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Abstract

What governs the balance between connectivity and topology in regulating the mechanism of protein folding?
We use circular permutation to vary the order of the helices in the all-α Greek key protein FADD
(Fas-associated death domain) to investigate this question. Unlike all-βGreek key proteins, where changes in
the order of secondary structure cause a shift in the folding nucleus, the position of the nucleus in FADD is
unchanged, even when permutation reduces the complexity significantly. We suggest that this is because
local helical contacts are so dominant that permutation has little effect on the entropic cost of forming the
folding nucleus whereas, in all-β Greek key proteins, all interactions in the nucleus are long range. Thus, the
type of secondary structure modulates the sensitivity of proteins to changes in connectivity.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

The topology of a protein is an important determi-
nant of its folding mechanism and kinetics [1–5]. We
have previously compared the folding mechanism of
FADD (Fas-associated death domain), an all-αGreek
key domain formed of two 3-helix bundles, with the
folding of spectrin domains (simple 3-helix bundles)
and with Greek key all-β immunoglobulin (Ig)-like
domains. We found that the helices that form the
central core, two from each bundle, align first, with
the peripheral helices packing late. We ascribed this
to the complexity of theGreek key topology, aswe see
a similar folding mechanism, involving assembly of
elements of structure distant in sequence but central
to the structure in Ig-like domains. The difference is
that, in the helical FADD domain, secondary struc-
tures (i.e., local helical contacts) are obliged to form
simultaneously, whereas tertiary contacts dominate in
Ig-like folding. In contrast, in the simple 3-helical
bundle spectrin domains, folding mechanisms are far
more malleable [6].
Circular permutation has been used to investigate

the importance of chain connectivity in determining
mechanism. A circular permutant retains the same
amino acid composition and chain length [7,8] as the
uthors. Published by Elsevier Ltd. This is a
rg/licenses/by/4.0/).
wild type (WT) but the order of secondary structure
elements is altered. Circular permutation may
change the relative sequence separation of key
residues in the folding nucleus, and hence, such
mutants have been termed “entropy mutants” [3].
Several circular permutant systems have been used
to investigate affects on stability [9–14] and activ-
ity [15–17], but relatively few studies have consid-
ered the effect on the kinetics of protein folding
[1,3,5,18–25]. Proteins with an assortment of folds
including β-trefoil, SH3, β-sandwich and the PDZ
domains have been studied. In some cases, a
change in mechanism upon mutation has been
observed [1,3,5,20,26,27], but not in others [18,25].
What determines the balance between topology and
chain connectivity in deciding folding mechanism? Is
the nature of the secondary structure important?
These previous studies have largely been on pro-
teins with predominantly, or all, β structure, where the
interactions within the protein are primarily long
range (i.e., the proteins have large relative contact
orders). Here, we investigate the all-α protein FADD
using a circular permutation strategy to investigate
how altering the connectivity of helices, in particular
when we create two contiguous helical bundles,
affects the folding.
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Results and Discussion

Circular permutation has little effect on structure

FADD comprises six helices, referred to here as
helices A–F, starting from the N-terminus (Fig. 1).
The helices are arranged into two 3-helix bundles,
each with a hydrophobic core, that pack together to
form a central core: bundle 1 (B1) is non-contiguous
and is formed by helices A, E and F, whilst bundle 2
(B2) is formed from three contiguous helices B, C
and D. The non-contiguous nature of B1 means that
the bundles are held in place by two loops (A–B and
D–E) that cross either end of the core. In the circular
permutants, the native termini have long flexible tails
that were joined directly, whilst a flexible 5-residue
(-GSGSS-) tail was added to the new N-terminus to
ensure that the thrombin cleavage site used during
purification was still accessible despite its new prox-
imity to secondary structure elements. The permuted
sequences were designed so that the new termini fell
within loops connecting the six helices, giving rise to
five permutants referred to as CPAB, CPBC, CPCD,
CPDE and CPEF (Fig. 1). All five permutants could be
successfully expressed and were isolated in a
soluble form.
Fig. 1. Design of the circular permutants. (a) WT amino aci
purple (CPAB), cyan (CPBC), green (CPCD), orange (CPDE)
permutants throughout this paper. (b) Schematics of FADD an
termini is indicated in red. Bundles of helices are indicated by t
red (B2) [4]. Helices that pack onto each other within the core
[30]) showing B1 in cream and B2 in grey. The loops are colo
genes were synthesised by GenScript, USA. Amino acid seque
thrombin cleavage site and the protein. The proteins were exp
Previous studies of circular permutants have
observed little alteration in the native struc-
tures [18,19,25,28,29]. We used both experimental
probes and molecular dynamics (MD) simulations to
assess whether the structure of FADD was sig-
nificantly altered upon permutation. The extent of
secondary structure was determined experimentally
using circular dichroism (CD), and all proteins had
comparable helical content (Fig. S1a). A consistent
loss of helicity compared to WT was observed for
all permutants that we ascribe to the increase in
flexibility at the sites of the new N- and C-termini, as
well as a reduction in helicity at the site of the WT
termini due to strain inherent in the new loop. There
are two Trp residues in FADD. The Trp fluorescence
of all but one of the permutants was similar to WT,
suggesting that the hydrophobic cores are similarly
packed (Fig. S1b), an observation supported by
analysis of simulations of the permuted structures
(see below). There was a small shift in λ max for
folded CPDE, which may reflect slight alterations in
the chemical environment of Trp148 that packs on
the D-E loop. CPEF, however, has a fluorescence
profile that is very different to that of the other
permutants, with a significant increase in fluores-
cence in the folded state. This cannot be explained
trivially. Loop E-F is not close to either of the Trp
d sequence, with the new N-termini highlighted as follows:
and red (CPEF). These colours correspond to the same
d circular permutants CPAB-EF. Covalent linkage of the WT
he background colours blue (B1), yellow (central core) and
are identified by the dotted lines. (c) NMR structure (1E41
ured to match the corresponding permutant. All permutant
nces included an N-terminal -GSGSS- spacer between the
ressed and purified as described previously [4].
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residues, and it is likely that there is a change in
structure in this permutant; although this is not
detected in the simulations, there are other experi-
mental hints (see below).
We ran short atomistic MD simulations of the WT

(1E41 [30]) and each of the permutants. The simu-
lations we performed are not long enough to char-
acterise the native-state dynamics comprehensively
since these can range from the sub-nanosecond
to the microsecond timescale [31]. However, even
with their limited length, simulations can indicate
the extent of perturbation of the structure upon
permutation and how each permutant relaxes to its
corresponding ensemble. It is important to be aware
that force field deficiencies will necessarily deter-
mine the helical propensity of the sequence in the
simulations. To minimise these effects, we used an
optimised force field here [32]. With these caveats,
we used the simulations of the five permutants to
evaluate any changes in the structural properties
monitored by the two types of spectroscopy used
experimentally.
First, we consider the secondary structure content,

monitored in experiments using CD. In our simula-
tions, we find a consistent decrease in the helicity,
relative to the WT simulations. For the WT, the av-
erage number of α-helical residues using a DSSP
criterion [33] is 70, very close to the 73 helical resi-
dues of the experimental structure. For the mutants,
the average number of residues in α-helical confor-
mation is lower, as observed experimentally, within a
range from 62 to 67 residues (Fig. S2). Second, we
attempt to explain the results from fluorescence
spectroscopy. Modelling tryptophan fluorescence
from simulation results is extremely challenging,
well beyond the scope of this work [34]. Instead,
we can monitor the changes in the environment of
the two Trp residues. In practise, we calculated the
total accessible surface area of these amino acid
residues [35] to assess whether permutation sub-
stantially modified their accessibility to solvent
molecules (Fig. S3). Although, again, the simulations
are too short to be absolutely conclusive, we find that
the distribution of distances for the permutants con-
sistently overlap with that of the WT, suggesting
that the Trp residues remain similarly buried in the
permutants. This is consistent with the relative
insensitivity of the tryptophan fluorescence found in
experiments.
Finally, we also monitored the global perturbations

of the structure, which are relatively small: the larg-
est RMSD from the initial structure occurs at the
respective termini for each permutant and remains
around a value of 2 Å for the α-helical segments
(Fig. S4). Representative structures for each of the
permutants were chosen from the most populated
cluster observed in the MD simulations (Fig. S5).
The contacts observed in the WT are maintained in
the permutants. From all of these observations,
we conclude that the simulations suggest only a
small perturbation of the native structure due to the
permutation and a modest decrease in the helicity, in
agreement with the experiments.

Effect of permutation on folding, stability
and kinetics

Stability was determined by equilibrium urea dena-
turation experiments. All permutants demonstrated
cooperative, reversible unfolding but had a range of
stabilities and none was as stable as WT protein
(Fig. 2a and Table 1). All m-values were similar to
WT and well within the range found for previous
studies of point mutations of FADD {see Ref. [4],
1.1–2.1 kcal mol−1 M−1 (mean, 1.41), standard de-
viation, 0.22}. The most destabilising circular per-
mutant disrupted the long D–E loop that crosses and
packs against the central hydrophobic core. Disrup-
tion of the other cross-core A–B loop is much less
destabilising, likely because this loop makes fewer
contacts.
WT FADD has been shown to have simple, mono-

phasic folding and unfolding kinetics [4]. All circular
permutants behaved in a manner consistent with
this. Remarkably, despite the significant changes in
connectivity, as well as in stability, the folding rates
of the circular permutants were all very similar to WT
(Fig. 2b and Table 1). The rate constants deviated
from WT by only about a factor of 2. Importantly,
since the folding limbs of the chevron plot almost
overlay, and the denaturant dependence of the rate
constants for folding (kf) are essentially the same as
WT, we might infer that the rate-limiting transition
state is similar to that of WT, at least in terms of
relative collapse. As can be seen from the chevron
plots, the loss of stability of the circular permutants of
FADD is all reflected in the unfolding kinetics—all
unfold significantly faster than WT (Figs. 2b and 3a).
On reflection, this should not be a surprise since our
previous results showed that the loops pack rela-
tively late. Indeed, when we determine the Φ-value
of the permutants, by treating them as mutants, we
find that the Φ-values are all relatively low and
similar to Φ-values of residues that are closest to
each of the corresponding loops determined previ-
ously [4].
We note that the unfolding limb of one of the pro-

teins, CPEF, is different to all other proteins; the slope
of the unfolding limb (the unfoldingm-value) is about
double that of the other proteins, although the folding
and equilibrium behaviour is essentially the same as
the other proteins in the study. We cannot explain
this behaviour at present. The obvious explanation is
that the starting material, the folded protein, is a
domain-swapped dimer under the conditions used in
our studies (starting protein concentration before
dilution, ~11 μM). In support of this suggestion, we
note that this permutant leaves helix F somewhat



Fig. 2. Thermodynamic and kinetic data for FADD WT and circular permutants. Constructs coloured as before. All
experiments were carried out at 25 °C in 50 mM sodium phosphate (pH 7.0), 150 mM NaCl and 5 mM DTT and a final
protein concentration of 1–2 μM. Data were analysed using Kaleidagraph (Synergy Software). (a) Fluorescence
equilibrium curves. All permutants were destabilised compared to WT. Measurements were taken on a PerkinElmer
fluorimeter with excitation at 280 nm and emission between 300 and 400 nm. Average emission wavelength was
calculated in order to plot the data. (b) Chevron plots showing the dependence of the observed rate constant on urea
concentration. Unfolding kinetics were monitored by changes in the fluorescence signal above 350 nm in a stopped-flow
fluorimeter (SX20; Applied Photophysics) with 1:10 mixing. All kinetic traces were best described by a single-exponential
equation as described previously [4]. (c) Comparison of Φ-values for WT FADD and CPAB. The relationship can be
described by a straight line (red) with slope 0.9 ± 0.1 and an intercept close to 0, indicating that the Φ-values are
essentially unchanged by permutation. Black line indicates a slope of 1.
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detached from the rest of the protein, as it is joined
only by the elongated new F–A loop introduced to
join the original C- and N-termini—this would be
likely to facilitate domain swapping at high protein
concentrations. However, analytical size-exclusion
chromatography (at 20 μM protein) did not detect
any difference (within error) between CPEF and all
the other proteins (although, since FADD is an
elongated molecule, it is possible that the
cross-sectional area of a strand-swapped dimer is
not different to an isolated domain) (Fig. S6). More-
over, unfolding experiments starting from a lower
protein concentration (4.4 μM, the lowest protein
concentration that allowed us to see a signal) gave
unfolding rates over a range of denaturant concentra-
tions that were indistinguishable.Despite this, themost
likely explanation remains that CPEF is actually a
strand-swapped dimer—it is the protein that had a
significantly altered Trp fluorescence profile (Fig. S1b).
Table 1. Thermodynamic and kinetic parameters for FADD W

FADD construct New
N-terminus

ΔΔGH2O
D‐N

(kcal mol−1)a (kcal

WT — — 1.4
CPAB K110 1.74 ± 0.16 1.59
CPBC V121 3.43 ± 0.15 1.34
CPCD R135 2.24 ± 0.15 1.42
CPDE E154 4.44 ± 0.16 1.27
CPEF M170 2.77 ± 0.15 1.66

The errors quoted are the errors of the fits of the data.
a The change in free energy of unfolding was determined from analysi

ΔGD-N
WT − ΔGD-N

CP , where ΔGD-N = m[urea]50% ([urea]50% is the midpoint of
b Calculated from the rate constants for folding (kf) at 2 M urea (s

RTln(kf
WT/kf

CP). Error in Φ is generally considered to be b0.1.
Note that wedid not continue our studies of this circular
permutant further.

Permutation has no effect on folding mechanism

The central 4-helix motif in FADD comprises two
pairs of parallel helices (A–E and B–D) packed
together orthogonally. Thus, the early formation of
the central core, which we observe to be the first step
in the folding of WT protein, involves bringing together
helices quite separated in sequence. Two of the
permutants make the structure of FADD significantly
simpler; CPAB and CPDE convert the protein into two
associated 3-helix bundles. Thus, these were consid-
ered the two proteins most likely to have an altered
folding mechanism. We hypothesised that each
3-helix bundle would now form early (as the contacts
were more local) and then the two helical bundles
would assemble late in the folding. Since CPDE was
T and circular permutants.

mD-N

mol−1 M−1)
kH2O

f
(s−1)

kH2O
u

(s−1)
Φb

± 0.2 940 ± 110 0.04 ± 0.01 —
± 0.02 2300 ± 200 1.2 ± 0.1 0.11
± 0.01 950 ± 170 24.3 ± 1.7 −0.01
± 0.01 1900 ± 400 26.1 ± 4.4 0.05
± 0.03 2600 ± 500 4.9 ± 0.9 −0.01
± 0.01 450 ± 80 1.9 ± 0.5 0.32

s of the equilibrium denaturation data (Fig. 2a) as follows: ΔΔGD-N =
the transition).
ee the text) as follows: Φ = ΔΔGD-TS/ΔΔGD-N, where ΔΔGD-TS =



Fig. 3. Plots describing the relationships between kinetics and stability. (a) lnku (broken line) and lnkf (continuous line)
plotted against ΔGD-N for FADDWT and permutants, identified by colour as described previously. Results indicate that the
refolding rate constant is unrelated to protein stability, but there is a strong correlation between lnku and ΔGD-N (R = 0.96).
Lines of best fit are shown. (b) Plot of lnku (squares) and lnkf (circles) against ΔGD-N for FADD (black), S6 [3] (blue), SH3 [1]
(magenta) and IL-1β [23] (green). Lines of best fit are shown. (c) Plot showing the range of relative contact orders for
permutants of FADD and S6 [3]. The relative contact orders as defined in Ref. [2] of FADD permutants were calculated
from the MD structures.
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significantly destabilised, we carried out a partial
Φ-value analysis of CPAB to determine whether the
folding mechanism had, in fact, changed.
A selection of mutants for theΦ-value analysis was

chosen from those performed by Steward et al. [4] to
ensure that both the central core and the 3-helix
bundles were probed. In each case, the same mu-
tationwasmade in the permutant as inWTFADD,with
the exception of Trp112, which was mutated to Phe
rather than Ala to avoid extensive destabilisation. All
mutant chevrons fit well to the linear fit used for CPAB;
Φ-values were calculated from refolding data at 2 M
urea for consistency with the WTΦ-value analysis (to
reduce error from extrapolation to 0 M denaturant).
The pattern ofΦ-values was the same as that for WT,
and even the absolute values of Φ had not altered
significantly (Fig. 2c and Table S1): the folding
mechanism is remarkably unchanged.

Comparison with other studies

We compared our kinetic results with other studies
that had investigated the folding kinetics of three or
more permutants; SH3, IL-1β and S6 [1,3,23]. All of
these are predominantly β structures: SH3 is an all-β
barrel-like structure, IL-1β has a β-trefoil fold but S6
is a Greek key β-sandwich and is thus structurally
similar (albeit primarily β) to FADD with two loops
that cross-over the core at either end of the domain
(1U06, 1I1B and 1RIS [36–38]). Linear free energy
relationship plots (Fig. 3a and b) show that our
observation, that folding rate constants are relatively
insensitive to permutation, is neither unique nor the
norm. The two Greek key proteins, FADD and S6,
behave in an extremely similar manner: circular
permutation alters stability and unfolding kinetics
but has remarkably little effect on the rate of folding.
This is not the case for either SH3 or IL-1β, where, if
anything, the effect is on folding kinetics. This sug-
gests that, in these Greek key proteins (as has been
seen previously [39–41]), the loop regions play little
role in nucleating folding—the same may not be true
for SH3 and β-trefoil proteins (although there are too
few examples to be certain).
In other respects, FADD and S6 behave quite

differently. In their studies of S6, Lindberg et al.
observed that permutation was accompanied by a
radical shift in the folding mechanism, with the site of
nucleation shifting in the circular permutants [20].
Our data suggest that this is not the case for FADD.
How can this be explained? The difference between
S6 and FADD is that the first is all-β and the other is
all-α. Contact order is a measure of the average
separation in sequence between residues that are in
contact with each other [2]. If we examine the contact
order of S6 and FADD, we see that they are very
different, as one would expect from an all-β and an
all-α protein [42]. Importantly, however, in the all-β
S6, permutation alters the relative contact order
significantly, in particular, it alters the relative
separation of residues that nucleate folding (de-
scribed as ΔL for the S6 system [43]); thus, the
entropic cost of forming alternative nuclei can be
radically altered by permutation. In all-α FADD, on
the other hand, we observed very little change in
contact separation since local helical contacts are so
dominant that permutation has little effect on the
contact order (Fig. 3c). Thus, we infer that the
entropy of the folding nucleus is insensitive to
permutation; thus, no alternative, lower-entropy
cost nuclei are favoured by permutation and the
folding mechanism remains the same. Plasticity of
the folding nucleus may be of greater importance in
β-sheet proteins with critical long-range contacts
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than in α-helical proteins where nucleation of folding
requires formation of mostly local interactions; this
may explain why the Greek key motif is common
amongst β-sheet proteins but only found in a minority
of related all-α proteins [44]. Our results suggest that
the type of secondary structure is the determining
factor in the balance between topology and
connectivity.
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