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We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte
Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori

knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice
systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular
consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further
demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling,
where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas
to produce explicitly correlated corrected FCIQMC energies for the Beryllium dimer, for which stochastic
errors on the order of wavenumber accuracy are achievable.

I. INTRODUCTION

Projector quantum Monte Carlo (QMC) methods are
important tools in calculating accurate properties of
quantum systems.1–3 Such methods involve stochastically
applying a projection operator, P̂ , such that the desired
evolution is achieved on average. This leads to a stochas-
tic and sparse sampling of the object under considera-
tion, thus reducing the associated memory requirement
and often allowing for the study of larger systems than
possible with exact, deterministic approaches. While this
approach is beneficial in granting access to such systems,
the stochastic error decays slowly with simulation time;
increasing the efficiency of the sampling therefore allows
greater statistical accuracy to be obtained.
A recent projector QMC method, full configuration

interaction quantum Monte Carlo (FCIQMC)3–5, has
been greatly successful in the highly-accurate study of
many challenging systems, providing FCI-quality results
for systems well out of reach of traditional deterministic
FCI approaches. While many traditional projector QMC
methods such as diffusion Monte Carlo (DMC) sample
the wave function in real space, FCIQMC performs the
sampling in a space of discrete basis states. This discrete
sampling of the wave function allows efficient annihilation
to take place between the walkers, greatly ameliorating
the sign problem in many situations4 and removing the
need for a fixed node approximation.
A recent article by Petruzielo et al.6 provided a number

of significant advances in FCIQMC, including the intro-
duction of a semi-stochastic approach. In this approach
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the basis states forming the FCI space are divided into
two sets. The projection in the space of states in one
set, whose states are deemed to be most significant, is
performed exactly. The rest of the projection operator
is applied stochastically as in the traditional FCIQMC
algorithm. By performing projection in the most impor-
tant region of the space exactly, the stochastic error on
results can be significantly reduced. As the additional
memory requirements need not be overwhelmingly large,
the approach is still capable of treating systems far be-
yond those accessible to exact diagonalization, and there-
fore there were no significant drawbacks which offset this
reduction in random error.

In this article we further investigate and apply the
semi-stochastic adaptation. In section II we present a
brief overview of the method and in section III sug-
gest a flexible and relatively black box method for par-
titioning the FCI space. In section IV we explain how
the semi-stochastic adaptation can be implemented in
a straightforward and efficient manner in an existing
FCIQMC code. Due to the importance of the efficient
parallel scaling of FCIQMC we place particular empha-
sis on this aspect. In section V results are presented.
It is demonstrated that the semi-stochastic adaptation
need not greatly alter the parallel performance in the
current regime of applicability, and we present results for
our method of partitioning the FCI space, both in the
standard energy estimator and also in the calculation of
reduced densities matrices within FCIQMC. Finally, the
semi-stochastic approach is used to study the Beryllium
dimer, with F12 corrections calculated from reduced den-
sity matrices.
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II. THEORY

The FCIQMC wave function is represented by a col-
lection of walkers which have a weight and a sign and
reside on a particular many-electron basis state, which if
not specified can be assumed to be a single Slater deter-
minant. The total signed weight of walkers on a state is
interpreted as the amplitude of that many-electron basis
state in the (unnormalized) FCI wave function expansion.
The FCIQMC algorithm consists of repeated application
of the projection operator

P̂ = 1 −∆τ(Ĥ − S1) (1)

to some initial state, where Ĥ is the Hamiltonian opera-
tor, ∆τ is some small time step and S is an energy offset
(‘shift’) applied to the Hamiltonian to control the total
walker population. With sufficiently small ∆τ , exact re-
peated application of P̂ will project the initial state to
the ground state of Ĥ4. In FCIQMC, P̂ is applied such
that the correct projection is only performed on average,
thus leading to a stochastic sampling of the ground state
wave function.
The projection operator can be expanded in the chosen

FCI basis as

P̂ =
∑

ij

Pij |i〉〈j|. (2)

In the semi-stochastic adaptation the set of basis states
is divided into two sets, D and S. We refer to the space
spanned by those basis states in D as the deterministic

space, and refer to the basis states themselves as deter-

ministic states. The terms in Eq. (2) can then be divided
into two separate operators,

P̂ = P̂D + P̂S , (3)

where P̂D refers to the deterministic projection operator,

P̂D =
∑

i∈D,j∈D

Pij |i〉〈j|, (4)

and P̂S is the stochastic projection operator contain-
ing all other terms. In semi-stochastic FCIQMC, P̂D

is applied exactly by performing an exact matrix-vector
multiplication, while P̂S is applied using the stochastic
FCIQMC spawning steps as usual.7

In order to perform an exact projection in the deter-
ministic space, the walker weights must be allowed to be
non-integers. This differs from most previous descrip-
tions of the FCIQMC algorithm thus far. To be clear
in notation and terminology, we use Ci to refer to the
signed amplitude on a state, and Ni to refer to the un-

signed amplitude (and so |Ci| = Ni), which we refer to
as the weight on the state.
A complete iteration of semi-stochastic FCIQMC is

performed as follows, where T̂ = −(Ĥ − S1):

1. stochastic projection: Loop over all occupied
states. Perform χi spawning attempts from state
|i〉, where χi is specified below. For each spawn-
ing attempt, choose a random connected state |j〉
with probability pij , where connected means that
Hij = 〈i|H|j〉 6= 0 and i 6= j. The attempt fails
if both |i〉 and |j〉 belong to D, otherwise a new
walker on state |j〉 is created with weight and sign
given by TjiCi∆τ/pij .

2. deterministic projection: New walkers are cre-
ated on states in D with weights and signs equal to
∆τTD

C
D, where C

D is the vector of amplitudes
currently on states in D.

3. death/cloning: Loop over all occupied states in
S. For each state create a spawned walker with
weight and sign given by TiiCi∆τ .

4. annihilation: Combine all newly spawned walkers
with walkers previously in the simulation by sum-
ming together the amplitudes of all walkers on the
same state.

χi is chosen probabilistically such that its expected value
obeys E[χi] = Ni. Although other approaches have been
used6, in this work we set

χi = ⌈Ni⌉ with probability Ni − ⌊Ni⌋, (5)

= ⌊Ni⌋ otherwise, (6)

where ⌈Ni⌉ denotes rounding up and ⌊Ni⌋ denotes round-
ing down. If integer weights are used then this reduces
to χi = Ni, as used in previous work3.

In order to reduce the memory demands of having a
large number of states occupied with a low weight, a
minimum occupation threshold, Nocc, is defined. After
all annihilation has occurred, any walkers with a weight
less than Nocc are rounded up to Nocc with probability
Ni/Nocc or otherwise down to 0. In practice, we always
choose Nocc = 1. The occupation threshold is not applied
to deterministic states so that the deterministic projec-
tion is applied exactly.
We further use a modification to the initiator adapta-

tion to FCIQMC8,9 by allowing all successful spawning
events both from and to the deterministic space to sur-
vive. This effectively forces all deterministic states to be
initiators, which is sensible since these states should se-
lected by their importance (i.e. weight). In the scheme
used by Petruzielo et al., the initiator threshold was al-
lowed to vary based on the number of steps since a walker
last visited the deterministic space, and so our approach
is different (although deterministic states are always ini-
tiators in both schemes). In Supplemental Material10

we show that our scheme achieves the same qualita-
tive behavior for the Hubbard model as demonstrated
in Ref. (6). We have not performed a comprehensive
study of the effect of semi-stochastic on the initiator er-
ror. However, we tend to find that when the number
of walkers, Nw, is much larger than the deterministic
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space size, the use of semi-stochastic makes little differ-
ence. This is expected because the two approximations
should be identical in the limit Nw/|D| ≫ 1. We also
note that it is not essential to use both the initiator and
semi-stochastic adaptations together; the benefits from
both extensions are largely independent of each other.
However, all results presented in this article do use the
initiator adaptation.
Using non-integers weights can have a significant mem-

ory impact compared to integer weights due to the large
number of additional spawned walkers, which also in-
creases time demands due to expensive extra processing
and communication steps. We therefore apply an unbi-
ased procedure to stochastically remove newly-spawned
walkers with very small weights, similar to that above.
Following the notation of Overy et al.11, we use a spawn-
ing cutoff, κ, where κ = 0.01 unless stated otherwise. A
spawning of weight Nj < κ is rounded up to κ with prob-
ability Nj/κ or otherwise down to 0. Spawned walkers
with weights greater than κ are left unaltered.

III. CHOOSING THE DETERMINISTIC SPACE

The key to reducing stochastic error within the semi-
stochastic approach is to choose D such that most of the
weight of the true FCI wave function is in this space. For
a given number of basis states in the deterministic space,
|D|, it is expected that the best possible deterministic
space (the one which reduces noise the most) is obtained
by choosing the |D| most highly weighted basis states in
the exact expansion of the ground-state wave function.
Achieving this optimal space requires knowledge of the
exact wave function and so is not feasible in general.
A sensible choice for D in many systems would be a

truncation of the FCI space by number of excitation oper-
ators applied to an initial dominant configuration (gener-
ally the Hartree-Fock state), giving the truncated ‘CI’ ex-
pansion, or alternatively a complete active space (CAS)
truncation. These are generally regarded as being effec-
tive at describing situations where dynamical and static
correlation, respectively, are important. We have found
from experience that such spaces are useful and lead to
a large reduction in stochastic noise. This leads to the
question: can one find a better deterministic space, at
least in common cases?
Petruzielo et al.6 describe an iterative method for

choosing the deterministic space. First the space con-
nected to the states chosen in the previous iteration is
generated and the ground state of the Hamiltonian in
this subspace is calculated. The most significant basis
states in the ground-state expansion are kept (according
to a criterion on the amplitude of coefficients). The ini-
tial space contains (e.g.) the Hartree–Fock determinant.
This process is repeated for some number of iterations.
This approach was shown to give much greater improve-
ments than by simply using the space connected to the
Hartree–Fock state, even with a reduced size for D, as it

can contain the chemically-relevant basis states6.
In this work we present and use a new method of gen-

erating the deterministic space. Inspired by the spirit
of FCIQMC, we allow the deterministic space to emerge
from the calculation itself: we simply perform a fully-
stochastic FCIQMC calculation (or a semi-stochastic cal-
culation with a simple deterministic space, such as a
CISD space) until a coarse representation of the ground
state is deemed to have been reached, and then choose
the most populated basis states in the FCIQMC wave
function to form D. Because the semi-stochastic adapta-
tion does not significantly change the rate of convergence,
and statistics are not accumulated until the ground state
is reached anyway (where the semi-stochastic adaptation
is of more benefit), this requires no extra computational
effort. This approach has the benefit that it does not re-
quire performing an exact ground-state diagonalization
within a (potentially large) subspace, which can be very
expensive. The only parameter is the desired determin-
istic space size and it is therefore also a relatively black
box approach.
Although the FCIQMC wave function is only a

stochastic snapshot of the true ground state, the most sig-
nificant basis states in the expansion will tend to remain
highly occupied throughout the simulation with weights
fluctuating about their exact values. The FCIQMC simu-
lation naturally picks out chemically-important determi-
nants, even when deep in the Hilbert space (on quadru-
ple, sextuple and higher excitation levels), and so our pro-
cedure can select close-to-optimal deterministic spaces in
a very inexpensive manner. For very large deterministic
spaces, states with the smallest occupation weights may
be included in the space. In this case there is some re-
dundancy in how D is chosen, and the choice of D will
probably not be optimized fully, although we still find
this approach to work very well. It is simple to include
a cutoff to avoid this if desired, although we do not do
so in the calculations presented here. With our approach
we avoid the need for diagonalization steps, which would
become unfeasible for large D and as the connectivity of
the Hamiltonian grows. For instance, in some previous
applications of FCIQMC the number of connections to
the Hartree-Fock has been O[105 − 106]12,13.

IV. IMPLEMENTATION DETAILS

An in-depth description of our FCIQMC implementa-
tion is given in Ref. (14); we present here only the addi-
tions to that algorithm required for the semi-stochastic
implementation. Our implementation of FCIQMC is par-
allelized using MPI. A given basis state is assigned to
a particular MPI process, which performs all spawning
from that basis state. Deterministic and stochastic states
are treated equally in this respect.
Iterative diagonalization methods, such as the David-

son or Lanczos methods, typically require at most a few
tens of iterations. Given the desire to treat as large a
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system as possible and the memory cost of storing even
a compressed form of H, many deterministic subspace
methods use the direct CI approach of constructing Hv

as needed15. In contrast, FCIQMC calculations regularly
require on the order of 105−106 iterations. Thus, it is of
critical importance that each multiplication by the (com-
paratively small) deterministic Hamiltonian is very fast.
Storing the Hamiltonian, which speeds up this multipli-
cation considerably, is therefore worthwhile and feasible.
Because FCIQMC scales well to large numbers of proces-
sors, a large amount of distributed memory is typically
available and one is usually far more time-limited than
memory-limited. As such, we have not found this mem-
ory requirement to become an issue.

The deterministic Hamiltonian is stored in a sparse
matrix format and split across processes so that, if |i〉
belongs to an MPI process, then all non-zero elements
〈i|H|j〉, |j〉 ∈ D (i.e. the entire compressed row) are
also stored in memory on that process. In contrast the
walker amplitude for basis state |i〉 is only stored in mem-
ory for the process to which |i〉 belongs. We gather
the amplitudes of the deterministic basis states via an
MPI_AllGatherV call and perform the deterministic pro-
jection via a sparse matrix multiplication on each MPI
process. Our implementation therefore requires one ad-
ditional parallel communication per iteration compared
to the standard FCIQMC algorithm.

For the most part, deterministic states are treated
in the same manner as non-deterministic states. Be-
cause the stochastic and deterministic spaces are cou-
pled, stochastic spawning attempts must still be per-
formed from D. However, because the deterministic-
to-deterministic projection is performed exactly, such
stochastic attempts should not create new walkers in-
side D. For simple deterministic spaces, such as CI and
CAS spaces, it is possible to create excitation generators
which never create deterministic-to-deterministic spawn-
ings. This is not feasible for more general spaces, such as
in the schemes outlined in the previous section. Instead,
we remove any walkers stochastically spawned from a
state in D to another state in D. This check is effi-
ciently performed by using a hash table (similar to that
used for annihilation in FCIQMC14) of the deterministic
space, such that the test of whether the basis state is
in D can be performed in O[1] time. The extra memory
required to store the hash table is usually negligible com-
pared to other memory requirements, such as that of the
deterministic Hamiltonian. It is also partially compen-
sated by the fact that a smaller number of (stochastic)
spawned walkers are accepted, and so memory demands
of the spawned list are decreased.

V. RESULTS

A. Parallel performance

Figure 1 presents the parallel speed-up for the
chromium dimer (bond length 1.5Å, SV basis, CAS
(24,30)) from 24 to 1152 cores on ARCHER, a Cray
XC30. This system has a Hilbert space size of ∼ O[1014],
and approximately 2 × 108 walkers were used in each
simulation (sufficient to converge the initiator error to
high accuracy). We consider FCIQMC calculations us-
ing both integer weights and non-integer weights, and
semi-stochastic FCIQMC using D = 100 and D = 106.
It is apparent that the scaling quality reduces somewhat
by using non-integer coefficients. However, there is al-
most no further decrease in quality when using the semi-
stochastic adaptation. In fact, the scaling is slightly
improved when using a deterministic space size of 106.
The semi-stochastic initialization times, usually negligi-
ble compared to the total calculation time, were not in-
cluded in these results so that the scaling curves did not
depend on the number of iterations performed.
By far the largest cause of loss in parallel efficiency in

FCIQMC is poor load balancing. The number of ba-
sis states and walkers assigned to each process is not
precisely constant. Each process therefore takes a dif-
ferent amount of time to complete each iteration. The
slowest process acts as a bottleneck for other processes
with less work, which must synchronize before parallel
communication can be performed. It is found that using
non-integer coefficients somewhat exacerbates this issue,
leading to the loss of parallel efficiency seen in figure 1.
This worsening of load balancing with non-integer coef-
ficients is primarily due to the greatly increased num-
ber of spawning events that are received, and must be
processed, by processes with already-heavy loads. As
expected, communication time is also increased by us-
ing non-integer weights due to the extra spawning events
that must be sent and received, but this time still remains
quite small compared to the synchronization time.
Figure 2 shows similar results for the 18-site 2D Hub-

bard model, with solid (dashed) lines representing U/t =
1 (U/t = 8). All calculations used approximately 5× 107

walkers. The load balancing for U/t = 8, which has a
highly delocalized wave function in the Bloch basis, is
very good. Excellent (essentially identical) parallel scal-
ing is seen in all cases. The U/t = 1 system, however, is
heavily dominated by the Hartree–Fock state. Therefore,
the process to which this state belongs takes much longer
to complete each iteration than other processes. This
problem is exacerbated as the process count increases,
and the parallel performance is very poor. It is found that
using the semi-stochastic adaptation slightly improves
this performance, as the Hartree–Fock process has far
fewer successful spawning events to perform calculations
on, due to many deterministic-to-deterministic stochastic
spawning events being canceled. Despite this, the most
expensive steps are the spawning attempts, which are
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FIG. 1. Speed-up as the number of the MPI processes is
increased from 24 to 1152, for calculations performed on the
chromium dimer in an SV basis, with approximately 2× 108

walkers used. Scaling worsens with the use of non-integer
weights, primarily due to exaggerating the poor balancing of
work among processes. The semi-stochastic adaptation does
not greatly alter the scaling further.

still performed, and so the load balancing is still poor.
However, if all states connected to the Hartree–Fock

through a single application of Ĥ are included in the
deterministic space, then all stochastic spawnings from
the Hartree–Fock state will be canceled. As such there
is no need to attempt any spawning from the Hartree–
Fock state. When this change is made, the parallel per-
formance improves dramatically. This suggests that us-
ing deterministic approaches to treat the most heavily-
weighted states may be a very effective way to improve
the parallel performance of FCIQMC. This approach has
not been used for any further results in this article, but
will be an area of research going forward.

B. Hartree–Fock energy estimator

We first present efficiency increases for the standard
Hartree–Fock-based projected energy estimator:

E0 =
〈DHF|H|Ψ〉
〈DHF|Ψ〉 , (7)

where |DHF〉 is the Hartree–Fock state and |Ψ〉 is wave
function represented by the FCIQMC walkers. The effi-
ciency measure that we consider is the same one used by
Petruzielo et al.6,

ǫ =
1

σ2
µ × T

, (8)

where T is the total simulation time (excluding initial-
ization time16) and σµ is the final energy error esti-
mate, obtained by averaging multiple estimates taken
from throughout the simulation. This is a sensible ef-
ficiency measure because the error of such an average
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FIG. 2. Speed-up as the number of the MPI processes is
increased from 24 to 96, for calculations performed on the 18-
site Hubbard model with approximately 5×107 walkers. Solid
lines show results at U/t = 1 and dashed lines show U/t = 8.
At U/t = 1 scaling is very poor due the extremely large num-
ber of walkers on the Hartree–Fock state. The scaling is im-
proved slightly with the use of semi-stochastic, as far fewer
spawnings from the Hartree–Fock state survive. If all connec-
tions to the Hartree–Fock are included in the deterministic
space then stochastic spawning from the Hartree–Fock does
not need to be performed. With this change the load bal-
ancing is greatly improved. At U/t = 8 the scaling is much
better, and little difference is made by the semi-stochastic
adaptation.

can be estimated via

σµ =
σ√
N

, (9)

where N is the number of uncorrelated estimates con-
tributing to a mean estimate (possibly taken from a
blocking analysis17), and σ is the true standard devia-
tion of the distribution from which each estimate is taken,
which is constant at equilibrium. N scales linearly with
T , and therefore this efficiency measure is appropriate.
Caution should be taken in interpreting the relative

efficiency of two simulations, however. An increase of ef-
ficiency of X with semi-stochastic does not necessarily
mean that a particular value of σ2

µ can always be ob-
tained with X times less simulation time by using the
semi-stochastic adaptation. For the efficiency results pre-
sented here, all error estimates are calculated through a
blocking analysis17 in order to take account of the seri-
ally correlated nature of the FCIQMC wave function be-
tween subsequent iterations. Such an analysis typically
requires a large number of iterations (depending on the
system and time step used) in order to obtain an accu-
rate error estimate. Because using semi-stochastic does
not seem to reduce the auto-correlation time, a similar
number of iterations must be performed. Thus after a
sufficient number of iterations, the error obtained even
without the use of the semi-stochastic adaptation may be
suitably small. In such cases, the overhead of performing
the deterministic projection is not particularly advanta-
geous. In most cases, however, more than a small number
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FIG. 3. The efficiency (ǫE0
) of semi-stochastic simula-

tions relative to otherwise identical simulations without semi-
stochastic, for an 18-site Hubbard model. For small U/t val-
ues, where the wave function is dominated by a small number
of basis states, the semi-stochastic adaptation helps greatly,
leading to an efficiency increase of over 4.5×104 at U/t=0.25
and |D| = 105. For larger U/t values the benefit becomes less
significant.

of independent blocks of data are required, and so using
the semi-stochastic approach is highly beneficial.
We present results for a variety of systems to demon-

strate the general applicability of semi-stochastic and our
method for generating the deterministic space. All cal-
culations were performed with 106 walkers unless stated
otherwise, and the deterministic space was generated us-
ing the new scheme outlined in section III. The relative
efficiencies presented are relative to otherwise identical
simulations that do not use the semi-stochastic adapta-
tion (but do use non-integer coefficients, with the same
value of spawning cutoff, κ). All calculations for each
system were performed on the same machine and num-
ber of CPU cores (between 24 and 96). Simulations were
typically performed for between 105 and 106 iterations.
In each case the time step was set just small enough to

avoid the possibility of bloom events, where more walkers
than the initiator threshold are created from one spawn-
ing attempt. Such events are undesirable because they
instantly become initiators, increasing the associated ini-
tiator error as a consequence.
Figure 3 shows the efficiency of semi-stochastic

FCIQMC for the 18-site 2D Hubbard model at a variety
of coupling strengths, from U/t = 0.25 to U/t = 4, and
for deterministic space sizes ranging from 102 to 105. Sig-
nificant increases in efficiency are observed in all cases,
with the most significant gains occurring at small U/t.
This is expected: at small coupling strengths the wave
function is dominated by a small number of significant de-
terminants which are treated exactly by the deterministic
space, whereas at large U/t the equivalent deterministic
space will be significantly less occupied.
Table I contains results for two molecular systems,

N2 in a cc-pVDZ basis (with 4 core electrons uncorre-
lated) and Be2 in a cc-pCVTZ basis, at equilibrium and

N2 Be2

|D| Equilibrium Stretched 2.45Å 3.0Å 5.0Å

102 6.0 30.6 2.5 3.9 2.6

103 45.3 127.0 8.6 13.4 11.3

104 283.4 2793.5 50.4 90.4 103.1

105 1550.4 4710.4 218.3 765.4 560.5

TABLE I. The efficiency (ǫE0
) of semi-stochastic simulations

relative to an otherwise identical simulation without semi-
stochastic. Results are shown for N2 in a cc-pVDZ basis with
4 core electrons uncorrelated, at equilibrium (2.118a0) and
stretched (10.4a0) geometries, and also for Be2 in a cc-pCVTZ
basis at equilibrium and two stretched geometries. A signif-
icant increase in efficiency is found for all geometries, and a
monotonic improvement with |D| is always observed.

stretched geometries. Once again significant improve-
ments are observed, even at stretched geometries where
the wave function is more multi-reference.

One might expect that as the number of walkers in-
creases, the improvement gained from semi-stochastic
would decrease. This seems reasonable because, as the
walker number is increased, the stochastic spawning will
approach exact projection. Interestingly, we find the op-
posite behavior. In figure 4 the relative efficiency is pre-
sented for the homogeneous electron gas12,18,19 with 14
electrons, 114 plane wave spin orbitals and rs = 1.0 a.u.,
as the walker population is varied from 105 to 108. For
deterministic space sizes of 104 and 105 a significant in-
crease in stochastic efficiency is observed as the walker
population is increased. For |D| = 103 the increase is less
significant, becoming approximately constant for popu-
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FIG. 4. The efficiency (ǫE0
) of semi-stochastic simulations

relative to an otherwise identical simulation without semi-
stochastic, for the 14-electron homogeneous electron gas with
114 spin orbitals and rs = 1.0 a.u., as the walker population
is varied. It is found that the benefit of semi-stochastic tends
to increase as the walker population increases, contrary to a
simplistic intuition that there should be diminishing returns
as stochastic error decreases due to the improved stochastic
sampling.



7

lations from 106 to 108. These results suggest that the
semi-stochastic adaptation will continue to be beneficial
for very large systems and walker populations. It is hard
to isolate precisely why these benefits increase, but vari-
ous factors such as the sign problem and subtleties in the
impact of the initiator criterion are likely to play a role.
These are also expected to be very system-dependent.

C. Reduced density matrix estimators

A recent article by Overy et al.11 introduced a method
of unbiased sampling for reduced density matrices in
FCIQMC. In this approach a replica sampling11,20–22 is
used, where two independent FCIQMC simulations are
performed simultaneously, each starting from a different
random number seed. Because these two simulations are
statistically independent, it is possible to sample quanti-
ties that depend quadratically on the ground-state wave
function without introducing a bias. In particular, the
components of the second-order reduced density matrix
can be expressed as

Γpq,rs = 〈Ψ|a†pa†qasar|Ψ〉, (10)

=
∑

ij

CiCj〈Di|a†pa†qasar|Dj〉. (11)

This can be estimated in FCIQMC via

Γpq,rs =
∑

ij

C1
i C

2
j 〈Di|a†pa†qasar|Dj〉. (12)

where C1 and C
2 are the walker amplitudes coming from

simulations 1 and 2, respectively23, and p, q, r and s
denote spin orbital labels.
In the implementation used for the results in this

article (NECI24), diagonal elements (Γpq,pq) are calcu-
lated exactly for the pair of FCIQMC wave functions
used. For non-diagonal elements of Γpq,rs, contri-
butions in Eq. (12) including the Hartree–Fock state
(C1

HFC
2
j 〈DHF|a†pa†qasar|Dj〉) are always included in the

estimate, while all other contributions are stochastically
sampled alongside the stochastic sampling of the Hamil-
tonian operator, as described in Ref. (11). Thus, there
are two sources of error contributing to each estimate
of the 2-RDM: the random sampling of the ground-state
wave function, and also the random sampling of the 2-
RDM given these wave functions.
In the semi-stochastic adaptation we modify the esti-

mation of the 2-RDM by also always including all contri-
butions between states in the deterministic space. That
is, the contribution

C1
i C

2
j 〈Di|a†pa†qasar|Dj〉 (13)

is always included if both |Di〉 and |Dj〉 belong to D.
This is achieved by storing a further array, roughly the
same size as the deterministic Hamiltonian, which stores
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FIG. 5. The efficiency (ǫ〈S2〉) of semi-stochastic simulations
relative to an otherwise identical simulation without semi-
stochastic, for an 18-site Hubbard model. This efficiency mea-
sure uses the estimate of 〈S2〉 obtained from stochastically-
sampled RDMs. The stochastic efficiency is seen to improve
in a manner similar to ǫE0

, although the improvement is even
greater.

the excitation levels and coupling parities of pairs of con-
nected states in the deterministic space. This then speeds
up the calculation of these contributions, although these
quantities could easily be calculated on-the-fly to save
memory. Because both |Di〉 and |Dj〉 belong to D, C1

i

and C2
j should both be large and so semi-stochastic nat-

urally picks out the large contributions to the RDM. Be-
cause each process stores all deterministic amplitudes (as
a result of the MPI_AllGatherV call during the determin-
istic projection step) no extra communication is required.
We therefore emphasize that the semi-stochastic adapta-
tion improves the RDM estimates in two ways, firstly by
improving the underlying FCIQMC wave functions and
secondly by improving the sampling of the 2-RDM given
these wave functions. We note that in our implemen-
tation the 1-RDM contribution is calculated from the
2-RDM, and therefore also benefits from the improved
calculation of off-diagonal elements of Γpq,rs.

Two separate quantities are considered to study the
quality of these RDM estimates. The first is the varia-
tional energy estimate

ERDM = 〈Ψ|Ĥ|Ψ〉 (14)

=
∑

pq

hpqγpq +
∑

p>q,r>s

Γpq,rs〈pq||rs〉+ hnuc,

(15)

where γpq = 〈Ψ|a†paq|Ψ〉 is the 1-RDM. This should be
an important quantity in FCIQMC because it is varia-
tional, whereas the energy obtained in i-FCIQMC from
equation (7) is not. The second quantity considered is

the expectation value of Ŝ2, which for spin-1/2 particles
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RDM energy estimator RDM 〈S2〉 estimator

N2 Be2 N2 Be2

|D| Equilibrium 2.45Å 3.0Å 5.0Å Equilibrium 2.45Å 3.0Å 5.0Å

102 1.82 3.57 2.03 2.55 4.23 9.20 18.57 6.89

103 46.12 6.69 11.39 12.68 28.49 411.56 524.27 89.19

104 434.98 109.58 35.67 43.23 172.95 2363.88 8299.70 933.13

105 855.23 231.12 234.48 1033.02 1370.06 5877.94 11337.21 1627.39

TABLE II. Relative efficiencies in the RDM estimates of energy and 〈S2〉 for N2 (in a cc-pVDZ basis with 4 electrons uncor-
related, at a separation of 2.118a0) and Be2 in a cc-pCVTZ basis (with all electrons correlated). Large improvements are seen
for all systems, geometries and estimators, with a monotonic increase with |D| in each case.

can be calculated as

〈Ψ|Ŝ2|Ψ〉 =
∑

IJ

[
1

4
ΓIαJα,IαJα +

1

4
ΓIβJβ,IβJβ

− 1

2
ΓIαJβ,IαJβ − ΓIαJβ,JαIβ ] +

3

4
N, (16)

where N is the number of particles and I and J are spa-
tial orbital labels.
In figure 5 the relative efficiency is shown for the same

Hubbard systems used in figure 3, but using the estimates
of 〈Ŝ2〉 from the 2-RDM. Results from these two figures
used the same parameters but were taken from different
simulations. RDM estimates were calculated every 200
iterations and a blocking analysis was performed. Once
again, substantial improvements are found, with an effi-
ciency increase of over 106 observed for U/t = 0.25. Some
remarkably accurate results are obtained. It is known
that the exact value of 〈Ψ|Ŝ2|Ψ〉 should be 0 for the
ground state of this system. For U/t = 0.25, estimates

of 〈Ψ|Ŝ2|Ψ〉 change from 3.1× 10−7 ± 2.5× 10−7 for the
fully stochastic formulation, to −1.3×10−10±1.4×10−10

for |D| = 105.
Table II shows relative efficiencies for molecular sys-

tems, for both the variational energy and spin estima-
tors. Once again, significant improvements are seen in
all cases, and there is always an improvement with in-
creasing |D| for the range of deterministic space sizes
considered here. This suggests using a large determin-
istic space is sensible, although this has to be weighed
against increasing memory requirements.

D. Be2 F12 results

As a further demonstration of the benefits of semi-
stochastic, we consider the calculation of an explicitly
correlated correction to the basis set incompleteness error
in Be2. The explicitly correlated ‘F12’ approach was first
proposed in 198525,26, and has since been refined27–31 to
become a standard tool to accelerate basis set conver-
gence in quantum chemistry32,33. The aim of this ap-
proach is to complement the traditional wave function
expansion (in Slater determinants) by a small set of func-

tions which have an explicit dependence on the inter-
electronic distance. These ‘geminal’ functions are crucial
for an accurate description of the electronic cusps.

In this work, rather than optimizing the sampled
wave function in the presence of the explicitly correlated
geminal functions, they are instead coupled after the
FCIQMC calculation via an internally contracted mul-
tireference perturbative approach ([2]R12). This method
was first proposed by Torheyden et al.34,35 and first ap-
plied to FCIQMC in Ref. (36). This approach allows the
calculation of the correction through the sampled one and
two-body density matrices (after some rank-reducing ap-
proximations). The quality of these corrections will pro-
vide a further demonstration of the accuracy of FCIQMC
reduced density matrices when using the semi-stochastic
approach. It should be noted that in previous applica-
tions of this method to FCIQMC, the results were with-
out the semi-stochastic adaptation and approximated the
RDMs without the use of a replica sampling (in a bi-
ased fashion)36. An alternative explicitly correlated ap-
proach, where the Hamiltonian is ‘transcorrelated’ via an
approximate many-body canonical transformation37 has
also been used within the FCIQMC framework.38 While
it is still unclear which is the optimal strategy within
FCIQMC, in this work we focus on the a posteriori ap-
proach, in order to demonstrate the accuracy of the sam-
pled RDMs with the semi-stochastic adaptation.

Be2 is a very weakly bound molecule which has resulted
in extensive study within the literature, both in theo-
retical and experimental investigations38–44. The small
binding energy is a stern test for FCIQMC, as it re-
quires careful control over stochastic errors on the order
of µEh for reliable results. These random errors limited
the accuracy in the previous FCIQMC study of Ref. (38),
and as such we expect the improvement due to the semi-
stochastic approach to be important.

An all-electron semi-stochastic FCIQMC calculation
was performed within the cc-pCVDZ-F12 basis set to
calculate 2-RDM estimates. From these 2-RDM esti-
mates, [2]R12 corrections were calculated via the MPQC
code45. The binding in Be2 is primarily due to dispersion
interactions, and requires very high angular momentum
atomic orbitals for an accurate description. As such, it
is not to be expected that the cc-pCVDZ-F12 basis set
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(which only contains up to d angular momentum orbitals)
will provide high quality results. Rather, this system is
used to demonstrate the very great accuracy with which
[2]R12 corrections can be calculated when using the semi-
stochastic approach.

The FCIQMC calculations used time-reversal sym-
metrized functions15,46,47 as basis states, as a compro-
mise between Slater determinants and full configuration
state functions. The total space size was ∼ 4×1010 basis
states. The deterministic space consisted of 3×104 states,
chosen using our scheme presented in section III. 5 re-
peats were performed for each geometry (starting from
different random number generator seeds) to provide (un-
correlated) estimates with which to estimate error bars
on the [2]R12 corrections, and also on ERDM estimates.
Approximately 6 × 106 walkers were used for each cal-
culation. This was found to reduce initiator error to no
greater than roughly 10µEh at each bond length, with
such accuracy being deemed necessary for this weakly-
bound system. An optimal value of the single param-
eter in the F12 geminal (the γ exponent) was found by
minimizing the [2]R12 correction at equilibrium geometry,
yielding an optimized γ = 2.44a−1

0 .

In figure 6 the [2]R12 contributions are shown. These
values are plotted relative to the correction at infinite
separation. This infinite separation value was calculated
by using the exact FCI 2-RDM for the Be atom, and
therefore has no stochastic or systematic error. It is
therefore very encouraging that our FCIQMC results con-
verge to this value so accurately. Error bars are not vis-
ible on the plot, all being less than 0.12cm−1 (0.5µEh).
This demonstrates that the semi-stochastic adaptation
works well for these [2]R12 corrections, as for the RDM-
based quantities already considered.

In figure 7 the variational energy calculated from the 2-
RDM estimates (using Eq. (15)) is shown, together with
the total energy, including both ERDM and [2]R12 con-
tributions. It is seen that the [2]R12 corrections greatly
reduce the basis set incompleteness. However, for this
system the cc-pCVDZ-F12 basis, despite the addition
of the explicitly correlated correction, is still not suffi-
cient to obtain results compatible with the most accu-
rate estimates40,41 of the well depth, which are around
930cm−1.

Interestingly, the [2]R12 correction for this system is
not as significant as for many previously-studied sys-
tems. It has been demonstrated that results of aug-
cc-pVQZ quality can sometimes be obtained within an
aug-cc-pVDZ basis34. The small improvement here is
perhaps explained by the F12 corrections being less
effective at describing bonding via dispersion interac-
tions. For the Be atom, an accurate variational en-
ergy is −14.66736Eh

48. By including both [2]R12 and
[2]S corrections, the cc-pCVDZ-F12 Be energy goes from
−14.6574Eh to −14.6691Eh (with γ = 2.44a−1

0 ). Thus,
the accuracy of the atom energy is greatly improved, al-
though interestingly it appears that the energy is below
the complete basis set limit by ≈ 2mEh (possible due
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FIG. 6. The [2]R12 energies (relative to the FCI value at
infinite separation) for Be2 in a cc-pCVDZ-F12 basis set, with
all electrons correlated and γ = 2.44a−1

0 . Error bars, which
are each calculated from 5 independent estimates, are plotted
but not visible. All error estimates are less than 0.12cm−1

(0.5µEh). It is seen that the result at large bond lengths
approaches the FCI result with very great accuracy.
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FIG. 7. Be2 binding curve in a cc-pCVDZ-F12 basis set, cal-
culated by combining ERDM and [2]R12 contributions. All 8
electrons are correlated and γ = 2.44a−1

0 . The addition of
the [2]R12 basis set incompleteness correction improves the
energy estimate. However, the system is still under bound
by around 450cm−1 compared to experimental values, sug-
gesting that larger basis sets (with high angular momentum
functions) are still required. The relatively small improve-
ment of the [2]R12 correction for this system and basis set is
not related to the use of FCIQMC. Error bars, which are each
calculated from 5 independent estimates, are plotted but not
visible. All errors estimates are less than 1.8cm−1 (8µEh).

to this perturbative framework). The improvement to
the Be2 binding energy is less significant. We emphasize
however, that relatively small improvement of [2]R12 in
this case is not a result of using FCIQMC. In particu-
lar, the semi-stochastic adaptation is found to perform
extremely well, with all stochastic errors being less than
1.8cm−1 (8µEh).
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VI. CONCLUSION

We have performed a detailed study of the semi-
stochastic adaptation to FCIQMC and presented a new
method for generating the deterministic space. This ap-
proach creates the space naturally from the dominant
states in the FCIQMC wave function and avoids hav-
ing to perform multiple large and time-consuming de-
terministic ground-state calculations. Using this ap-
proach greatly improves the stochastic efficiency of calcu-
lations for a large range of systems and parameters. We
also demonstrated that a simpler approach to the initia-
tor approximation in semi-stochastic FCIQMC gives the
same benefits as the approach previously suggested by
Petruzielo et al6. We have also explained how the semi-
stochastic adaptation can be implemented with relative
ease in an existing parallel FCIQMC code. It has been
shown that the parallel scaling is not significantly wors-
ened for a range of numbers of CPU cores. Rather, for
systems where parallel efficiency is particularly poor, it
has been shown that deterministic approaches can signif-
icantly improve the parallel performance and speed up
FCIQMC calculations. This is a significant result and
deserves further investigation.
The benefit of the semi-stochastic approach was

demonstrated for FCIQMC estimates of the 2-RDM. This
is significant as we expect this object to be important in
future applications of FCIQMC, as it can be used for
calculating non-trivial two body operators, variational
energy estimates and F12 basis set incompleteness cor-
rections. We observed improvements in efficiency to fac-
tors in excess of 1 million. As a concrete demonstration,
these improvements were applied to the calculation of
F12 corrections for Be2. We therefore suggest that using
the semi-stochastic adaptation should become standard
practice when performing FCIQMC calculations.
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