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DEFORMATION BEHAVIOUR OF BITUMEN

AND BITUMINOUS MIXES

E. Alexander Ossa

Summary

The main goal of this dissertation is to develop simple and accurate models for the

transient monotonic and cyclic deformation behaviour of bitumen and asphalt mixes.

The first part of this dissertation is concerned with an experimental and theoretical

investigation of the deformation behaviour of bitumen. The second part is concerned

with the deformation of bituminous mixes.

A brief description of the main literature on composition, structure and mechanical

behaviour of pure and polymer-modified bitumens is presented in chapter 2.

An extensive experimental study comprising of monotonic, continuous cyclic and

pulse loading tensile experiments for two pure and two polymer-modified bitumens

is detailed in chapter 3. Based on these experimental findings a simple constitutive

phenomenological model including the effects of rate dependent recovery is proposed

for bitumen. Comparisons between experiments and model predictions are presented

with good agreement.

The spherical indentation behaviour of bitumen under monotonic and cyclic load-

ing conditions is studied in chapter 4. A simple extension to the power-law indenta-

tion model of Bower et al. (1993) is proposed for bitumen with good agreement with

experimental results.

Chapter 5 presents a review of the main research on continuum and micro-mechanical

models for the deformation behaviour of bituminous mixes.



An extensive experimental investigation of the monotonic and cyclic compressive

deformation behaviour of bituminous mixes with varying volume fractions of aggre-

gate, for uniaxial and triaxial conditions, is described in chapters 6 and 7, respectively.

An extension to the phenomenological model proposed for bitumen is proposed for

these mixes. The predictions of the model are compared with the experimental results

with good agreement.

In chapter 8, a micro-mechanical constitutive model for the deformation behaviour

of asphalt is assembled using micro-mechanical theories and experimental observa-

tions. The model predictions are compared with uniaxial and triaxial experimental

results, showing reasonably good agreement.

Finally, conclusions and recommendations for future work are presented in chapter 9.
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Notation

The following general physics notation will be used throughout this dissertation,

unless otherwise specified within the text.

G(t) Relaxation Modulus

G∗ Complex relaxation Modulus

J(t) Creep compliance

J∗ Complex compliance

t Time

Q Activation energy

R Universal gas constant

T Temperature

Tg Glass transition temperature

E Young’s modulus

ν Poisson’s ratio

µ Shear modulus

k Bulk modulus

c Volume fraction of rigid inclusions

v Volume fraction of air voids

f Frequency

η Stress ratio

ǫij Microscopic strain tensor

ǫ̇ij Microscopic strain rate tensor

ǫe Microscopic Von mises effective strain



Notation xxi

Eij Macroscopic strain tensor

Ėe Macroscopic Von mises equivalent strain rate tensor

H Volumetric strain

σij Microscopic stress tensor

σ
′

ij Deviatoric stress

σe Microscopic Von mises effective stress

Σij Macroscopic stress tensor

Σe Macroscopic Von mises effective stress

Σm Mean or hydrostatic stress

δij Kronecker delta



Chapter 1

Introduction

Pavements are intended to provide a durable and smooth running surface with ade-

quate skid resistance in an economic way, throughout their design life (Deshpande,

1997). To fulfill these requirements the sub-grade is protected from traffic and envi-

ronmental effects by ensuring that the surface material does not suffer unacceptable

deterioration. There are several ways in which a flexible (asphalt) pavement can

fail. The most common are fatigue cracking, permanent deformation (rutting), re-

duced skid resistance, low temperature cracking and reflection cracking of composite

constructions (Cebon, 1993).

During the last decade, several projects have been completed in the Cambridge

University Engineering Department (CUED) as part of an overall effort to understand

the rutting and cracking of flexible pavements.

The development of a reliable and easy-to-implement model for predicting rut-

ting during road design stages requires an understanding of the influence of the mix

components and their interactions. Therefore, the approach is to try to predict the

deformation properties of asphalt theoretically from the characteristics of it’s con-

stituents. These deformation models can then be used in an analytical pavement

1
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rutting model implemented in Finite Elements codes.

Cheung (1995) performed monotonic tests on pure bitumen over a wide range

of loading and temperature conditions and developed steady-state constitutive laws,

summarised using Deformation Mechanism maps. He also studied experimentally and

theoretically the thin film behaviour of pure bitumen with good results.

Deshpande (1997) performed monotonic tests on idealised bituminous mixes over

a wide range of loading conditions, stress ratios and temperatures. He developed a

steady-state model for mixes using the constitutive laws for pure bitumen developed

by Cheung, along with theories of composite mechanics. Deshpande’s model showed

good agreement with experimental results for uniaxial and triaxial stress states.

As a first step towards understanding asphalt cracking, Harvey (2000) and Genin

and Cebon (2000) studied experimentally and theoretically the crack opening behav-

iour of bitumen films for various loading and temperature conditions.

Following-on from the work of Cheung and Deshpande, the logical next step is to

develop a model for the transient monotonic and cyclic behaviour of bitumen and

asphalt mixes. This is the topic of the work described in this dissertation. Such

models are essential for understanding the permanent deformation of asphalt road

surfaces.

A review of relevant literature concerning the deformation behaviour of bitumen

is presented in chapter 2.

An extensive experimental study of the uniaxial tensile monotonic and cyclic be-

haviour of 2 pure and 2 polymer-modified bitumens under a wide range of loading

and temperature conditions is described in chapter 3. A simple phenomenological

constitutive model for bitumen is proposed based on these observations.

The constitutive model for bitumen is validated under spherical indentation condi-
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tions in chapter 4. An extension to the indentation model for creeping solids developed

by Bower et al. (1993) is proposed. An extensive set of monotonic and cyclic indenta-

tion tests are detailed and the results compared with the predictions of the extended

Bower et al. model.

A review of previous research on continuum and micro-mechanical models for bi-

tuminous mixes is given in chapter 5.

An extensive uniaxial and triaxial experimental investigation of the monotonic and

cyclic compressive deformation behaviour of bituminous mixes with various volume

fractions of aggregate is described in chapters 6 and 7, respectively. An extension to

the phenomenological model proposed for bitumen is also proposed for these mixes.

The predictions of the model are compared with the experimental results.

Using the constitutive law developed in chapter 3 for bitumen, and the steady-

state constitutive law for asphalt developed by Deshpande (1997), a micro-mechanical

model for asphalt is assembled in chapter 8. This model uses the properties of bitumen

and aggregate to predict the macroscopic behaviour of the mix. Comparisons between

experimental results from chapters 6 and 7 and model predictions are provided.

Finally, conclusions and recommendations for future work are given in chapter 9.



Chapter 2

Review of previous research

on bitumen

2.1 Introduction

A brief description of the main literature on composition, structure and mechani-

cal behaviour of pure and polymer-modified bitumens is presented in this chapter.

Detailed reviews can be found elsewhere (SHRP-A-631, 1993; Cheung, 1995; Har-

vey, 2000).

2.2 Understanding of bitumen as an

engineering material

Natural bitumen was used as an adhesive and waterproofing material as early as

3800 B.C. (Whiteoak, 1990). The use of bitumen in pavement construction started

in the early nineteenth century (Abraham, 1960; Cebon, 1993). It was not, how-

ever, until the 1920’s when systematic research was performed by oil companies to

4
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understand bitumen as an engineering material. The first attempt to understand

the behaviour of bitumen was the source of the colloidal model developed by Nel-

lensteyn (Nellensteyn, 1924; Nellensteyn, 1927) which was widely accepted by 1950.

At the same time, mechanical tests were conducted on bitumen by Lee and Warren

(1940), Lethersich (1942), Saal and coworkers (Saal and Labout, 1940; Saal, 1950)

and Traxler and coworkers (Traxler and Coombs, 1936; Traxler et al., 1944; Traxler,

1947; Romberg and Traxler, 1947) to experimentally corroborate the colloidal model.

A few years later, Van der Poel (van der Poel, 1954a; van der Poel, 1954b; Van der

Poel, 1955) succeeded in correlating the stiffness1 of bitumen with two experimental

parameters, namely the penetration2 and the ring and ball softening point3, obtained

by routine tests for bitumen. Van der Poel summarised the mechanical behaviour as

a function of temperature and loading time in the well known Van der Poel nomo-

graph (van der Poel, 1954b). After 1960 bitumen research was increased due to the

availability of a wide range of experimental tools to study composition (Differential

scanning Calorimetry, Fourier Transform Infrared Spectroscopy, High pressure gel

permeation chromatography, etc) and mechanical behaviour (shear viscometry for

quasi-static and dynamic tests). Due to the improvement in testing facilities, a num-

ber of theories originating from materials science and soil mechanics were applied to

model experimental data for bitumen. Some of those theories were developed from

constitutive relations for other materials which do not have the amorphous nature of

bitumen.

1The stiffness for a visco-elastic material St, is defined as the ratio between the applied stress

and the resulting strain at loading time t (Whiteoak, 1990).
2The penetration is the distance measured in decimeters travelled into a bitumen sample by a

standard needle under a load of 100g in a time of 5s (BS2000-49, 1983).
3the ring and ball softening point is the temperature at which a bitumen disc contained in a brass

ring under the loading of a steel ball will touch a base plate 25 mm below the ring when the sample

temperature is raised at 5oC per minute (BS2000-58, 1983).
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2.3 Composition of pure bitumen

Bitumen is a complex polymeric system consisting of asphaltenes and maltenes. Its

properties are dependent on:

1. The properties of the asphaltenes4, including the quantities, sizes and shapes, as

well as chemical properties such as composition, presence of functional groups

or heterocompounds and reactivity.

2. The chemical nature of the maltenes5. These include a collection of character-

istics which includes the peptizizing power of the resins (Brule et al., 1986).

3. The prominent functional groups present in the bitumen.

4. The nature of the aromatics and saturates, which in turn determine the glass

transition.

5. The crystallisation behaviour of the system.

Quantification of the effects of individual components and the collective effects of

combinations of components is not well developed.

2.4 Polymer-modified bitumen

Since the 1980’s bitumens have commonly been modified by addition of polymers, to

decrease the susceptibility of pavements to high temperature rutting and low temper-

ature cracking.

A variety of polymers have been employed to improve the properties of bitumen,

these include low and high density polyethylene (LDPE and HDPE) and elastomers

4The chemical definitions of the components can be found elsewhere, e. g. (Petersen, 1984).
5Resins, aromatics and saturates are collectively called maltenes.
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such as ethylene-propylene-diene (EPDM). Copolymers such as styrene-butadiene-

styrene (SBS) triblock are most commonly used in commercially available polymer

modified bitumens. Various studies have confirmed that bitumens modified with

SBS have superior performance to pure bitumens. For example Qi et al. (1995) and

Martinez-Boza et al. (2001) showed that SBS improves the thermal susceptibility of

bitumen, while experiments by Elseifi et al. (2003) demonstrated that SBS increases

the rutting and fatigue resistance of bitumen.

Chen et al. (2002) attempted to model modified bitumen as a two phase material

and employed Kerner’s theory for a two phase composite to quantify the effects of

composition on the viscosity of polymer modified bitumens. While such model give

some insights into the origins of the enhanced performance, they are unable to capture

the complex viscoelastic behaviour of the polymer modified bitumens under realistic

loading conditions and thus have limited applicability in predictive design.

Despite the effort to predict the behaviour of modified bitumens from the properties

of the base bitumen and the added polymer, the main methods of characterisation de-

veloped for pure bitumens are commonly used to characterise the modified bitumens.

For example, Zeng et al. (2001) extended the models proposed under SHRP-A-369

(1994) to characterise polymer modified bitumens, with the consequent limitations of

these models.

2.5 Physical characterisation

2.5.1 Quasi-static behaviour

Bitumens are visco-elastic materials and their deformation under stress is a function of

temperature, strain and loading time. At high temperatures or long times of loading

they behave as viscous liquids, whereas at low temperatures (below glass transition
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temperature Tg) or short times of loading they behave as elastic (brittle) solids. The

intermediate range of temperature and loading times results in visco-elastic behaviour

(Whiteoak, 1990). Cheung and Cebon (1997a) summarised a wide range of deforma-

tion behaviour of bitumen (see fig. 2.1) using the concept of deformation mechanism

maps developed by Frost and Ashby (1982). The map in fig. 2.1 shows a range of

deformation mechanisms characterised by power-law and linear viscous relationships

at high strain rates and Eyring plasticity at very low strain rates. The temperature

dependence is discussed later.

Several theories for quasi-static deformation behaviour of bitumen can be found

in the literature, some of the more relevant will be briefly discussed in the following

sections. The reader is referred to the works of Ward (1971), Ferry (1980), SHRP-

A-369 (1994), Cheung (1995) and Harvey (2000) for more comprehensive reviews of

this subject.

Time-dependent modulus

A time dependent modulus is a generalised version of the elastic modulus in elastic

solids. When a fixed strain ǫo is applied to a visco-elastic material at time t ≥ 0, the

resulting stress response σ(t) of the material is a function of time, and the relaxation

modulus G(t) can be defined as:

G(t) =
σ(t)

ǫo
. (2.1)

In a similar way, in a creep test in which a stress σo is applied at time t ≥ 0, the

resulting strain response ǫ(t) of the material is a function of time, and the creep

compliance J(t) can be defined as:

J(t) =
σo

ǫ(t)
. (2.2)
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As an extension of equation 2.1, hereditary integrals can be used to take into account

the contributions of the loading history on the total stress of the material, according

to:

σ(t) =

t
∫

−∞

G(t− ξ)
dǫ(ξ)

dξ
dξ, (2.3)

where ξ is a dummy integration variable which is used to differentiate the current time

t from all previous times ξ. Some models of viscoelastic behaviour are based on elastic

constitutive equations in which the elastic modulus is replaced by the relaxation

modulus (Williams, 1972). Other similar models use a time averaged modulus defined

as:

Ḡ =
1

t

t
∫

−∞

G(t− ξ)
dǫ(ξ)

dξ
dξ. (2.4)

This averaged modulus is based in the summation of contributions of each value of

the relaxation modulus over the loading history.

Correspondence principles

The Boltzmann (1876) correspondence principle is the first mathematical statement

of linear viscoelastic behaviour. Boltzmann proposed that the creep in a specimen is

a function of the entire loading history, and that each loading step makes an indepen-

dent contribution to the final deformation, and therefore, the final deformation can

be obtained by addition of each individual contribution.

Schapery (1984), developed a nonlinear viscoelastic correspondence principle, in

which constitutive equations for nonlinear viscoelastic materials, in which stress-

independent relaxation or creep functions in single integrals serve to characterise

the hereditary behaviour, can be written in a form that is identical to those for the

nonlinear elastic case, but the strains and stresses are not necessarily physical quan-

tities in the viscoelastic body. Instead, they are pseudo strains and pseudo stresses
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which are in the form of convolution or hereditary integrals as:

ǫRi =
1

ER

t
∫

0

G(t− ξ)
∂ǫi
∂ξ
dξ (2.5)

σR
ij = ER

t
∫

0

J(t− ξ)
∂σij

∂ξ
dξ, (2.6)

where σij and ǫi are physical stresses and physical strains, σR
ij and ǫRi are pseudo

stresses and pseudo strains; G(t) and J(t) are relaxation modulus and creep compli-

ance; and ER is the reference modulus, which is an arbitrary constant. Thus, for a

given stress history, pseudo strains can be calculated by elastic laws, and viscoelastic

strains can be deduced using equation 2.5.

Molecular theory

The molecules inside a polymer structure are in constant oscillation about a potential

energy barrier. Their frequency of oscillation fm is given by:

fm = fm0exp

(

−∆Q

RT

)

, (2.7)

where ∆Q is the activation energy, R is the universal gas constant, and T is the

absolute temperature. fm0 is a reference frequency value. When a stress σ is applied,

the energy barrier is affected, generating a shift βσ in the position of the molecules.

If this shift is large enough, it becomes improbable that the molecules will return to

their original positions, and so the deformation is permanent. Assuming viscous flow

to occur in that way, the strain rate can be deduced to be:

ǫ̇ = ǫ̇oexp

(

−∆Q

RT

)

sinh

(

βσ

RT

)

, (2.8)

where β is an activation volume for the molecular event. Equation 2.8 defines an

activated non-Newtonian viscosity, and is better known as the Eyring viscous model.
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Cheung (1995) found that this model can be applied to pure bitumen below the glass

transition temperature Tg (see figure 2.1).

Mechanical analogs

Mechanical analog models based on springs6 and dashpots7 in series (Maxwell model),

in parallel (Kelvin or Voigt model) or combinations of both, are commonly used to

represent the viscoelastic behaviour in conjunction with the Boltzmann correspon-

dence principle (Ward, 1971).

In the case of the Maxwell model (figure 2.2a), the quantity τ = η/E is known as

the relaxation time constant and can be regarded as a measure of the time required for

stress relaxation. For the Kelvin model (fig 2.2b), the same quantity is known as the

retardation time constant and is a measure of the time required for the extension of

the spring to return to its equilibrium length when the load is removed, while retarded

by the dashpot. A group of n Maxwell elements in parallel can be used to represent

a discrete spectrum of relaxation times, resulting with the relaxation modulus:

G(t) =

n
∑

i=1

Ei exp

(

− t

τi

)

. (2.9)

In the case of n Voigt elements in series, a discrete spectrum of retardation times can

be found. The creep compliance is then given by:

J(t) =
n
∑

i=1

1

Ei

{

1 − exp

(

− t

τi

)}

. (2.10)

In the general case, where continuous spectra of relaxation times and retardation

6Elastic elements which obey Hooke’s Law.
7Viscous elements which obey Newton’s Law of viscosity.
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times are employed, G(t) and J(t) are given by:

G(t) =

∞
∫

0

H(τ) exp

(

− t

τ

)

dτ (2.11)

J(t) =

∞
∫

0

L(τ)

{

1 − exp

(

− t

τ

)}

dτ, (2.12)

where H(τ) and L(τ) are called relaxation spectrum and retardation spectrum respec-

tively.

Some of these models, or combinations of them, have been used by researchers to

model the viscoelastic behaviour of bitumen and other materials (e. g. van der Poel

(1954a), Bland and Lee (1956), Jeng and Perng (1991), Toth (1996), Francken (1998),

Dietrich and Lekszycki (1998) and Harvey (2000)), yielding reasonable agreement with

experimental results for specific conditions, at low strain and stress levels.

Steady state behaviour

At small strains, linear behaviour is usually observed in the properties of pure bitu-

men, nonetheless non-linear behaviour is observed at large strains. Researchers in-

cluding Saal and Labout (1940), Lethersich (1942), Saal (1950) and Brown and Sparks

(1958), observed linear behaviour for low stress levels (2 kPa or below), which they

modelled by the theories of linear viscoelasticity. However, some researchers stated

that non linearities become more noticeable at higher stress levels (Lethersich, 1942).

This observation was confirmed by experimental studies at higher stresses in the range

100 kPa to 1 MPa, (Gaskins et al., 1960; Sisko, 1965; Welborn et al., 1966; Moaven-

zadeh and carnaghi, 1966; Khong et al., 1978) where bitumen was found to behave

as a power law material.

One of the approaches used to model power law materials is to use linear viscoelas-

tic models and employ an extrapolated zero-strain-rate viscosity as the steady-state
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equivalence of a linear material. The deviation from linear behaviour is then known

as the shear susceptibility which is the slope of either the stress strain-rate or the

viscosity strain-rate relationship.

Another approach is to model the transition from linear behaviour to power law be-

haviour empirically (Sisko, 1965; Welborn et al., 1966; Garrick, 1992). This approach

fits experimental data well, but no theoretical basis for its use has been presented.

Cross (1965), published a pseudo-plastic flow equation based on the formation and

rupture of structural linkages. He argued that if a system contains elements which are

capable of assuming some structural formation which is wholly or partially disrupted

by shear, a viscosity-shear rate dependence of the pseudo-plastic flow nature would

be expected. Cross (1965) applied the principles of reaction kinetics to the formation

and rupture of linkages between particles, and assumed the rate of linkage rupture

to be a combination of Brownian movement and shearing action, given by ko + k1γ̇
m,

where ko, k1 and m are all constants. He was able to show that at equilibrium:

η̄ = η̄∞ +
η̄o − η̄∞
1 + αγ̇m

, (2.13)

where η̄∞ is the shear viscosity when γ̇ → ∞, η̄o is the shear viscosity when γ̇ → 0

and α = k1/ko.

Cheung (1995) and Cheung and Cebon (1997a), combined the Cross model with an

empirical equation proposed by Sisko (1965) to describe the steady state behaviour

of pure bitumen over a wide range of stress levels at temperatures above Tg as:

σ

σo
=

ǫ̇

ǫ̇p







1

1 +
(

ǫ̇
ǫ̇p

)m







, (2.14)

where σ is the applied stress, ǫ̇ is the strain rate, σo is the failure strength of structural

linkages which can be regarded as the “yield stress” or linear limit of the material,

m and ǫ̇p are material parameters for bitumen. Equation 2.14, which Cheung and
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Cebon (1997a) named the Modified Cross Model (MCM) reduces to a linear viscous

law for low values of ǫ̇ and a nonlinear viscous law with a power law exponent of

n = 1/(1 −m) for high values of ǫ̇. They found that the MCM fitted their experi-

mental measurements on the steady-state behaviour of pure bitumen very well and it

also fitted a considerable body of other experimental data found in the literature on

bitumen.

Cheung and Cebon (1997a) summarised the steady-state deformation behaviour

of bitumen over a wide range of temperatures on deformation mechanism maps as

shown in figure 2.1. They found that the temperature dependence of the material

can be divided in three main regions, governed by different deformation models: i)

below Tg (the glass transition temperature); ii) immediately above Tg; and iii) well

above Tg. Tg for bitumen has been reported to lie in the range −40oC < Tg < 0oC

(Cheung and Cebon, 1997a).

For temperatures well below the glass transition temperature (T ≪ Tg) the Eyring

Plasticity Model (EPM) can be used to model the transient behaviour as a function

of time t:

ǫ̇(t)

ǫ̇e
= 2 exp

(

− Qe

RT

)

sinh

(

τνs − Pνp

RT

)(

t

to

)me

, (2.15)

where ǫ̇ is the strain rate, τ is the shear stress, P is the pressure, ǫ̇e is a constant, Qe

is the activation energy for the flow process, R is the universal gas constant, νs is the

shear activation volume, νp is the pressure activation volume, to is a reference time,

and me is a time hardening constant.

For temperatures immediately above Tg (T > Tg) the material follows Arrhenius

type “diffusion-controlled” behaviour, and ǫ̇p in equation 2.14 is written as:

ǫ̇p = ǫ̇pc e
−k( 1

T
−

1
273), (2.16)

where k is the Arrhenius constant which is the ratio of the thermal activation energy
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to the universal gas constant, and ǫ̇pc is the reference strain rate at T = 0◦C or 273 K.

For temperatures well above Tg (T ≫ Tg) the behaviour is controlled by “free

volume”. ǫ̇p is then given by:

ǫ̇p = ǫ̇pc exp

(

2.303c1
s(T − Ts)

c2s + (T − Ts)

)

, (2.17)

where Ts is a reference temperature and c1
s, c2

s are “universal” constants. Equation

2.17 is known as the WLF equation and is often used to characterise the temperature

dependence of a wide range of polymers.

Transient behaviour

Various models can be found in the literature to describe the transient behaviour of

pure bitumen. Almost all of them were developed using linear viscoelastic theory

based on springs and dashpots, as described in previous sections. Another method

employed to estimate the transient creep strain of bitumen is using the Van der

Poel Nomograph (van der Poel, 1954a). A more elaborate method was reported by

the Strategic Highway Research Program (SHRP-A-369, 1994) in which creep data

in bending for short duration of tests (< 240s) was correlated with corresponding

relaxation data.

Cheung (1995) adopted a transient creep model developed by Webster et al. (1969)

and Amin et al. (1970) to fit the transient creep behaviour of bitumen at stresses above

the linear regime and temperatures above Tg. It is given by:

ǫ̇c = ǫ̇ss[1 + Λ1ǫT1 exp(Λ1ǫ̇sst) + Λ2ǫT2 exp(Λ2ǫ̇sst)], (2.18)

where ǫ̇ss is the steady state creep rate, Λi are dimensionless constants, ǫT is the

total transient strain which is dependent on the stress and temperature and ǫ̇c is the

creep strain rate. Equation 2.18 is known as the Transient Creep Model (TCM) with
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two time constants. To obtain the TCM parameters, eq. (2.18) must be fitted to

experimental results.

Researchers like Lin and Wang (1998), Geist (1998), Poh (1998), Fafard et al.

(2001), Houlsby and Puzrin (2002) , Saleeb et al. (2002) and Saleeb et al. (2003)

developed transient models for creeping materials based on curve fitting and thermo-

dynamics approaches. These models have two major drawbacks. First, they require

a large number of experiments to obtain the calibration parameters. Second, the

fitting of experimental results often requires complex mathematical procedures and

specialised software.

2.5.2 Dynamic behaviour

When a linear viscoelastic material is subjected to a sinusoidally varying strain

ǫ = ǭ exp(iωt), the resulting stress response will vary sinusoidally with amplitude

σ̄, and will be out of phase with the strain by a phase angle θ as:

σ = σ̄ exp{i(ωt+ θ)}. (2.19)

The Storage Modulus8, G1
∗ and the Loss Modulus9, G2

∗ are defined as:

G∗ =
σ

ǫ
=
σ̄

ǭ
exp(iθ) = G∗

1 + iG∗

2, (2.20)

where:

G∗

1 =
σ̄

ǭ
cos θ (2.21)

G∗

2 =
σ̄

ǭ
sin θ. (2.22)

8The Storage Modulus is the real part of the modulus, associated with the energy stored in the

specimen due to the applied strain (Ward, 1971).
9The Loss Modulus is the imaginary part of the modulus associated with the dissipation of energy

(Ward, 1971).
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The phase angle θ is given by:

G∗

2

G∗

1

= tan θ. (2.23)

The magnitude of the complex relaxation modulus is given by:

|G∗| =
∣

∣

∣

σ̄

ǭ

∣

∣

∣
=

√

G∗

1
2 +G∗

2
2. (2.24)

If the continuous relaxation spectrum H(τ) is known (eq. 2.12), the storage modulus

and the loss modulus can be obtained as (Ferry, 1980):

G1
∗(ω) =

∞
∫

0

H(τ)
ω2τ 2

1 + ω2τ 2
dτ (2.25)

G2
∗(ω) =

∞
∫

0

H(τ)
ωτ

1 + ω2τ 2
dτ. (2.26)

Similarly, data from dynamic tests can be expressed in terms of a complex compliance

J∗ = J∗

1 (ω) − iJ∗

2 (ω).

Dynamic shear viscometry has been extensively used since the 1960’s to study the

dynamic behaviour of bitumen. Almost all the researchers10 employed the theories of

linear viscoelasticity to analyse the results of these tests, which were usually performed

over a range of frequencies and temperatures under strain control. Linear behaviour

was usually found if the maximum strain applied was smaller than a limiting value.

This value is 0.1 according to Jongepier and Kuilman (1969), and 0.04 according to

Dickinson and Witt (1974). SHRP-A-369 (1994) proposed that this limiting value

is dependent on the magnitude of the complex modulus, ranging from 0.01 at high

modulus (> 107 Pa) to values larger than 0.1 at low modulus (> 105 Pa). Using

data at various frequencies and temperatures, two characteristic curves can be con-

structed, one describing the dependence of the modulus on frequency and the other

10An extensive literature review on this topic can be found in Cheung (1995)
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expressing the time-temperature “shift factor” as a function of temperature. Some

researchers including Jongepier and Kuilman (1969), Dobson (1969), Dobson (1972),

Dickinson and Witt (1974), Gilbert et al. (1986), Anderson et al. (1991), Christensen

and Anderson (1992) and Marasteanu and Anderson (1999) have attempted to model

these master curves, to correlate the results to those from other tests and to explain

the results in terms of the composition of the material. Some good results have been

reported. The limitation of these approaches is that they are only valid below the

limiting strain value and cannot be used to model behaviour at higher strains.

2.5.3 Indentation behaviour

Indentation tests have been pursued as a cheap and easy method to measure the me-

chanical properties of materials for over a century. Many researchers have attempted

to deduce the uniaxial stress versus strain behaviour of the indented material from

the results of indentation tests. For instance, Tabor (1951) proposed empirical re-

lations to correlate the results of indentation tests on rate independent materials

with uniaxial test results. Later, more rigorous theoretical works were conducted on

creeping solids. Notable among those are the works of Mulhearn and Tabor (1960),

Atkins et al. (1966), Wilkinson and Ashby (1975), Mayo and Nix (1988), Hill et al.

(1989), Sargent and Ashby (1992) and Bower et al. (1993). All those studies were

based on steady-state models of the indentation behaviour. Ogbonna (1994) and

Ogbonna et al. (1995) also studied the transient behaviour of creeping solids in the

time domain, based on the steady state model of Bower et al. (1993). They found

that neglecting the transient primary creep regime is a major source of error in the

interpretation of creep properties from indentation tests.

Early work by van der Poel (1954a) indicated that the “stiffness” of bitumen at

low strains could be correlated with the penetration index (measured with a nee-



Chapter 2. Review of previous research on bitumen 19

dle, see section 2.2) and softening point of the bitumen (Whiteoak, 1990). van der

Poel summarised this behaviour in the well-known van der Poel nomograph (van der

Poel, 1954b). Under the Strategic Highway Research Program (SHRP-A-369, 1994)

indentation tests were conducted on bitumen using an spherical indenter, in order to

extend the test results to the linear viscoelastic models developed under the same pro-

gramme. The results were promising but the researchers did not propose a complete

model of the indentation process.

2.6 Conclusions

1. The colloidal model (developed in the 1950’s) explains the influence of compo-

sition on the mechanical behaviour of bitumen.

2. A bitumen can be characterised by the properties of its two main components,

the asphaltenes and the maltenes.

3. Since the 1980’s bitumens have been commonly modified by addition of poly-

mers to decrease the susceptibility of pavements to high temperature rutting

and low temperature cracking. Despite the efforts to predict the behaviour

of modified bitumens from the properties of the base bitumen and the added

polymer, the main methods of characterisation developed for pure bitumens are

commonly used to characterise the modified bitumens.

4. The quasi-static behaviour of bitumen has been studied by many researchers

using approaches such as the time dependent modulus, non linear correspon-

dence principles, molecular theories and mechanical analogies. Almost all have

concentrated on small strains in which the bitumen behaviour is nearly linear.

A few had studied the behaviour at higher strains where the nonlinearities are
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more noticeable. However, these models are too complex to be used in common

engineering practice.

5. The Modified Cross Model developed by Cheung and Cebon provides a good

representation of the steady state behaviour of bitumen at temperatures above

the glass transition (Tg). For temperatures below Tg the Eyring Plasticity Model

can be used to model bitumen behaviour.

6. Some researchers have attempted to model the transient behaviour of creeping

materials based on curve fitting and thermodynamics principles. They have

achieved good agreement with experimental results in some cases. However,

these models are complex and usually require specialised software to carry the

model fitting with experimental results.

7. The dynamic behaviour of bitumen at small strains, where the behaviour is

nearly linear, is well understood. Nonetheless, the models proposed for the

dynamic behaviour in the non-linear regime are prohibitive in terms of the

complexity and number of tests needed for calibration.

8. No conclusive information could be found about the indentation behaviour of

bitumen for large strains, despite the promising results observed by some re-

searchers for small strains.
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2.7 Figures

Figure 2.1: Deformation-Mechanism Maps for 50 pen bitumen (Cheung and Cebon,

(1997))
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(a) The Maxwell Model (b) The Kelvin or Voigt Model

E

E

η

η

Figure 2.2: Spring and Dashpot mechanical viscoelastic analogous representation.



Chapter 3

Deformation behaviour of bitumen

3.1 Introduction

A large number of experimental investigations have attempted to characterise the

monotonic and cyclic behaviour of bitumen with the aim of improving the understand-

ing of the rutting or permanent deformation behaviour of pavements, as discussed

in chapter 2. However, despite the efforts, these models use (i) Linear viscoelastic

theories which showed good results at low strains but fail at higher strains, or (ii)

Non-linear viscoelastic or visco-plastic theories which are too complex to be used in

day to day engineering design.

In this chapter an extensive experimental study comprising of monotonic, con-

tinuous cyclic and pulse loading tensile experiments for two pure bitumens and two

polymer-modified bitumens is detailed. Based on these experimental findings a vis-

cous model including the effects of rate dependent recovery is proposed. In this model,

the total strain-rate is decomposed into rate dependent permanent and recoverable

components. By contrast to the visco-elastic models discussed in chapter 2, the “vis-

cosity” of the bitumen is assumed to be dependent on strain and thus the relaxation

23
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spectra are not explicitly required.

3.2 Experimental investigation

3.2.1 Materials

Four different bitumens were tested in this study:

1. Two pure bitumens, a 50 penetration grade (pen) and a 100 pen bitumens.

2. Two commercial polymer-modified bitumens, subsequently referred to as Ca-

riphalte TS and Cariphalte DM. These bitumens have been modified using the

styrene-butadiene-styrene triblock copolymer (SBS), Kraton D-1101CS.

The glass transition temperature of these materials are in the range −40◦C < Tg < −15◦C

(see Welborn et al. (1966) and Cheung and Cebon (1997a)). These bitumens are com-

monly used in hot rolled asphalt paving mixtures as well as in coated Macadam paving

mixtures in the U.K. (Whiteoak, 1990). While most of the experimental results are

presented for the 50 pen and Cariphalte TS bitumens, the generality of the model

developed is demonstrated via spot comparisons with tests on the 100 pen bitumen.

Further, the model for the Cariphalte DM bitumen is calibrated by performing a

simple calibration procedure which requires only four monotonic tests, and the pre-

dictions of the model compared with pulse train experiments on this polymer-modified

bitumen.

3.2.2 Specimen preparation

Dumbbell-shaped tensile bitumen specimens were cast in split silicon rubber moulds,

see Cheung and Cebon (1997b) for details. The specimens were designed to have
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a thick griping section and an uniform central gage section of length 80 mm and

diameter 20 mm (see fig. 3.1).

About 110 g of bitumen granules were taken from the freezer and melted at 160◦C

for approximately 2 hours to remove all the air bubbles. The bitumen was then poured

into the pre-heated mould1. Once the mould was filled with bitumen, it was allowed

to cool to room temperature for 3 hours before half of the mould was removed. The

half-mould with the specimen still in place was put into the freezer at −20◦C for 6

hours. The hard specimen was then removed from the half-mould and stored in the

freezer ready to be tested.

3.2.3 Test protocol

Tensile tests on the dumbbell shaped specimens were performed in a hydraulic testing

machine. The load measured with a 2 kN load cell was used to define the nominal

stress in the specimen while the load line displacement was employed to define the

nominal strain. The specimen grips were diametrically split cups whose inner surfaces

were shaped to match the head of the dumbbell specimens. The inner surfaces of

the grips were lubricated with a mixture of soap and glycerine in order to prevent

the specimen from adhering to the grips. The test temperature was controlled by an

environmental chamber with a resolution of ±0.5◦C and the rates of loading employed

in this study were too slow for adiabatic heating effects to be significant. Prior to

testing, all specimens were kept in the environmental chamber for about 2 hours to

allow the specimens to attain the test temperature. Experimental results from tests

at −5◦C, 0◦C, 10◦C and 20◦C are reported here, which are representative of operating

temperatures in the U.K. It is worth mentioning here that a number of spot repeat

1The mould was pre-heated to 90◦C for 15 minutes, to avoid thermal contraction that could

generate bubbles or residual stresses in the final specimen after casting.
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tests confirmed the repeatability of the test results reported here. For the sake of

brevity, these results are not presented here.

Monotonic tests

Constant strain-rate and constant stress creep tests were employed to characterize the

monotonic stress versus strain behaviour of the material. In the constant strain-rate

tests, a specified uniaxial tensile strain-rate ǫ̇ was applied to the specimen and the

resulting nominal tensile stress σ and strain ǫ recorded. In the constant stress creep

tests, a constant nominal tensile stress was applied “instantaneously” to the specimen

and the nominal tensile strain ǫ recorded as a function of time t.

Creep recovery tests

The creep recovery behaviour of pure bitumen was investigated by performing a series

of single load/unload tests as shown in Fig. 3.2a. A stress σ was applied rapidly to

the specimen and then held constant. The material was allowed to creep to a specified

total nominal tensile strain ǫT. At this strain, the loading stress was released and the

tensile strain monitored until the strain rate was zero ǫ̇ ≈ 0. The strain at this point

ǫpl = ǫT − ǫr is the irrecoverable strain, as shown schematically in Fig. 3.2a. Such

tests were repeated for a series of strains ǫT and creep stresses, σ.

Cyclic tests

Continuous cyclic and pulse train tests were performed to characterise the cyclic or

repeated loading behaviour of the bitumen.

Continuous cyclic tests.

In the continuous cyclic tests, the nominal tensile stress σ was varied between σmin
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and σmax as shown schematically in Fig. 3.2b, with

R =
σmin

σmax

, (3.1)

and

σm =
σmin + σmax

2
, (3.2)

defining the load levels and the frequency f of the triangular waveform defining the

loading rate. The nominal tensile strain was measured as a function of time and tests

repeated for a series of values of R, σm and f . Strain controlled cyclic tests were not

performed in this study because the strain controlled cyclic behaviour is not expected

to be important in understanding the “rutting” problem wherein the rachetting of

strain gives rise to the permanent deformation.

Pulse train tests.

Tests comprising intermittent identical tensile stress pulses with a trapezoidal shape

in the time domain, as shown in Fig. 3.2c, were performed in order to simulate a load

history similar to that experienced in a pavement. The aim here was to investigate

the relation between the single load/unload behaviour analysed via the creep and

creep recovery tests and the gradual rachetting of strain due to the application of a

continuous train of discrete stress pulses as shown schematically in Fig. 3.2c.

The constant maximum stress σp in each trapezoidal stress pulse was applied for

a time period ∆p/2 with a loading and unloading rate σ̇ = 4σp/∆p. A series of

tests at each test temperature were performed with varying time period ∆g between

consecutive trapezoidal pulses at a fixed σp.
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3.3 Experimental results for pure bitumen

3.3.1 Monotonic behaviour

Constant strain-rate tests were performed over a wide range of strain-rates and tem-

peratures. Figure 3.3 shows the nominal stress versus nominal strain response of the

50 pen bitumen at 0◦C for four selected values of the applied strain-rate ǫ̇ (similar

results were also obtained at other temperatures). In each test,the stress increases

progressively until a maximum value is reached. This value is defined as the steady-

state stress σss, following the procedure proposed by Ward (1971) and Cheung and

Cebon (1997b). With increasing applied strain-rate, the steady-state stress increases

and at strain-rates ǫ̇ > 0.5 s−1, a brittle fracture mode dominates. This very high

strain-rate regime is not investigated in this study.

Constant stress creep tests were also performed over a range of stresses and tem-

peratures. Figure 3.4 shows the monotonic creep response of the 50 pen bitumen at

0◦C for two selected stress values. The slope of the secondary creep region, in which

the strain varies linearly with time is defined as the steady-state strain-rate ǫ̇ss at

the prescribed stress, in line with the prescription of Ward (1971) and Cheung and

Cebon (1997b).

Figure 3.5 summarises the monotonic steady-state behaviour of the 50 pen bitumen

over a range of stresses, strain-rates and temperatures on a log-log scale with axes of

ǫ̇ss and σss. The steady-state results from the constant stress and constant strain-rate

tests are seen to be complementary, with results of both types of tests overlapping

at intermediate values of σss and ǫ̇ss. This behaviour enables the use of constant

stress tests at low strain-rates, and constant strain-rate tests at the higher stresses

and strain-rates at which creep tests are impractical.

The Modified Cross model (2.14), with the constants listed in Table 3.1 was fitted
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to the steady-state experimental data of the 50 pen bitumen in Fig. 3.5. Similar to the

observations of Cheung and Cebon (1997b), the bitumen exhibits nonlinear viscous

behaviour with ǫ̇ss ∝ σ2.6
ss (m = 0.615) at high stresses and linear behaviour with ǫ̇ss ∝

σss at low stress levels. Further, the temperature dependence (−5◦C≤ T ≤ 20◦C)

of the steady-state behaviour of the bitumen is well characterised by the Arrhenius

relation (2.16). It is worth mentioning here that at temperatures outside this range,

the thermal sensitivity of bitumen is expected to follow other scalings, for example

the WLF relation as discussed by Cheung and Cebon (1997b) (see chapter 2). A

similar series of tests were also performed on the 100 pen bitumen and steady-state

behaviour was again found to be well characterised by the Modified Cross model

with m = 0.60 and the Arrhenius relation capturing the temperature dependence:

the material constants for the 100 pen are also listed in Table 3.1. Outside the

temperature range investigated here, it is expected that the temperature sensitivity

of the pure bitumens is well captured by the models proposed by Cheung and Cebon

(1997b).

The constant strain-rate and creep tests reveal that the steady-state stress and

strain-rate, respectively of the pure bitumen occurs at a strain ǫ ≈ 0.15. Thus, the

steady-state Modified Cross model described above can be viewed as the relation

between stress and strain-rate at a strain level ǫ = 0.15 with ǫ̇pc as given in Table 3.1

being the calibration constant for a strain ǫ = 0.15. Thus, it is expected that the

Cross model can be extended to give the relation between the stress and strain-rate

at any value of strain ǫ by replacing the constant ǫ̇pc with a reference strain-rate ǫ̇oc(ǫ)

that is a function of strain ǫ. Equations (2.14) and (2.16) can then be re-written as:

σ

ǫ̇
=

σo

ǫ̇o(ǫ)

1

1 +
(

ǫ̇
ǫ̇o(ǫ)

)m , (3.3)

where

ǫ̇o(ǫ) = ǫ̇oc(ǫ)e
−k( 1

T
−

1
273 ) , (3.4)
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with the Arrhenius constant k assumed to remain unchanged from that given in

Table 3.1. Note that it has been employed a reference temperature of 273 K (0◦C)

rather than the glass transition temperature Tg. This is because Tg of these bitumens

lies outside the range of temperatures tested here and that the applicability of the

model at that rather low temperature is unclear.

To test this hypothesis, the function ǫ̇oc(ǫ) was extracted from the constant strain-

rate and creep responses of the bitumen at a temperature T as follows. Given the

stress versus strain curve for a constant strain-rate test at an applied strain rate ǫ̇,

Eqn. (3.3) was solved for ǫ̇o(ǫ) with σ given by the experimentally measured value

of stress at the strain ǫ > 0.0052. This procedure was repeated at selected values

of ǫ to get ǫ̇o(ǫ) as a function of ǫ. Similarly, from creep tests, (3.3) was solved at

selected values of ǫ to give ǫ̇o(ǫ), with ǫ̇ at each value of ǫ given by the experimentally

measured value of the strain-rate at that strain ǫ. The calibration function ǫ̇oc(ǫ)

was then obtained from (3.4) with the constant k as given in Table 3.1 and T , the

temperature of the test used to obtain the function ǫ̇o(ǫ).

The calibration curves, ǫ̇oc(ǫ) versus ǫ, obtained from a series of three constant

strain-rate and creep tests on the 50 pen bitumen at 0◦C and 10◦C are shown in

Fig. 3.6: all the curves overlap to within experimental error, demonstrating the va-

lidity of the extension (3.3) to the Modified Cross model. Calibration curves, ǫ̇oc(ǫ)

versus ǫ, obtained for the 100 pen bitumen from two constant strain-rate tests at 0◦C

are also shown in Fig. 3.6. These curves also overlap to within experimental error,

which confirms that the extension to the Modified Cross model holds for the 100 pen

bitumen as well.

2At ǫ = 0, ǫ̇o(0) = ∞ as the stress σ = 0. Thus, the calibration calculation is performed for strain

values ǫ > 0. The Modified Cross model is not expected to be accurate at very small strains when

the rate-independent elastic response of the bitumen is not negligible and thus this approximation

for calibrating the model suffices.
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3.3.2 Creep recovery behaviour

Creep recovery tests on the 50 pen bitumen were performed at −5◦C, 0◦C and 10◦C

and the recovery behaviour investigated for unloading from total creep strains ǫT in

the range 0.02 ≤ ǫT ≤ 0.2, for five levels of the constant creep stress σ. The creep

recovery response at 10◦C of the 50 pen bitumen with σ = 0.32 MPa is shown in

Fig. 3.7a, with strain ǫ plotted as a function of time t, for three selected values of

ǫT = 0.06, 0.12 and 0.22. Similarly, the creep recovery response of the 50 pen bitumen

at 0◦C with σ = 0.2 MPa is shown in Fig. 3.7b for two selected values of ǫT = 0.097

and 0.16. In all cases, the recovered strain ǫr is seen to increase with increasing ǫT.

The results from all the creep recovery tests performed are summarised in Fig. 3.8

where the recovered strain ǫr (defined in Section 3.2.3) is plotted as a function of the

total strain ǫT prior to unloading. The figure reveals that, to within experimental

error, ǫr = ψǫT with the slope ψ (0 ≤ ψ ≤ 1) of the line in Fig. 3.8 independent of

the stress and temperature for a given bitumen. In the following this slope shall be

referred to as the “recovery constant” ψ. ψ was found to be 0.70 and 0.47 for the 50

and 100 pen bitumens, respectively.

Given that the monotonic loading response of the bitumen is captured by the

extended Cross model in which the reference strain rate ǫ̇oc(ǫ) is a unique function

of strain ǫ, it is expected that the recovery strain versus time history could also be

captured by a unique unloading calibration curve. The recovery strain-rate ǫ̇r is a

maximum immediately after the removal of the stress and reduces to zero as the strain

ǫ→ ǫpl. Thus, the recoverable strain is parametrised by

ǫ̂r ≡
( ǫ

ǫpl
− 1
) 1 − ψ

ψ
, (3.5)

with ǫ̂r = 1 at the instant of unloading and ǫ̂r = 0 when the strain ǫ = ǫpl, ie. when the

recoverable strain is zero. It is hypothesised that the recovery rate ǫ̇r at temperature
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T is described by a unique function ǫ̇uc(ǫ̂
r) such that

ǫ̇r = −ǫ̇u(ǫ̂r), (3.6)

where

ǫ̇u(ǫ̂
r) = ǫ̇uc(ǫ̂

r)e−k( 1
T
−

1
273). (3.7)

The above equations imply that the recovery rate ǫ̇r is (i) a unique function of ǫ̂r, (ii)

independent of loading history, and (iii) scales with temperature according to same

Arrhenius relation that governs the loading temperature dependence.

The function ǫ̇uc(ǫ̂
r) is calculated as follows. With the recovery constant ψ known

for the bitumen, the recovery rate ǫ̇r is calculated as a function of ǫ̂r from recovery

experiments such as those shown in Fig. 3.7 and set equal to −ǫ̇u. The reference

recovery strain-rate ǫ̇uc is then calculated via (3.7) with the Arrhenius constant k

given in Table 3.1 for the two bitumens under consideration. This reference strain

rate ǫ̇uc is plotted in Fig. 3.9 as a function of ǫ̂r for the 50 pen bitumen from a series

of three recovery tests at 0◦C and 10◦C, similar to those shown in Fig. 3.7. To within

experimental error, all the curves for the 50 pen overlap each other. This confirms

that the recovery behaviour can be captured by a unique calibration curve ǫ̇uc(ǫ̂
r).

Similar results were also found for the 100 pen bitumen, with ǫ̇uc calculated from

series of two recovery tests on the 100 pen bitumen included in Fig. 3.9. Intriguingly

the ǫ̇uc(ǫ̂
r) versus ǫ̂r curves for both bitumens are very similar.

3.3.3 Continuous cyclic response

Continuous stress controlled cyclic tests were performed to investigate the effect of

the mean stress σm, load ratio R, frequency f and temperature on the cyclic strain

versus time response of the bitumen.

The strain versus time response of the 50 pen bitumen with R = 0.15 is shown
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in Figs. 3.10a and 3.10b at 10◦C and 0◦C, respectively for two selected values of the

mean stress σm in each case. The cyclic stress-controlled response is seen to be similar

in form to the monotonic creep response with primary, secondary and tertiary regimes

of behaviour. The cyclic steady-state strain-rate is defined as the mean gradient of

the strain versus time history in the secondary regime of behaviour. Fig. 3.10 shows

that this steady-state strain-rate increases with increasing mean stress σm for a fixed

R.

Next, consider the influence of the load ratio R and frequency f on the cyclic

stress controlled response. The strain versus time history of the 50 pen bitumen at

0◦C with σm = 0.095 MPa and f = 0.1 Hz is shown in Fig. 3.11a for three selected

values of R and in Fig. 3.11b with σm = 0.064 MPa and R = 0.15 for four selected

frequencies f . Both these figures demonstrate that the load ratio R and frequency

f have a negligible effect on the cyclic stress controlled strain versus time response

of the 50 pen bitumen. A series of similar experiments on both the 50 pen and

100 pen bitumens confirmed this result over the range of temperatures and stresses

investigated here.

Given that the cyclic stress controlled behaviour of bitumen is governed by the

mean stress, it is worth examining the relation of the cyclic steady-state strain rate

and the monotonic steady-state creep strain-rate. The cyclic steady-state strain-

rate from a series of tests on the 50 pen bitumen (with varying values of f , R and

temperature T ) are also plotted in Fig. 3.5 as a function of the mean stress σm,

alongside the monotonic steady-state data. A comparison between the cyclic and

monotonic steady-state data reveals that the cyclic steady-state behaviour follows

the monotonic steady-state response, with the creep stress σss interpreted as the

cyclic mean stress σm.



Chapter 3. Deformation behaviour of bitumen 34

3.3.4 Results of pulse train tests

Cyclic stress controlled pulse tests were performed for a range of temperatures, pulse

stresses σp and time period ratios ∆p/∆g (see fig. 3.2c). Representative results for

tests on the 50 pen bitumen at 10◦C and 0◦C are shown in Figs. 3.12a and 3.12b,

respectively for ∆p/∆g in the range 0.04 to 0.4. Similar tests on the 100 pen bitumen

at 0◦C with ∆p/∆g = 0.2 and 0.4 are shown in Fig. 3.13. The results clearly show that

for a fixed value of σp, the accumulated permanent strain decreases with decreasing

∆p/∆g, because larger fractions of the creep strain are recovered in the zero-load

gaps between the pulses. In fact, as ∆g → 0, the pulse train tests converge to the

continuous cyclic loading tests, with no recovery of the accumulated strain.

3.4 Experimental results for polymer-modified

bitumen Cariphalte TS

3.4.1 Monotonic loading behaviour

Constant strain-rate tests were performed over a wide range of strain-rates at three

different temperatures, 0◦C, 10◦C and 20◦C. Figure 3.14 shows the nominal stress

versus nominal strain response of Cariphalte TS at 0◦C for three selected values of

the applied strain-rate ǫ̇ (similar results were obtained at other temperatures). In

each test, the tensile stress increases progressively until a maximum value is reached,

as for pure bitumen. This value is defined as the steady-state stress σss, following

the procedure described for pure bitumen. With increasing applied strain-rate, the

steady-state stress increases.

Constant stress creep tests were also performed over a range of stresses and tem-

peratures and selected results at 0◦ C are plotted in Fig. 3.15. The creep response
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is seen to be similar to that of pure bitumen and therefore the creep strain-rate in

the secondary creep region (in which the strain varies linearly with time) is defined

as the steady-state strain-rate ǫ̇ss at the applied stress.

The steady-state behaviour of Cariphalte TS, is summarised in Fig. 3.16 for three

test temperatures tested with the steady state strain-rate ǫ̇ss plotted against the

steady-state stress σss. The modified Cross model (2.14) with constants listed in

Table 3.2 along with the Arrhenius relation for temperature-dependence is seen to

describe the steady-state response of the Cariphalte TS bitumen with reasonable

accuracy over the range of temperatures, stresses and strain-rates tested.

Following a similar procedure to that followed for pure bitumen in section 3.3.1,

calibration curves, ǫ̇oc versus ǫ, were obtained from constant strain-rate and creep

tests at various test conditions. These calibration curves are shown in Fig. 3.17: all

the curves for Cariphalte TS overlap to within experimental error suggesting that the

model proposed for pure bitumen in section 3.3.1 is also applicable to this polymer-

modified bitumen.

3.4.2 Creep recovery behaviour

Creep recovery experiments were performed at 0◦C and 10◦C at selected stress levels

and for unloading from total strains ǫT in the range 0.02 ≤ ǫT ≤ 0.9. Typical results

at 0◦C for an applied stress level σ = 0.64 MPa and ǫT ≈ 0.04 and 0.14 are shown

in Fig. 3.18a. Similar to the case of the pure bitumen, the Cariphalte TS exhibits

strain recovery with the recovered strain ǫr increasing with total strain ǫT, before load

release.

The results from all the creep recovery tests performed are summarised in Fig. 3.18b

where the recovered strain ǫr (defined in section 3.2.3) is plotted as a function of the

total strain ǫT prior to unloading. The figure reveals that, to within experimental
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error, ǫr = ψǫT with the slope ψ (0 ≤ ψ ≤ 1) of the line in Fig. 3.18b independent of

the stress and temperature as for pure bitumen. The “recovery constant” is ψ ≈ 0.65

for the Cariphalte TS.

The recovery calibration curve ǫ̇uc(ǫ̂
r) for the Cariphalte TS bitumen was calculated

following the same procedure described in section 3.3.2 for pure bitumen. For the sake

of clarity only one recovery calibration curve is shown in Fig. 3.19 for the Cariphalte

TS bitumen. The recovery calibration curves extracted from a series of tests were

found to overlap this curve to within experimental error.

3.4.3 Continuous cyclic loading

The strain versus time response of the Cariphalte TS bitumen with R = 0.15 is

shown in Fig. 3.20 at 0◦C, for two selected values of the mean stress σm. The cyclic

stress-controlled response is similar in form to the monotonic creep response (fig.

3.15), with primary, secondary and tertiary regimes of behaviour (the tertiary regime

occurs for longer loading times than those shown in the figure). The cyclic steady-

state strain-rate is defined as the mean gradient of the strain versus time history in

the secondary regime of behaviour, as for pure bitumen. Fig. 3.20 shows that this

steady-state strain-rate increases with increasing mean stress σm for a fixed R.

Next, consider the influence of the load ratio R and frequency f on the cyclic stress

controlled response. The strain versus time history at 0◦C with σm = 0.36 MPa and

f = 2 Hz is shown in Fig. 3.21a for three selected values of R. The response for

loading with σm = 0.36 MPa and R = 0.3 is shown in Fig. 3.21b for four selected

frequencies f . Both these figures demonstrate that the load ratio R and frequency f

have a minimal effect on the strain versus time response for cyclic stress-controlled

tests, as was the case for pure bitumen.

It is worth mentioning here that, similar to the pure bitumens studied, the mean
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steady-state stress versus strain-rate responses of the Cariphalte TS bitumen mea-

sured in cyclic tests is well represented by the Modified Cross model (2.14), with

constants unchanged from the monotonic case (and listed in Table 3.2). This further

confirms the observation that the continuous cyclic response is only a function of the

mean stress and essentially independent of the stress amplitude or frequency.

3.4.4 Pulse train tests

Cyclic stress controlled pulse tests were performed for a range of temperatures, pulse

stresses σp and time periods ∆p/∆g (see Fig. 3.2c). Representative results for tests

at 0◦C are shown in Fig. 3.22 for ∆p = 13 s and σp = 0.4 MPa at two selected values

of the gap period ∆g for the Cariphalte TS bitumen. The results clearly show that

for a fixed value of σp, the accumulated permanent strain decreases with increasing

∆g, as for pure bitumen.

3.5 Phenomenological model

A phenomenological uniaxial constitutive model for bitumen is proposed here. It

captures the monotonic, creep recovery, continuous cyclic and pulse loading behaviour

described in the previous sections for both pure and polymer-modified bitumens. The

model is motivated by the following experimental observations:

1. The monotonic response is adequately described by the extended Cross model

with the reference strain-rate ǫ̇oc a function of the strain ǫ.

2. The recovery response is captured by an unloading reference strain-rate ǫ̇uc

which is a function of the recoverable strain as parametrised by ǫ̂r.

3. The continuous cyclic response follows the monotonic response with the mean
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stress σm interpreted as the creep stress σ. This indicates that recovery is

negligible in these continuous cyclic tests.

4. The loading and recovery temperature dependence of the bitumen is adequately

described by the Arrhenius relation over the range of temperatures, −5◦C≤ T ≤

20◦C, investigated here.

The total strain-rate ǫ̇ is written as the sum of the viscous strain-rate ǫ̇v, which is

active during loading (σ 6= 0) and the recovery strain-rate ǫ̇r, which is only active

when the stress σ = 0. Thus for an arbitrary loading history,

ǫ̇ = ǫ̇v + ǫ̇r. (3.8)

The viscous response of the bitumen to an applied load is given by the implicit

equation of the extended Cross model

ǫ̇v =
ǫ̇pl

1 − ψ
=
σǫ̇o(ǫ)

σo

[

1 +

(

ǫ̇v

ǫ̇o(ǫ)

)m]

, (3.9a)

where ǫ̇pl is the irrecoverable fraction of the viscous strain-rate as discussed in Sec-

tion 3.3.2. Note that in the high loading rate limit (ǫ̇ ≫ ǫ̇o), the viscous strain-rate

can be written in terms of the power-law relation

ǫ̇v =
ǫ̇pl

1 − ψ
= ǫ̇o(ǫ)

(

σ

σo

)n

, (3.9b)

where n = 1/(1 −m).

The recovery rate follows from the discussion in Section 3.3.2 as

ǫ̇r = −sign(ǫ) [1 − sign(|σ|)] ǫ̇u(ǫ̂r). (3.10)

Here sign(0) is defined to be zero and −sign(ǫ) ensures that the recovery rate ǫ̇r reduces

the strain ǫ. Note that the calibration functions ǫ̇o(ǫ) and ǫ̇u(ǫ̂
r) at the temperature

T under consideration are given by (3.4) and (3.7), respectively with ǫ̇oc and ǫ̇uc the
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reference strain-rates as shown in Figs. 3.6 and 3.9, respectively for pure bitumen and

in Figs. 3.17 and 3.19, respectively for polymer-modified bitumen.

It is necessary to integrate equations (3.8)-(3.10) with respect to time to obtain

the strain resulting from an applied stress history.

3.5.1 Comparison with experimental results

In this section the predictions of the phenomenological model are compared with the

monotonic, recovery, continuous cyclic and pulse loading experimental results. De-

tailed comparisons are made for the 50 pen and Cariphalte TS bitumens while for the

sake of brevity, only comparisons for the more realistic pulse loading tests are shown

for the 100 pen bitumen. The material constants employed in these comparisons are

listed in Tables 3.1 and 3.2 for the bitumens investigated with the loading and recov-

ery calibration curves, ǫ̇oc(ǫ) and ǫ̇uc(ǫ̂
r) shown in Figs. 3.6 and 3.9, respectively for

pure bitumen and in Figs. 3.17 and 3.19, respectively for polymer-modified bitumen.

Pure bitumen

Comparisons between the model predictions and experimental data for monotonic

constant strain-rate and constant stress creep tests are shown in Figs. 3.3 and 3.4,

respectively with the dotted lines corresponding to the model predictions. Excellent

agreement is seen with both the constant strain-rate tests at 0◦C and the creep tests

at 10◦C over a range of stresses and strain-rates. Similarly, good agreement is seen

between the model predictions and the creep-recovery experimental results for the 50

pen bitumen at 0◦C and 10◦C as shown in Figs. 3.7a and 3.7b, respectively. It is worth

emphasising here that the tests used to calibrate ǫ̇oc(ǫ) and ǫ̇uc(ǫ̂
r) were different from

those employed to demonstrate the accuracy of the model in Figs. 3.3, 3.4 and 3.7 :

the model is, of-course, in perfect agreement with the calibration tests.
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The model captures to within reasonable accuracy the continuous cyclic response

of the 50 pen bitumen as shown in Fig. 3.10 for tests at 0◦C and 10◦C. A rate-

independent elastic strain component is not included in the model and thus particu-

larly for the tests at 10◦C, the model does not capture the reduction in strain during

the unloading part of each cycle. However, the total accumulated strain is predicted

to within reasonable accuracy. As per experimental observations, the model correctly

predicts a negligible dependence of the response on the load ratio R and frequency f

as seen in the comparisons made in Fig. 3.11.

A key judge of the accuracy of the model lies in its ability to predict the response

of the bitumen in the pulse loading tests: in these tests both the creep response of the

bitumen under loads and its recovery behaviour is combined in a complicated manner

and the response of the model is integrated over many cycles, enabling modelling

errors to build-up. Such comparisons for pulse loading tests on the 50 pen bitumen

at 0◦C and 10◦C are shown in Fig. 3.12 and in Fig. 3.13 for the 100 pen bitumen at

0◦C. The model in all these cases is seen to accurately predict the total accumulated

strains. However, the model under-predicts the strain recovery during the zero-load

section of the loading history. This is due to the fact that the model assumes no

history dependence, ie. the bitumen loading and unloading behaviour is assumed

to remain unchanged from cycle to cycle with the first cycle identical to the nth

cycle. The experimental results show that this is clearly not the case. However, the

current simple model does succeed in capturing the total accumulated strain and the

steady-state slopes to within reasonable accuracy: and are the relevant parameters

in predicting the rutting response of a pavement.

Polymer-modified bitumen

Comparisons between the model predictions and experimental data for monotonic

constant strain-rate and constant stress creep tests for Cariphalte TS bitumen are
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shown in Figs. 3.14 and 3.15, respectively with the dotted lines corresponding to the

model predictions. Excellent agreement is seen with both the constant strain-rate

tests and the creep tests at 0◦C over a range of stresses and strain-rates. Similarly,

good agreement is seen between the model predictions and the creep-recovery experi-

ments at 0◦C shown in Fig. 3.18a. Similarly, the model captures, to within reasonable

accuracy, the continuous cyclic response shown in Fig. 3.20 for tests at 0◦C, and pre-

dicts negligible dependence of the strain versus time history on the stress ratio R or

frequency f in line with the experimental data plotted in Figs. 3.21a and 3.21b.

Comparisons between model and experimental results for pulse loading at 0◦C are

shown in Fig. 3.22. The model is seen to predict the total accumulated strains quite

accurately for the two cases shown. However, the model under-predicts the strain

recovery during the zero-load section of the loading history, as for pure bitumen.

3.5.2 Extension to 3-dimensional loading

The constitutive model detailed above was developed for uniaxial loading. This model

can be generalised for 3D loading by noting that for all practical purposes the response

of the bitumen is independent of the mean or hydrostatic stress with the bitumen be-

having like a rate-dependent von-Mises solid (Cheung and Cebon, 1997b). Adopting

cartesian tensor notation, a 3D phenomenological constitutive model can then be

written as

ǫ̇ij = ǫ̇vij + ǫ̇rij . (3.11)

Noting that the viscous strain-rate is independent of the hydrostatic stress, a 3D

generalisation of the extended Cross model (eq. 3.9a) based on the von-Mises effective

stress is given by

ǫ̇vIJ =
ǫ̇pl
IJ

1 − ψ
=
σe

k
ǫ̇o(ǫe)

[

1 +

(

ǫ̇vIJk

ǫ̇o(ǫe)

)m]

, (3.12a)
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where

k =
2

3

σe

σ
′

IJ

. (3.12b)

Here σe =

√

3

2
σ

′

ijσ
′

ij is the von-Mises effective stress, and ǫe =

√

2

3
ǫvijǫ

v
ij the von-Mises

effective strain, with the prime denoting deviatoric quantities. Capital letters have

been employed in the indices of the above equation to emphasise no summation over

repeated indices.

A multi-axial generalisation of the uniaxial power-law model (3.9b) based on the

von-Mises effective stress is given as

ǫ̇vij =
ǫ̇pl
ij

1 − ψ
=

3ǫ̇o(ǫe)

2

(

σe

σo

)n−1 σ
′

ij

σo

. (3.12c)

Note that in a uniaxial test with the axial stress and strain σ and ǫ, respectively,

σe = |σ| while ǫe = |ǫ| for an incompressible solid. Consistent with the uniaxial

observations, strain recovery is assumed to occur when σe = 0. Thus, the recovery

rate (eq. 3.10) is given by

ǫ̇rij = − [1 − sign(σe)] ǫ̇u(ǫ̂
r
e)
ǫ
′

ij

ǫe
, (3.13)

and (3.5) becomes

ǫ̂re ≡
(

ǫe

ǫpl
e

− 1

)

1 − ψ

ψ
. (3.14)

The term
ǫ
′

ij

ǫe
ensures that (3.13) reduces to the uniaxial model and that volume

constancy is maintained, ie. ǫ̇rkk = 0.

The rate dependent part of the response is now fully specified. In order to com-

plete the constitutive description, the elastic or rate independent contribution can

be added. For this, the bitumen is assumed to be a linear isotropic material with

Young’s modulus E and Poisson’s ratio ν. The elastic strain-rate ǫ̇eij is then given by

ǫ̇eij =
1 + ν

E
σ̇ij −

ν

E
σ̇kkδij , (3.15)
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where δij is the Kronecker delta. This elastic component is negligible for most practi-

cal purposes and is added in here to complete the specification of the phenomenolog-

ical model for implementation in a finite element program. A reasonably high value

of E can be chosen so as to not affect the results but ensure numerical stability of

the finite element code.

3.5.3 An approximate calibration of the model

Six parameters, m, σo, k, ǫ̇oc(ǫe), ǫ̇uc(ǫ̂
r
e) and ψ uniquely characterise the deformation

behaviour of bitumen in the phenomenological model proposed. A five-step procedure

to calibrate the model in an approximate manner with a minimum of four uniaxial

tensile experiments is described and applied to the second polymer-modified bitumen,

Cariphalte DM, in order to validate this approximate calibration method. Note that

in uniaxial tension, the von-Mises effective strain ǫe is approximately equal to the

tensile strain ǫ: volume constancy is assumed to be approximately maintained in

these large deformation tests where elastic effects are negligible. Thus, ǫe can be

interpreted as the tensile strain ǫ.

Step 1: The first step is to characterise the monotonic steady-state response at

the reference temperature of 0◦C which involves determining the constants m and σo.

Note that the Cross model (2.14) reduces to a nonlinear viscous relation of the form

σss

σo
=

(

ǫ̇ss
ǫ̇p

)(1−m)

, (3.16)

at ǫ̇ss/ǫ̇p ≫ 1. Two constant strain rate tests were conducted at 0◦C employing

strain-rates Ėn1 = 0.015 s−1 and Ėn2 = 0.05 s−1. With the peak stresses in these two

tests denoted by Σn1 and Σn2, respectively, the power-law exponent m in the modified

Cross model was calculated using

m = 1 − log(Σn1/Σn2)

log(Ėn1/Ėn2)
. (3.17)
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Step 2: Next consider the low strain-rate limit when ǫ̇ss/ǫ̇p ≪ 1. In this case the

Modified Cross model (2.14) reduces to a linear viscous relation

σss

σo
=

(

ǫ̇ss
ǫ̇p

)

. (3.18)

A constant stress creep-recovery test was conducted at 0◦C with an applied creep

stress Σl1 = 0.06 MPa. The specimen was strained to ǫT = 0.2 and then the stress

removed. The strain was monitored as a function of time until no further strain

recovery was observed. The strain-rate Ėl1 in the secondary creep region was used

to obtain the stress σo at which the bitumen behaviour transitions from linear to

nonlinear viscous behaviour:

σo =

(

Ėl1

Ėn1

)(1−m)/m
(

Σn1

Σl1

)1/m

Σl1. (3.19)

Step 3: Next, the calibration curve ǫ̇oc(ǫe) for the monotonic transient behaviour can

be obtained from the constant strain-rate test conducted at the strain-rate Ėn1 by

writing

ǫ̇o(ǫe) = Ėn1

(

σo

σ(ǫe)

)1/(1−m)

, (3.20)

where σ(ǫe) is the tensile stress at axial strain ǫ. Note that this calibration is typically

performed for strain ǫ > 0.005 in order to avoid the singularity at ǫ = 0 as explained

in Section 3.3.1. This calibration curve is plotted in Fig. 3.17.

Step 4: The parameters used to characterise the loading behaviour of the bitumen

at 0◦C have been found. The unloading calibration curve ǫ̇u(ǫ̂e) and the recovery

constant ψ can now be extracted from the creep recovery test conducted in step 2.

With ǫT the strain prior to unloading and ǫpl the permanent strain accumulated in

the creep recovery test described above, the recovery constant ψ is given by

ψ = 1 − ǫpl

ǫT
. (3.21)
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The recovery calibration curve ǫ̇u(ǫ̂
r
e) (with ǫ̂re = ǫ̂r) can be obtained from the unload-

ing section of the creep recovery test using the procedure detailed in Section 3.3.2.

This curve is plotted in Fig. 3.19, along with the recovery calibration curves of the

Cariphalte TS polymer modified bitumen and the 50 pen and 100 pen pure bitumens.

Note that all these recovery calibration curves are the same to within experimental

error. Further investigations need to be conducted to understand whether ǫ̇uc(ǫ̂
r) is

a universal function for all bitumens.

Step 5: The phenomenological model is now completely calibrated at 0◦C and it

remains to determine the Arrhenius constant k in order to quantify the temperature

dependence of the bitumen. A creep test was conducted at a temperature T2 = 10◦C

and creep stress Σl2 = 0.17 MPa. The measured steady-state strain rate is denoted

by Ėl2. The Arrhenius constant k was then obtained using

k =

ln

[

Σl2

Σl1

Ėl1

Ėl2

]

1/T2 − 1/T1
, (3.22)

where T1 = 273K and T2 = 273 + 10 = 283K.

The modified Cross model parameters for the Cariphalte DM bitumen, obtained

employing the above procedure are listed in Table 3.1 and the loading and unloading

calibration curves plotted in Figs. 3.17 and 3.19, respectively. Using these parameters

the predictions of the model are compared with experimental measurements from

pulse train tests (σp = 0.4 MPa and ∆p = 13 s) for two choices of the load gap

∆g in Fig. 3.23. With this approximate calibration the model captures the pulse

loading behaviour with reasonable accuracy: conducting a more comprehensive set of

calibration tests as done for the other bitumens would improve the agreement between

the model and the experimental measurements.
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3.6 Discussion

A general 3D phenomenological model for bitumen has been developed. Four simple

uniaxial tests suffice to calibrate the model which is capable of predicting the response

of pure and polymer-modified bitumen for a variety of monotonic and cyclic loadings

and over a range of temperatures.

Most models for the cyclic behaviour of bitumen, such as those discussed in chapter

2, treat bitumen as either a linear or nonlinear visco-elastic solid. In such cases the

creep and relaxation behaviour is captured by a relaxation spectrum in the linear

visco-elastic case and by the multiple integral representation of Ward and Onat (1963)

in the nonlinear case. In contrast to the simple phenomenological model proposed

here, an extensive set of experiments is needed to calibrate these visco-elastic models.

In the model proposed here, a different approach is adopted wherein the response

is not considered as a superposition of relaxation moduli. Rather, the “viscosity”,

as parametrised by ǫ̇oc(ǫ) and ǫ̇uc(ǫ̂
r), is taken to be a function of strain. This is

similar to some metal plasticity theories where the yield strength is taken to be strain

dependent. Physically this can be rationalised by recalling that the asphaltenes in

the bitumen re-arrange with deformation and thus the “viscosity” is expected to be

a function of strain just as the yield strength of metals is a function of accumulated

plastic strain due to the evolution of the dislocation structure. Comparisons with

a range of experiments show that such an approach provides a sufficiently accurate

model for most practical loading histories.

The current model has been shown to be valid for most operating temperatures

encountered in the U.K. (−5◦C to 20◦C). At extremely low temperatures (less than

approximately −15◦C) the behaviour of bitumen is no longer viscous with brittle frac-

ture and Eyring plasticity becoming the dominant deformation mechanisms (Cheung

and Cebon, 1997b). This domain is not addressed in the current study.
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3.7 Concluding Remarks

1. The monotonic constant strain-rate and creep behaviour of four bitumens (2

pure and 2 polymer-modified) have been measured over a range of temperatures.

The monotonic response under both these loading conditions was found to be

adequately described by an extended Cross model wherein the “viscosity” as

parametrised by ǫ̇oc(ǫ) is a function of strain.

2. The recoverable strain is directly proportional to the strain prior to unloading

with the recovery rate a unique function of the recoverable strain ǫ̂r.

3. Both the loading and recovery responses were observed to be temperature de-

pendent with the Arrhenius relation capturing the temperature dependence over

the range of temperatures tested, −5◦C≤ T ≤ 20◦C.

4. Two types of cyclic loading tests were conducted, (i) continuous cyclic and (ii)

pulse train tests to simulate vehicle loading in a pavement. While the continuous

cyclic response was similar to the monotonic response with only the mean stress

governing the behaviour, significant strain recovery was observed during the rest

periods in the pulse train experiments.

5. A simple phenomenological model which can be calibrated by a minimum of four

uniaxial tensile experiments was proposed. This model is seen to capture the

monotonic, continuous cyclic and pulse loading response of the four bitumens

with reasonable accuracy.

6. An extension of the model to fully 3D loading is also proposed based on a von-

Mises criterion. This makes the simple model amenable for implementation in a

finite element program that can be used to predict the behaviour of the bitumen

under more complex loading conditions.
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3.8 Tables

Parameter 50 pen Bitumen 100 pen Bitumen

Penetration grade 53 dmm 100 dmm

Softening point 53.5◦C —

ǫ̇pc 1.44 × 10−4 s−1 2.66 × 10−4 s−1

ψ 0.70 0.47

k 22.8 × 103 K 23.0 × 103 K

m 0.615 0.605

σo 0.20 MPa 0.15 MPa

Table 3.1: Pure bitumens parameters.

Parameter Cariphalte TS Cariphalte DM

Penetration grade 76 dmm 100 dmm

Softening point 82.0◦C 93.6◦C

ǫ̇pc 1.2 × 10−4 s−1 8.0 × 10−4 s−1

ψ 0.65 0.61

k 30.5 × 103 K 25.5 × 103 K

m 0.50 0.34

σo 0.20 MPa 0.39 MPa

Table 3.2: Polymer-modified bitumens parameters.
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3.9 Figures

Figure 3.1: Experimental arrangements for tension tests, Cheung (1995)
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Chapter 4

Indentation behaviour of bitumen

4.1 Introduction

Indentation tests provide a cheap and easy method to measure the mechanical proper-

ties of materials and also serve to validate multi-axial constitutive models of materials.

The focus of this chapter is to investigate the monotonic and cyclic spherical inden-

tation response of bitumen with the aim of (i) validating the multi-axial constitutive

model for bitumen developed in chapter 3 and (ii) investigating the repeated inden-

tation response of bitumen which serves as a unit problem for road surfaces under

vehicle loads.

The standard indentation test on creeping solids involves either applying a con-

stant load and measuring the indentation creep with time or by pressing the indenter

into the material at a prescribed rate and measuring the load as a function of time. To

interpret these results many researchers have developed models to relate the inden-

tation pressure to the constitutive response of the materials. Notably, Tabor (1951)

proposed empirical relations to correlate the indentation pressure for rate indepen-

dent strain hardening solids to the uniaxial tensile response of the material, while

65
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Mulhearn and Tabor (1960) extended these empirical relations to power-law creeping

materials. Using the similarity transformations for the indentation of metals devel-

oped by Hill et al. (1989), Bower et al. (1993) provided a rigorous theoretical basis for

the empirical relations developed by Mulhearn and Tabor (1960) for rate dependent

solids. A source of error in the interpretation of creep properties from indentation

tests is the neglect of the primary creep response (or the strain hardening behaviour)

of rate dependent materials in the above analyses. Ogbonna et al. (1995) extended

the scaling procedure of Hill et al. (1989) and Bower et al. (1993) to a class of creep

constitutive laws that account for strain hardening. Such analyses provides the basis

for the investigation of the indentation response of bitumen reported in this chapter.

In this chapter, the indentation model for power-law creeping solids of Bower

et al. (1993) is summarised and then extended to the constitutive model for bitumen

described in chapter 3. Then, an extensive experimental study of the monotonic,

recovery and cyclic spherical indentation behaviour of bitumen is reported for a range

of temperatures. Finally, the predictions of the model are compared with experimental

measurements.

4.2 Indentation behaviour of creeping solids

Consider a half-space, occupying the region x3 ≥ 0 and loaded by a frictionless

spherical rigid indenter of diameter D, as sketched in Fig. 4.1. The material in the

half-space is assumed to deform according to a power-law creep law of the form

ǫ̇ij
ǫ̇o

=
3

2

(

σe

σo

)n−1 σ
′

ij

σo
, (4.1)

where σo, ǫ̇o and n are material constants.

Bower et al. (1993) solved the problem of the plane strain and axisymmetric inden-

tation of a half-space comprising a power-law creeping solid (4.1), using the similarity
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transformations suggested by Hill et al. (1989). These transformations are based on

the observation that at any given instant, the velocity, strain rate and stress fields in

the half-space only depend on the size of the contact a and the indentation rate ḣ,

and are independent of the loading history. Thus, the general indentation problem is

reduced to calculating stresses and displacements in a nonlinear elastic solid, indented

to a unit depth by a rigid flat punch of unit radius (in the axisymmetric problem).

For indentation by a frictionless spherical indenter, the similarity solutions dictate

that the contact radius a is related to the indentation depth h by

h =
1

φ2

a2

D
. (4.2)

where the constant φ, is only a function of the material constant n and may be thought

of as the ratio of the true to nominal contact radius, where the nominal contact radius

is
√
hD. Similarly, the applied load F is related to the indentation rate ḣ via

F

πa2σo

= α

(

ḣ

aǫ̇o

)1/n

= α

(

2ȧ

ǫ̇oφ2D

)1/n

, (4.3)

where the constant α is again only a function of the power-law exponent n. Values

of φ and α for selected values of n, were deduced by Bower et al. (1993) from a series

of finite element calculations and are listed in Table 4.1.

Equations (4.2) and (4.3) can be written in terms of the effective stress and effective

strain under the indenter. The effective stress σeff under the indenter is defined as

σeff =
F

πa2
, (4.4)

while the effective strain rate and strain under the indenter are specified as

ǫ̇eff =
ȧ

D
=

φḣ

2
√
hD

, (4.5a)

and

ǫeff = φ

√

h

D
, (4.5b)
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respectively. Substituting these definitions in (4.2) and (4.3) gives the empirical

results of Mulhearn and Tabor (1960) result

σeff = ασo

(

2ǫ̇eff

φ2ǫ̇o

)1/n

, (4.6)

for the pressure under an indenter in a power-law creeping solid.

4.3 Indentation model for bitumen

A model for both the monotonic and cyclic spherical indentation response of bitumen

is proposed in this section. The model is based on the concepts of effective stress

σeff (4.4) and effective strain ǫeff (4.5b) under a spherical indenter, introduced by

Mulhearn and Tabor (1960) and justified theoretically by Bower et al. (1993).

As discussed in Section 3.5, the response of bitumen to load can be characterised by

the generalised power-law relation (3.12c) that accounts for the “strain hardening” or

the primary creep response of bitumen. Ogbonna et al. (1995) extended the similarity

relations of Bower et al. (1993), developed for the “steady-state” indentation of a

power-law creeping solid to the indentation of a rate dependent strain hardening

solid characterised by the Derby and Ashby (1987) constitutive relation. The finite

element calculations of Ogbonna et al. (1995) showed that the steady-state analysis of

Bower et al. (1993) provides an upper limit for the load factor α and the ratio of the

actual to nominal contact radius φ with strain hardening not substantially affecting

the values of these factors. Therefore, the simpler Bower et al. (1993) analysis is

chosen here for the indentation of bitumen and extend it to account for the recovery

behaviour.

The indentation rate ḣ is written as the sum of the viscous indentation rate ḣv,

which is active during loading (indentation force F 6= 0) and the recovery rate ḣr,

which is only active when F = 0. For an arbitrary loading history, the strain rate ǫ̇
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under the indenter is written as

ǫ̇ = ǫ̇v + ǫ̇r =
φ

2
√
hD

ḣ =
φ

2
√
hD

(ḣv + ḣr), (4.7)

where the viscous indentation and strain rates are related to the indentation force via

ḣv =
2ǫ̇v

φ

√
hD =

(

F

πa2σoα

)n

aǫ̇o(ǫ), (4.8)

and ǫ̇o in (4.3) has been replaced by the strain dependent function ǫ̇o(ǫ). It now

remains to specify the recovery indentation rate. Assume here that the Mulhearn

and Tabor (1960) definition of strain rate (4.5a) under the indenter is still applicable

under unloading conditions, with recovery occurring in a self-similar manner; that is,

the ratio of the actual to nominal contact radius remaining constant at φ as specified

by the Bower et al. (1993) model. Thus, the indentation recovery rate is given by

ḣr =
2ǫ̇r

φ

√
hD = −2

√
hD

φ
[1 − sign(|F |)] ǫ̇u(ǫ̂r), (4.9)

where ǫ̂r is specified by (3.5) with the irrecoverable strain rate ǫ̇pl related to the viscous

strain rate via the recovery constant ψ

ǫ̇pl = (1 − ψ)ǫ̇v. (4.10)

Equations (4.7) to (4.9) completely specify the monotonic and cyclic spherical

indentation behaviour of bitumen: time integration of these equations provides the

complete history of the indentation depth as a function of time for any specified

loading.

4.4 Experimental investigation

4.4.1 Material

The same 50 pen bitumen studied in chapter 3 was used for the spherical indentation

study. The material parameters for this 50 pen bitumen are listed in Table 3.1 and
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the loading calibration curve ǫ̇oc(ǫ) and recovery calibration curve ǫ̇uc(ǫ
r), are plotted

in Figs. 3.6 and 3.9, respectively.

4.4.2 Specimen preparation

About 100 g of bitumen granules were taken from the freezer and melted at 160◦C for

approximately 2 hours to remove all the air bubbles. The bitumen was then poured

into the pre-heated cylindrical mould1 60 mm in diameter and 50 mm in height. It

was then allowed to cool to room temperature.

4.4.3 Test protocol

Spherical indentation tests on the specimens were performed in a hydraulic testing

machine. The indentation load F was measured using a 1 kN load cell, while the load

line displacement was employed to obtain the indentation depth h. The spherical

indenter of diameter 15 or 40 mm was lubricated with a thin layer of a mixture

of soap and glycerine in order to prevent the specimen from adhering to it, allowing

nearly frictionless indentation. Typically indents to a depth h ≤ 2 mm were performed

with the indent affected zone much smaller than the cylindrical mould dimensions.

Thus, for all practical purposes, the tests may be regarded as indentation of a half-

space of bitumen. The test temperature was controlled by performing the tests in

an environmental chamber fitted on the test machine. The environmental chamber

has a resolution of ±0.5◦C and the rates of loading employed in this study were slow

enough for adiabatic heating effects to be negligible. Prior to testing, all specimens

were kept in the environmental chamber for about 2 hours to allow them to attain the

test temperature. Unless otherwise specified, a 40 mm diameter spherical indenter

1The mould was pre-heated to 90◦C for 15 minutes, to avoid thermal contraction that could

generate bubbles or residual stresses in the final specimen.
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was employed in this study. A few tests were conducted with a 15 mm diameter

indenter in order to confirm the predicted dependence of the indentation response

on the indenter diameter. It is worth mentioning here that a number of spot repeat

tests confirmed the reproducibility of the test results reported here. For the sake of

brevity, these results are not presented.

Monotonic indentation tests

Constant indentation-rate and constant load creep indentation tests were employed

to characterise the monotonic indentation response of the bitumen. In the constant

indentation-rate tests, a specified indentation-rate ḣ was applied by the indenter and

the resulting load F and indentation depth h recorded. In the constant load creep

indentation tests, a constant indentation load F was applied “instantaneously” by

the indenter and the indentation depth h recorded as a function of time t.

Creep recovery indentation tests

The creep recovery indentation behaviour of bitumen was investigated by performing

a series of single load/unload indentation tests as sketched in Fig. 4.2a. A load F

was applied rapidly by the indenter to the specimen and then held constant. The

material was allowed to creep to a specified total indentation depth hT . At this

indentation depth, the load was released and the indentation depth monitored until

the indentation rate ḣ ≈ 0. The indentation depth at this point hpl = hT − hr is the

irrecoverable indentation depth (Fig. 4.2a). Such tests were repeated for a series of

indentation depths hT, loads F , and temperatures.
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Cyclic indentation tests

Continuous cyclic and pulse train indentation tests were performed to characterise

the cyclic or repeated indentation behaviour of bitumen.

Continuous cyclic indentation tests.

In the continuous cyclic indentation tests, the indentation load F was varied between

Fmin and Fmax as sketched in Fig. 4.2b, with

R =
Fmin

Fmax
, (4.11)

and

Fm =
Fmin + Fmax

2
, (4.12)

defining the load levels while the frequency f of the triangular waveform defines the

loading rate. The indentation depth was measured as a function of time and tests

repeated for a series of values of R, Fm and f .

Pulse train indentation tests.

Tests comprising intermittent identical indentation load pulses with a trapezoidal

shape in the time domain, as shown in Fig. 4.2c, were performed in order to simulate

a load history similar to that experienced in a pavement. The aim here was to

investigate the relation between the single load/unload behaviour analysed via the

creep and creep recovery indentation tests and the gradual ratcheting of indentation

depth due to the application of a continuous train of discrete load pulses as shown

schematically in Fig. 4.2c.

The constant maximum indentation load Fp in each trapezoidal load pulse was

applied for a time period ∆p/2 with a loading and unloading rate Ḟ = 4Fp/∆p. A

series of tests was performed by varying the time period ∆g between consecutive

trapezoidal pulses at a fixed Fp at two selected temperatures.



Chapter 4. Indentation behaviour of bitumen 73

4.5 Experimental results and comparison with

model predictions

The monotonic, recovery, continuous cyclic and pulse indentation experimental results

are described in this section and the results compared with the predictions of the

indentation model described in section 4.3. The material parameters employed in

modelling the indentation behaviour are listed in Table 3.1 with the loading and

recovery calibration curves plotted in Figs. 3.6 and 3.9, respectively . Unless otherwise

specified, the experiments reported were conducted at 0◦C employing the 40 mm

diameter spherical indenter.

4.5.1 Monotonic indentation behaviour

The measured indentation load F versus indentation depth h response of the bitu-

men for two selected values of the applied indentation rate ḣ = 0.07 mm s−1 and

0.15 mm s−1 are plotted in Fig 4.3a. In both cases, the indentation load F increases

monotonically with indentation depth and the slope of the F versus h curve increases

with increasing indentation rate ḣ.

Results from two constant load creep indentation tests (F = 40 N and 100 N)

are plotted in Fig. 4.3b. The indentation depth h versus time response is seen to

comprise two regimes: a primary creep regime where ḣ decreases with time, followed

by a secondary or steady-state creep regime, where ḣ remains approximately constant.

Increasing the indentation load F increases ḣ over the full range of indentation depths

considered here.

The monotonic indentation responses at 5◦C employing the same loading parame-

ters as in Fig. 4.3 are shown in Fig. 4.4. Comparing Fig. 4.3 and 4.4 it can be seen

that while the qualitative behaviour remains unchanged, increasing the temperatures
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results in an smaller indentation force for a given indentation rate and a higher inden-

tation creep rate for a given indentation force. Predictions of the model are included

in Figs. 4.3 and 4.4 and show reasonably good agreement with the experimental

measurements at small times or indentation depths. However, the model generally

predicts a “stiffer” response, that is, a lower indentation rate for a given indentation

force or a higher force for a given applied indentation rate. This error arises from

the approximation of the modified Cross model (2.14) by a power-law relationship:

the power-law relationship over-predicts the creep resistance of bitumen, especially

at stresses σ ≤ σo.

The effect of the indenter diameter on the indentation response is illustrated in

Fig. 4.5 where the indentation creep response at 0◦C for an indentation force F = 35 N

is plotted for the two diameters of the spherical indenter D = 40 mm and D =

15 mm. In line with the predictions of the model the indentation creep rate ḣ increases

with decreasing D and good agreement between the model and the experimental

measurements is seen.

4.5.2 Creep recovery indentation behaviour

Creep recovery indentation tests on bitumen were performed at 0◦C and 5◦C and the

recovery behaviour investigated for unloading from total effective strains ǫT = φ

√

hT

D
in the range 0.05 ≤ ǫT ≤ 0.14. Experiments were performed for indentation loads of

F = 65N, 100N and 170N for the 40 mm diameter indenter, and F = 30N for the

15 mm diameter indenter. The creep recovery indentation response of bitumen at

0◦C with F = 65 N is shown in Fig. 4.6a, where the indentation depth h is plotted

as a function of time t, for the two selected values of hT = 0.7 mm and 0.4 mm. The

recovered indentation hr is higher for the larger hT. This result is consistent with the

observations for bitumen in uniaxial tension where it was shown that a larger initial
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tensile strain results in a larger recovered strain. A comparison between the model

predictions and experimental measurements is included in Fig. 4.6a and indicates

that the model captures both the loading and unloading indentation response of the

bitumen reasonably accurately.

Results from all the creep recovery indentation tests performed are summarised in

Fig. 4.6b where the recovered effective strain ǫr = φ

√

hr

D
is plotted as a function of

the total effective strain ǫT prior to unloading. The figure reveals that, to within ex-

perimental error, the data is well represented by the line ǫr = ψǫT with ψ (0 ≤ ψ ≤ 1)

independent of the applied indentation load (effective stress), temperature and in-

denter diameter. Moreover, ψ ≈ 0.7 as measured from these indentation experiments

is approximately equal to that found from uniaxial tensile experiments on the same

bitumen in chapter 3. This was a key assumption made in the model detailed in

Section 4.3 and is confirmed here through a wide range of experiments.

4.5.3 Continuous cyclic indentation response

Continuous load controlled cyclic indentation tests were performed to investigate the

effect of the mean indentation load Fm, load ratio R and frequency f on the cyclic

indentation depth response of bitumen.

The cyclic indentation depth h versus time response of bitumen with R = 0.7

is shown in Fig. 4.7, for Fm = 100N and 150N at 0◦C. The cyclic load-controlled

indentation response is similar in form to the monotonic creep indentation response

with primary and secondary regimes of behaviour. Next, consider the influence of the

load ratio R and frequency f on the cyclic load-controlled response. The indentation

depth versus time history of bitumen with Fm = 100 N and f = 5.0 Hz is shown in

Fig. 4.8a for three selected values of R and in Fig. 4.8b with Fm = 150 N and R = 0.7

for three selected frequencies f . Both these figures demonstrate that the load ratio
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R and frequency f have a negligible effect on the cyclic load-controlled indentation

depth versus time response of bitumen. Thus, similar to the findings of chapter 3 for

bitumen subjected to uniaxial tension, the continuous cyclic indentation response is

also seen to be primarily a function of the mean load Fm.

Predictions of the indentation model are included in Figs. 4.7 and 4.8. Again,

the model is seen to agree reasonably well with the experimental measurements and

correctly predicts the negligible dependence of the response on the load ratio R and

frequency f . Consistent with the monotonic response, the model predicts a stiffer

response due to the approximation of the modified Cross relation (2.14) by a power-

law model.

4.5.4 Pulse train indentation experiments

The indentation response at 0◦C and 5◦C is plotted in Figs. 4.9a and 4.9b, respectively

for cyclic load controlled pulse indentation tests with Fp = 75N and ∆p = 4.0s for

two selected values of the pulse gap ∆g (see Fig. 4.2c for definitions of Fp, ∆p and

∆g). The results clearly show that for a fixed value of Fp, the accumulated permanent

indentation depth decreases with increasing ∆g, because larger fractions of the creep

strain are recovered in the zero-load gaps between the pulses. In fact, as ∆g → 0, the

pulse train tests converge to the continuous cyclic loading indentation tests, with no

recovery of the accumulated strain.

A key measure of the accuracy of the model lies in its ability to predict the ac-

cumulated strain response of the bitumen in the pulse loading indentation tests. In

these tests both the creep response of the bitumen under loads and its recovery be-

haviour is combined in a complicated manner and the response is integrated over

many cycles resulting in the build-up of modelling errors. Such comparisons for pulse

loading indentation tests are included in Fig. 4.9. The model under-predicts the to-
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tal accumulated strain at large times similar to that observed in the monotonic and

continuous cyclic loading cases. However, the errors in accumulated strain are only

of the order of 10 % and hence this simple model is considered adequate for practical

purposes.

4.6 Discussion

The spherical indentation response of bitumen was investigated in this chapter and an

extension to the model of Bower et al. (1993) proposed to analyse the monotonic and

cyclic indentation response of bitumen. The analysis of Bower et al. (1993) is based

on the observation that the fields under the indenter in a power-law creeping solid are

self-similar, which reduces the analysis to calculating stresses and displacements in a

nonlinear elastic solid, indented to a unit depth by a rigid flat punch. In fact, Bower

et al. (1993) presented a general analysis which is applicable to either plane strain

or axisymmetric indenters of arbitrary geometries including conical and cylindrical

indenters. The extension to the Bower et al. (1993) model presented here could also

be generalised to these cases on lines similar to that presented in Section 4.3.

The self-similar analysis of Bower et al. (1993) is strictly valid for effective strains

under the indenter ǫeff ≤ 0.2: beyond these strain levels, finite strain effects play

a significant role and the simple model presented here is expected to be unable to

capture the indentation response. Full finite element solutions of the field equations

would be necessary to obtain the indentation response in such cases.

In the present study, the frictionless indentation limit was investigated by coating

the indenters with a mixture of soap and glycerine. A few spots tests were conducted

with non-lubricated indenters in order to gauge the effect of adhesion on the inden-

tation behaviour. These tests revealed that the indentation recovery behaviour is

substantially affected by the adhesion of the bitumen to the indenter. Further inves-
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tigation into the effects of adhesion between the indenter and bitumen is proposed as

a topic of future study.

4.7 Concluding Remarks

1. The similarity solution developed by Bower et al. (1993) for the indentation

of a power-law creeping solid has been extended to the constitutive model for

the monotonic and cyclic response of bitumen developed in chapter 3. Under

non-zero applied loads, bitumen behaves as a power-law creeping solid and the

analysis of Bower et al. (1993) is applicable. During unloading, the bitumen is

assumed to recover in a self-similar manner and the effective strain rate under

the indenter continues to be related to the indentation depth by (4.5a). Em-

ploying this strain measure in the constitutive relation for unloading bitumen

it is possible to characterise the indentation behaviour of bitumen under both

monotonic and cyclic loading conditions.

2. Monotonic, continuous cyclic and cyclic pulse loading experiments were con-

ducted over a range of temperatures. Similar to the uniaxial tensile behaviour

of bitumen, the continuous cyclic response was observed to depend mainly on

the mean applied indentation load while the cyclic pulse loading behaviour de-

pended strongly on the recovery behaviour of bitumen and hence was affected

by the rest periods in the loading history.

3. The proposed indentation model is seen to capture the experimentally observed

indentation response accurately over a wide range of loading conditions. More-

over, the model is also successful in predicting the temperature dependence of

the indentation response and the effect of the indenter diameter.

4. The monotonic and repeated indentation behaviour investigated here is the unit
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problem for understanding the behaviour of pavements under vehicle loads and

is thus of intrinsic interest. Moreover, the indentation study has helped validate

the multi-axial constitutive model for bitumen developed in chapter 3.
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4.8 Tables

n α φ

1.00 0.849 0.707

1.11 1.085 0.747

1.25 1.332 0.788

1.43 1.602 0.831

1.66 1.886 0.875

2.00 2.176 0.920

2.50 2.465 0.966

3.33 2.734 1.013

5.00 2.973 1.065

10.00 3.110 1.128

100.00 3.051 1.201

Table 4.1: Indentation model parameters α and φ as a function of the power-law

exponent n. (Reproduced from Bower et al. (1993)).
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4.9 Figures

F
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x3

h

D/2

a

Figure 4.1: Spherical indentation of a half-space. The notation and sign convention

is shown.
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Figure 4.2: (a) Schematic showing the stress and strain time histories in a creep

recovery test. (b) Schematic of the applied stress as a function of time in the con-

tinuous cyclic tests.(c) Schematic of the stress and strain time histories in the pulse

train experiments.
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Figure 4.3: (a) Applied indentation force versus indentation depth for two selected

values of the applied indentation-rate and (b) indentation depth versus time histories

for two selected values of a constant applied indentation force at 0◦C with a 40 mm

diameter spherical indenter. Experimental measurements and model predictions are

included.
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ḣ = 0.15 mm/s
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Figure 4.4: (a) Applied indentation force versus indentation depth for two selected

values of the applied indentation-rate and (b) indentation depth versus time histories

for two selected values of a constant applied indentation force at 5◦C with a 40 mm

diameter spherical indenter. Experimental measurements and model predictions are

included.
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Figure 4.5: Indentation depth versus time history for a constant applied indentation

force F = 35 N at 0◦C. Experimental measurements and model predictions for two

indenter diameters D = 15 mm and 40 mm are included in the figure.
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Figure 4.6: (a) Indentation creep recovery experimental measurements and model

predictions at two selected values of the total indentation depths hT with F = 65 N at

0◦C. (b) Summary of the indentation creep recovery experimental measurements. The

experimental data for the different levels of indentation force and indenter diameters

show a linear relationship between ǫr and ǫT at the two temperatures investigated.
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Figure 4.7: Continuous cyclic load controlled indentation experimental measurements

and model predictions (frequency f = 2 Hz and load ratio R = 0.7) for two applied

mean loads Fm at 0◦C with a 40 mm diameter spherical indenter.
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Figure 4.8: Continuous cyclic load controlled indentation test results at 0◦ C with

40 mm diameter spherical indenter. Experimental measurements and model predic-

tions for (a) a fixed mean load Fm = 100 N and a frequency f = 5.0 Hz at three

selected values of the load ratio R = 0.3, 0.5 and 0.7 and (b) Fm = 150 N and R

= 0.7 for three selected values of f = 0.5, 5.0 and 10 Hz.
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Figure 4.9: Cyclic load controlled pulse train indentation experimental measurements

and model predictions with Fp = 75N and ∆p = 4.0s for two selected values of the

pulse gap ∆g at (a) 0◦C and (b) 5◦C.



Chapter 5

Review of previous research on

bituminous mixes

5.1 Introduction

The most common approaches to modelling bituminous mixes have employed Contin-

uum Mechanics theories and more recently Micro-mechanical Models. Early models

were based on empirical relations due to the complexity of the problem and the limited

understanding of the behaviour of heterogeneous materials (Deshpande, 1997).

This chapter presents a brief description of the main research on continuum and

micromechanical models of the behaviour of bituminous mixes. Detailed reviews can

be found elsewhere (Cheung, 1995; Deshpande, 1997).

5.2 Continuum models of bituminous mixes

5.2.1 Stiffness representation

Van der Poel (1955) extended the stiffness concept of bitumen to map the dynamic

90
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behaviour of bituminous mixes under small strains, where linear behaviour is usually

found. Van der Poel assumed that the stiffness of the mix is a function of the stiffness

of the bitumen and the volume fraction of the aggregate. Later Heukelom and Herrin

(1964) proposed the following relationship to model the stiffness of a mix:

Smix

Sbit
=

{

1 +
2.5c

κ(1 − c)

}κ

, (5.1)

where Smix, Sbit are the stiffness of the mix and bitumen respectively measured in

MPa, c is the volume concentration of the aggregate, defined as:

c =
Volume of aggregates

Volume of (aggregates + bitumen)
, (5.2)

and

κ = 0.83 log

{

4x104

Sbit

}

. (5.3)

These equations were obtained from empirical fits to experimental data from dynamic

tests on compacted mixes with approximately 3% air voids and c values from 0.7 to

0.9. Brown and Co-workers (1992) modified the above equations to give:

Smix

Sbit
=

{

1 +
257.5 − 2.5VMA

κ(VMA − 3)

}κ

, (5.4)

where VMA is the percentage of voids in mixed aggregate, and κ is the same as in

equation 5.3. Equation 5.4 is valid for VMA values from 12% to 30% and Sbit ≥

5MPa. For higher values of bitumen stiffness, bitumen behaves as an elastic solid

and the stiffness ratio is a measure of the stiffening effect due to rigid inclusions in

an elastic matrix. For lower values of Sbit , the stiffness ratio becomes a function of

the elastic, viscoelastic and viscous responses of the material.

5.2.2 Creep properties

Pavement rutting is a problem associated with high temperatures and repeated load

pulses of short duration. Under these circumstances, linear viscoelastic models fail
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to predict the behaviour of bituminous mixes. Therefore, mechanistic approaches

of pavement design have been developed based on compression creep tests of mixes,

either uniaxial or triaxial e.g. (Hills et al., 1974; Van de Loo, 1976; Van de Loo, 1978;

Nunn, 1986; Mahboub, 1990; Brown and Co-workers, 1992; Collop et al., 1995; Lu

and Wright, 2000). Some of those models showed reasonable agreement with test

results or in-situ pavement data. However, large calibration factors are often required

to correct the models so that they agree with the results of in-situ measurements.

5.2.3 Linear viscoelastic models

In the 1960’s, when Van der Poel’s stiffness approach was popular for describing

the behaviour of pure bitumen and bituminous mixes at low strain and stress levels,

some researchers extended that approach to model the asphalt behaviour, based on

uniaxial creep tests and dynamic tests at constant load amplitude (Pagen, 1965; Pa-

gen, 1968). There have been many studies associated with linear viscoelastic mod-

els for characterising bituminous mixes and structural analysis of pavements, e.g.

(Papazian, 1962; Pagen, 1965; Moavenzadeh and carnaghi, 1966; Sayegh, 1967; An-

dersson, 1967; Huang, 1967; Ishihara and Kimura, 1967; Pagen, 1968; Pagen, 1972;

Thrower, 1975; Pink et al., 1980; Nunn, 1986; Christensen, 1998; Mehta and Chris-

tensen, 2000). Most measured model parameters from particular experiments, and

a few used mix specification to predict those parameters (Francken and Verstraeten,

1974; Collop, 1994; Collop et al., 1995). Despite the good results of those models at

low strain and stress levels, they are unable to model the correct behaviour at high

strain and stress levels where the non-linear behaviour is prominent (e.g. (Monosmith

and Sekor, 1962; Monosmith et al., 1966)). Linear viscoelastic approaches are still

the most popular choice for modelling the deformation of bituminous mixes, because

of their ease of implementation.
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5.2.4 Non-linear viscoelastic models

As bituminous mixes at large strain or stress levels exhibit non-linear behaviour,

some researchers have attempted to extend the linear viscoelastic models to include

the non-linear effects e.g. Fitzgerald and Vakili (1973), Lai and Anderson (1973),

Vakili (1983) and Vakili (1985). However, these models have not been employed to

model the deformation behaviour of real pavement structures due to their complex-

ity, uniaxial nature and number of material constants required. As an attempt to

overcome these problems, other more appealing models based on a nonlinear exten-

sion of the correspondence principle developed by (Schapery, 1984) were developed

to model the behaviour of mixes under large strains or stresses under monotonic or

cyclic conditions in the time domain, with reasonable results compared with exper-

imental results (Kim and Dallas, 1989; Kim et al., 1990; Kim et al., 1995; Lee and

Kim, 1998; Zhao and Kim, 2003).

Recently, non-linear viscoelastic models have been developed using thermodynamic

theories e.g. Saleeb et al. (2003) and Krishnan and Rajagopal (2004). These models

also require many calibration constants and complex fitting procedures.

5.2.5 Viscoelastoplastic models

Researchers like Dunhill et al. (2000), Airey et al. (2002), Huang et al. (2002), Airey

et al. (2003) and Huang et al. (2004) applied viscoelastoplastic theories for mod-

elling asphalt deformation with reasonably good results. For example, Dunhill et al.

(2000) used a constitutive model based on the phenomenological approach proposed

by Scarpas and Blaauwendraad (1998) to model materials exhibiting strain rate de-

pendent plastic deformation, in conjunction with the Desai et al. (1986) yield cri-

terion. Huang et al. (2004) used a hierarchical single surface (HiSS) based model

(Desai, 1980; Wathugala, 1990; Chia, 1994) to predict triaxial compressive behaviour
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of asphalt from the experimentally measured parameters. The main drawback of

these models is the many experimentally fitted parameters they require.

5.2.6 The finite element model

During the last decade a popular choice for modelling the deformation behaviour

of bituminous mixes has been Finite Element Methods (FE) (Sepehr et al., 1994;

Bahia et al., 1999; Weissman et al., 1999; Kose et al., 2000; Long, 2001; Masad

and Bahia, 2002; Taciroglu and Hjelmstad, 2002; Papagiannakis et al., 2002; Collop

et al., 2003; Sadd et al., 2004; Abbas et al., 2004). These models usually make use of

viscoelastic or viscoelastoplastic constitutive models. For instance, Long (2001) used

a non-linear viscoelastic extension to the models proposed under the SHRP-A-415

(1994), while Collop et al. (2003) developed a viscoelastoplastic model with damage

for asphalt based on the model of Scarpas and Blaauwendraad (1998).

5.2.7 Triaxial models

While most of the models developed for bituminous mixes were developed under uni-

axial conditions, triaxial testing has long been recognised as important to understand

mix behaviour for more general conditions.

In the late 1940’s, Nijboer (1948) and Goetz and Chen (1950) studied the be-

haviour of various bituminous mixes under triaxial loading using a soil mechanics

approach with two parameters, namely, “the angle of internal friction”, and the “co-

hesion”. They concluded that the cohesion reflected the binding capacity of bitumen

for a particular aggregate. Higher bitumen penetration values decrease the cohesion,

whereas higher rates of loading increase the cohesion. The stability of the mix (devia-

toric stress at failure) was found to increase with hydrostatic pressure and to depend

on the other mix parameters in a similar way as the cohesion. On the other hand, the
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value of the angle of internal friction reflected the type and gradation of the aggre-

gate. While the angle of internal friction usually decreased with increasing bitumen

content, the mechanical properties of bitumen and the loading rate were found to

have little effect.

A number of other investigations of the triaxial behaviour of bituminous mixes can

be found in the literature e. g. Huang (1967), Hills and Heukelom (1969), Brown

and Cooper (1980), Brown and Cooper (1984), Huschek (1985), Brown et al. (1991),

Cooper et al. (1991), Low et al. (1993) and Kim et al. (1997).

After triaxial quasi-static and cyclic creep tests, Brown and Snaith (1974), Brown

and Cooper (1980) and Brown and Cooper (1984) concluded that the volumetric

strain rates depend on hydrostatic stress only, while deviatoric strain rates depend

on both the hydrostatic stress and the deviatoric stress. They also found that defor-

mation resistance was greater for continuously graded1 rolled asphalts than for gap

graded2 rolled asphalts. This indicates that the effect of aggregate interlock is more

important than the viscous properties of the bitumen. From cyclic triaxial results,

they observed that a relationship between quasi-static and cyclic behaviour could be

found, however, no further attempt was made to establish that relationship.

More recently, Deshpande and Cebon (1999b) and Collop and Khanzada (2001)

investigated the monotonic steady-state behaviour of idealised bituminous mixes un-

der triaxial conditions, finding a strong dependence of the deviatoric and hydrostatic

stresses on the steady-state deformation behaviour of fully dense mixes (more than

64% volume fraction of aggregate).

1Mixes with a continuous distribution of small, medium and large aggregate.
2Mixes with only small and large aggregate.
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5.3 Micromechanical models for bituminous

mixes

The microstructure of bituminous mixes has been used as a qualitative measure of

the mix behaviour by various researchers e.g. (Nijboer, 1948; Hills and Heukelom,

1969; Hills, 1973). However, during the last decades there has been an increased

interest in modelling the mix behaviour in terms of the microstructure e.g. (Frölich

and Sack, 1946; Van der Poel, 1958; Hills, 1973; Christensen and Lo, 1979; Deshpande

and Cebon, 2004; Abbas et al., 2004; Krishnan and Rajagopal, 2004). Some of the

most representative models will be briefly described in the following sections.

5.3.1 The three phase composite sphere model

Van der Poel (1958) attempted to model the behaviour of bituminous mixes by calcu-

lating the rigidity of a concentrated solution of elastic spheres in an elastic medium,

using a method developed for dilute dispersions by Frölich and Sack (1946). While

the reported results showed good agreement with experiments for volume fractions of

aggregate up to 60%, certain errors in the calculation technique were later reported

by Christensen and Lo (1979).

5.3.2 The bitumen film creep model

Hills (1973) attempted to develop a theoretical model of the long time creep behaviour

of bituminous mixes. His model described the internal structure of the mixes in terms

of the bitumen film thickness, and the evolution of this state variable as a function

of the macroscopic straining of the material. The macroscopic strain of a mix was

assumed to be accommodated on a microscopic scale by displacements of adjacent

aggregate particles in both shear and compression. These displacements were assumed
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to be independent of each other. It was further proposed that the macroscopic strain

of the mix was uniquely related to the shear displacements of adjacent aggregate

particles. So, the microscopic shear resistance of the bitumen films was considered to

be controlled by its thickness. The bitumen was modelled as an incompressible, linear

viscous fluid. Results were given in terms of the stiffness in the region Sbit < 5 MPa.

Hills’ model was based on an empirical estimation of the evolution of film thickness

under deformation, rather than on a theoretical analysis of thin film deformation of

the bitumen3. The model provided the general form of the constitutive equations,

but it depended entirely on curve fitting to experimental data. Collop (1994) and

Collop et al. (1995) developed a method to obtain the parameters for Hills’ model

from fundamental mix parameters (e.g. the VMA), and used this modified model

to estimate the rutting of paving mixtures undergoing accelerated tests, with good

agreement.

Following the ideas of Hills, Cheung et al. (1999) used the isolated contact modeling

approach, originally developed for the analysis of stage I powder compaction, to

analyze the deformation behaviour of an asphalt, idealized as a random distribution of

rigid spheres separated by thin films of bitumen. The predictions of the model agreed

qualitatively with experimental results but the isolated contact model substantially

underpredicted the “stiffening” effect of the aggregate.

5.3.3 The discrete element model (DEM)

Rothenburg et al. (1992) reported a micromechanical model for bituminous mixes

in which the material was represented by a set of discrete elastic particles bound

by linear viscoelastic bitumen. The model simulated the motion of a large number

3A complete theoretical and experimental study on thin film behaviour of pure bitumen can be

found in Cheung (1995) and Cheung and Cebon (1997c).
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of individual randomly shaped particles. This motion was constrained either by a

viscoelastic film of bitumen or frictional contact between particles. They also pro-

posed a microstructure to model the presence of bitumen and voids to predict the

behaviour of particle contacts. Although the proposed microstructure and the consti-

tutive behaviour of bitumen were not rigorous, the simulation yielded many insights

concerning the fundamental mechanisms of deformation of bituminous mixes. Other

researchers, for example Chang and Meegoda (1993), Sitharam (1999), Buttlar and

You (2001), Ullidtz (2001), Collop et al. (2004) have also attempted to model bi-

tuminous mixes using DEM. Computational time constraints make the use of these

models impractical for simulating deformation in a pavement.

5.4 Review of research on particulate composites

Composite materials are strongly inhomogeneous relative to a small length scale (mi-

croscale), but show homogeneous properties relative to a larger scale (macroscale),

over which variations in applied loads are significant (Willis, 1982).

Deshpande (1997) performed an extensive literature review of the deformation

behaviour of nonlinear viscous materials reinforced by rigid inclusions. He found that

the existing models fall into three main categories:

1. Homogenisation formulae for the properties of periodic composites

Examples in this category are the composite sphere model (Hashin, 1962; Hashin,

1985), the three phase model (Van der Poel, 1958; Christensen and Lo, 1979),

the concentrated suspension model (Frankel and Acrivos, 1967) and periodic

unit cell analysis (Christman et al., 1989; Bao et al., 1991). These models

usually assume certain repetitive microstructure to solve the boundary value

problem of a representative unit cell by finite element (FE) analysis or other
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analytical technique. The main problem of these models arise when modelling

composites of high volume fractions of aggregate because of the sensitivity of

the results to the defined size and shape of the unit cell, as well as the imposed

boundary conditions.

2. Estimates for the effective properties of ad hoc models of composites

The most representative models of this category are the dilute suspension model

(Frölich and Sack, 1946; Einstein, 1956) and the self-consistent and differential

self-consistent models (Hill, 1965; Budiansky, 1965; McLaughlin, 1977; Duva,

1984). The dilute suspension model is based on the solutions for the deformation

of a single inclusion in an infinite matrix. These solutions are employed in

self-consistent and differential self-consistent schemes to model composites with

finite concentrations of inclusions. These models are classified as ad hoc because

they do not use a definite microstructure. The main disadvantage of these

methods is that they neglect the interaction between inclusions and therefore

cannot be used to model composites having volume fractions higher than about

40%.

3. Variational boundaries for the properties of random composites

The most representative models of this category are the Voigt and Ruess bounds

(Paul, 1960), the general Hashin-Strikman bounds (Hashin and Strikman, 1963;

Willis, 1982; Willis, 1983; Ponte Castañeda and Willis, 1988; Ponte Castañeda,

1989; Ponte Castañeda, 1991; Willis, 1991; Willis, 1992; Talbot and Willis, 1992;

Ponte Castañeda, 1992a; Ponte Castañeda, 1992b; Ponte Castañeda and deBot-

ton, 1992; Ponte Castañeda and Zaidman, 1994) and bounds for the assemblage

of composite spheres (Suquet, 1993). The Voigt and Ruess bounds, which are

based on the general assumption that the composite is macroscopically homo-

geneous, are generally too far apart for typical composites to be of any practical
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value. The general Hashin-Strikman bounds give more definitive solutions be-

cause of an additional assumption that the composite is isotropic. However,

these bounding models are unable to describe the dilation behaviour under de-

viatoric stresses (which is commonly observed for some high volume fraction

composites), anisotropic behaviour and the evolution of the microstructure un-

der various loading conditions.

5.5 Steady-state constitutive relationship for

idealised asphalt mixes

Deshpande (1997) performed an extensive experimental study of the steady-state

deformation behaviour of idealised bituminous mixes, consisting of pure bitumen

mixed with single-sized or multi-sized sub-spherical aggregate, with volume fractions

up to 85%. He performed both uniaxial and triaxial experiments and found that the

main characteristics of the steady-state deformation of these mixes were:

1. The steady-state uniaxial behaviour of the mixes was found to be linear viscous

at low stresses and non linear viscous at high stresses, similar to pure bitumen.

2. The aggregate has a “stiffening” effect on the bitumen (fig.5.1). This stiffening

effect was found to be primarily a function of the volume fraction of the aggre-

gate and not strongly dependent on the shape and size of the aggregate particles.

Including a stiffening factor S, the steady-state behaviour of the mixes can be

obtained by modifying equation 2.14 as:

σ

σo
=

Sǫ̇

ǫ̇o





1

1 +
(

Sǫ̇
ǫ̇o

)m



 . (5.5)

3. The mixes were observed to dilate under compressive triaxial stresses.
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4. The volumetric strain varied linearly with the distortional strain and was de-

pendent on the volume fraction of aggregate but independent of the stress state,

strain rate or properties of the bitumen.

5. The steady-state behaviour of the mixes was found to be a function of both

mean and deviatoric stresses.

Based on these observations about the behaviour of idealised mixes, Deshpande

and Cebon (1999b) developed a steady-state constitutive model for idealised as-

phalt mixes, based on soil mechanics concepts. They used the shear box analogy

(Taylor, 1948) and a modified version of the Composite Sphere Model (Hashin, 1962),

with Suquet (1993) method used to convert between linear and non-linear viscous be-

haviour (Deshpande and Cebon, 1999a).

The overall upper bound solution for the steady-state viscous deformation behav-

iour of idealised bituminous mixes is given by (Deshpande, 1997; Deshpande and

Cebon, 1999b):

Ėe ≥ ǫ̇o[ωs+ 1]n

(1
2
ks2 + 3

2
µ)(n+1)/2[1 − (c+ v)](n−1)/2

(

Σe

σo

)n

. (5.6)

Where

Ėe =
(

2
3
Ė ′

ij Ė
′

ij

) 1
2

= is the Von Mises equivalent macroscopic strain rate

Ė ′

ij = is the deviatoric macroscopic strain rate tensor

ω = Σm/Σe = mean stress/Von Mises equivalent stress

c, v = Volume fraction of rigid inclusions and voids, respectively

ǫ̇o, σo, {n = 1/(1 −m)} = Bitumen parameters from the Modified Cross Model

The dilation gradient s is defined as the slope of the volumetric strain vs distor-

tional strain for uniaxial or triaxial tests on an specific mix as

Ḣ = s|Ėe|, (5.7)
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µ is the upper bound on the shear modulus which can be found using Hashin’s com-

posite sphere model according to (Hashin, 1962):

µ =
2

3







1 +
c

2
5
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−
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21

c7/3+ 10
21

− v
3
5

+ 2
5
v + v(1−v2/3)2

95
168

v7/3+ 10
21







. (5.8)

The bulk modulus k is given by:

k =
8

9

1 − v

v

1

1 − c
. (5.9)

The constitutive law (eq. 5.6) can be applied to uniaxial or triaxial axisymmetric

loading. In these cases, the general constitutive law can be written as:

Ė =
ǫ̇o[ηs sign(Σ) + 1]n

(1
2
ks2 + 3

2
µ)(n+1)/2[1 − (c+ v)](n−1)/2

( |Σ|
σo

)n

sign(Σ), (5.10)

where Σ is the deviatoric stress, and Ė is the distortional macroscopic strain rate.

Also note that the sign “≥” in the bounding solution is replaced by the sign “=” for

convenience. However, it should be taken into account that this is an upper bound

estimate.

The axial macroscopic strain rate Ė33 is given by:

Ė33 = Ė
(

1 +
s sign(Σ)

3

)

. (5.11)

Thus, the axial macroscopic strain rate can be written as:

Ė33 =
ǫ̇o
S

( |Σ|
σo

)n

sign(Σ), (5.12)

where S is the stiffening factor given by:

S = 0.55
(1

2
ks2 + 3

2
µ)(n+1)/2[1 − (c+ v)](n−1)/2

[ηs sign(Σ) + 1]n

[

1 +
s sign(Σ)

3

]

, (5.13)

and η = Σm/Σ is the stress ratio. The constant factor “0.55” in eq. (5.13) follows

from a numerical correction added by Deshpande and Cebon (1999b) for values of
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n ≈ 2.5 (see Deshpande and Cebon (1999b) for details). The hydrostatic strain rate

is given by the kinematic constraint Ḣ = s|Ėe|.

This model showed good agreement with uniaxial and triaxial tests performed on

ideal mixes with various volume fractions of aggregate, over a wide range of stresses,

strain rates and temperatures (Deshpande, 1997; Deshpande and Cebon, 1999b).

5.6 Quasi-static mechanics of granular

assemblages

An important factor in modelling the deformation behaviour of granular assemblies

is a phenomenon of dilatancy, which causes an increase of volumetric strain with

distortional strain (Deshpande and Cebon, 1999b). This phenomenon was first re-

vealed by Reynolds (1885) and later adopted in Rowe’s “stress-dilatancy” theory

(Rowe, 1962; Rowe, 1972).

Reynolds (1885) stated that for a granular material in a state of maximum density,

any contraction in one direction is accompanied by equal extensions in mutual per-

pendicular directions. Goddard and Bashir (1990) concluded that Reynolds dilatancy

must be interpreted as an internal kinematical constraint reflecting the geometrical

effects which are operative in the quasi-static motion of nearly rigid granules. In the

absence of any such internal constraint, the volume or density of a compressible ma-

terial is independent of its shape. Using the same notation as in section 5.5, Reynolds

dilatancy theory gives:

H = s|Ee|, (5.14)

with s = 0.75 for triaxial compression of mono-sized spheres (Deshpande, 1997).

Through numerical simulations of the deformation of a 2-D system of mono-sized

discs, Bashir and Goddard (1991) found a linear dependence of the volumetric strain
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on the shear strain with s = 1.82. They associated this high value of s to anisotropy

in the packing model used in the numerical simulations.

Later, Goddard and Didwania (1998) theoretically studied the dilatancy of 2-D and

3-D assemblies of rigid frictional spheres, with various sphere sizes and gradations.

They assigned to a granular assembly, a nearest-neighbour graph consisting of a

network of sites or nodes connected by “bonds”. Global fraction fA of bonds are

presumed to be active, and fraction 1 − fA of bonds are assumed to be broken or

inactive. The bonds, both active and inactive, are assumed to define the edges of

elementary space-filling, volume elements or simplexes, which in space dimension d

(d = 2 for 2-D) represent the minimal cluster of particles for which a d-volume can

be assigned (Goddard, 1998).

Each simplex consists of d + 1 particles or vertices connected pairwise by m =

d(d + 1)/2 edges, and the effective kinematic properties of a granular assembly can

be calculated from appropriate volume or ensemble averages over simplexes.

Under the assumption of fully dense (fA = 1) random isotropic assemblies, God-

dard and Didwania (1998) were able to derive an analytical expression for the dila-

tancy with d = 2 as:

Dv

K1

=
4(R1 +R2 +R3)

3
2 (R1 R2 R3)

1
2

π(R1 +R2)(R1 + R3)(R2 +R3)
, (5.15)

where K1 is the major principal value of K and R1 + R2, R2 + R3, R1 + R3 are the

sides of the representative triangle of three (nearly) touching disks of radius Ri. K is

defined as:

K = −dD′

= −d
(

D − Dv

d

)

, (5.16)

where D is the deformation or strain tensor and Dv is defined as Dv = tr {D}. Note

that using the same notation of section 5.5, equation (5.15) can be re-written as:

s =
H

|E| =
4(R1 +R2 +R3)

3
2 (R1 R2 R3)

1
2

π(R1 +R2)(R1 +R3)(R2 +R3)
. (5.17)
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In the special case of dense mono-size assemblies (R1 = R2 = R3), eq. (5.17) gives:

s =
3

3
2

2π
= 0.827, (5.18)

which can be compared with the Reynolds type estimate s = 0.5 (Deshpande, 1997).

According to Goddard and Didwania (1998), the only analytical solution for s when

d = 3, is for the special case of mono-sized spheres under uniaxial compression, giving:

s =
3

2π

(

1 +
1√
3

)

= 0.753. (5.19)

Note that the 2-D (5.18) and 3-D (5.19) solutions for s differ by about 10%, which is

around the experimental error of the uniaxial and triaxial measured s for mono-sized

spheres (Deshpande, 1997).

For arbitrary non-axisymmetric K, Goddard and Didwania (1998) implemented a

Monte Carlo numerical solution with good results.

Theoretical estimation of dilatancy for assemblies of angular shaped particles is

still an unsolved and complex problem.

5.7 Conclusions

1. The most commonly employed approaches to modelling the deformation behav-

iour of bituminous mixes fall into two main categories: i) Continuum Mechanics

models, and ii) Micromechanical models. Continuum mechanics models are still

the most popular choice for analysing mixes in engineering practice.

2. A large amount of literature on the prediction of permanent deformation of

bituminous mixes was found. However, most of the models fail to incorporate

some of the observed characteristic of the deformation of the material or require

an excessive amount of calibration parameters, with complex fitting procedures.
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3. A simple model, which predicts the main characteristics of the steady-state com-

pressive deformation of bituminous mixes under various stress and strain rate

states, was developed by Deshpande and Cebon (1999b) based on soil mechan-

ics and micro-mechanics theories. It shows good agreement with experimental

observations and provides a good understanding of the main characteristics of

the steady-state deformation behaviour.

4. A simple analytical solution for the dilation of 2-D fully dense disk assemblies

was proposed by Goddard and Didwania (1998). However, the theoretical es-

timation of 3-D assemblies of spheres require complex numerical methods of

solution, while for angular particles dilation is still an unsolved problem.
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5.8 Figures

Figure 5.1: Steady-State Deformation Behaviour of idealised mixes with 40, 52, 75,

and 85% by Volume Aggregate (Deshpande and Cebon, 2000)



Chapter 6

Uniaxial deformation behaviour of

bituminous mixes

6.1 Introduction

Bituminous mixes are complex composite materials consisting of a high volume frac-

tion of aggregate mixed with bitumen and air voids. In order to understand the

influence of the mix components and their interactions, various volume fractions of

aggregate mixes, ranging from 40% to 85%, with rounded and angular aggregate are

studied under uniaxial conditions in this chapter. An extensive experimental study

comprising of monotonic, continuous cyclic and pulse loading compressive uniaxial

experiments is reported here. Based on these experimental findings a phenomenolog-

ical model, which is an extension to the model proposed in chapter 3 for bitumen,

is proposed. In this model, the total strain-rate is decomposed into rate dependent

elastic, permanent and recoverable components.

108
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6.2 Experimental investigation

The experiments measured the uniaxial compressive deformation behaviour of bi-

tuminous mixes under monotonic and cyclic loading conditions at various different

loading rates and temperatures. Tensile tests were not performed because other mech-

anisms, such as void nucleation and growth can become dominant (Deshpande and

Cebon, 2000; Harvey, 2000; Krishnan and Rajagopal, 2004).

6.2.1 Mix specification

Pure Bitumen

The same 50 pen bitumen studied in chapter 3 was used for the mixes preparation.

The material parameters for this 50 pen bitumen are listed in Table 3.1 with the load-

ing calibration curve ǫ̇oc(ǫ) and recovery calibration curve ǫ̇uc(ǫ
r) plotted in Figs. 3.6

and 3.9, respectively.

Mixes

Following a similar investigation procedure to Deshpande and Cebon (2000), four

types of mixes consisting of bitumen and different volume fractions of aggregate were

prepared and tested. These are listed in Table 6.1. Mixes AS and BS were low volume

fraction dispersions, whereas mixes CS, DS and ES were fully dense mixes (see Finney

(1970), German (1989) and Deshpande and Cebon (2000)). The mix preparation and

testing procedures are detailed in the following sections.

6.2.2 Mix preparation

Specimen preparation technique has a significant effect on the measured properties

of bituminous mixes. The main factors to take into account in specimen preparation

are the compaction technique (affecting the density profile and void content, see
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Hills (1973) and Wallace and Monismith (1980)) and the surface condition (cut or

as-moulded) (Harvey et al., 1994).

Equipment and procedure for specimens of types AS and BS

Bituminous mixes are usually prepared as hot mixes of aggregate and bitumen. Desh-

pande and Cebon (2000) found that the main problem in the preparation of specimens

with an aggregate volume fraction less than the maximum random packing density1 is

that the aggregate settles, leading to poor homogeneity of the specimen. To overcome

this problem they prepared these mixes using a “sintering” process. That specimen

making technique was followed in this study.

A cylindrical mould was manufactured and used to cast and compact the speci-

mens. The diameter of the cylinder was 38.5 mm and the ratio of height to diameter of

the specimen was of about 2. A lubricant consisting of a mixture of natural soap and

glycerine (see Cheung (1995)) was applied to the inner surface of the mould to avoid

sticking of the mix. A piece of non sticking silicone paper was placed in the bottom

surface of the plungers to ease removal of the specimen after compaction. Crushed

cold bitumen was mixed with the correct amount of sand (40% or 52% volume frac-

tion) and then poured into the mould. The powdered mix was then compacted in a

mechanical press (at room temperature) and then heated in a furnace for 1 hour at

55◦C2. This soft mixture (still in the mould) was further compacted at 5 MPa for 5

min to allow the bitumen to fill the air voids and bond with the sand. The mould

was then placed in a freezer to cool down the specimen to about 0◦C. Finally, the

cold specimen was slowly pushed out of the mould. The final homogeneity of the

specimens was checked using the same technique described for mixes CS, DS and ES

in the next section, with good results.

1The maximum random packing density for single sized spheres is about 64% (Finney, 1970).
2This is the approximate softening point of the bitumen used.
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Equipment and procedure for specimens of types CS, DS and ES

Various compaction procedures are commonly used in the preparation of laboratory

asphalt specimens. Fwa et al. (1993) evaluated several techniques based on the density

profile of the specimens. The density profile was measured using a twin-probe nuclear

density gauge (see Tan and Fwa (1991) for details). Their main conclusion was that

single plunger compaction in multiple layers, or double plunger compaction in a single

layer, gave homogeneous test specimens.

An evaluation was performed of the following compaction processes: single plunger

compaction in one layer, single plunger compaction in three layers and double plunger

compaction in one layer, using the bituminous mixes prepared in this study. To

measure the density profile of the specimens, an X-ray computed tomography system

was used. The advantage of this method of measurement is that it enables the density

of the specimen to be measured at different positions along the length.

Figure 6.1 shows the density profiles for the three compaction techniques studied

on the center line of mix CS specimens (64% Volume fraction of sand). It can be seen

that the density profiles obtained with double plunger compaction and single plunger

compaction in three layers are reasonably uniform, as concluded by Fwa et al. (1993).

Double plunger compaction in one layer was selected as the compaction technique for

mixes CS, DS and ES in this study instead of the three layer compaction technique

used by Deshpande and Cebon (2000). This choice was motivated by the possibility

that during the preparation of the three layers specimens, traces of the release agent

applied to the plunger may be left at the layer interfaces. This could affect the

deformation behaviour of the mix.

The same mould used for mixes AS and BS was used to cast the specimens of

mixes CS and DS, while a cylindrical mould of internal diameter of 70 mm was used

to cast the mix ES (85% volume fraction) specimens.
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A mixture of the correct amounts of bitumen and aggregate (64%, 75% or 85%

volume fraction) was heated to melt the bitumen. The mixture was then well stirred,

poured into the mould, and compacted in a mechanical press at a pressure of approx-

imately 15 MPa. After the mix had cooled down to room temperature, the specimen

was slowly pushed out of the mould and stored at sub-zero temperature, following

the same procedure described by Deshpande and Cebon (2000).

6.2.3 Test protocol

The test protocol was based on the test program developed in chapter 3 for bitumen.

The main difference was the loading direction of the tests. Uniaxial compressive tests

on the cylinder shaped specimens were performed in a hydraulic testing machine. The

top and bottom surfaces of the loading platens of the testing machine were lubricated

with a mixture of soap and glycerine in order to reduce friction between these surfaces

and the specimen and thus to reduce bulging. The load was measured with a 20 kN

load cell and used to calculate the nominal stress in the specimen. The load line

displacement was used to calculate the nominal axial strain. The radial strains were

measured by fitting a Hall effect radial transducer to the specimens of mixes AS,

BS, CS and DS, while a non-contact laser scan micrometer was used to measure

the radial strains of mix ES specimens. The test temperature was controlled by an

environmental chamber with a resolution of ±0.5◦C attached to the hydraulic testing

machine. Prior to testing, all specimens were kept in the environmental chamber for

about 2 hours to allow them to attain the test temperature. Experimental results

from tests at 0◦C, 10◦C and 20◦C are reported here. A number of spot repeat tests

confirmed the repeatability of the tests. For the sake of brevity, these results are not

presented.
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Monotonic tests

Constant strain-rate and constant stress creep tests were employed to characterize

the monotonic stress versus strain behaviour of the mixes. In the constant strain-

rate tests, a specified uniaxial compressive strain-rate ǫ̇ was applied to the specimen

and the resulting nominal compressive stress σ and strain ǫ were recorded. In the

constant stress creep tests, a constant nominal compressive stress was applied “in-

stantaneously” to the specimen and the nominal compressive strain ǫ was recorded

as a function of time t.

Creep recovery tests

The creep recovery behaviour of the mixes was investigated by performing single

load/unload tests as shown in Fig. 3.2a. A compressive stress σ was applied rapidly

to the specimen and then held constant. The specimen was allowed to creep to a

specified total nominal compressive strain ǫT. At this strain, the loading stress was

released and the compressive strain monitored until the axial strain rate was zero

ǫ̇ ≈ 0. The strain at this point ǫpl = ǫT − ǫr is the “plastic” or irrecoverable strain, as

shown schematically in Fig. 3.2a. Such tests were repeated for a series of strains ǫT,

creep stresses σ and temperatures.

Cyclic tests

Continuous cyclic and pulse train tests were performed to characterise the cyclic and

repeated loading behaviour of the mixtures.

Continuous cyclic tests.

In the continuous cyclic tests, the nominal compressive stress σ was varied between

σmin and σmax with a triangular wave form as shown schematically in Fig. 3.2b. The
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parameters

R =
σmin

σmax
(6.1)

and

σm =
σmin + σmax

2
(6.2)

were used to define the load levels, the frequency of the triangular wave was f , giving

a loading rate of ±(σmax − σmin)f/2. The nominal compressive strain was measured

as a function of time and tests were repeated for a series of values of R, σm and f .

Pulse train tests.

Tests comprising periodic compressive stress pulses with a trapezoidal shape, as shown

in Fig. 3.2c, were performed in order to simulate a load history similar to that ex-

perienced in a pavement. The aim here was to investigate the relation between the

single load/unload behaviour analysed via the creep and creep recovery tests and the

gradual rachetting of strain due to the application of a continuous train of discrete

stress pulses as shown schematically in the bottom half of Fig. 3.2c.

The constant maximum compressive stress σp in each trapezoidal stress pulse was

applied for a time period ∆p/2 with a loading and unloading rate σ̇ = 4σp/∆p. A

series of tests was performed at each temperature at fixed σp, but with varying time

period ∆g between consecutive trapezoidal pulses.

6.3 Experimental results

6.3.1 Monotonic behaviour

Constant strain-rate tests were performed over a wide range of strain-rates and tem-

peratures. Figure 6.2 shows the nominal stress versus nominal strain response of mix
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DS (75% volume fraction of aggregate) at 20◦C for two values of the applied strain-

rate ǫ̇ (similar results were also obtained at other temperatures). In each test, the

compressive stress increases progressively until a maximum value is reached. This

value is defined as the steady-state stress σss, following the procedure proposed by

Ward (1971) and Cheung and Cebon (1997b). With increasing applied strain-rate,

the steady-state stress increases.

Constant stress creep tests were also performed over a range of stresses and tem-

peratures. Figure 6.3 shows the monotonic creep response of mix DS at 20◦C for two

selected stress values. The slope of the secondary creep region, in which the strain

varies linearly with time, is defined as the steady-state strain-rate ǫ̇ss at the prescribed

stress, in line with the prescription of Ward (1971) and Cheung and Cebon (1997b).

Figure 6.4 summarises the monotonic steady-state behaviour of mix DS over a

range of stresses, strain-rates and temperatures on a log-log scale with axes of ǫ̇ss and

σss.

The Modified Cross model (5.5) was fitted to the steady-state experimental data

of mix DS in Fig. 6.4. Similar to the observations of Deshpande and Cebon (2000),

the mix exhibits power-law viscous behaviour with ǫ̇ss ∝ σ2.6
ss (m=0.615 in eq. 5.5)

at high stresses and linear behaviour with ǫ̇ss ∝ σss at low stress levels. Further, the

temperature dependence of the steady-state behaviour of the mix is well characterised

by the same Arrhenius relation as for bitumen (eq. 2.16) in the range (0◦C≤ T ≤

20◦C). Also shown in fig. 6.4 is the curve obtained in chapter 3 for the bitumen used

in these specimens at 20◦C, plotted using the Modified Cross Model. It can be seen

that the curve for the mix at 20◦C has the same shape as that for pure bitumen at

20◦C. The main difference, is that the steady-state strain rate for the mix is less than

that of pure bitumen at the same stress level by a constant multiplying factor as

observed by Deshpande and Cebon (2000). Consequently the monotonic steady state
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behaviour of the mix can be described by equation (5.5).

The constant strain-rate and creep tests for any given mix reveal that the steady-

state behaviour occurs at a fixed value of strain (ǫss ≈ 0.025 for mix DS (75%) in

fig. 6.2). Thus, as for bitumen, the steady-state Modified Cross model (eq. 5.5) can

be viewed as the relation between stress and strain-rate at a strain level ǫ = 0.025

with ǫ̇pc in eq. (2.16) being a calibration constant for a strain ǫ = 0.025. Thus, it

is expected that the Cross model can be extended to give the relation between the

stress and strain-rate at any value of strain ǫ by replacing the constant ǫ̇pc with a

reference strain-rate ǫ̇oc(ǫ) that is a function of strain ǫ. Equations (5.5) and (2.16)

can then be re-written as:

σ

Slǫ̇
=

σo

ǫ̇o(ǫ)

1

1 +
(

Slǫ̇
ǫ̇o(ǫ)

)m , (6.3)

where

ǫ̇o(ǫ) = ǫ̇oc(ǫ)e
−k( 1

T
−

1
273 ), (6.4)

where Sl is the loading stiffening factor and k the Arrhenius constant, remaining

unchanged from that of bitumen.

The function ǫ̇oc(ǫ) can be extracted from one of the monotonic test results, using

the procedure described in chapter 3 for bitumen. In this way it is found that the

functions obtained from different experimental conditions collapse onto a single mas-

ter curve. This enables the use of any of the monotonic tests to find the calibration

function ǫ̇oc(ǫ), as is the case of bitumen.

Similar sets of monotonic tests were also performed on the other four mixes (AS,

BS, CS and ES). The steady-state behaviour was again found to be well characterised

by the Modified Cross model, with the Arrhenius relation capturing the temperature

dependence. Figure 6.5 shows two strain controlled results at the same applied strain

rate and temperature for mixes CS (64%) and DS (75%). It can be seen that the
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main differences between these mixes are the steady state stresses (stiffening factors)

and the strain at which the steady-state (peak) is reached ǫss. Similar conclusions

can be found for mixes AS (40%) and BS (52%) and ES (85%). Figure 6.6 shows the

variation of the loading stiffening factor Sl with volume fraction of aggregate. It can

be seen that Sl increases with volume fraction, as observed by Deshpande and Cebon

(2000). Conversely, figure 6.7 shows that ǫss decreases approximately linearly with

the volume fraction of aggregate. The volumetric strain behaviour of the mixes will

be discussed in the following sections.

6.3.2 Creep recovery behaviour

Creep recovery tests were performed on the mixes at various temperatures and the

recovery behaviour investigated for unloading from various total axial creep strains

ǫT. The creep recovery response at 20◦C for mix DS (75%) with σ = 0.270 MPa is

shown in Fig. 6.8, with axial strain ǫ plotted as a function of time t, for two selected

values of ǫT (see fig. 3.2a for definitions). In all tests on the mixes studied, the

recovered strain ǫr was observed to increase with increasing ǫT, as for bitumen.

The results of all the uniaxial creep recovery tests performed on mix DS (75%) are

summarised in Fig. 6.9, where the recovered strain ǫr is plotted as a function of the

total strain ǫT just before unloading. The figure reveals that, to within experimental

error,

ǫr = ψǫT + ǫel , (6.5)

with the slope of the line in Fig. 6.9 being independent of temperature for a given mix.

Following the same notation adopted for bitumen, this slope will be called “recovery

constant” ψ (0 ≤ ψ ≤ 1). This slope was found to be ψ ≈ 0.2 for mix DS (75%).

Contrary to the findings for bitumen, the recovery behaviour of the mixes was found

to be dependent on the applied stress, hence the elastic strain ǫel comes into play
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as ǫel = σ/E, and the y-axis intercept in fig 6.9 is not zero. Figure 6.10 shows a

reduction in the recovery constant ψ with increasing volume fraction of aggregate.

Following an analogous procedure to that applied to bitumen, the recovery strain

versus time history can also be captured by a unique unloading calibration curve.

The recovery strain-rate ǫ̇r is a maximum immediately after the removal of the stress

and reduces to zero as the axial strain ǫ → ǫpl. Thus, the recoverable strain can be

characterised by the parameter ǫ̂r which is defined by

ǫ̂r ≡
( ǫ

ǫpl
− 1
) 1 − ψ

ψ
, (6.6)

with ǫ̂r = 1 at the instant of unloading and ǫ̂r = 0 when the strain ǫ = ǫpl, ie. when

the recoverable strain is zero. The recovery rate ǫ̇r at temperature T is described by

a unique function ǫ̇uc(ǫ̂
r) such that

ǫ̇r = −ǫ̇u(ǫ̂r), (6.7)

where

ǫ̇u(ǫ̂
r) = ǫ̇uc(ǫ̂

r)e−k( 1
T
−

1
273). (6.8)

The recovery rate ǫ̇r is (i) a unique function of ǫ̂r, (ii) independent of loading history,

and (iii) scales with temperature according to the same Arrhenius relation that gov-

erns the loading temperature dependence. Figure 6.11 shows the recovery calibration

curve ǫ̇u(ǫ̂
r) for mix DS (75%). Also in the same figure is plotted the recovery cali-

bration curve found for the 50 pen bitumen used in the mixes. Note that the figures

coincide apart from a scale factor. Analogous to the loading case, the scale factor, will

be called recovery stiffening factor Sr. For the curves plotted in fig. 6.11, Sr ≈ 3000.

Figure 6.12 shows the variation of Sr with volume fraction of aggregate. Also shown

in that figure is a re-plot of the data in fig. 6.6. It can be seen that Sl and Sr are

equal within the bounds of experimental error.
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The radial strains were also measured during the creep recovery tests. For the

cylindrical specimens, the volumetric strain H is given by

H = 2E11 + E33, (6.9)

where E11 and E33 are the radial and axial strains, respectively. The distortional or

Von Mises effective strain Ee is given by

Ee = E33 −
H

3
=

2

3
(E33 − E11). (6.10)

The relationship between distortional and volumetric strain for a selected recovery

test on mix DS (75%) is shown in fig. 6.13. The behaviour is similar to that expected

for soils (Taylor, 1948). There is an initial reduction in volumetric strain due to

compaction of the specimen or lack of parallelism between top and bottom surfaces

of the specimen. Then the volumetric strain increases in proportion to the distor-

tional strain with slope s. That slope is called the dilation gradient, and is given

approximately by

H = s|Ee|. (6.11)

After removal of the load there is a small amount of hysteresis, after which the strains

recover with the same slope s as the loading path. Table 6.3 shows the dilation

gradient measured for the different mixes. Note that the fully dense mixes CS (64%),

DS (75%) and ES (85%) show s > 0 while mixes AS (40%) and BS (52%) show s ≈ 0,

in line with the observations of Deshpande and Cebon (2000).

6.3.3 Continuous cyclic response

Stress-controlled, continuous cyclic tests were performed to investigate the effect of

the mean stress σm, load ratio R, frequency f and temperature on the cyclic strain

versus time response of the mixes.
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The strain versus time response of mix DS (75%) with R = 0.5 at 20◦C is shown

in Fig. 6.14 for two selected values of the mean stress σm. The average cyclic stress-

controlled response is seen to be similar in form to the monotonic creep response,

with primary, secondary and tertiary regimes of behaviour. The “cyclic steady-state

strain-rate” is defined as the mean gradient of the strain versus time history in the

secondary regime of behaviour. Fig. 6.14 shows that this steady-state strain-rate

increases with increasing mean stress σm for a fixed R.

Next, consider the influence of the load ratio R and loading frequency f on the

cyclic stress controlled response. The strain versus time history of mix DS (75%) at

20◦C with σm = 0.245 MPa and f = 2.0 Hz is shown in Fig. 6.15a for three selected

values of R and in Fig. 6.15b with σm = 0.245 MPa and R = 0.7 for three selected

frequencies f . These figures demonstrate that the load ratio3 R and frequency f

have a negligible effect on the cyclic stress controlled strain versus time response of

the mix, as found for bitumen. A series of similar experiments on the other mixes

confirmed this result over the range of temperatures and stresses investigated here.

Given that the cyclic-stress-controlled behaviour of the mixes is governed largely

by the mean stress, it is worth examining the relation between the cyclic steady-state

strain rate and the monotonic steady-state creep strain-rate. The cyclic steady-state

strain-rate from a series of tests on mix DS (75%) (with varying values of f and

R) are also plotted in Fig. 6.4 as a function of the mean stress σm, alongside the

monotonic steady-state data. It is clear that the cyclic steady-state behaviour follows

the monotonic steady-state response, provided the creep stress σss is interpreted as

the cyclic mean stress σm. This is consistent with the results for bitumen described

in chapter 3.

3Note that the different slopes on secondary creep regions in the results are due to experimental

differences between the specimens and not to the applied values of R.
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6.3.4 Results of pulse train tests

Cyclic stress controlled pulse tests were performed for a range of temperatures, pulse

stresses σp and time period ratios ∆p/∆g (see fig. 3.2c). Representative results

for tests on mix DS (75%) at 20◦C and 0◦C are shown in Figs. 6.16a and 6.16b,

respectively. Similar tests on mix CS (64%) at 20◦C and 0◦C are shown in Figs. 6.17a

and 6.17b, and on mix ES (85%) at 20◦C in Fig. 6.18a and mix EA (85%) at 20◦C in

Fig. 6.18b. The results show that for a fixed value of σp, the accumulated permanent

strain decreases with decreasing ∆p/∆g, because larger fractions of the creep strain are

recovered in the zero-load gaps between the pulses. As ∆g → 0, the pulse train tests

converge to the continuous cyclic loading tests, with no recovery of the accumulated

strain.

6.4 Uniaxial phenomenological model

A uniaxial phenomenological model for a given mix is proposed here. The model

contains the key features of the phenomenological model proposed in section 3.5 for

bitumen. The main difference is the inclusion of an elastic term which was ignored in

the bitumen model. The model attempts to capture the monotonic, creep recovery,

continuous cyclic and pulse loading behaviour described in the previous section. It is

motivated by the following experimental observations:

1. The monotonic response is adequately described by the extended Cross model

with the reference strain-rate ǫ̇oc a function of the strain ǫ.

2. The recovery response is captured by an unloading reference strain-rate ǫ̇uc

which is a function of the recoverable strain as parametrised by ǫ̂r.

3. Elastic effects are considerable for the mixes.
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4. The continuous cyclic response follows the monotonic response with the mean

stress σm interpreted as the creep stress σ. This indicates that recovery is

negligible in these continuous cyclic tests.

5. The loading and recovery temperature dependence of the mixes is governed

by the temperature dependence of pure bitumen and therefore is adequately

described by the Arrhenius relation over the range of temperatures, 0◦C≤ T ≤

20◦C, investigated here.

The total strain-rate ǫ̇ is written as the sum of the viscous strain-rate ǫ̇v, which is

active during loading (σ 6= 0), the recovery strain-rate ǫ̇r, which is only active when

the stress σ = 0 and the elastic strain-rate ǫ̇el which is active when |σ̇| > 0 . Thus for

an arbitrary loading history,

ǫ̇ = ǫ̇el + ǫ̇v + ǫ̇r. (6.12)

The elastic response of the mix is given by

ǫ̇el =
σ̇

E
, (6.13)

where E is the Young’s modulus of the mix. The viscous response of the mix to an

applied load is given by the implicit equation of the extended Cross model

ǫ̇v =
ǫ̇pl

1 − ψ
=
σǫ̇o(ǫ)

σo

[

1 +

(

ǫ̇v

ǫ̇o(ǫ)

)m]

, (6.14)

where ǫ̇pl is the irrecoverable fraction of the viscous strain-rate and the recovery rate

follows from the discussion in Section 6.3.2 as

ǫ̇r = −sign(ǫ) [1 − sign(|σ|)] ǫ̇u(ǫ̂r). (6.15)

Here sign(0) is defined to be zero and −sign(ǫ) ensures that the recovery rate ǫ̇r reduces

the strain ǫ. Note that the calibration constants ǫ̇o(ǫ) and ǫ̇u(ǫ̂
r) at the temperature

T under consideration are given by (6.4) and (6.8), respectively with ǫ̇oc and ǫ̇uc the
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reference strain-rates. It is worth mentioning here that the stiffening factors Sl and

Sr are implicit in the values of the reference strain rates for a given mix (see fig.

6.11).

It is necessary to integrate equations (6.12)-(6.15) with respect to time to obtain

the strain resulting from an applied stress history.

An approximate calibration of this model with four uniaxial compressive tests,

following a similar procedure to that described for bitumen in section 3.5.3, can be

found in Ossa et al. (2004).

Comparison with experimental results

In this section the predictions of the uniaxial phenomenological model are compared

with the monotonic, recovery, continuous cyclic and pulse loading experimental re-

sults. Detailed comparisons are made for mix DS (75%) while for the sake of brevity,

only comparisons for the more realistic pulse loading tests are shown for mixes CS

(64%) and ES (85%).

Comparisons between model predictions and experimental data for monotonic con-

stant strain-rate and constant stress creep tests are shown in Figs. 6.2 and 6.3, re-

spectively with the dotted lines corresponding to model predictions. Good agreement

is seen with both the constant strain-rate tests and the creep tests over the range

of stresses, strain-rates and temperatures studied. Similarly, good agreement is seen

between model predictions and the creep-recovery experimental results for mix DS

(75%) at 20◦C as shown in Fig. 6.8. It is worth emphasising here that the tests used

to calibrate ǫ̇oc(ǫ) and ǫ̇uc(ǫ̂
r) were different from those employed to demonstrate the

accuracy of the model in Figs. 6.2, 6.3 and 6.8 : the model is, of-course, in perfect

agreement with the calibration tests.

The model captures, to within reasonable accuracy, the continuous cyclic response



Chapter 6. Uniaxial deformation behaviour of bituminous mixes 124

of mix DS (75%) as shown in Fig. 6.14.

A key judge of the accuracy of the model lies in its ability to predict the response of

the mixes in the pulse loading tests: in these tests both the creep response under load

and the recovery behaviour is combined in a complicated manner and the response

of the model is integrated over many cycles, enabling modelling errors to build-up.

Such comparisons for pulse loading tests on mix DS (75%) at 20◦C and 0◦C are

shown in Fig. 6.16; in fig. 6.17 for mix CS (64%) 20◦C and 0◦C, and in fig. 6.18a

for mix ES (85%) at 20◦C. In all these cases the model accurately predicts the total

accumulated strains to within reasonable accuracy. The accumulated strain is the

relevant parameter in predicting the rutting response of a pavement.

6.5 Effects of particle shape

In order to develop a model to predict the deformation behaviour of any bituminous

mix, it is necessary to understand the main effects caused by the components. An

increase in volume fraction of aggregate increases the stiffening effects on the defor-

mation behaviour and decreases the overall strain of the mix in both loading and

recovery. Deshpande and Cebon (2000) found that particle size has no significant

effect on the deformation behaviour of spherical and sub-spherical aggregate. Nev-

ertheless, this conclusion cannot necessarily be extended to aggregate with angular

particles.

As an initial investigation onto the influence of particle size and shape in the

deformation behaviour of mixes, four different mixes were fabricated at a fixed volume

fraction of 64% using sand of varying particle shapes and sizes. The specification for

those mixes are given in table 6.2. Mixes CA1 and CA2 were made using angular sand

with sizes close to those used as filler in asphalt mixes. Mixes CS3 and CS4 were made

with sub-spherical sand as those discussed in previous sections. The specimen making
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technique employed was the same described in section 6.2.2 for mixes CS, DS and

ES. Table 6.4 summarises the main experimental results for these mixes. Note that

the stiffening factors Sl and Sr, and the dilation gradient s increase for the angular

sand mixes CA1 and CA2 compared with the sub-spherical sand mixes CS3 and CS4

(table 6.3). These considerable increases are due to the increased “interlock” of the

sand particles due to the angularity, as well as a reduction in the volume fraction

of voids in the mixes. The steady-state strain ǫss is seen to decrease for the angular

sand mixes.

In order to evaluate the effect of angularity on mixes with higher volume fraction

of aggregate, a mix of 85% volume fraction was also studied. Mix EA was made

using irregular (angular) stones (see Table 6.2). The stiffening factors for mix EA

were lower than the corresponding stiffening factors for mix ES. This difference can

be explained due to the increase in the void fraction of mix EA. The dilation gradient

s of mix EA increases in comparison with mix ES, as for the sand mixes. The steady

state strain ǫss of mix EA is similar to the corresponding steady state strain for mix

ES.

Surprisingly, the recovery constant ψ remains the same for all the mixes for a fixed

volume fraction of aggregate, independent of the angularity of the aggregate.

Figure 6.18b shows the pulse loading behaviour of mix EA. It can be seen that

the model described in section 6.4 captures the pulse loading behaviour of the mix

reasonably well despite the angularity of the aggregate.

6.6 Concluding Remarks

1. The monotonic constant strain-rate and creep behaviour of bituminous mixes

have been measured over a range of temperatures. The monotonic response

under both these loading conditions was found to be adequately described by
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an extended Cross model wherein the “viscosity” as parametrised by ǫ̇oc(ǫ) is a

function of strain.

2. The recoverable strain is proportional to the strain prior to unloading with the

recovery rate being a unique function of the recoverable strain ǫ̂r.

3. Both the loading and recovery responses were observed to be temperature de-

pendent with the Arrhenius relation capturing the temperature dependence over

the range of temperatures tested, 0◦C≤ T ≤ 20◦C.

4. Two types of cyclic loading tests were conducted, (i) continuous cyclic and

(ii) pulse train tests, to simulate vehicle loading in a pavement. While the

continuous cyclic response was similar to the monotonic response with only the

mean stress governing the behaviour, significant strain recovery was observed

during the rest periods in the pulse train experiments.

5. The elastic effects were found to play an important role in modelling the defor-

mation behaviour of mixes, opposite to the results for bitumen.

6. The loading and recovery stiffening factors Sl and Sr have the same values for

a given mix and increase with volume fraction of aggregate.

7. The mixes with fully dense aggregate packing (≥ 64% for spherical aggregate)

dilate under uniaxial compressive loading. The volumetric strain varies linearly

with distortional strain in both loading and recovery conditions with the same

slope s.

8. The main effects of high angularity of the aggregate in the deformation be-

haviour of the mixes are, (i) an increase in the stiffening factors and dilation

gradient and (ii) a reduction in the steady-state strain. However, the recovery

constant was found to remain unchanged despite the angularity of the aggregate.
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9. An extension to the phenomenological model for bitumen developed in section

3.5, was proposed for mixes. The model is seen to capture the monotonic,

continuous cyclic and pulse loading response of the mixtures at different tem-

peratures with reasonable accuracy.
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6.7 Tables

Mix Volume fraction Volume fraction Type of

of aggregate of voids aggregate

Mix AS 40% ≈ 3% Subspherical sand particles

between 1.18 and 2.36 mm in size

Mix BS 52% ≈ 3% Subspherical sand particles

between 1.18 and 2.36 mm in size

Mix CS 64% ≈ 4% Subspherical sand particles

between 300 and 600 µm in size

(1) Subspherical sand particles between

Mix DS 75% ≈ 4% 300 and 600 µm in size (37.5 %)

(2) Subspherical sand particles between

1.8 and 2.36 mm in size (37.5 %)

(1) Subspherical sand particles between

Mix ES 85% ≈ 4% 150 and 300 µm in size (11 %)

(2) Subspherical sand particles between

1.8 and 2.36 mm in size (18 %)

(3) Rounded stones ∼10 mm

in diameter (56 %)

Table 6.1: Description of mixes studied.
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Mix Volume fraction Volume fraction Type of

of aggregate of voids aggregate

Mix CA1 64% ≈ 0.5% Angular sand particles

passing 75 µm sieve (filler)

Mix CA2 64% ≈ 2% Angular sand particles between

150 and 300 µm in size

Mix CS3 64% ≈ 4% Subspherical sand particles between

300 and 600 µm in size

Mix CS4 64% ≈ 4% Subspherical sand particles between

1.8 and 2.36 mm in size

(1) Subspherical sand particles between

Mix EA 85% ≈ 9% 150 and 300 µm in size (11 %)

(2) Subspherical sand particles between

1.8 and 2.36 mm in size (18 %)

(3) Angular stones ∼10 mm (56 %)

Table 6.2: Description of mixes studied for aggregate shape effects.

Mix Dilation gradient s

Mix AS (40%) ≈ 0

Mix BS (52%) ≈ 0

Mix CS (64%) 0.7 - 0.9

Mix DS (75%) 0.6 - 0.75

Mix ES (85%) 0.35 - 0.55

Table 6.3: Dilation gradient for the mixes studied
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Mix Sl Sr ǫss s ψ

Mix CA1 7000-30000 5000-10000 0.008-0.016 1.0-1.35 0.2-0.22

Mix CA2 2000-5500 1500-3000 0.012-0.017 1.15-1.45 0.2-0.23

Mix CS3 600-1800 800-1500 0.035-0.07 0.7-0.9 0.2-0.28

Mix CS4 800-2000 800-1700 0.03-0.07 0.7-0.95 0.2-0.25

Mix EA 13000-16000 11000-15000 0.019-0.021 0.8-1.0 0.15-0.17

Table 6.4: Experimental results for mixes studied for aggregate shape effects.
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6.8 Figures
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Figure 6.1: Density profiles for three different specimen making techniques studied

on mix C (64%).
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Figure 6.6: Variation of loading stiffening Sl factor with volume fraction of sand. The

error bars show the experimental scatter of the results.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Volume fraction of sand, c

-N
om

in
al

ax
ia

l
st

ra
in

to
re

ac
h

st
ea

d
y
-s

ta
te

,
ǫ s

s

Figure 6.7: Variation of nominal axial strain to reach steady-state with volume frac-

tion of sand. The error bars show the experimental scatter of the results.



Chapter 6. Uniaxial deformation behaviour of bituminous mixes 135

0 50 100 150 200 250 300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

-N
om

in
al

ax
ia

l
st

ra
in

,
ǫ

Time (s)

Experiment

Model

Figure 6.8: Creep recovery test results for mix DS (75%) at 20◦C, σ = 0.270MPa.

0 0.01 0.02 0.03 0.04 0.05
0

0.002

0.004

0.006

0.008

0.01

0.012

★

+

1.0
ǫr

ǫT = ǫr + ǫpl

ψ ≈ 0.2

σ = 0.270 MPa at 20◦C

σ = 0.345 MPa at 20◦C

σ = 0.650 MPa at 10◦C

σ = 0.470 MPa at 10◦C

Figure 6.9: Summary of the creep recovery experimental results for mix DS (75%)

showing a linear relationship between ǫr and ǫT.



Chapter 6. Uniaxial deformation behaviour of bituminous mixes 136

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Volume fraction of aggregate, c

R
ec

ov
er

y
co

n
st

an
t,
ψ
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Figure 6.16: Pulse loading tests for mix DS (75%). (a) At 20◦C, σp = 0.13MPa and
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Chapter 7

Triaxial deformation behaviour of

bituminous mixes

7.1 Introduction

The deformation behaviour of a pavement under a wheel load is highly dependent

on the state of triaxial stresses in the asphalt on the upper layers. Hence asphalt

need to be tested under various states of stresses (not only uniaxial). The majority

of research on the deformation behaviour of asphalt has been done for uniaxial stress

states (usually compressive), nevertheless triaxial testing has long been recognised as

important to understand the behaviour more generally, as discussed in chapter 5.

Deshpande and Cebon (1999b) and Collop and Khanzada (2001) investigated the

monotonic steady state behaviour of idealised bituminous mixes under triaxial condi-

tions finding a strong dependence of the steady-state deformation behaviour of fully

dense mixes (more than 64% volume fraction of aggregate) on the deviatoric and

hydrostatic stresses.

In this chapter, tests on bituminous mixes under various deviatoric loading condi-

143
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tions (monotonic, recovery, continuous cyclic and pulse train) and hydrostatic stresses

are described. The effect of these conditions on the deformation behaviour of varying

volume fraction of aggregate mixes will be studied. From these results, a simple con-

stitutive model for mixes will be proposed. This constitutive model simplifies to the

uniaxial phenomenological model proposed in chapter 6 under axisymmetric uniaxial

conditions.

7.2 Experimental investigation

The main goal of this study was to understand the deformation behaviour of bitu-

minous mixes under compressive monotonic and cyclic triaxial stress states. The

micro-structure and behaviour of the low volume fraction dispersions of bitumen

and sand are not representative of that of asphalt. Nevertheless in order to have a

more broad understanding of the behaviour of different mixes under triaxial state of

stresses, a 52% volume fraction sand mix was tested under monotonic triaxial con-

ditions. A full set of triaxial tests was performed on 75% and 85% volume fraction

of aggregate mixes. The specimens dimensions and preparation procedures were the

same described in section 6.2.2.

Four types of mixes consisting of 50 pen bitumen and different volume fractions of

aggregate, similar to those prepared and tested in the uniaxial study (chapter 6), were

prepared and tested here. These are mixes BS, DS, ES and EA as listed in Tables 6.1

and 6.2. Mix BS was a low volume fraction dispersion, whereas mixes DS, ES and

EA were fully dense mixes. While most of the experimental results are presented for

mix DS (75%), the generality of the model developed is demonstrated via the pulse

loading triaxial test results on mixes ES and EA (85%).

As the temperature dependence of mixes was found to be governed by the temper-

ature dependence of bitumen (see chapter 6), all the triaxial tests were performed at
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room temperature (20◦C).

7.2.1 Description of apparatus

A standard axi-symetric triaxial cell of the type commonly used in soil mechanics

was used in the experimental investigation. It had a maximum allowable confining

pressure of 1.5 MPa.

The fluid used in the triaxial cell was water and the pressure was applied by a

pressure controller supplied by GDS Ltd. The axial load was applied by a standard

hydraulic testing machine through a 10 kN submersible load cell. The submersible

load cell measured the axial load applied to the specimen and was insensitive to the

fluid pressure within the triaxial cell.

As in the uniaxial study, the axial and radial strains of the specimens were mea-

sured. The axial strain was measured from the load line displacement of the hydraulic

actuator by means of an LVDT. The radial strains of mixes BS and DS were measured

using a Hall effect radial transducer. The radial strains of specimens of mixes ES and

EA (85% volume fraction) were not measured because the diameter of the specimens

was too large for the available transducer.

A pressure transducer was fitted directly to the bottom of the triaxial cell in order

to monitor the confining pressure applied to the specimen. The outputs of the radial

transducer, LVDT, submersible load cell and pressure transducer were logged by a

personal computer through an analogue to digital converter.

7.2.2 Testing procedure

Before testing, the radial strain transducer was attached to the specimens of mixes

BS and DS. The specimen was placed between two platens whose surfaces were lubri-

cated with a mixture of glycerine and natural soap to reduce friction and minimise
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bulging. Following the same procedure as Deshpande (1997), the specimens were

pressurised directly1. This can be done because of the small void fractions of the as-

phalt specimens. After filling the triaxial cell with water, the pressure controller was

set to maintain a certain hydrostatic pressure. Four different types of triaxial tests

were performed on mixes DS (75%) and ES (85%): monotonic, recovery, continuous

cyclic and pulse train tests. The procedure followed in these tests is briefly described

in the next sections. It is worth mentioning here that a number of spot repeat tests

confirmed the repeatability of the test results reported here. For the sake of brevity,

these results are not presented here.

Monotonic triaxial tests

The triaxial monotonic test procedure followed is the same as that used by Deshpande

(1997), nevertheless a brief description is given here.

After the target hydrostatic pressure was reached and stable, the axial load was

applied “instantaneously” and maintained at that constant value. The axial load,

axial displacement, radial strain and hydrostatic pressure was logged for the duration

of the test. The axial load Q and the hydrostatic pressure P are related to the

principal stresses (see fig. 7.1a) by:

Σ33 = Q/A+ P

Σ22 = P (7.1)

Σ11 = P,

where A is the nominal cross-sectional area of the specimen. Thus,

Σm = Σkk/3 = P +
Q

3A
, (7.2)

Σ = Σ33 − Σ11 =
Q

A
, (7.3)

1Soil samples are tested with an impermeable rubber membrane covering the specimen.
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are the mean stress and deviatoric stresses respectively. The tests were performed

over a range of hydrostatic and deviatoric stresses. The stresses were applied such

that for a particular constant stress ratio

η = Σm/Σ , (7.4)

the deviatoric stress Σ was varied over approximately 2 orders of magnitude. The

stress ratio η was varied from η = 1/3 (uniaxial) to η = 1 (P = 2Q/3A).

Triaxial creep recovery tests

The triaxial creep recovery behaviour of the mixes was investigated by performing a

series of single load/unload tests, under hydrostatic pressure, as shown in Fig. 7.1b

in an analogous way as for the uniaxial tests described in chapter 6. Once the speci-

men reached the target hydrostatic pressure, a compressive axial load Q was applied

rapidly to the specimen and then held constant. The specimen was allowed to creep

to a specified total nominal compressive axial strain ET
33. At this strain, the axial load

Q was released (keeping the hydrostatic pressure P constant) and the compressive

strain monitored until the axial strain rate was zero Ė33 ≈ 0. The axial strain at this

point

Epl
33 = ET

33 − E r
33 (7.5)

is the irrecoverable axial strain. Such tests were repeated for a series of axial strains

ET
33, deviatoric stresses Σ and stress ratios η.

Continuous cyclic tests.

In the continuous cyclic triaxial tests, the axial load Q was varied between Qmin

and Qmax, while the hydrostatic pressure P was maintained constant. The cyclic

deviatoric stress was therefore varied between Σmin = Qmin/A and Σmax = Qmax/A as
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shown schematically in Fig. 7.1c, with

R =
Σmin

Σmax

, (7.6)

and

Σmean =
Σmin + Σmax

2
, (7.7)

defining the load levels. The loading rate was governed by the frequency f of the

triangular waveform. Therefore the stress ratio varied during the test such that:

ηmin =
AP

Qmin

+
1

3
, (7.8)

ηmax =
AP

Qmax
+

1

3
, (7.9)

the mean stress ratio is:

ηm =
ηmin + ηmax

2
=
AP

2

(

1

Qmin

+
1

Qmax

)

+
1

3
, (7.10)

The nominal compressive strain was measured as a function of time and tests

repeated for a series of values of R, f , Σmean and hydrostatic pressures P .

Pulse train tests.

Tests comprising intermittent identical compressive axial stress pulses with a trape-

zoidal shape in the time domain, as shown in Fig. 7.1d, were performed in order to

simulate a load history similar to that experienced in a pavement. The hydrostatic

pressure was kept constant as in the other triaxial tests. The aim here was to investi-

gate the relation between the single load/unload behaviour analysed via the triaxial

monotonic and triaxial recovery tests, and the gradual rachetting of strain due to the

application of a continuous train of discrete stress pulses.

The constant maximum deviatoric stress Σp, due to the applied axial load Qp, in

each trapezoidal stress pulse was applied for a time period ∆p/2 with a loading and
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unloading rate Σ̇ = 4Σp/∆p (Fig. 7.1d). The stress ratio of the test was defined as

ηp = Σm/Σp. Tests were performed at various stress ratios and various time gaps ∆g

between consecutive trapezoidal pulses at a fixed Σp.

7.3 Experimental results

7.3.1 Monotonic behaviour

Figure 7.2 shows the monotonic creep triaxial response of mix DS (75%) for two

selected deviatoric stresses with a stress ratio η = 0.6. The creep curves have a similar

form to the uniaxial creep test results (see section 6.3.1), with primary, secondary and

tertiary2 regions. Following the same procedure as for uniaxial behaviour, the slope

of the secondary creep region, is defined as the steady-state strain-rate ǫ̇ss at the

prescribed deviatoric stress Σ and stress ratio η. The steady state strain rate ǫ̇ss can

be seen to increase with the deviatoric stress Σ.

Figure 7.3 summarises the monotonic, triaxial, steady-state behaviour of mix DS

(75%) over a range of deviatoric stresses Σ and stress ratios η on a log-log scale with

axes of ǫ̇ss and Σ. Also plotted in fig. 7.3 is the steady state uniaxial behaviour of

pure bitumen at the same temperature (see chapter 3). Since bitumen is a von Mises

material (Cheung, 1995), this curve will be the same for all compressive axisymmetric

stress states. It can be seen that mix curves at a constant stress ratio η, have the same

shape as the curve for pure bitumen at the same temperature. The same behaviour

was observed for idealised asphalt mixes by Deshpande (1997). Therefore, as for the

uniaxial behaviour, the steady state triaxial behaviour can be represented by the

2Not shown in the figure.
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Modified Cross Model (Deshpande and Cebon, 1999b):

Σ

Slǫ̇ss
=
σo

ǫ̇o

1

1 +
(

Slǫ̇ss
ǫ̇o

)m , (7.11)

with the loading stiffening factor Sl a function of the applied stress ratio η. From fig.

7.3 it can be seen that Sl increases with the stress ratio η: Sl ≈ 6000 for η = 0.6 to

Sl ≈ 44000 for η = 1.

Figure 7.4 summarises the effect of the stress ratio η on the steady-state strain

rate for the different mixes studied, with

ǫ̇mix

ǫ̇bitumen
=

1

Sl
. (7.12)

Note that for the fully dense mixes (vf > 64%)3 the strain rate of the mix decreases

with increasing stress ratio η, while for vf < 64% the mix strain rate is independent

of the stress ratio η.

The radial strain was measured and used to determine the distortional or Von

Mises effective strain

Ee =
2

3
(E33 − E11), (7.13)

and the volumetric strain H . The relationship between these strains was observed to

be linear and can be represented by :

H = s|Ee|. (7.14)

This behaviour is similar to the observations of Deshpande (1997) and to the results

of uniaxial tests on the same mix (see 6.3.1), with the dilation factor s unchanged

from uniaxial to triaxial experimental results (see Tables 6.3 and 6.4).

The strains to reach steady state in the monotonic triaxial tests were found to

be the same as those measured in the uniaxial study. This indicates that they are

364% vf mixes were not tested under triaxial conditions in this study, nonetheless this conclusion

is valid from the work of Deshpande (1997), who tested similar mixes under triaxial stress conditions.
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independent of the applied stress ratio η. This, and the fact that the stress ratio

η affects only the loading stiffening factor Sl, enables the extension of the Modified

Cross Model used for uniaxial behaviour of mixes to be used for triaxial conditions. In

the triaxial case, Sl is assumed to be a function of the stress ratio η and the remaining

parameters are unchanged. The model is then:

Σ

Slǫ̇
=

σo

ǫ̇o(ǫ)

1

1 +
(

Slǫ̇
ǫ̇o(ǫ)

)m , (7.15)

where

ǫ̇o(ǫ) = ǫ̇oc(ǫ)e
−k( 1

T
−

1
273 ), (7.16)

with the Arrhenius constant k remaining unchanged from that of bitumen as for the

uniaxial behaviour of mixes.

7.3.2 Creep recovery behaviour

Triaxial creep recovery tests were performed at various deviatoric stresses Σ and stress

ratios η, and the recovery behaviour was investigated for unloading from various total

creep axial strains ET
33. The creep recovery response for mix DS (75%) with η = 1.0

at two selected values of deviatoric stress Σ is shown in Fig. 7.5, with axial strain E33

plotted as a function of time t, for two selected values of ET
33. The triaxial recovery

behaviour is shown to be similar to the uniaxial recovery behaviour with the recovered

strain E r
33 increasing as ET

33 is increased.

The results from all the triaxial creep recovery tests performed on mix DS (75%),

including uniaxial results from chapter 6, are summarised in Fig. 7.6, where the

recovered axial strain E r
33 is plotted as a function of the total axial strain ET

33 prior

to unloading. The figure reveals that, to within experimental error, E r
33 = ψET

33 + Eel
33

with the slope of the line being independent of the applied stress ratio η (from η = 1
3

to η = 1.0). Following the same notation adopted for bitumen and uniaxial behaviour
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of mixes, this slope will be called “recovery constant” ψ (0 ≤ ψ ≤ 1). This slope was

found to be ψ ≈ 0.2 for mix DS (75%).

Following the same procedure as for uniaxial behaviour, the recovery strain versus

time history can be captured by a unique unloading calibration curve ǫ̇u(Ê r
33). Figure

7.7 shows the recovery calibration curve ǫ̇u(Ê r
33) for mix DS (75%) with η = 0.6. Also

plotted in the same figure is the recovery calibration curve found for pure bitumen.

Note that the two coincide apart from a constant scale factor. That scale factor,

as for the uniaxial behaviour, will be called “recovery stiffening factor” Sr. For the

curves plotted in fig. 7.7, Sr ≈ 6000. The variation of Sr with stress ratio η was

found to be similar to the variation found for Sl (see fig. 7.3).

The radial strains were also measured during the triaxial creep recovery tests and

the volumetric strain was found to vary linearly with the distortional strain, as in the

uniaxial case, with a slope s independent of: (i) the applied stress ratio η and (ii) the

loading or recovery paths.

7.3.3 Continuous cyclic response

Continuous, triaxial, stress-controlled cyclic tests were performed to investigate the

effect of the mean deviatoric stress Σmean, mean stress ratio ηm, deviatoric load ratio

R and frequency f on the cyclic strain versus time response of the mixes.

In order to asses the accuracy of the pressure controller in the highly demanding

continuous cyclic triaxial test, preliminary tests were performed under various loading

conditions measuring the applied stress ratio η. The maximum deviation from the

target confining pressure was found to be around 2%, which is considered satisfactory

for this kind of tests.

The strain versus time response of mix DS (75%) with R = 0.7 is shown in Fig. 7.8

for two selected values of the mean deviatoric stress Σmean at ηm = 0.6 and f = 0.5Hz.
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The triaxial cyclic stress-controlled response was seen to be similar in form to the

monotonic triaxial creep response, with primary, secondary and tertiary4 regimes of

behaviour. The triaxial cyclic steady-state strain-rate is defined as the mean gradient

of the strain versus time history in the secondary regime of behaviour as for the uni-

axial case. Fig. 7.8 shows that this steady-state strain-rate increases with increasing

mean deviatoric stress Σmean for fixed R, f and ηm.

Next, consider the influence of the load ratio R and frequency f on the cyclic,

triaxial, stress-controlled response, for a given stress ratio ηm. The strain versus time

history of mix DS (75%) with Σmean = 0.52 MPa, R = 0.7 and ηm = 0.6 is shown

in Fig. 7.9a for 3 selected values of f and in Fig. 7.9b with Σmean = 0.18 MPa,

f = 0.5 Hz and ηm = 0.6 for two selected deviatoric stress ratios R. Both these

figures demonstrate that the load ratio R and frequency f have a negligible effect on

the cyclic triaxial stress-controlled strain versus time response of the mix, as observed

for the uniaxial behaviour. A series of similar experiments at different mean stress

ratios ηm where also performed. The relationship between the triaxial cyclic steady-

state strain rate and the triaxial monotonic steady-state creep strain-rate for the

different stress ratios is shown in fig. 7.3. A comparison between the triaxial cyclic

and triaxial monotonic steady-state data reveals that the triaxial cyclic steady-state

behaviour follows the triaxial monotonic steady-state response, with the deviatoric

stress Σ replaced by the deviatoric cyclic mean stress Σmean, in line with the results

for uniaxial behaviour. Furthermore, the mean stress ratio ηm shows the same loading

stiffening factor Sl as for the monotonic triaxial steady state behaviour.

The radial strains were also measured for the continuous cyclic triaxial tests. The

volumetric strains showed, once again, a linear variation with the distortional strain,

keeping the same slope s as measured for the monotonic recovery tests discussed

4Not shown in the figure.
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previously.

7.3.4 Pulse train triaxial behaviour

Triaxial, cyclic, stress-controlled pulse tests were performed for a range of deviatoric

pulse stresses Σp, time period ratios ∆p/∆g (see fig. 7.1d) and stress ratios ηp.

Representative results for tests on mix DS (75%) at two selected values of applied

stress ratio ηp with constant ∆p/∆g and Σp are shown in fig. 7.10. The results show

that for fixed values of Σp and ∆p/∆g, the accumulated permanent strain decreases

with increasing ηp, as expected due to the increase in stiffening factors Sl and Sr with

increasing stress ratio ηp. It was also found (not shown) that as ∆g → 0, the pulse

train tests converged to the continuous cyclic loading tests, with no recovery of the

accumulated strain, as for the uniaxial case (Ossa et al., 2004).

Figure 7.11 shows pulse test results for mixes ES and EA for the same values of

applied ηp, Σp and ∆p/∆g.

7.4 Phenomenological constitutive model

Based on the experimental observations, a phenomenological constitutive model for

a given mix is proposed here. The model retains the key features of the model for

uniaxial behaviour of mixes. The main differences with that model are the depen-

dence of the loading and recovery stiffening factors on the applied stress ratio η, and

inclusion of the effects of the dilation, the other parameters remaining unchanged.

The Von Mises effective strain-rate Ėe for an arbitrary loading history can be

written as

Ėe = Ėe
el

+ Ėe
v

+ Ėe
r
, (7.17)



Chapter 7. Triaxial deformation behaviour of bituminous mixes 155

where the elastic response is given by

Ėe
el

=

√

2

3
Ėel

ij Ėel
ij , (7.18)

where

Ėel
ij =

1 + ν

E
Σ̇ij −

ν

E
Σ̇kkδij . (7.19)

Here E is the Young’s modulus of the mix, ν is the Poisson ratio, and δij is the

kronecker delta.

The viscous response is given by

Ėe
v

=
Ėe

pl

(1 − ψ)
=

Σeǫ̇o(Ee)

Sσo

[

1 +

(

SĖe
v

ǫ̇o(Ee)

)m]

, (7.20)

where Ėe
pl

is the irrecoverable fraction of the viscous effective strain-rate. The

recovery effective strain rate is written as

Ėe
r
= −sign(Ee) [1 − sign(|Σ|)] ǫ̇u(Êe

r
)

S
. (7.21)

Here sign(0) is defined to be zero and −sign(Ee) ensures that the recovery effective

rate Ėe
r
reduces the effective strain Ee. The volumetric strain rate is given by

Ḣ = sĖe. (7.22)

It is necessary to integrate equations (7.17)-(7.22) with respect to time to obtain

the strain resulting from an applied stress history.

The approximate calibration of the model for uniaxial behaviour of bituminous

mixes of Ossa et al. (2004) can be easily extended to obtain the model parameters

for the constitutive phenomenological model described. The reader is referred to the

work of Ossa et al. (2004) for a complete description of this approximate calibration

procedure.
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7.5 Comparison with experimental results

In order to compare the predictions of the constitutive phenomenological model with

the triaxial experiments described in previous sections, the constitutive model must

be rewritten for axisymmetric stress states. The axial and radial strain rates are given

by

Ė33 = Ėel
33 + Ėv

33 + Ėr
33, (7.23)

and

Ė11 = Ė22 =

(

2s sign(Σ) − 3

2s sign(Σ) + 6

)

Ė33, (7.24)

respectively, where the axial elastic component is written as

Ėel
33 =

Σ̇

E
. (7.25)

The axial viscous response is given by

Ėv
33 =

Σǫ̇o(Ee)

Sσo

{

s sign(Σ) + 3

3

}

[

1 +

(

SĖv
33

ǫ̇o(Ee)

{

3

s sign(Σ) + 3

}

)m]

, (7.26)

and the axial recovery rate is given by

Ė r
33 = −sign(E33) [1 − sign(|Σ|)] ǫ̇u(Ê

r
e)

S
. (7.27)

where

Ê r
33 =

(E33

Epl
33

− 1

)

1 − ψ

ψ
. (7.28)

Comparisons between model predictions and experimental results for triaxial, monotonic,

constant-stress creep tests are shown in fig. 7.2, with the dotted lines corresponding to

model predictions. Good agreement is seen between experimental results and model

predictions within experimental error. The triaxial recovery results are also captured

reasonably well by the model as shown in fig. 7.5. The model also captures, to within

reasonable accuracy, the triaxial continuous cyclic response as shown in figs. 7.8 and

7.9.
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A key judge of the accuracy of the model lies in its ability to predict the response of

the mixes in the pulse loading tests: in these tests both the creep response under load

and the recovery behaviour is combined in a complicated manner and the response

of the model is integrated over many cycles, enabling modelling errors to build-up.

Such comparisons for pulse loading tests on mix DS (75%) at two different stress

ratios ηp are shown in fig. 7.10 and in fig. 7.11 for mixes ES and EA. The model is

seen to accurately predict the total accumulated strains and the steady-state slope

(see section 3.5.1) in all the cases. It is important to note that the model predicts

the deformation behaviour of mixes to be independent of the aggregate size and

shape. See section 6.5 for a discussion of the effect of aggregate size and shape on

the deformation behaviour of mixes. The current simple model succeeds in capturing

the total accumulated strain to within reasonable accuracy, which is the relevant

parameter in predicting the rutting response of a pavement.

It is important to emphasize here that the differences seen between model pre-

dictions and experimental results are highly influenced by the experimental scatter,

caused by differences in the specimens resulting from their fabrication. Fig. 7.12

shows the error between the “steady-state” slope, measured and predicted, in the

pulse loading tests5 for all tests performed, including the results for pure and polymer-

modified bitumens. Also plotted in the same figure as solid lines is the coefficient of

variation of the experimental results derived from the steady-state monotonic tests,

giving an indication of the experimental scatter. Note that the modelling error gen-

erally falls between the limits of two standard deviations error, indicating that ex-

perimental scatter is a reasonable explanation for the differences. Each experimental

point is accompanied by a pair of numbers representing the time period ratio ∆p/∆g

and the test temperature T . No correlation can be observed between the modelling

5Pulse loading tests were not performed for mixes AS and BS, therefore the error in these mixes

was measured on the steady-state part of the monotonic curves.
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error and ∆p/∆g, T or volume fraction of aggregate for either uniaxial or triaxial

tests. This indicates that the accuracy of the model is independent of all these vari-

ables, i.e. it captures their effects without any systematic error. Further, the mean

modelling error was found to be of approximately 14% (dashed line in fig. 7.12),

which is considered between reasonable limits.

7.6 Discussion

A phenomenological constitutive model for bituminous mixes has been developed.

The model is capable of predicting the response of a given mix for a variety of

monotonic and cyclic triaxial loadings. Most models for the monotonic and cyclic

behaviour of asphalt, such as those discussed in chapter 5, treat asphalt as either a

linear or nonlinear viscoelastic or viscoplastic solid. By contrast with the simple con-

stitutive model proposed here, an extensive set of experiments is needed to calibrate

these models.

It has been discussed by some researchers that void content and its distribution

has a significant effect on the deformation behaviour of the mix (see for instance

Von Quintus et al. (1991), Krishnan and Rao (2000) and Krishnan and Rajagopal

(2004)). In this study, the amount, distribution and evolution of voids on the mix

were taken into account implicitly in the loading and recovery calibration curves,

which include all the effects of air voids in the deformation. This holds true for a

given volume fraction of aggregate and air voids.

The effect of aggregate angularity on the uniaxial deformation behaviour of bi-

tuminous mixes was discussed in section 6.5. It was found that the main effect of

angularity was an increase of the dilation gradient s. The triaxial behaviour of the

85% volume fraction mix with angular aggregate (mix EA) was studied here. The

effect of the confining pressure was seen to be the same as for the rounded aggregate
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mixes, with the deformation rate of the mix decreasing with increasing stress ratio η

for monotonic and cyclic triaxial conditions.

The constitutive model proposed does not take into account mechanisms like frac-

ture of bitumen and coalescence and growth of voids in the mixes. These mechanisms

are expected to be important when the mix is subjected to tensile stresses (Deshpande

and Cebon, 1999b; Genin and Cebon, 2000). Therefore, the constitutive model should

only be applied to bituminous mixes subjected to compressive stresses (as in all the

experiments described).

7.7 Conclusions

1. The triaxial deformation behaviour of the fully dense mixes was found to be a

function of the mean and the deviatoric stresses.

2. For a constant stress ratio η, the steady-state axial creep behaviour of the mixes

has the same form as that of pure bitumen. The loading stiffening factor Sl is a

function of the volume fraction of the aggregate and the stress ratio η = Σm/Σ,

as observed by Deshpande and Cebon (1999b).

3. The triaxial monotonic response was found to be adequately described by a

reference strain rate function of the applied strain ǫ̇o(Ee) as for the uniaxial

behaviour. This reference function is dependent on the applied stress ratio η.

4. The strain to reach steady state ǫss was found to be unaffected by the level of

confining pressure.

5. The recovery stiffening factor Sr was found to be a function of the volume

fraction of aggregate and the stress ratio η. The effects of these variables on Sr

were found to be the same as for the loading stiffening factor Sl. The recovery
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constant ψ was found to be unaffected by the stress ratio η, and dependent only

on the volume fraction of aggregate.

6. The recovery behaviour of the mixes under triaxial conditions can be described

by a reference recovery strain rate which is a function of a parametrised strain

ǫ̇u(Ê r
e) as for the uniaxial case. This function scales with the function found for

pure bitumen with the recovery stiffening factor Sr.

7. Two types of triaxial cyclic loading tests were conducted, (i) continuous cyclic

and (ii) pulse train tests to simulate vehicle loading in a pavement. While the

triaxial continuous cyclic response was similar to the monotonic response with

the mean deviatoric stress and mean stress ratio ηm governing the behaviour,

significant strain recovery was observed during the rest periods in the pulse

train experiments, as also found for the uniaxial behaviour of mixes.

8. The mixes with a high volume fraction of aggregate dilate under triaxial com-

pressive loading. The volumetric strain varies linearly with distortional strain

in both loading and recovery conditions with the same slope s. The value of s

is not affected by the applied stress ratio η or loading conditions (monotonic or

cyclic).
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7.8 Figures
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Figure 7.1: Schematic showing the triaxial test coordinate system and test sequences.

(a) Stresses on the cylindrical specimen and definition of stress ratio η. (b) Recovery

test. (c) Continuous cyclic test sequence. (d) Pulse train test sequence.
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Figure 7.10: Triaxial pulse test results at 20◦ C for mix DS (75%) with Σp = 0.3MPa,
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Figure 7.11: Triaxial pulse test results at 20◦ C for 85% volume fraction of aggregate

with round and angular stones. (a) Mix ES (Round stones) with Σp = 0.52 MPa,

∆p = 20 s, ∆g = 60 s. (b) Mix EA (Angular stones) with Σp = 0.52 MPa, ∆p = 20 s,

∆g = 60 s.
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Chapter 8

Micro-mechanical modelling of

asphalt deformation

8.1 Introduction

The deformation behaviour of bituminous mixes has been studied experimentally in

previous chapters. The main characteristics of the deformation behaviour of the mixes

were:

1. The steady-state monotonic and continuous cyclic loading behaviour followed

the Modified Cross Model, exhibiting linear and non-linear viscous behaviour

at low and high stresses, respectively.

2. The mixes were stiffer with lower strains for the same stress levels than pure

bitumen.

3. The recoverable strain was proportional to the strain prior to unloading with

the recovery rate a unique function of the recoverable strain ǫ̂r.

4. The elastic effects were found to play an important role in modelling the defor-

170
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mation behaviour of mixes, unlike the response of pure bitumen.

5. The loading and recovery stiffening factors Sl and Sr have the same values for

a given mix and increase with volume fraction of aggregate and stress ratio η.

6. The triaxial deformation behaviour of the fully dense mixes was found to be a

function of the mean and deviatoric stresses.

7. The strain to reach steady-state ǫss was found to be unaffected by the applied

stress ratio η and a function only of volume fraction of aggregate.

8. The recovery constant ψ was found to be unaffected by the stress ratio η and

shape of the aggregate, and to be dependent only on the volume fraction of

aggregate.

9. The mixes with a high volume fraction of aggregate dilate under compressive

loading. The volumetric strain varies linearly with distortional strain in both

loading and recovery conditions with the same slope s. The value of s is not

affected by the applied stress ratio η or loading conditions (monotonic or cyclic).

In this chapter a “micro-mechanical” model for the deformation behaviour of asphalt

under axisymmetric loading conditions will be assembled using some of the micro-

mechanical models found in the literature and some of the phenomenological obser-

vations from experiments. First, the model will be described, then, model predictions

will be compared with uniaxial and triaxial experimental results.
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8.2 Description of the model

8.2.1 General loading

The deformation behaviour of a given bituminous mix can be fully described if the

fundamental properties of bitumen (k, σo, ǫ̇oc(ǫ), ǫ̇uc(ǫ̂uc), ψ and m), aggregate (s, c)

and volume fraction of air voids (v) are known.

The macroscopic Von Mises effective strain-rate Ėe of a mix for an arbitrary loading

history can be written as:

Ėe = Ėe
el

+ Ėe
v

+ Ėe
r
, (8.1)

where Ėe
el

is the elastic effective macroscopic strain rate, Ėe
v

is the viscous effective

macroscopic strain rate, and Ėe
r
is the recovery effective macroscopic strain rate.

Input parameters:

i) Young’s modulus In the experiments reported on chapters 6 and 7, the elastic

response of mixes was found to be important (unlike the case of pure bitumen, where

the elastic response was found to be negligible in comparison to the viscous response).

As discussed in Chapter 5, Heukelom and Herrin (1964) extended the stiffness

concept of Van der Poel (1955) to model the stiffness of the mix based on the stiffness

of the bitumen and volume fraction of aggregate. Noting that for higher values of

bitumen stiffness (Sbit > 5 MPa), bitumen behaves as an elastic solid, Heukelom and

Herrin’s model can be re-written as:

Eo
mix = Eo

bit

{

1 +
2.5c

κ(1 − c)

}κ

, (8.2)

where Eo
mix and Eo

bit are the Young’s modulus of the mix and bitumen respectively

at 0oC (273 K) expressed in MPa. And

κ = 0.83 log

{

4 × 104

Eo
bit

}

. (8.3)
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These equations were obtained from empirical fits to experimental data from dynamic

tests on compacted mixes with approximately 3% air voids and c values from [0.7 −

0.9].

Cheung (1995) found experimentally that the Young’s modulus of bitumen is

strongly affected by temperature. However, due to experimental measurement diffi-

culties, no definitive conclusions were drawn about the temperature dependence of

the Young’s modulus for bitumen.

As an initial approximation, the temperature dependence of the Young’s modulus

is assumed here to follow Arrhenius-type temperature dependence of bitumen (see

equation 2.16) for T ≥ Tg as:

Emix = Eo
mixe

−k( 1
T
−

1
273), (8.4)

where Emix is the Young’s modulus of the mix at the temperature T , and k is the

Arrhenius constant of bitumen. This is justified by the experimental results for mixes

described in chapter 6, where the temperature dependence of the mixes was well

described by the temperature dependence of the bitumen matrix.

Table 8.1 shows a comparison between measured and predicted values of Young’s

modulus for the fully dense mixes (c > 0.64) studied in previous chapters. Equations

(8.2) to (8.4) were used to calculate the mix Young’s modulus with a value of the

bitumen Young’s modulus of Eo
bit = 50MPa. This value of Eo

bit was used according

to measurements of the Young’s modulus for a similar bitumen performed by Cheung

(1995). The predicted values of the Young’s modulus are strictly valid only for mixes

DS, ES and EA as the model developed by Heukelom and Herrin is valid only for

volume fractions of aggregate in the range [70% − 90%], which explains the consid-

erable difference between measured and predicted values for mixes with 64% volume

fraction of aggregate. The agreement between experimental and predicted results for

mixes with 0.7 < c < 0.9 is considered acceptable for this kind of material where
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manufacturing conditions and microstructures vary considerably.

ii) Dilation It was seen from the experimental results that the volumetric strain

was related to the distortional strain by (see also Deshpande and Cebon (1999b)):

H = s|Ee|. (8.5)

This relation was independent of the stress ratio η, but for the fully dense mixes the

value of s depended on the aggregate volume fraction, shape and gradation. This

indicates that the dilation of the mix was due to the kinematic constraints imposed

by the aggregate similar to that in the deformation of granular assemblies consisting

of nearly rigid particles (see section 5.6).

Section 5.6 discussed some studies that have attempted to estimate theoretically

the dilation gradient s. The model of Goddard and Didwania (1998) (eq. 5.17)

will be used here to calculate the dilation of the mixes. This model assumes the

use of rigid circular frictional disks in 2-D. Noting that the 2-D and 3-D solutions

of Goddard and Didwania (1998) differ by around 10% for monodisperse gradation,

which is around the experimental error of the uniaxial and triaxial measured dilation

(see table 8.1), eq. (5.17) is considered as a good approximation to the dilation of

3-D rigid frictional spheres (as asphalt with round aggregate). Table 8.1 shows the

measured and predicted values of the dilation s. The values of s predicted by (5.17)

agree well with the measured values for mixes with sub-spherical aggregate (specimens

CS, DS and ES). However, (5.17) under-predicts s for angular aggregate where the

interlocking between aggregate particles is increased (specimens CA1, CA2 and EA).

Elastic response

In order to describe the elastic response, the mix is assumed to be a linear isotropic

material with Young’s modulus Emix and Poisson’s ratio ν. The equivalent elastic
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strain-rate Ėe
el

is then given by

Ėe
el

=

√

2

3
Ėel

ij Ėel
ij , (8.6)

where

Ėel
ij =

1 + ν

Emix
Σ̇ij −

ν

Emix
Σ̇kkδij. (8.7)

Here Σ̇ij is the deviatoric stress rate tensor, Σ̇kk is the hydrostatic stress rate and δij

is the kronecker delta.

Viscous response

The experimental study showed that the transient loading master curve for the mix

ǫ̇o(Ee) has the same shape as that for pure bitumen ǫ̇o(ǫ), shifted by a constant factor

S in the y-axis and a constant factor function of volume fraction of aggregate c in

the x-axis (see sections 6.3.1 and 7.3.1). Therefore, using equation (7.20), the viscous

loading response of the mix, which is only active when |Σ| > 0 can be written as:

Ėe
v

=
Ėe

pl

(1 − ψ)
=

Σeǫ̇o(Ee)

Sσo

[

1 +

(

SĖe
v

ǫ̇o(Ee)

)m]

, (8.8)

where Ėe
pl

is the irrecoverable fraction of the viscous effective strain rate, and σo and

m are the same values as for the bitumen matrix.

The effective macroscopic mix strain Ee was observed to decrease with increasing

volume fraction of aggregate c (see fig. 6.7). This is consistent with the well known

“rule of mixtures” as:

Ee = (1 − c)ǫ+ cǫag, (8.9)

where ǫ and ǫag are the Von-Mises effective microscopic strains of bitumen and ag-

gregate, respectively. As the aggregate is stiffer than the bitumen matrix, the second

term in (8.9) can be ignored. Therefore, the loading strain rate master curve of pure

bitumen ǫ̇o(ǫ) can be used along with eq. (8.9) to obtain the macroscopic loading

master curve for the mix ǫ̇o(Ee).



Chapter 8. Micro-mechanical modelling of asphalt deformation 176

As a first approximation, the stiffening factor S for transient behaviour can be

calculated using the non-linear composite-sphere model developed for the steady-

state by Deshpande and Cebon (1999b) (see section 5.5) as:

S = 0.55

{

(1
2
ks2 + 3

2
µ)(n+1)/2[1 − (c+ v)](n−1)/2

[1 − sη]n

}

, (8.10)

where n = 1/(1 −m) and η is the stress ratio. µ is the upper bound on the shear

modulus which can be found using Hashin’s composite sphere model (Hashin, 1962)

according to (Deshpande and Cebon, 1999b):

µ =
2

3















1 +
c

2
5
(1 − c) − c(1−c2/3)2

−
10
21

c7/3+ 10
21

− v
3
5
+ 2

5
v+ v(1−v2/3)2

95
168 v7/3+10

21















, (8.11)

and the bulk modulus k is given by:

k =
8

9

1 − v

v

1

1 − c
. (8.12)

This model predicts reasonably well the steady-state stiffening factor of mixes. As the

transient stiffening factor was seen to be constant and equal to the steady-state stiff-

ening factor, this approximations is expected to bring good results in the prediction

of the transient behaviour of mixes.

Recovery response

Based on equation 7.21, the effective recovery strain rate, which is only active when

Σ = 0 is written as:

Ėe
r
= −sign(Ee) [1 − sign(|Σ|)] ǫ̇u(Êe

r
)

S
. (8.13)

Here sign(0) is defined to be zero and −sign(Ee) ensures that the recovery effective

rate Ėe
r
reduces the effective strain Ee. The parametrised strain Êe

r
is written as:

Êe
r
=

( Ee

Epl
e

− 1

)

1 − ψmix

ψmix
. (8.14)
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Similar to the overall loading strain of the mixes, the recovery constant of the mix

ψmix was found to decrease linearly with volume fraction of aggregate c (see fig. 6.10).

Therefore, the macroscopic recovery constant of the mixtures (8.9), can be written

as:

ψmix = (1 − c)ψbit, (8.15)

where ψbit is the recovery constant of the bitumen matrix.

From experimental observations (see chapter 6), the recovery strain rate master

curve for pure bitumen ǫ̇u(ǫ̂
r) was found to have the same shape as for mixes, with

only the stiffening factor S and the recovery constant ψmix dependent on the volume

fraction of aggregate c. Therefore, the master curve for pure bitumen is used to

model the recovery behaviour of mixes by combining it with equations (8.10), (8.14)

and (8.15).

Mix evolution

Since eq. (8.5) is independent of stress and strain rate, a rate form of this equation

can be written as (Deshpande, 1997):

Ḣ = s|Ėe|. (8.16)

As the mix deforms, it dilates and thus the porosity increases. The evolution law for

the porosity is assumed to take a simple form for incompressible matrix behaviour

(Gurson, 1977; Deshpande, 1997):

v̇ = (1 − v)Ḣ, (8.17)

while the volume fraction of the aggregate is assumed to evolve due to the overall

volume change according to:

ċ = cḢ. (8.18)
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The evolution of the mix is then given by equation (8.1) along with (8.16), (8.17) and

(8.18).

It is worth noting that only the first order effects of the porosity evolution are

taken into account here, as discussed by Deshpande (1997). That is, the change in

volume fraction of voids is considered, but any anisotropy due to change in aspect

ratio of voids is ignored.

8.2.2 Axisymmetric loading

The constitutive model for general loading conditions of bituminous mixes described

in the previous sections can be particularized for the case of axisymmetric stress

states, like those studied experimentally. Using eq. (7.23) the axial and radial strain

rates can be written as:

Ė33 = Ėel
33 + Ėv

33 + Ėr
33, (8.19)

and

Ė11 = Ė22 =

(

2s sign(Σ) − 3

2s sign(Σ) + 6

)

Ė33, (8.20)

respectively. From (7.13), the effective strain rate can be written as:

Ėe = Ė33

(

3

3 + s sign(Σ)

)

. (8.21)

The axial elastic component is given by eq. (7.25) as:

Ėel
33 =

Σ̇

Emix
. (8.22)

The axial viscous response is given by eq. (7.26) as:

Ėv
33 =

Σǫ̇o(Ee)

Sσo

{

s sign(Σ) + 3

3

}

[

1 +

(

SĖv
33

ǫ̇o(Ee)

{

3

s sign(Σ) + 3

}

)m]

, (8.23)

and the axial recovery rate by eq. (7.27) as:

Ė r
33 = −sign(E33) [1 − sign(|Σ|)] ǫ̇u(Ê

r
33)

S
, (8.24)
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with

Ê r
33 =

(E33

Epl
33

− 1

)

1 − ψmix

ψmix
. (8.25)

Calculation procedure

Once all input parameters have been obtained, including measured or calculated s

and Emix, a flow diagram summarising the procedure to calculate the mix properties

as it deforms is shown in figure 8.1. The Young’s modulus of the mix can be calculated

using eqs. (8.2) to (8.4). From the properties of the bitumen matrix and eqs. (8.9),

(8.14) and (8.15) can be obtained the macroscopic reference loading and recovery

strain rates for the mix, ǫ̇o(Ee) and ǫ̇u(Ê r
e), respectively. With the volume fractions

of aggregate and voids (c and v) use eqs. (8.11) and (8.12) to calculate µ and k,

respectively. Then the stiffening factor S can be calculated using eq. (8.10) for a

given stress ratio η. The axial deformation rate can be then estimated using eqs.

(8.1), (8.6), (8.8) and (8.13). The volumetric strain rate can be calculated using

(8.16). The distortional deformation Ee is then evaluated by assuming Ėe remains

constant over a small time interval ∆t, and integrating: Ee = Ėe∆t. The volumetric

strain due to the kinematic constraint can be calculated from (8.5) . The evolution

equations (8.17) and (8.18) are finally integrated to calculate the new volume fractions

of voids v and aggregate c. The process can be repeated until the desired macroscopic

strain is reached.

8.3 Comparison with experimental results

A comparison between the predictions of the “micro-mechanical” constitutive model

described in the previous section and the uniaxial and triaxial test results discussed

in previous chapters will be presented in this section.

A detailed comparison between the main model parameters and their evolution
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will be presented for mix ES (85% volume fraction of sub-spherical aggregate), while

for the sake of brevity, a comparison of the more important parameters in the model

will be given for other mixes in order to show the generality of the model.

Figure 8.2 shows a triaxial creep recovery test result for mix ES with Σ = 0.78MPa

and η = 0.6. In dotted lines are plotted the model predictions with the two experi-

mentally measured limits of the dilation gradient s (see table 8.1), and in dashed lines

the model prediction using s calculated by eq. (5.17). The effect of s in the model

predictions is significant, increasing the slope of the loading region (t < 1000 s) with

decreasing s value.

Figure 8.3a shows the evolution of the stiffening factor S predicted by the model

for the same results plotted in fig. 8.2, with s = 0.43. Figure 8.3b shows the evolution

of voids and aggregate volume fractions as the mix deforms. Note that the stiffening

factor S decreases during loading (0 < t < 1000 s) due to the increase of voids

and consequently decrease in c. As soon as the load is removed (t > 1000 s), the

void fraction v decreases due to the recovery and consequently decrease in volumetric

strain H of the mix, inducing an increase in c and S.

Figure 8.4 shows the predicted variation of the stiffening factor on the steady-state

regime for the different mixes studied with sub-spherical aggregate. Also plotted in

the same figure are the experimental error bars of the measured steady-state stiffening

factors for the same mixes. The model predictions are close to the experimentally

measured values for mixes up to 75% volume fraction of aggregate. A significant

difference can be seen for the 85% mixes. This error and its influence in predicting

permanent deformation will be discussed for the pulse tests.

Figure 8.5a shows the model prediction of a pulse loading test on mix ES (85% sub-

spherical aggregate). This type of test is the most demanding in terms of modelling

accuracy because of the combination of both loading and recovery conditions for
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many cycles. The model predicts reasonably well the “steady-state” slope of this

test, however, the initial transient behaviour is under predicted leading to an overall

error in the permanent deformation of about 40%. Despite this considerable error,

the model is considered as a good approximation taking into account its simplicity

and that it captures accurately the “steady-state” slope.

The experimentally measured value of the transient stiffening factor was found

to be constant during the deformation (see section 6.3.1), opposite to the model

predictions where the stiffening factor is evolving with the mix (figs. 8.3a and 8.5b).

To investigate the effect of the evolution of the variables into the model prediction,

the model was ran ignoring the evolution of the mix. That is, keeping c and v

constant throughout the calculation. This assumption implies a constant value of

the stiffening factor S, consistent with experimental observations. Figure 8.6 shows

the prediction of the model assuming no evolution. Note that the overall error in

permanent deformation of the mix is reduced to about 20%. Despite the improvement

in the overall results, the transient deformation is still under estimated.

Figure 8.5b shows pulse loading test results for mix EA at two different stress ratios

η. Mix EA was manufactured with angular aggregate, which is closer to the aggregate

used in road construction. The model predictions including evolution of variables with

s = 0.9 (as measured) agree well with experimental results for this mix. Note that

the transient deformation in mix EA specimens is small (if any) in comparison with

mix ES. This difference is due to the higher dilation and consequently interlocking of

mix EA angular particles.

It is worth noting here that the model predictions presented were calculated using

the mean values of the experimentally measured values of the void fraction v and

temperature T . Variation in these quantities can lead to variation between the results.
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8.4 Discussion

A simple constitutive model for predicting the deformation behaviour of bituminous

mixes has been proposed in this chapter. The model makes use of some micro-

mechanical theories, as well as some phenomenological observations of the behaviour

of mixes. Therefore, the model proposed cannot be considered a micro-mechanical

model per se. However, as the main parameters of the model are calculated from

rigorous micro-mechanical models, the model in its actual form can be understood

as a micro-mechanically based model. More theoretical knowledge of some of the

parameters taken from phenomenological grounds is required in order to make this a

complete micro-mechanical model.

The model proposed uses Deshpande and Cebon’s model as a back-bone. That

model was developed under the assumption of non-linear (power law) behaviour of

the bitumen binder in the mix. After an experimental study of the strain distribution

in bituminous mixes, Masad et al. (2001) concluded that the strains experienced in the

bitumen matrix during mix deformation are well in the non-linear region inclusive for

small deformations. This confirms the assumption of Deshpande and Cebon (1999b)

who argued that the microscopic strains in the bitumen films between particles can

be large, even though the macroscopic strains are small.

A constitutive phenomenological model for the deformation behaviour of mixes

was developed in chapter 7. The predictions of that model were in good agreement

with experimental results for a fixed volume fraction of aggregate mix. On the other

hand, the model proposed in this chapter is applicable to any volume fraction of

aggregate. The generality, few input parameters, and ease implementation, make

the model suitable for design of mixes for some applications. Further, the model is

amenable to implementation in commercial Finite Element (FE) codes, allowing the

study and prediction of the deformation behaviour of bituminous mixes under static
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or moving wheel loads.

In the prediction of the permanent deformation or rutting of bituminous mixes, it

is expected that the influence of the rate independent elastic term (Ėel
e in eq. 8.1) is

negligible. Therefore, the values calculated of the Young’s modulus for the mixes are

not expected to make a significant difference to the permanent or plastic behaviour of

the mix. Consequently, the differences observed between the calculated and predicted

values of Emix (see table 8.1) are considered reasonable.

The dilation gradient s has a critical effect on the deformation behaviour of the mix.

It is seen from fig. 8.2 that an increase in the value of the dilation gradient increases

the stiffness of the mix and consequently reduces the strain rate. Further, when the

stress ratio reaches a critical value given by η = 1/s, the term [1−sη]n = 0 in eq. (8.10)

and “lockup” occurs, disabling further deformation of the mix (Deshpande, 1997).

The constitutive model proposed does not take into account mechanisms like frac-

ture of bitumen and coalescence and growth of voids in the mixes. These mecha-

nisms are expected to be important when the mix is subjected to tensile stresses

(Deshpande and Cebon, 1999b; Genin and Cebon, 2000). Therefore, the current con-

stitutive model should only be applied to bituminous mixes subjected to compressive

stresses (as in all the experiments described).

8.5 Conclusions

1. A simple model of the deformation behaviour of bituminous mixes was assem-

bled using micro-mechanical and phenomenological based theories. The model

inputs are the properties of the bitumen matrix and aggregate. The key as-

sumptions of the model are:

(a) The Young’s modulus of the mix is calculated using Heukelom and Herrin’s
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model for mixes with volume fractions of aggregate in the range [0.7 < c <

0.9], with the same temperature dependence of bitumen.

(b) The macroscopic strain Ee and recovery constant ψmix of the mix linearly

scale with volume fraction of aggregate.

(c) The 2-D solution for the dilation of rigid frictional disks of Goddard and

Didwania (1998) is approximately equal to the 3-D solution for rigid fric-

tional spheres.

(d) The steady-state stiffening factor solution of Deshpande and Cebon (1999b)

is assumed to be valid for the calculation of the transient stiffening factor

of mixes.

2. The model is capable of predicting the main characteristics of the deformation

behaviour of bituminous mixes with various volume fractions, as observed in

uniaxial and triaxial tests.

3. The predicted values of the dilation gradient s for sub-spherical aggregate agree

reasonably well with experimentally measured values, while for angular aggre-

gate the difference is significant.

4. The model is applicable to angular aggregates, provided measured values of the

dilation gradient s are used.
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8.6 Tables

Mix Emix Emix s s

measured predicted measured predicted

(20◦ C) (20◦ C)

Mix CS (64% sub-spherical) 60-90 9 0.70-0.90 0.827

Mix CA1 (64% Angular) 60-90 9 1.00-1.35 0.827

Mix CA2 (64% Angular) 55-80 9 1.15-1.45 0.827

Mix CS3 (64% sub-spherical) 65-85 9 0.70-0.90 0.827

Mix CS4 (64% sub-spherical) 70-80 9 0.70-0.95 0.827

Mix DS (75% sub-spherical) 100-150 39 0.60-0.75 0.705

Mix ES (85% sub-spherical) 250-300 380 0.35-0.55 0.43

Mix EA (85% Angular) 250-330 380 0.80 - 1.00 0.43

Table 8.1: Comparison between Young’s modulus and dilation gradient measured and

predicted by the 2-D model (eq. 5.17) for fully dense mixes. Numbers in bold indicate

where models are expected to be valid
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8.7 Figures

Inputs

Bitumen properties:

ǫ̇o(ǫ), ǫ̇
r
o(ǫ̂

r), m, σo, k, ψ

Aggregate properties:

c, s

Voids:
v

Stress conditions:

η, Σ

Use (8.9), (8.14) and (8.15)

to calculate ǫ̇o(Ee), ǫ̇
r
o(Êr

e )

Calculate Emix using

(8.2), (8.3) and (8.4)

Use (8.11) and (8.12) for µ and k

With (8.10) calculate S

Use (8.1), (8.6), (8.8) and (8.13)

to calculate Ėe
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Figure 8.1: Flow diagram showing the procedure of calculation of the deformation

behaviour of mixes using the constitutive model.
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Figure 8.2: Monotonic creep recovery triaxial test on mix ES (85%) at 20◦C with

Σ = 0.78 MPa and η = 0.6. The dotted lines represent the model predictions with

the two limits of the experimentally measured dilation gradient s. The dashed line

represent the model prediction with s = 0.43 calculated using eq. (5.17).
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voids (b), for creep recovery simulation shown in fig. 8.2, with s = 0.43.
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Figure 8.5: Triaxial pulse test results at 20◦ C for Mix ES (85% volume fraction of

sub-spherical aggregate) with Σp = 0.52 MPa, ∆p = 20 s, ∆g = 60 s, s = 0.43. (a)

Model prediction with evolution of c and v. (b) Percentage of variation of c, v and S

during mix evolution.
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sub-spherical aggregate) with Σp = 0.52 MPa, ∆p = 20 s, ∆g = 60 s, s = 0.43.
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Figure 8.7: Triaxial pulse test results at 20◦ C for Mix EA (85% volume fraction of

angular aggregate) with Σp = 0.52 MPa, ∆p = 20 s, ∆g = 60 s, s = 0.9 at two

different stress ratios. Model prediction with mix evolution.



Chapter 9

Conclusions and Recommendations

This chapter summarises the main conclusions of this dissertation and also provides

recommendations for further work.

9.1 Summary of main conclusions

9.1.1 Review of previous research on bitumen: Chapter 2.

A review of the more relevant literature concerned with understanding the deforma-

tion behaviour of bitumen was provided in this chapter.

The Modified Cross Model developed by Cheung and Cebon was found to provide

a good representation of the steady state behaviour of bitumen at temperatures above

the glass transition (Tg). For temperatures below Tg the Eyring Plasticity Model can

be used to model bitumen behaviour. Some researchers have attempted to model the

transient behaviour of creeping materials based on curve fitting and thermodynamic

principles. They have achieved good agreement with experimental results in some

cases (usually at small strains). However, these models are complex and usually re-

quire specialised software to carry the model fitting with experimental results. The

192
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dynamic behaviour of bitumen at small strains, where the behaviour is nearly linear,

is well understood. Nonetheless, the models proposed for the dynamic behaviour in

the non-linear regime are prohibitive in terms of the complexity and number of tests

needed for calibration. No conclusive information could be found about the indenta-

tion behaviour of bitumen for large strains, despite the promising results observed by

some researchers for small strains.

9.1.2 Deformation behaviour of bitumen: Chapter 3

The monotonic constant strain-rate and creep behaviour of four bitumens (2 pure

and 2 polymer-modified) were measured over a range of temperatures. The monotonic

responses were found to be adequately described by an extended Cross model, wherein

the “viscosity” is considered to be a function of strain. The recoverable strain was

found to be directly proportional to the strain prior to unloading, with the recovery

rate being a unique function of the recoverable strain. Both the loading and recovery

responses were observed to be temperature dependent, with the Arrhenius relation

capturing the temperature dependence over the range of temperatures tested, −5◦C≤

T ≤ 20◦C.

Two types of cyclic loading tests were conducted, (i) continuous cyclic and (ii)

pulse train tests to simulate vehicle loading in a pavement. The continuous cyclic

response was found to be similar to the monotonic response for the same mean stress.

However, significant strain recovery was observed during the rest periods in the pulse

train experiments.

A simple phenomenological model which can be calibrated by a minimum of four

uniaxial tensile experiments was proposed. This model was seen to capture the

monotonic, continuous cyclic and pulse loading response of the four bitumens stud-

ied with reasonable accuracy. An extension of the model to fully 3D loading is also
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proposed based on a von-Mises criterion. This makes the simple model amenable

for implementation in a finite element program that could be used to predict the

behaviour of bitumen under more complex loading conditions.

9.1.3 Indentation behaviour of bitumen: Chapter 4

The similarity solution for the indentation of a power-law creeping solid developed

by Bower et al. (1993), was extended to the constitutive model for the monotonic

and cyclic response of bitumen developed in chapter 3. It was assumed that during

unloading, the bitumen recovers in a self-similar manner and the effective strain rate

under the indenter continues to be related to the indentation depth via Bower’s model.

Employing this strain relationship in the unloading constitutive relation for bitumen,

the indentation behaviour of bitumen was characterised under both monotonic and

cyclic loading conditions.

Monotonic, continuous cyclic and cyclic pulse loading indentation experiments were

conducted over a range of temperatures. Similar to the uniaxial tensile behaviour of

bitumen, the continuous cyclic response was observed to depend mainly on the mean

applied indentation load while the cyclic pulse loading behaviour depended strongly

on the recovery behaviour of bitumen and hence was affected by the rest periods in

the loading history. The proposed indentation model is seen to accurately capture

the experimentally observed indentation response over this wide range of loading

conditions. The model is also successful in predicting the temperature dependence of

the indentation response and the effect of the indenter diameter.

The monotonic and repeated indentation behaviour investigated here is the unit

problem for understanding the behaviour of pavements under vehicle loads and is

thus of intrinsic interest. Moreover, the indentation study has helped validate the

multi-axial constitutive model for bitumen developed in chapter 3.
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9.1.4 Review of previous research on bituminous mixes:

Chapter 5

The most commonly employed approaches to modelling the deformation behaviour

of bituminous mixes fall into two main categories: i) Continuum Mechanics models,

and ii) Micro-mechanical models. Continuum mechanics models are still the most

popular choice for analysing mixes in engineering practice.

A large amount of literature on the prediction of permanent deformation of bitu-

minous mixes was found. However, most of the models fail to incorporate some of

the observed characteristic of the deformation of the material or require an excessive

number of calibration parameters, with complex fitting procedures.

A simple model, which predicts the main characteristics of the steady-state com-

pressive deformation of bituminous mixes under various stress and strain rate states,

was developed by Deshpande and Cebon (1999b), based on soil mechanics and micro-

mechanics theories. It shows good agreement with experimental observations and

provides a good insight into the main characteristics of the steady-state deformation

behaviour.

A simple analytical solution for the dilation of 2-D, fully dense disk assemblies was

proposed by Goddard and Didwania (1998). However, theoretical estimation of the

dilation of 3-D assemblies of spheres requires complex numerical methods of solution.

For angular particles, predicting dilation is still an unsolved problem.

9.1.5 Uniaxial deformation behaviour of bituminous mixes:

Chapter 6

The uniaxial monotonic and cyclic deformation behaviour of asphalt, with varying

volume fractions of aggregate, was studied experimentally in this chapter. The main
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characteristics of the uniaxial deformation behaviour of bitumen were found to be

valid for these mixes. However, elastic effects were found to play an important role

in the deformation behaviour of mixes, unlike the case for bitumen.

The loading and recovery stiffening factors Sl and Sr were found to have the same

values for a given mix and to increase with volume fraction of aggregate. The mixes

with a high volume fraction of aggregate were observed to dilate under uniaxial com-

pressive loading. Consequently, the volumetric strain varied linearly with distortional

strain in both loading and recovery conditions with the same gradient s.

The main effects of high angularity of the aggregate on the deformation behaviour

of the mixes were, (i) an increase in the stiffening factors and dilation gradient, and

(ii) a reduction in the steady-state strain. However, the recovery constant ψ was

found to remain unchanged, despite the angularity of the aggregate.

An extension to the phenomenological model for bitumen developed in chapter

3, was proposed for mixes. The model was seen to capture the uniaxial monotonic,

continuous cyclic and pulse loading response of the mixtures at different temperatures

with reasonable accuracy.

9.1.6 Triaxial deformation behaviour of bituminous mixes:

Chapter 7

The triaxial monotonic and cyclic deformation behaviour of asphalt with varying

volume fractions of aggregate were studied experimentally in this chapter. The triaxial

deformation behaviour of the fully dense mixes was found to be a function of the mean

and the deviatoric stresses. For a constant stress ratio η, the steady-state axial creep

behaviour of the mixes has the same form as that of pure bitumen. The loading

stiffening factor Sl was a function of the volume fraction of the aggregate and the

stress ratio η = Σm/Σ, as observed by Deshpande and Cebon (1999b).
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The triaxial monotonic response was found to be adequately described by a refer-

ence strain rate function of the applied macroscopic strain ǫ̇o(Ee) as for the uniaxial

behaviour. This reference function is dependent on the applied stress ratio η. The

strain to reach steady state ǫss was found to remain unaffected by the applied stress

ratio η. The recovery stiffening factor Sr was found to be a function of the volume

fraction of aggregate and the stress ratio η. Further, the effect of these variables on

Sr were found to be the same as for the loading stiffening factor Sl. The recovery

constant ψ was found to be unaffected by the stress ratio η, and showed to be only

dependent on the volume fraction of aggregate.

The recovery behaviour of the mixes under triaxial conditions was found to be

described by a reference recovery strain rate function of a parametrised strain ǫ̇u(Ê r
e)

as for the uniaxial case. This function scales with the function found for pure bitumen

using the recovery stiffening factor Sr.

Two types of triaxial cyclic loading tests were conducted, (i) continuous cyclic and

(ii) pulse train tests to simulate vehicle loading in a pavement. While the triaxial

continuous cyclic response was similar to the monotonic response with the mean

deviatoric stress and mean stress ratio ηm governing the behaviour, significant strain

recovery was observed during the rest periods in the pulse train experiments, as also

found for the uniaxial behaviour of mixes.

The mixes with a high volume fraction of aggregate dilate under triaxial compres-

sive loading. The value of the dilation gradient s is not affected by the applied stress

ratio η, the temperature, or loading conditions (monotonic or cyclic).
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9.1.7 Micro-mechanical modelling of asphalt deformation:

Chapter 8.

A simple model of the deformation behaviour of bituminous mixes was assembled

using micro-mechanical and phenomenological based theories. The model inputs are

the properties of the bitumen matrix and aggregate. The key assumptions of the

model were:

1. The Young’s modulus of the mixes is calculated using Heukelom and Herrin’s

model for mixes with volume fractions of aggregate in the range [0.7 < c < 0.9],

with the same temperature dependence of bitumen.

2. The macroscopic strain Ee and recovery constant ψmix of the mix linearly scale

with volume fraction of aggregate.

3. The 2-D solution for the dilation of rigid frictional disks of Goddard and Didwa-

nia (1998) is approximately equal to the 3-D solution for rigid frictional spheres.

4. The steady-state stiffening factor solution of Deshpande and Cebon (1999b) is

assumed to be valid for the calculation of the transient stiffening factor of mixes.

The model is capable of predicting the main characteristics of the deformation

behaviour of bituminous mixes with various volume fractions, as observed in uniaxial

and triaxial tests.

The predicted values of the dilation gradient s for sub-spherical aggregate agree

reasonably well with experimentally measured values, while for angular aggregate the

difference is significant. The model is applicable to angular aggregate, provided the

measured values of the dilation gradient s is used.
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9.2 Recommendations for future work

9.2.1 Bitumen

The multiaxial deformation behaviour of bitumen has been studied in this dissertation

at temperatures in the range of −5◦C≤ T ≤ 20◦C where the Modified Cross Model

is known to be valid. Extension of the proposed models at temperatures below the

glass transition temperature Tg, where the Eyring plasticity model applies, is a topic

which merits further study.

The indentation behaviour of bitumen at effective strains up to 0.2 were investi-

gated and modelled. In order to study the indentation behaviour at higher effective

strains it would be necessary to implement the constitutive model for bitumen in an

FE code with a user-defined material model. This is a topic of research proposed for

future work.

The adhesive behaviour of bitumen during recovery from indentation is a topic

not well understood, so it is necessary to improve the experimental and theoretical

knowledge of this subject.

9.2.2 Bituminous mixes

The axisymmetric uniaxial and triaxial behaviour of bituminous mixes with varying

volume fractions of aggregate were studied experimentally in this dissertation. From

those observations a constitutive model was proposed. This constitutive model should

be verified under other loading conditions (e.g. pure shear).

The measured recovery constant ψ for mixes was found to decrease linearly with

the volume fraction of aggregate. No theoretical explanation could be found for this

behaviour. It is believed that this could be caused by the adhesion of bitumen to the

aggregate particles, decreasing the amount of recovered strain for mixes. A unit cell
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analysis of a rigid particle embedded in different volume fractions of bitumen could

be carried out using special FE elements with the constitutive law for bitumen in

order to explain theoretically this recovery behaviour.

The indentation behaviour of mixes is an important topic for further research as it is

the unit problem for understanding the rutting of asphalts under moving wheel loads.

An experimental study of the indentation behaviour of mixes along with theoretical

study using FE analysis is also proposed as a topic of future study.

Once the indentation behaviour of mixes has been understood, the logical next

step will be to study the deformation behaviour of asphalt under moving wheel loads

by FE analysis.

The theoretical estimation of dilation for angular aggregate is a complex topic

which merits research. An initial experimental investigation of the dilation of irregular

particles of varying shape, angularity and friction could be carried out in order to bring

to light some effects of aggregate selection and pavement durability.
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