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Bearing capacity and settlement of circular shallow foundations using a 

non-linear constitutive relationship 

 

B. T. McMahon, S. K. Haigh and M. D. Bolton 

 

Abstract  

The design of shallow foundations is dominated by issues of settlement, rather than by 

bearing capacity per-se. The ability to predict the settlement of foundations at a given factor 

of safety is hence of key importance in design. In this paper, the energy method for a 

linear-elastic perfectly plastic method utilizing the von Mises’ yield criterion with associated 

flow developed by McMahon et al. (2013a) is extended to consider the non-linear behaviour 

of soil. The energy method is used to investigate the load-settlement behaviour of shallow 

foundations by utilizing an ellipsoidal cavity-expansion mechanism and deformation fields 

within the boundaries of the classical Hill and Prandtl mechanisms. An elastic mechanism 

obtained from an analysis in ABAQUS was also investigated using this energy method. The 

upper-bound approach demonstrates that the cavity-expansion mechanism produces a better 

solution at small values of settlement, whereas at greater settlements the Prandtl mechanism is 

shown to produce a more optimal upper-bound solution.  

 

Keywords: bearing capacity, clays, foundations; plasticity, settlement 
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NOTATION 

Roman 

b   empirical exponent 

cu    undrained shear strength  

D   footing diameter 

F   factor of safety 

K0   earth pressure coefficient at rest 

Nc   bearing capacity factor 

p   mean principal stress  

p0   in-situ stress  

qmob   mobilised strength in triaxial compression  

r   radial coordinate 

rb   boundary radius of analysis 

rf   footing radius 

u   radial displacement 

v   vertical displacement 

W   work 

Wb,n-l  non-linear plastic work outside analysis boundary 

Wn-l   non-linear plastic work 

Wp   perfectly plastic work 

z   depth 
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Greek 

γ    shear strain 

γM=2   shear strain at half the undrained shear strength 

γf    full plasticity shear strain 

δb    boundary settlement 

δf    footing settlement 

ε1, ε2, ε3  major, intermediate and minor principal strain  

321 ,, εεε &&&  major, intermediate and minor principal strain rates 

ε̂&    a strain rate invariant 

εr, εθ, εz  radial, circumferential and vertical strain  

ρ   cavity radial displacement 

σb   boundary stress 

σf   footing pressure 

τmob   mobilised shear stress 

σ1, σ2, σ3 major, intermediate and minor principal stresses  

321 ˆ,ˆ,ˆ σσσ  major, intermediate and minor deviatoric stresses  
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INTRODUCTION 

Shallow foundations are widely used to support lightly loaded structures on clay soils, as well 

as more heavily loaded structures such as fluid storage tanks. These are typically designed 

using the classical Prandtl equation: 

uf c)2( πσ +=                 (1) 

where σf is the vertical stress on the foundation and cu is the undrained shear strength of the 

soil. A factor of safety is then typically used as a reduction factor on the calculated load 

capacity. The purpose of this factor of safety, as discussed by Bolton (2013) in his Rankine 

Lecture, is not only to provide a margin of safety but to limit the deformations of the structure 

being supported. Whereas clays typically mobilise their full strength at a shear strain of the 

order of 10%, masonry structures would typically begin to show damage if their supporting 

soils strain by more than 0.1%: see Figure 1 (Mair, 1993). The use of factors of safety allows 

settlements and strains to be limited, but the link between factor of safety, soil stiffness and 

settlement is not explicit in this design approach. 

 

Linear-elasticity of soil is often used to calculate the settlement of shallow foundations. The 

stress-strain behaviour of soil is, however, highly non-linear even from very small strains 

(Jardine et al. 1984; Burland, 1989; Houlsby and Wroth, 1991), so the choice of what 

stiffness to use within an elastic analysis is problematic, the stiffness changing substantially 

with increasing strain level, as also shown in Figure 1.  

 

Osman and Bolton (2005) considered the non-linear behaviour of soil by scaling a triaxial test 

stress-strain curve to a footing load-settlement curve in the process of Mobilisable Strength 
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Design (MSD). In the development of MSD, a displacement field within the boundary of the 

Prandtl mechanism was used to determine appropriate scaling factors, in this case a 

compatibility factor and the well-known bearing capacity factor Nc. Klar and Osman (2008) 

extended the concept of MSD using three different soil constitutive models: elastic 

perfectly-plastic, hyperbolic stress-strain curve and truncated power law in a process of 

energy minimisation. This allowed the displacement field to change its pattern throughout the 

loading sequence, and hence the early stages of loading used the ‘elastic’ solution and the 

later stages used the plastic Prandtl solution developed by Osman & Bolton (2005).  

 

Based on the analysis of triaxial stress-strain data available in the literature, Vardanega and 

Bolton (2011a) developed a power-law model to describe the non-linear stress-strain 

relationship of clay. This two-parameter model can be incorporated into analysis in order to 

get a more accurate picture of the evolution of settlement with increasing load.  

 

ANALYSIS PROCEDURE 

McMahon et al. (2013a) presents an energy method for a linear-elastic von Mises’ material 

with associated flow. McMahon et al. (2013b) showed that this analysis can be used to 

investigate the optimal deformation mechanisms beneath shallow foundations both prior to 

and after failure. Both these papers assumed linear-elastic, perfectly plastic soil behaviour, 

whereas soil is well-known to behave non-linearly, even at small strains. The derivation of an 

appropriate G/cu value for use in that analysis is therefore problematic.  

 

Vardanega and Bolton (2011a) accumulated a database of 115 triaxial and direct simple shear 
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tests on 19 natural clays, and showed that the non-linear relationship between shear stress τmob, 

and shear strain 31 εεγ −= , could be approximated as: 

( ) 8.0/20range in the/5.0/ 2 <<= = umob

b

Mumob c.c τγγτ    (2) 

where γM=2 is the shear strain at half the peak strength and b was found to lie in the range 0.3 

to 1.2, with an average value of 0.6 and a standard deviation of 0.15 for that particular group 

of materials. A suite of tests on kaolin clay reported by Vardanega et al., (2012) indicated that 

γM=2 increased strongly with overconsolidation ratio (OCR), while b increased much more 

gently, from about 0.4 for normally consolidated kaolin to about 0.6 at OCR = 20. Equation 2 

was best suited to the range 0.2 < τmob / cu < 0.8, but for simplicity will also be deemed here to 

be suitable outside of this range, up to a cut-off of τmob / cu = 1. Figure 2 shows a comparison 

between the stress-strain curves of a soil following equation 2 and an equivalent elastic 

perfectly plastic soil with the same strain to failure. This demonstrates that extra strain energy 

will be absorbed by the non-linear soil, provided that b is less than one. This will result in 

lower settlements being sustained by foundations on non-linear soil than by those on an 

elastic soil with the same strain to failure. 

 

In this paper, the procedure developed by McMahon et al. (2013a) will be modified to 

consider the true non-linear behaviour of soil using the power-law stress-strain relationship 

defined by equation 2. 

 

Non-Linear Plastic Work 

In order to carry out an upper-bound energy analysis in the style of McMahon et al. (2013a), 

the energy associated with deformation of a soil element must be calculated. In this paper the 
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soil will be assumed to be non-linear plastic, with yield being determined by an expanding 

von Mises’ yield surface. The von Mises’ yield criterion was chosen as its circular nature in 

the π-plane (as opposed to the angular Tresca yield surface) makes calculation of energy 

dissipation simpler. The Tresca yield surface only satisfies the condition that plastic strains are 

parallel to total strains at the corners and the centres of the edges of the yield surface. 

Utilising the Tresca yield surface, while the total strain would remain in the same direction 

throughout the analysis, the plastic strain increment would change direction, complicating the 

calculation of work done. 

 

The isotropic von Mises’ yield criterion in terms of the mobilised strength in triaxial 

compression, qmob, can be expressed as: 

22
21

2
32

2
31 2)()()( mobq=−+−+− σσσσσσ          (3) 

The mobilised shear stress, τmob, within the yield boundary can be determined by rearranging 

equation 2, and in order to facilitate comparison with results from previously published finite 

element analyses, which utilised the Tresca yield criterion, it is assumed that: 

mobmobq τ2=                 (4) 

Equations 2 and 4 can be substituted into equation 3 to determine that the von Mises’ yield 

criterion for a soil with non-linear behaviour described by this power-law is:  

 ( ) ( ) ( )
b

M

uc

2

2

22

21

2

32

2

31 2 







=−+−+−

=γ
γ

σσσσσσ        (5) 

For a von Mises’ material, the total strain vector is parallel to the deviatoric stress, 

p−= σσ̂ , where p is the mean principal stress. As the von Mises’ yield criterion is circular 

in the π-plane, for a material exhibiting associated flow, the direction of the incremental 

plastic strain vector, pε& , is also parallel to the deviatoric stress. If a mechanism is assumed 
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that remains geometrically similar for all footing displacements, then at any given point in the 

mechanism the direction of the total strain vector will remain constant throughout the 

deformation process. 

 

As the total strain rate in the plastic zone is equal to the plastic strain rate, it follows that: 

   
ˆ

ˆ
             and             

ˆ

ˆ

1

3

1

3

1

2

1

2

ε
ε

σ
σ

ε
ε

σ
σ

&

&

&

&
==          (6) 

This can be substituted, along with the condition of zero volumetric strain for undrained 

loading, into the yield criterion of equation 5. This produces an expression for the major 

principal deviatoric stress: 

 

b

M

uc








=

= 2

1
1 ˆ3

ˆ
γ

γ

ε

ε
σ

&

&
              (7) 

where the strain invariant is given by: 

[ ]21
2
2

2
1

2ˆ εεεεε &&&&& ++=               (8) 

The rate of non-linear plastic work, flnW δ∂∂ − / , due to the deviatoric stress per unit volume 

is given by: 

332211 ˆˆˆ/ εσεσεσδ &&& ++=∂∂ − flnW             (9) 

Substitution of equations 6 and 7 into equation 9 shows the non-linear work rate per unit 

volume to be: 

 

b

M

u

f

ln cW








=

∂

∂

=

−

23

ˆ2

γ
γε

δ
&

              (10) 

 

Perfectly Plastic Work 

Once the mobilised shear stress given by equation 2 exceeds the undrained shear strength cu, 

the soil behaves in a perfectly plastic manner. The strain at which this occurs is found from 
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equation 2 to be 22 == M
b

f γγ , which is also indicated on Figure 2. For strains greater than 

this the soil is perfectly plastic, and the energy dissipated is thus identical to that described by 

McMahon et al. (2013a). The incremental work per unit volume is given by: 

 
3

ˆ4 ε
δ

&
u

f

p cW
=

∂

∂
                (11) 

 

As discussed in Klar & Osman (2008) and McMahon et al. (2013a), the assumption of a 

deformation mechanism and the balancing of work and energy must, in principle, lead to an 

upper-bound estimate of collapse loads for perfectly rigid-plastic materials. The non-linear 

plastic work expressions which have been developed will now be used with a number of 

deformation fields to investigate the load-settlement behaviour of circular shallow 

foundations. 

 

DEFORMATION MECHANISMS 

CAVITY EXPANSION MECHANISM 

McMahon et al. (2013a) introduced an ellipsoidal cavity expansion mechanism to describe 

the soil movement beneath a rough circular shallow foundation. Figure 3 illustrates notation 

and the global mechanism. In the near-field, ellipsoids smoothly transition from a flat punch 

at the ground surface to a hemisphere of radius rh. Beyond this radius, conventional spherical 

cavity expansion occurs. The plastic radius, rp, divides the fully plastic and non-linear zones 

of the soil and can lie in either the ellipsoidal or the spherical zone. In order to make the 

calculation domain finite, a bounding radius, rb, in the spherical zone is chosen with the work 

done outside this radius being calculated on the basis of non-linear plastic spherical cavity 

expansion. This approach is valid provided that rp < rb for the foundation settlement 
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considered. 

 

The soil movement within the hemisphere of radius rh is described in terms of a series of 

ellipsoids with a resultant soil displacement normal to the ellipsoid at each point. The first 

ellipsoid occurs at the footing base and hence is the special case of a circle (the footing) with 

normal displacement δf. This corresponds to a perfectly rough footing base. Ellipsoids then 

grow in size and gradually transition towards being a hemisphere at rh. Beyond the designated 

hemispherical boundary the soil displacements are normal to hemispheres. Hemispheres are a 

particular case of an ellipsoid, where a = b = r, and thus a similar approach can be adopted.  

 

The deformation mechanism produced using this model is shown in Figure 4. The mechanism 

suffers continuity issues at the footing edge due to a gross change in geometry. Below the 

foundation soil displacements are purely vertical, whereas at the soil surface they are purely 

horizontal. An investigation demonstrated that changing the geometry at the footing edge had 

a negligible effect on the value of footing contact pressure for a given settlement. 

 

Non-linear plastic work beyond the bounding radius 

The principal strains for a spherical cavity expansion, rr /2δε =  and r/δεθ −= , can be 

used to find the shear strain γ: 

 
b

b

r

δ
εεγ

3
31 =−=                (12) 

Compatibility, maintained by 22 2/ bffb rr δδ = , is combined with equation 12 and then 

substituted into equation 2 to determine the mobilised shear stress τmob as: 
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b

M

f

b

fu

mob
r

rc














=

=2
3

2

2

3

2 γ

δ
τ               (13) 

Substitution of equation 13 into the equilibrium equation and integrating between an infinite 

radius, ∞=r , where σ = p0 and the bounding radius r = rb where σ = σb produces: 

 ∫∫
∞

+
=














−=

bb r

b

b

M

ff

u

p

r
r

drr
cd

13
2

2

2

3
2

0
γ

δ
σ

σ

            (14) 

The in-situ stress is ignored on the grounds that gravitational effects will cancel in a work 

equation for the isochoric indentation of a horizontal free surface; we can therefore set p0 = 0. 

Equation 14 can then be solved to find the stress at the bounding radius: 

 

b

M

f

b

fu

b
r

r

b

c














=

=2
3

2

2

3

3

2

γ

δ
σ               (15) 

The work done is calculated by multiplying the stress at the bounding radius, the incremental 

displacement at the bounding radius and the surface area of the bounding hemisphere. This 

demonstrates the work beyond the bounding radius for non-linear plastic soils, flnbW δ∂∂ − /, , 

to be: 

 

b

M

f

b

ffu

f

lnb

r

r

b

rcW














=

∂

∂

=

−

2
3

22

,

2

3

3

2

γ

δπ
δ

           (16) 

 

Load-Settlement Behaviour for Cavity Expansion Mechanism 

The non-linear plastic and perfectly plastic work can then be integrated over the appropriate 

regions within the failure mechanism, added to the work outside the bounding radius and then 

equated to the footing work. The relationship between footing stress and displacement for 

non-linear soil is hence: 

 














∂

∂
+

∂

∂
+

∂

∂
= ∫∫

−

−−

plastic

p

linearnon

lnlnb

f

f dV
W

dV
WW

r δδδπ
σ ,

2

1
       (17) 

Similar to the linear-elastic approach, the method of solving Equation 17 was computationally 
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inexpensive because the mechanism was assumed not to change with settlement. The regions 

of non-linear plastic and perfectly plastic behaviour were not explicitly calculated, but the 

value of shear strain was simply compared to the computed value at full plasticity 

( 22 == M
b

f γγ ) to determine the state of a given soil region.  

 

PRANDTL MECHANISM 

Prandtl (1921) developed a mechanism for bearing failure of a strip load on the surface of a 

perfectly plastic material which consisted of active and passive wedge zones and a shear fan. 

Based on upper and lower bound plasticity analyses using this mechanism, he demonstrated 

that the bearing capacity factor for a strip foundation on a rigid perfectly plastic soil was 

Nc = 2+π = 5.14. Osman and Bolton (2005) developed a displacement field for a smooth 

circular footing within the boundaries of this mechanism as part of the MSD process. Figure 5 

shows this displacement field. 

 

HILL MECHANISM 

Hill (1949) extended the analysis of Prandtl and in doing so developed a different mechanism 

for a flat punch. Levin (1955) developed a displacement field within the Hill mechanism in an 

upper-bound investigation of the ultimate indentation pressure of smooth circular punches. 

This deformation field is also shown in Figure 5.  

 

It is not possible to develop a mechanism for a rough footing within the Hill mechanism, but 

the smooth mechanism of Levin (1955) is used here for the purposes of comparison. 
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ELASTIC MECHANISM 

Klar and Osman (2008) provide expressions for displacements in the lateral direction, u, and 

vertical direction, v, within an elastic mechanism utilising the integration of point loading 

solutions: 

( )
( )∫ ∫

−−++

−
=

π

θξξ
ξθξξ

θξ
π

2

0

2/

0
222/32222

dd
4cos2

cos21D

Drzr

rz
u      (18a) 

( )
( )∫ ∫

−−++

−++
=

π

θξξ
ξθξξ

θξξ
π

2

0

2/

0
222/3222

222

2
dd

4cos2

cos2221D

Drzr

rzr
v      (18b) 

As the elastic displacement field extends to infinity, however, the use of an infinite series for 

a displacement field was computationally expensive. An approximation to the elastic 

deformation field was thus generated by running a linear-elastic finite element analysis of a 

vertically loaded rough rigid punch in ABAQUS, with rigid boundaries at 10 foundation radii 

in the lateral and vertical directions. Upper-bound work calculations could hence be 

calculated using this displacement field within a finite domain. Bell (1991) demonstrated that 

finite element analyses of shallow foundations on elastic soil showed around a 10% greater 

stiffness with boundaries at 10 radii compared to those with boundaries at 100 radii. The 

calculations described here may thus underestimate the foundation displacements for any 

given load by a similar amount. 

 

Load-Settlement Calculations 

The non-linear plastic and perfectly plastic work were integrated over the appropriate regions 

for Prandtl, Hill and elastic mechanisms and equated to the work done by the moving footing. 

The relationship between footing stress and displacement for non-linear soil is hence: 

 














∂

∂
+

∂

∂
= ∫∫

−

−

plastic

p

linearnon

ln

f

f dV
W

dV
W

r δδπ
σ

2

1
         (19) 
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Again, the regions of non-linear plastic and perfectly plastic behaviour were not explicitly 

calculated, but the value of shear strain was simply compared to the computed value at full 

plasticity to determine the state of a given soil region.  

 

 

RESULTS 

A mesh size of 0.2% D was adopted for the analysis of each mechanism. As discussed in 

McMahon et al. (2013a), the use of a finer mesh produced negligible changes and, therefore, 

did not justify the significant increase in computation time. A hemisphere of radius 2D was 

used for the cavity-expansion mechanism. 

 

A parametric analysis was carried out using the cavity expansion mechanism in order to 

investigate the effect of the soil parameters b and γM=2 on the predicted load-settlement 

response of the shallow foundation. 

 

Effect of b 

Vardanega and Bolton (2011a) suggest that b has an average value of 0.6 and a standard 

deviation of 0.15. For b values of 0.45, 0.6 and 0.75, the load-settlement curve for 

γM=2 = 0.5 % is given in Figure 6(a) and that for γM=2 = 1% in Figure 6(b). The effect of a 

change in b value from 0.45 to 0.6 can be seen to be greater than that for a change from 0.6 to 

0.75. Vardanega and Bolton (2011a) found from their database that the extreme values of b 

were 0.3 to 1.2. It is argued that b should not be greater than 1 as this corresponds to a 

stress-strain curve with an increasing rate of strain-hardening up to its ultimate plastic 
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strength. Only two tests appear to have b values greater than 1 which, from examination of the 

source data, could well have been affected by errors in digitisation of the original data. By 

definition, 68% of data lies within one standard deviation of the mean, and it is shown in 

Figure 6 that if the average value is adopted then no significant error should occur for the 

majority of soils. Vardanega and Bolton (2011a) investigated the dependence of b on other 

parameters and found it to be most likely a function of the soil structure, fabric, presence of 

fissures and the general sample condition. Of course, with any real soil a laboratory test will 

provide a value of b and this is the value that should be used in any analysis. For 

demonstrative purposes the average value of b = 0.6 is adopted where necessary. 

 

Effect of γM=2 

Using a value of b = 0.6 allows load-settlement curves for soils with different values of γM=2 

to be determined. The result is shown for 4 different soils in Figure 7. The particular values of 

γM=2 were chosen based on results published for kaolin clay in Vardanega et al. (2012). With 

specific soil data an empirical expression for the reference strain γM=2 was found as a function 

of the overconsolidation ratio (OCR) of kaolin. This was determined to be: 

680.0
2 )(0040.0 OCRM ==γ               (20) 

The values in Figure 7 correspond to a normally consolidated soil and soils with OCRs of 5, 

10 and 20. It can be seen that the use of a fixed factor of safety for all soils implies very 

different tolerable settlements for foundations on soils with different OCR. For example, the 

use of a factor of safety of 3 implies tolerable settlements of 0.1% of a diameter on normally 

consolidated soil, but 0.7% of a diameter on soil with an OCR of 20. While the use of a factor 

of safety does limit settlements and maintain serviceability, the use of an arbitrary value for 
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all soils may be overly conservative for low OCR soils. 

 

MECHANISM COMPARISON 

A parametric analysis was performed for a number of values of γM=2 for b values of 0.45, 0.6 

and 0.75. It was found that for each value of b a single design line could be recommended 

when the normalised footing pressure σf / cu was plotted against )/( 2=MDγδ  on log-log axes. 

Figures 8(a), (b) and (c) show the strain-hardening stress-displacement results for all four 

displacement mechanisms – cavity expansion, Prandtl, Hill and linear elasticity – for b values 

of 0.45, 0.6 and 0.75 respectively, together with the classical plastic solution of Eason and 

Shield (1960). The changes in b value are not very significant for the cavity expansion, 

Prandtl and Hill mechanisms. The elastic mechanism, however, shows a significant change 

across the three values of b, with a factor of 2 difference in the settlement. 

 

Implications for settlement prediction 

McMahon et al. (2013b) performed a similar comparison for a linear-elastic perfectly plastic 

material and demonstrated that the elastic displacement mechanism was optimal in the small 

strain range, followed by the cavity expansion mechanism up to approximately the classical 

value of bearing capacity, beyond which the Prandtl mechanisms was optimal. Taking the 

particular value of b = 0.6, shown in Figure 8(b), the elastic mechanism and cavity expansion 

mechanisms are very similar in the small settlement region up to 4.0)/( 2 ≈=MDγδ ; from this 

value up to 5)/( 2 ≈=M
Dγδ , the cavity expansion mechanism provides the lowest upper-bound 

solution, beyond which the classical bearing capacity value 6/ ≈uf cσ  is then most 

appropriate. The Prandtl mechanism is shown to reach an ultimate value of Nc = 6.11. The 
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Hill mechanism is slightly higher, obtaining a value of Nc = 6.16. Although these mechanisms 

correspond to smooth footings, the results are similar to the value found by Eason and Shield 

(1960) for a rough circular foundation.  

 

Each of the mechanisms provided a plot of normalised bearing pressure versus normalised 

settlement that began as straight lines on a log-log plot, echoing the power law which was 

used as the soil constitutive model. For the values of b that were investigated, the optimal 

(lowest) of these mechanistic upper-bound calculations was provided either by the cavity 

expansion mechanism or the elastic mechanism, except that the cavity expansion mechanism 

always gave the most reasonable asymptotic approach to failure.  

 

For decision-making purposes, the correct approach is simply to select the interior envelope 

created by the various mechanistic trials. Figure 9 displays these envelopes for the three 

selected values of power exponent b. Two aspects of these envelopes are significant. First, 

they are effectively straight for small displacements, and their slopes are identical to b, which 

should have been considered mathematically inevitable. Secondly, the three linear 

approximations, also shown in Figure 9, effectively converge on the point 2)/( 2 ==M
Dγδ , 

6/ =
uf

cσ . For small to moderate strength mobilisations, 4/ ≤
uf

cσ , the deviation in 

calculated settlement between the linearized and calculated envelopes amounts to less than 

20%. Few shallow foundations will be designed with safety factor F ≈ 5.1/6 <
fu

c σ , so 

settlements in service can now be estimated from the linear approximations as follows. 

 







−=−

=2

log2loglog6log
Mu

f

D
b

c γ
δσ
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b

u

f

M cD

1

2 62 







≈

=

σ

γ
δ

 

 b

M

FD /1
22 =≈

γδ
  for 1.5 < F < 5            (21) 

recalling that Vardanega & Bolton (2011a) placed limits 1.25 < F < 5 on the reliable use of 

the power law model itself.  

 

Equation 21 can be shown to emulate the form of the original MSD solution of Osman & 

Bolton (2005) if the power law is used for the soil stress-strain relation. They postulated that 

the average soil strength mobilised immediately beneath the foundation could be taken as 

σf /Nc ≈ σf /6, and they estimated the average shear strain γ within the same local region, lying 

within the boundaries of a plane strain Prandtl bearing capacity solution, as 1.35 δ /D. They 

proposed to link these estimates through the stress-strain relation of the soil. So using 

equation 2, we find: 

 
FDc

b

Mu

f 135.1
5.0

2

=







=

=γ
δσ

 

 b

M

b

FD /1
2

/1

35.1

2 =≈
γδ

               (22) 

Osman & Bolton (2005) showed, for a soil profile modelling London clay, that equation 22 

could accurately fit a non-linear finite element simulation of the loading of a circular 

foundation based on the soil properties at a relative depth of 0.3D. A stress-strain function 

was fitted to the data of high-quality samples of London clay. A later interpretation of a larger 

database showed that such data fitted a power law with b = 0.58: Vardanega & Bolton 

(2011b). Substituting into equation 22 gives: 
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 b

M

FD /1
245.2 =≈

γδ
               (23) 

Although this is 22% greater than the estimate following the current work, in equation 21, it 

may be noted that an exact match between equation 21 and the FE analysis of Osman & 

Bolton (2005) could still be obtained if the representative depth of a soil sample were simply 

shifted slightly to 0.35D.  

 

It must not be forgotten, of course, that the calculation of settlement following equation 21 

utilises the value of safety factor F, and therefore depends on the selection of a representative 

value of strength qu in the von Mises' equation 3, from which the shear strength cu is derived 

here according to equation 4. An initial estimate might be made, following the discussion of 

anisotropy in Osman & Bolton (2005), by using the average of the triaxial strengths in 

compression and extension on samples taken from the representative depth. However, a more 

rigorous analysis would clearly have to involve FE analysis with an anisotropic failure 

criterion, and an initial earth pressure coefficient K0 based on site measurements. 

 

IMPLICATIONS FOR MSD METHODOLOGY 

The semi-intuitive approach of Osman & Bolton (2005) used a kinematically acceptable 

displacement field based on the Prandtl mechanism to provide reasonable solutions for the 

settlement of a shallow circular foundation on clay by linking mobilised stresses and strains 

immediately beneath the foundation. However, the current work confirms the finding of Klar 

& Osman (2008) that a more rigorous application of energy principles shows that a shallow, 

local mechanism, either following Hill or Prandtl, does not offer the optimum (lowest) upper 

bound load-displacement relation. Instead, either the new cavity expansion mechanism 
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proposed by McMahon et al. (2013a), or a displacement field based on linear elastic solutions, 

provides a better (greater) estimate of non-linear displacements when solved using 

conservation of energy. When a more exhaustive envelope to the normalised 

load-displacement curve was obtained, it was demonstrated in equation 21 that a functionally 

similar result to Osman & Bolton (2005) was obtained for moderate strength mobilisations, 

even though the latter had invoked a less critical mechanism in their derivation. Equation 21 

offers designers a very simple way to estimate settlements on undrained clay with typical 

non-linear behaviour, based on fitting a power curve to triaxial test data from a representative 

sample in order to estimate parameters b and γM=2. 

 

In principle, either MSD or FE analysis could be used to extend equation 21 by introducing 

different K0 values and various rates of strength increasing with depth, for example. It should 

be expected, following the foregoing analysis, that any corrections would be in the form of 

alterations to the factor 2 derived in equation 21, so long as the stress-strain relation of the 

clay continues to be well-modelled by a power curve.  

 

CONCLUSIONS 

The energy method for a linear-elastic perfectly-plastic soil employing the von Mises’ yield 

criterion with associated flow, as developed by McMahon et al. (2013a), was extended to 

consider the behaviour of non-linear plastic soil. Expressions for the non-linear plastic work 

done in deformation were developed. This non-linear approach was used with the ellipsoidal 

cavity-expansion mechanism developed by McMahon et al. (2013a), the classical Prandtl and 

Hill mechanisms, and an elastic mechanism obtained through finite element analysis, to 
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calculate load-settlement plots for shallow foundations for each of these deformation 

mechanisms. 

 

The power curve representation of the stress-strain relationship of clays was adopted, 

following Vardanega & Bolton (2011a), with exponent b and mobilization strain γM=2. The 

influence of b was investigated and it was shown that only small differences arise in the 

non-linear settlement solutions obtained from cavity expansion, Hill and Prandtl mechanisms 

when using b values in the common range 0.6 ± 0.15. Laboratory testing of site-specific soil 

would, of course, provide the most appropriate value for use in analysis. 

 

A parametric analysis provided a single design line when the normalised footing pressure 

σf / cu was plotted against normalized settlement )/( 2=MDγδ . For the typical value of b = 0.6 

the cavity-expansion mechanism provides a better upper-bound solution for footing settlement 

than the Prandtl & Hill mechanisms up to 6/ ≈uf cσ , close to the classical value of bearing 

capacity for a rough foundation. Beyond this value, the Prandtl mechanism is more 

appropriate. Since the power curve expression of Vardanega & Bolton (2011a) was 

specifically fitted to 0.2 < τ/cu < 0.8, it must follow that the non-linear settlement curves 

derived here should not be expected to apply accurately outside the bounds 1.2 < σf /cu < 4.8. 

Furthermore, a single power-law expression was derived, equation 21, by which the 

settlement of a shallow foundation could conveniently be estimated within 20% bounds for 

normalized bearing stresses in the range 1.2 < σf /cu < 4. 
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