was applied to 507 
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epoxy specimens exposed in distilled water at 60°C and 80°C and tested in 3 point bending 508 

(Papanicolaou et al. 2006).  509 

The RPM model was used to predict the expected shear stiffness at a given time and 510 

compared with the experimental findings for groups C and D in Figure 8. The RPM input 511 

degradation rates of 0.709 and 0.836 were found using s =Gsat/Go as derived from the latest 512 

experimental data for group C and D respectively. The RPM model seems to agree better 513 

with the experimental findings of groups C-II series than with group D. However, for both 514 

groups the predictions tend to deviate near the saturation point. One issue in this 515 

calculation is that the degradation ratio is assumed to be the same throughout the bulk of 516 

the tendon. Yet in practice the conditions in a torsion test are not uniform since the 517 

moisture diffuses inwards from the outer tendon surface and the torsional contribution of a 518 

given annulus depends on the distance from the centre of the tendon. 519 

  520 

To more accurately reflect these details, a predictive model was developed to relate the 521 

diffusion process through the cross-section of the CFRP specimens and the shear stiffness 522 

degradation mechanism. It is assumed that, as the solution ingress proceeds from the outer 523 

tendon surface towards the centre of the cross-section, the shear stiffness of the ‘degraded’ 524 

regions (outermost regions) is decreased by a certain factor that is dependent on the 525 

moisture concentration C. At full saturation a residual stiffness Gsat remains. The model is 526 

based on the Fickian diffusion process. The solution procedure is as follows: 527 

 The tendon radius is discretised to a series of n rings (taken as n=200 in the current work) 528 

and the concentration profile along the radius is calculated (see Figure 9a). The 529 

concentration profile is derived in terms of percentage moisture concentration by 530 

assuming that the solution at the tendon surface has a concentration equal to 1.00. 531 
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 The average concentration value of each ring for the specific time point is calculated as:532 

( ) / 2
1

Cavi C Ci i
 


                                                                                                       (7)  533 

and is assumed to be constant over the area of the segment.  534 

 The shear stiffness of each ring ΔGi which is over and above Gsat is defined as: 535 

   1- -G Cavi G Go sati
                                                                                                 (8)    536 

where Go is the shear modulus of the tendon in the dry condition, Gsat is the shear 537 

modulus of the tendon at saturation and Cavi is the average concentration of the segment. 538 

The (Go-Gsat) component reflects the degradation of the matrix component due to 539 

moisture uptake between t=0 and t= ∞. The (1-Cavi) is a degradation factor based on the 540 

concentration of the solution and when a region is fully saturated Cavi=1.00.  541 

 The ΔGi values are integrated across the section according to the polar second moment of 542 

area J as derived by the torsion shear stress distribution across the section (Equation 543 

9).The polar second moment of area for a cylindrical annulus with an inner radius ri and 544 

outer radius ri+1, is denoted as Ji. When the shear stiffness values of the annuli vary with 545 

moisture uptake  e.g. equation 8, then the equivalent averaged contribution to the overall 546 

tendon shear stiffness ΔGeq above Gsat can be defined as: 547 

1

n
G J

i i
iGeq J


                                                                                                              (9)                                                                                                                                      548 

where
4 4( )

1
2

r r
iiJ

i

 
  and J is the polar second moment of area of the solid tendon. 549 

 The resulting Gt value for the tendon after exposure time t is then: 550 

(1- )
1 ( - )

n
Cavi Ji

iG G G Got sat satJ


   (see Figure 9b)                                                (10)                                               551 

subject to the following boundary conditions: as t → 0, Gt=Go and as t→ ∞, Gt=Gsat. 552 
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 553 

Figure 10 illustrates the comparison between the experimental data and the prediction 554 

models for both groups C and D. To plot the shear modulus versus the exposure time it 555 

was necessary to use a common baseline for the 23°C and the accelerated 60°C results. 556 

The time axis in Figure 10 therefore corresponds to exposure at 23°C and so time shift 557 

factors were applied for the specimens exposed at 60°C to convert these readings to 558 

equivalent exposure times at 23°C. The time shift factors were calculated as the ratio of 559 

mass uptake rate at 60°C to the respective one at 23°C at specific exposure times leading 560 

to factors of 12 and 10 for group C and D respectively. The prediction model seems to 561 

underpredict the shear modulus values for the initial exposure times up to 141 days for 562 

both groups C and D, but generally captures the trend of the experimental findings. 563 

 564 

Implications and further developments 565 

The full immersion of the CFRP tendons results in direct contact with water whereas in 566 

CFRP prestressed concrete the concrete cover will offer a protective casing to the tendons.  567 

Hence, the exposure conditions in the current work could be rather onerous compared with 568 

what might be expected in practice. A loss of matrix stiffness over time will have 569 

implications for matrix-dominated properties such as the bond behaviour of CFRP tendons 570 

in concrete. This will be of particular relevance in cases where the outer resin rich layer of 571 

the tendon surface is a major contributor to the bond resistance. A study on the long-term 572 

durability of bond strength between CFRP tendons and concrete is on-going.  573 

 574 

Conclusions 575 

The mass uptake and torsional stiffness behaviour over exposure time of two tendon 576 

groups C and D with the same material characteristics (epoxy, fibre type, fibre volume) but 577 
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different production processes were investigated. The Group C tendons were uncoated 578 

whereas Group D samples were sand coated and so were subjected to additional curing to 579 

affix the sand particles to an outer resin layer. The Tg values measured using DMA tests 580 

were inconclusive in terms of identifying differences in the crosslink density between 581 

groups C and D. Group C tendons immersed in water exhibited a 60% greater mass uptake 582 

at saturation than group D. This was primarily attributed to the presence of voids, as 583 

observed in the optical microscope pictures. Torsion test results show that the shear 584 

stiffness of the CFRP tendon specimens immersed in distilled water degrades with time. 585 

For the group C specimens a 29% decrease in the shear modulus was measured after 325 586 

days of exposure at 60°C (C-II series) and by this time the tendons appeared to have 587 

reached saturation. For group D the reduction in stiffness was lower, 17%, and this was 588 

attributed to the lower moisture uptake rate. However, further testing is required to confirm 589 

the group D shear modulus at saturation. The use of 60°C as an accelerated temperature 590 

did not appear to induce additional degradation even at longer exposure times. A 591 

prediction model that relates the time-dependent radial diffusion through a CFRP tendon 592 

and the shear modulus contribution from each segment in a discretised section was 593 

proposed. The model generally showed good agreement with the experimental findings for 594 

both groups C and D. 595 
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Table 1: Exposure programme for C-I and C-II series and D-I-series immersed in distilled 722 

water. 723 
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C-II-12 60  
        

 x 
     

 x 

The specimen identification a-b-c denotes a= specimen group C or D; b= experimental 724 

series I or II; c= specimen number; x= time of testing; shaded area=exposure at 60°C.  725 

a
 Slightly different torsion test set up 726 

b
 Signs of damage at the clamping area 727 

 728 

 729 

 730 

 731 
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Table2: Shear modulus degradation for similar mass uptake ratios: Comparison between 732 

group C and D. 733 

734 Specimen Mt (%) Mt /Msat Gt   / Go 

C-II-4 0.389 19% 0.96 

C-II-5 0.389 19% 0.96 

C-I-6 0.440 21% 0.80 

D-I-6 0.266 20% 0.99 

C-I-8 1.246 59% 0.75 

D-I-9 0.729 56% 0.85 



 

33 
 

 

Figure 1. (a) Torsion test set up, b) Axially unrestrained edge and c) Curved clamp. 

 

 

Figure 2. Optical Microscopy: Group C a) 1000 μm, b) void area 200μm, c) 200 μm 

interfacial region,  d) 50 μm interfacial region. 
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Figure 3. Optical microscopy: Group D a) 1000μm, b) 200 μm, c) 50μm light field and d) 

50 μm dark field. 
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Figure 4. DMA tests group C versus group D. 

 

 
 

Figure 5. Moisture Uptake in group C and D. 
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Figure 6. Load-Unload curves for a “dry” specimen, C-II-3, and a “saturated specimen”, 

C-II-12. 

 

 
 

Figure 7. Shear Modulus Degradation with predicted Fickian Mass Uptake: Groups C and 

D at 23°C and 60°C. 
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Figure 8. Comparison of RPM model with experimental findings for group C-II and D-I 

series. 

 

Figure 9. (a) Discretisation of a CFRP tendon section and calculation of the average 

moisture concentration for each segment, (b) Calculation of the polar second moment of 

area factor and of the degradation factor for each segment. 
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Figure 10. Comparison between the prediction model and the experimental data for groups 

C-I & II and D-I series. 

 

 

 


