
A statistical study of conductance properties in one-dimensional quantum wires,
focusing on the 0.7 anomaly

L. W. Smith1,∗, H. Al-Taie1,2, F. Sfigakis1, P. See3, A. A. J. Lesage1, B. Xu1, J. P.

Griffiths1, H. E. Beere1, G. A. C. Jones1, D. A. Ritchie1, M. J. Kelly1,2, and C. G. Smith1

1Cavendish Laboratory, Department of Physics, University of Cambridge,
J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

2Centre for Advanced Photonics and Electronics, Electrical Engineering Division,
Department of Engineering, 9 J. J. Thomson Avenue,

University of Cambridge, Cambridge CB3 0FA, United Kingdom
3National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom

(Dated: July 23, 2014)

The properties of conductance in one-dimensional (1D) quantum wires are statistically investi-
gated using an array of 256 lithographically-identical split gates, fabricated on a GaAs/AlGaAs
heterostructure. All the split gates are measured during a single cooldown under the same con-
ditions. Electron many-body effects give rise to an anomalous feature in the conductance of a
one-dimensional quantum wire, known as the ‘0.7 structure’ (or ‘0.7 anomaly’). To handle the large
data set, a method of automatically estimating the conductance value of the 0.7 structure is devel-
oped. Large differences are observed in the strength and value of the 0.7 structure [from 0.63 to
0.84 × (2e2/h)], despite the constant temperature and identical device design. Variations in the 1D
potential profile are quantified by estimating the curvature of the barrier in the direction of electron
transport, following a saddle-point model. The 0.7 structure appears to be highly sensitive to the
specific confining potential within individual devices.

I. INTRODUCTION

One-dimensional (1D) quantum wires can be defined
in a two-dimensional electron gas (2DEG) using split-
gate nanostructure devices [1]. The conductance of a
quantum wire displays plateaus as a function of gate
voltage, quantized in units of the conductance quan-
tum G0 = 2e2/h [2, 3], which can be understood
within a non-interacting framework. However, an anoma-
lous feature appears near 0.7G0–the ‘0.7 structure’ or
‘0.7 anomaly’ [4, 5]–which occurs as a direct result of
electron-electron interactions. This intriguing conduc-
tance anomaly continues to inspire efforts to explain its
occurrence [6, 7]. Many theories have been proposed, in-
cluding spontaneous spin polarization [4, 8], quasi-bound
state formation and associated Kondo effect [7, 9–11],
and enhanced electron interactions as electrons slow on
passing through the 1D channel, due to the potential
barrier [6, 12, 13].

The conductance value of the 0.7 structure (G0.7) can
vary between 0.5 and 0.9G0 [14–22], and depends on tem-
perature (T ), magnetic field (B), carrier density in the
1D channel, and device geometry. The T and B de-
pendence of the 0.7 structure are well established [4].
However, differing results have been reported regarding
the dependence on density (summarized in Ref. [23]) and
upon the length of the 1D channel [7, 20]. These data
were obtained from a variety of 1D devices and confining
potentials. This highlights the important role that the
confining potential plays in determining G0.7 [24].

Due to limited resources available, many previous ex-
perimental studies reproduce results on a handful of
devices at most. This prevents statistically significant
statements being formulated, and possibly leads to trends

being overlooked. Here, a statistical study of the 0.7
structure is presented, using an array of 256 individual
split gates with the same dimensions. Experiments were
performed during a single cooldown, where each split
gate was measured separately by means of a multiplex-
ing scheme described in Ref. [25]. Despite the identical
device design, fabrication and measurement conditions,
large differences exist in the appearance and value of the
0.7 anomaly. Systematic methods are employed to esti-
mate G0.7 and the curvature of the potential barrier in
the transport direction. The value of G0.7 appears to be
highly sensitive to the specifics of the 1D potential, which
differs between even nominally identical split gates.

The outline of the article is as follows. First, the
methods of fabricating and measuring the sample are de-
scribed in Sec. II. We then introduce the properties of the
1D conductance data in Sec. III, highlighting variations
which may be related to local fluctuations in the density,
thus characterizing the homogeneity of the wafer. Next,
we investigate the 0.7 anomaly and its dependence on
properties of 1D conductance in Sec. IV. The method
of estimating G0.7 is described, to systematically analyze
the large data set. Since the 0.7 anomaly appears exceed-
ingly sensitive to the 1D potential profile, variations in
the potential are quantified by developing a model in Sec.
V to estimate the curvature of the barrier in the transport
direction, through fitting the data with the transmission
probability from a saddle-point model. Finally, in Sec.
VI we acknowledge the role of disorder in giving rise to
other anomalous features in conductance at unexpected
values, close to 0.5G0.
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FIG. 1: (Color online) (a) Typical trace of conductance G as a function of the voltage applied to the split gate Vsg, from Vsg

= 0 to Vp. The vertical (horizontal) dashed line indicates Vd (Gd). The inset shows a schematic diagram of a split gate, where
S and D correspond to the source and drain contacts, respectively. (b) Scatter plot of Gd against Vp for which r = −0.81,
indicating a strong negative correlation. (c) Histogram of Vd from 240 split gates, for a bin size of 1 mV. (d) Color scale of Vd

as a function of spatial location, where each box represents a split gate in the array. Clear boxes indicate devices which did
not define a 1D channel. The boxes are equally spaced in the x and y directions for convenience, although in reality the split
gates have horizontal and vertical pitch lengths of 100 and 130 µm, respectively.

II. METHODS

The sample was fabricated on a modulation-
doped GaAs/AlGaAs high electron mobility transistor
(HEMT), in which the 2DEG is formed 90 nm below the
wafer surface. The 2D carrier density (n2D) and mobility
(µ) of the 2DEG were measured to be 1.7×1011 cm−2 and
0.94×106 cm2V−1s−1, respectively. The split gates were
arranged in a rectangular array, with pitch lengths of 100
and 130 µm in the two perpendicular directions. Each
split gate was 400 nm long and 400 nm wide, defined
using electron-beam (e-beam) lithography [a schematic
diagram of a split gate is shown in the inset of Fig. 1(a)].
Two-terminal measurements were performed at T = 1.4
K, using an ac excitation voltage of 100 µV at 77 Hz.
Fifteen split gates failed to define a 1D channel, due to
damage to one or both arms of the split gate, which is
likely to have occurred during fabrication.

III. PROPERTIES OF 1D CONDUCTANCE

Figure 1(a) shows a typical conductance trace as a
function of the voltage applied to the split gate (Vsg).

Conductance G is plotted from Vsg = 0 to pinch off volt-
age Vp. There is an initial drop in G before a quasi-1D
channel forms at Vsg = Vd (the 1D definition voltage).
This is marked by a sudden change in gradient of G as
a function of Vsg. The definition conductance (Gd), Vp
and Vd are indicated by arrows in Fig. 1(a).

Figure 1(b) shows a scatter plot of Gd against Vp for
240 devices (241 were measured, however, the conduc-
tance of one dropped to zero without defining a 1D chan-
nel). The degree of correlation can be quantified using
the Pearson product-moment correlation coefficient (r),
where r = 1 (r = −1) corresponds to a perfect positive
(negative) correlation, and r = 0 corresponds to no corre-
lation. There is a strong negative correlation between Gd
and Vp in Fig. 1(b), for which r = −0.81. Since G in these
devices is determined by the number of 1D subbands,
a higher Gd suggests that there are more 1D subbands
in the channel. The subband spacing may therefore be
smaller, requiring the channel to be wider on definition.
A stronger electric field (more negative voltage) will be
required to fully deplete a wider channel, as reflected in
Fig. 1(b). No correlations were apparent between Vd and
Vp (r = −0.07), or Gd and Vd (r = 0.06).

Figure 1(c) shows a histogram of Vd, for a bin size of
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1 mV. The mean V̄d = −0.234 V and standard devia-
tion σVd

= 10.4 mV, corresponding to 4.4% of the mean.
Variations in density n2D across the array of split gates
may be estimated using Vd from each device (since Vd is
the voltage at which the 2D region beneath the gates is
depleted). By considering the capacitance between the
split gate and the 2DEG, Vd is related to n2D by

Vd =
edn2D
ε

, (1)

where e is the electronic charge, d is the depth of the
2DEG, and ε is the dielectric constant of the material.
This equation is valid for gate width w� d; here w = 400
nm and d = 90 nm. For V̄d = −0.234 V, Eg. (1) gives
n2D = 1.74×1011 cm−2 (using ε ≈ 12ε0 for 33% AlGaAs),
and σn2D

= 8× 109 cm−2. For comparison, conventional
Hall bar measurements on two nearby sections of wafer
yielded 1.65× 1011 cm−2 and 1.69× 1011 cm−2.

In this approximation, the capacitance due to the fi-
nite density of states in the 2DEG is ignored, since it is
small with respect to the geometric capacitance. If it is
assumed that changes in density are the only reason for
differences in Vd, the distribution of Vd is directly pro-
portional to fluctuations in n2D (i.e. standard deviation
σVd
≈ 4% corresponds to the same variation in n2D).

Figure 1(d) shows a color scale (color online) of Vd
as a function of the position of each device in the ar-
ray. On the chip, split gates are separated by 100 and
130 µm in the horizontal and vertical directions, respec-
tively, whereas boxes are equally spaced in Fig. 1(d) for
convenience. Clear boxes indicate split gates for which
Vd could not be determined. Plotting Vd as a function of
spatial location illustrates how density fluctuations in a
HEMT structure can be investigated on a micron scale.
This technique approximately characterizes the homo-
geneity of a wafer, since variations on this length scale
not shown by conventional Hall bar measurements.

IV. 0.7 STRUCTURE

The conductance data from the array of split gates
display a large variation in the appearance of the 0.7
structure. Figures 2(a)-(c) show G as a function of Vsg
for three example devices, corrected for series resistance
Rs (to ensure consistency, Rs = 1/G at Vsg = 0). In
Figs. 2(a) and 2(b), well-defined structures occur near
0.7G0, marked by the arrows. The feature in Fig. 2(b) is
particularly pronounced. A much weaker, shoulder-like
structure is shown in Fig. 2(c), indicated by the arrow.

A. Method of estimating G0.7

A systematic method of estimating G0.7 is required
to further analyze the data. There is no stated defini-
tion of the conductance value that should be assigned
to the 0.7 structure [26]; however, it was the location of

FIG. 2: (Color online) (a)-(c) Conductance against Vsg for
three nominally identical split gates. Well-developed conduc-
tance anomalies occur below G0 in panels (a) and (b), in-
dicated by the arrows. A much weaker shoulder-like feature
occurs near 0.7G0 in panel (c), marked by the arrow. (d)
Conductance as a function of Vsg for a fourth example split
gate (solid line). First, second and third derivatives dG/dVsg,
d2G/dV 2

sg, and d3G/dV 3
sg are shown by the dashed, dotted,

and dash-dotted curves, respectively. The dG/dVsg trace is
offset vertically for clarity, and all derivative data are scaled
vertically in order to be shown on the plot. The dashed hori-
zontal line shows G0.7, corresponding to the local minimum in
dG/dVsg. The upper and lower error bounds ofG0.7 are shown
by the horizontal dotted lines, given by the nearest maxima in
d2G/dV 2

sg and d3G/dV 3
sg, respectively. (e), (f) Conductance

against Vsg for two example split gates showing evidence of
disorder. In panel (e), the conductance is no longer quantized
in units of G0, while in panel (f) the second plateau is unusu-
ally weak and both the second and third plateaus occur below
the expected values (the arrow indicates a 0.7 structure).
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FIG. 3: (Color online) (a) Histogram of G0.7, for a bin size of 0.005G0. Data are obtained from 36 devices, where G0.7 is
defined as the local minimum in dG/dVsg. (b)-(f) Scatter plots of G0.7 against ∆R0.5, W1, Vp, Gd and Vd, respectively, where
∆R0.5 = ∆Vsg from G = 0 to 0.5G0, and W1 = ∆Vsg between G = 0.5 and 1.5G0. No strong correlations are apparent;
r = 0.07, 0.07, −0.11, 0.10 and 0.33 for (b), (c), (d), (e) and (f), respectively. Error bounds on the estimate of G0.7 are given
by the width of the 0.7 anomaly [28].

the flattest part of the feature–most often observed near
0.7G0–which led to it being given its particular name [27].
Therefore we present data where G0.7 is defined as the
local minimum in dG/dVsg.

Figure 2(d) shows G as a function of Vsg (solid line)
for another example device. The first, second and third
derivatives dG/dVsg, d

2G/dV 2
sg, and d3G/dV 3

sg are shown
by the dashed, dotted, and dash-dotted curves, respec-
tively. The dG/dVsg trace is offset vertically for clarity.
The Vsg at which d2G/dV 2

sg = 0 (corresponding to the
local minimum in dG/dVsg), is shown by the dashed ver-
tical line. This gives our estimate of G0.7 (indicated by
the arrow). The ‘width’ of the 0.7 plateau is estimated
as ∆Vsg between the closest maximum in d3G/dV 3

sg to

the left and closest maximum in d2G/dV 2
sg to the right

of d2G/dV 2
sg = 0 (indicated by the vertical dotted lines).

This defines the bounds of our estimate of G0.7, shown
by the horizontal dotted lines [28].

The value of G0.7 can be obtained for a limited number
of devices using this method, due to variations in shape
of the 0.7 structure. If the anomaly is not sufficiently
pronounced–for example in Fig. 2(c)–G0.7 cannot be es-
timated (since there is no clear minimum in dG/dVsg).
However, the resulting benefit is that the data set is re-
duced to devices for which the conductance characteris-
tics are very similar. Since the strength of the 0.7 struc-
ture is related to the relative energy scales within the
1D system, these should therefore be similar for the data
remaining.

In addition, we were careful to discard data which
showed evidence of disorder at low G (below 3G0), since
this may affect G0.7. Various disorder effects were ob-
served. In some instances the quantization of G was sig-
nificantly affected and no 0.7 structure existed [shown in
Fig. 2(e)]. In other cases, a 0.7 structure was observed in
addition to disorder effects (these effects included miss-
ing or weakened plateaus, deviations in plateau values
from multiples of G0, unusually weak quantization, and
resonant features ranging from Coulomb blockade [29] to
phase-coherent resonances [30]). Figure 2(f) shows G as
a function of Vsg for a device in which the second and
third plateaus occur below the expected values, and the
second plateau is weak. The arrow indicates a strong 0.7
structure. Such data were discarded because we cannot
rule out disorder affecting G0.7.

After discarding data which showed evidence of disor-
der, data from 98 split gates remained (41% of the 241
measured). An estimate of G0.7 is obtained for 36 of
these 98 devices [31]. This highlights a key benefit of
our multiplexing technique: By measuring many devices,
we can discard 85% of the data and still retain a data
set sufficient for statistical analysis (36 is currently the
largest number of devices for which G0.7 has been es-
timated from measurements in a single cooldown). We
expect a lower rejection ratio for a sample fabricated on
a wafer with higher mobility.

While we have have attempted to remove the effect
of disorder, thermal broadening of energy levels may
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mask other disorder effects (T = 1.4 K). Measurements
were performed at this T in order to observe a well-
defined 0.7 anomaly, since we anticipate any statistical
(anti)correlation between G0.7 and other parameters to
be most clear at T for which the 0.7 anomaly is strongest.

B. Dependence of G0.7 on properties of 1D
conductance

Figure 3(a) shows a histogram of the 36 counts of
G0.7 (for a bin size of 0.005G0), in which G0.7 ranges
from ≈ 0.63 to 0.84G0. The mean Ḡ0.7 = 0.75G0, and
standard deviation σ0.7 = 0.05G0. The spread of G0.7

is within that which has been reported previously [23].
However, Fig. 3(a) represents data from devices with a
geometrically identical design, which have undergone ex-
actly the same fabrication process, and were measured
during a single cooldown at a constant T . Therefore the
difference of more than 0.2G0 in G0.7 is quite remarkable.

Even though each split gate is patterned with a
geometrically-identical design, the shape of the 1D po-
tential profile may vary from device to device. This oc-
curs for a number of reasons including fluctuations in n2D
(standard deviation of n2D is estimated to be ≈ 4% of
the mean, Sec. III), and/or the existence of impurities
close to the 1D channel. The differences in G0.7 suggest it
is highly dependent on the shape of the potential profile,
and minor variations thereof.

In Figs. 3(b) to (f), G0.7 is plotted against various
properties of the 1D conductance trace. Specifically,
Figs. 3(b), (c), (d), (e), and (f) show G0.7 against ∆R0.5,
W1, Vp, Gd, and Vd, respectively, where ∆R0.5 = ∆Vsg
from G = 0 to 0.5G0 (corresponding to the steepness
of the initial rise in G towards the 0.7 anomaly), and
W1 = ∆Vsg between G = 0.5 and 1.5G0 (estimating the
width of the first conductance plateau).

These properties of the 1D conductance trace are de-
termined by or reflect physical conditions of the system.
For example, Vp indicates the strength of the electrostatic
field at pinch off; this field is weaker for values of Vp closer
to zero, such that the confinement potential is generally
shallower. Lower electron densities also often result in
Vp closer to zero. As discussed in Sec. III, Gd and Vd
depend on the initial number of 1D subbands in the 1D
channel, and fluctuations in n2D, respectively. Addition-
ally, the length of the conductance plateaus depends on
the 1D subband spacing, and steepness of the transitions
between plateaus depends on the length of the potential
barrier in the transport direction (discussed in Sec. V).

A relationship between G0.7 and any of these prop-
erties may illuminate physical conditions which govern
G0.7. However, no correlations are apparent in Figs. 3(b)-
(f); [r = 0.07, 0.07, −0.11, 0.10 and 0.33, for 3(b), 3(c),
3(d), 3(e), and 3(f), respectively]. Correlations are per-
haps hidden because although the properties of conduc-
tance may be primarily related to a particular parame-
ter, they are also subject to other influences. These data

FIG. 4: (Color online) (a) The solid line shows the measured
G as a function of Vsg from an example device [same as Fig.
2(d)]. Dot-dashed lines show a fit to the data (Gn) for individ-
ual subbands n = 1, 2, and 3, using a modified saddle-point
model [33]. The points at which Gn = 0.5 are aligned with
the corresponding G = (n−0.5)G0 values on the experimental
data, and the dashed line shows

∑
nGn. (b) Lever arm α as a

function of 1D subband index n. The inset shows a grayscale
diagram of the transconductance dG/dVsg as a function of Vsg

and Vsd. The dark (white) regions correspond to high (low)
transconductance. The conductance values of low transcon-
ductance regions are labeled in units of 2e2/h, and ∆E1,2 is
given by the point at which the two dashed lines cross.

illustrate that G0.7 is governed by a combination of con-
ditions and is highly sensitive to the specific potential
profile within each device.

V. QUANTIFYING THE 1D CONFINING
POTENTIAL

To quantify the conditions of confinement within each
device one can measure the subband spacing using dc
bias spectroscopy [32]. This type of individual charac-
terization is time consuming, and an automated routine
of extracting information from the conductance trace is
preferred, because of large data set. We therefore fit the
data with a transmission probability based on the saddle-
point model [33] in order to estimate the harmonic oscil-
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FIG. 5: (Color online) (a) Scatter plot of ~ωx,1 against ∆R0.5, where ∆R0.5 = ∆Vsg from G = 0 to 0.5G0. Error bounds
are obtained by finding ~ωx,1 for the upper and lower estimates of α1. The strong correlation illustrates the accuracy of the
fit to the experimental data. (b), (c) Scatter plots of ∆R0.5 against Gd, and ~ωx,1 against Gd, respectively. Panel (b) shows
a reasonably distinct diagonal cutoff such that there are no data points in the upper-left section of the plot. This is weakly
reflected in panel (c). (d)-(f) Scatter plots of ~ωx,1 against Vd, Vp and W1, respectively, where W1 = ∆Vsg between G = 0.5
and 1.5G0.

lator energy Ex = ~ωx, which describes the curvature of
the potential barrier in the transport direction.

A. Model

Figure 4(a) shows G as a function of Vsg (solid line)
for an example device. The dashed line shows a fit to the
data for the transmission probability Tn = (1+e−πεn)−1,
where n is the 1D subband index, εn = 2[E − En −
V0]/~ωx,n, V0 is the potential at the center of the 1D
channel, and En is the energy of the bottom of the
nth 1D subband (relative to V0). We deviate from a
strict saddle-point model which assumes 1D subbands
are equally spaced, since this is not the case for real de-
vices. Additionally, we use a subband-dependent ~ωx,n
to achieve a better fit to the data.

The conductance is calculated independently for n = 1,
2, and 3 using

Gn = G0

∫
dE

(
− ∂f
∂E

)
Tn , (2)

where f is the Fermi-Dirac distribution f = (1 +
e(E−µ)/kBT )−1. The conductance increases by 2e2/h
when chemical potential µ rises above the bottom of the
1D subband. We choose a reference frame in which each
subband edge is initially at µ = 0, i.e., V0 and En = 0.
The integration is performed between limits ±50kBT , for
T = 1.4 K.

The Gn for each subband is then individually scaled by
α−1
n , where α is a lever arm relating E and Vsg obtained

from dc bias spectroscopy measurements. We follow the
method of estimating α described in the supplementary
material of Ref. [34]; ∆E = αe∆Vsg, and α = ∂Vsd/∂Vsg.
Figure 4(b) shows the average values of αn for each sub-
band from dc bias measurements on four split gates. The
error bars are the maximum and minimum estimates of
αn. A grayscale diagram of transconductance dG/dVsg
as a function of Vsd and Vsg from one of the devices is
shown as an inset to Fig. 4(b). The dark (white) regions
correspond to high (low) transconductance, and conduc-
tance values of low transconductance regions are labeled
in units of 2e2/h. The data are corrected for series re-
sistance (also following the method described in the sup-
plementary material of Ref. [34]).

To automate the fitting routine, Gn for each split gate
is scaled by the average αn. For simplicity, we also use
a constant αn for each subband, although in reality it
varies with Vsg. We believe the use of an average αn
to be the most significant source of error in estimating
~ωx,n.

The 1D subband spacings were also obtained from the
dc bias data. The average ∆En,n+1 = 2.8, 1.9 and 1.7
meV, for n = 1, 2 and 3, respectively. Since this mea-
surement was performed at T = 1.4 K, no feature ap-
pears near 0.85G0 at small dc bias [32, 35]. Therefore,
∆E1,2 was estimated as the crossing point of the tran-
conductance peaks separating the 0.25 and G0 regions,
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FIG. 6: (Color online) (a) Scatter plot of G0.7 against ~ωx,1

(r = 0.12). Error bounds in ~ωx,1 are obtained from the
upper and lower estimates of lever arm α1. The bounds on
G0.7 are related to the width of the conductance anomaly.

and the G0 and 1.5G0 regions. This is illustrated by the
dashed lines on the grayscale [inset, Fig. 4(b)].

After scaling, the points at which Gn = 0.5G0 are
aligned with the corresponding points on the experimen-
tal data, i.e., 0.5, 1.5, and 2.5G0 for subbands n = 1, 2
and 3, respectively. A fitting routine is used to find the
minimum difference squared between the experimental
and calculated conductances. For n = 2 (3) the fit was
performed between G = 1.01 (G = 2.01) and 2G0 (3G0),
with fitting parameter ~ωx,2 (~ωx,3). For n = 1, the fit
was performed on the lower half of the riser to the first
plateau (from 0.01 to 0.5G0), to avoid the 0.7 structure.

Figure 4(a) shows G after the fitting has been per-
formed, where dot-dashed lines show Gn for individual
subbands. The dashed line shows the sum of these data,
which overlays the measured G (solid line) well. The only
fitting parameters used in the model are ~ωx,n for n = 1,
2, and 3. Since this is a non interacting model, there is
no 0.7 structure in the fit to the conductance data.

B. Dependence of ~ωx,1 on properties of 1D
conductance

Using the method described above, ~ωx,n is estimated
for the 98 split gates which did not show evidence of dis-
order below 3G0. The mean ~ωx,1 = 1.95, ~ωx,2 = 1.92
and ~ωx,3 = 1.56 meV, for which the standard devia-
tions σ~ωx,1 = 0.41, σ~ωx,2 = 0.26 and σ~ωx,3 = 0.22
meV (corresponding to 21%, 14% and 14% of the mean,
respectively). This highlights the differences that exist
in 1D potential from device to device, despite the litho-
graphically identical design.

The steepness of the initial rise in G towards the 0.7
anomaly is given by ∆R0.5 = ∆Vsg from G = 0 to 0.5G0.
Figure 5(a) shows a scatter plot of ~ωx,1 against ∆R0.5.
This is a helpful check of the quality of the fit, since
the fitting was performed over this range of G. There is

a strong degree of correlation (Pearson product-moment
correlation r = 0.9). Thus, the steepness of the transition
to G0 for the fitted G accurately reflects that of measured
data, indicating that the fit is reasonable. Error bounds
are given by finding ~ωx,1 for the upper and lower values
of α1 shown in Fig. 4(b).

Figure 5(b) shows ∆R0.5 against the 1D definition con-
ductance Gd. While there is no apparent correlation,
there seems to be relatively distinct diagonal cutoff above
which there are no data points (in the top-left triangular
section of the plot). Thus, a sharper initial rise in con-
ductance tends to correspond to a lower Gd. In Fig. 5(c),
~ωx,1 is plotted against Gd. The diagonal cutoff is re-
flected here, although less distinctly.

Figures 5(d), 5(e), and 5(f) show ~ωx,1 against Vd, Vp,
and W1, respectively. No correlations are apparent be-
tween ~ωx,1 and these other properties of the 1D conduc-
tance trace (no correlations were also evident between
~ωx,2 or ~ωx,3 and these properties). It is possible that
trends may be masked by errors in the lever arm α. How-
ever, the spread in ~ωx,1 for most values of Gd, Vd, Vp
and W1 is larger than the estimated error.

C. Dependence of G0.7 on ~ωx

Figure 6 shows a scatter plot of G0.7 against ~ωx,1. For
these data r = 0.12, indicating an exceedingly weak cor-
relation. Unfortunately, any correlation which may exist
is likely to be masked by errors in the estimate of ~ωx,1.
We believe the error in G0.7 to be less significant since
G0.7 is given by a well-defined point (the local minimum
in dG/dVsg), and bounds in G0.7 are instead related to
the width of the conductance anomaly [28]. The error in
~ωx,1 could be reduced by using the correct α for each
device. This requires dc bias measurements to be per-
formed for every device.

A specific correlation between G0.7 and ωx is predicted
by certain models for the origin of the 0.7 structure. For
example, the 1D Kondo effect occurs when electrons are
localized within a 1D channel [36]. In the 1D Kondo
scenario, for large ωx the Kondo temperature (TK) is
also high [10, 11, 37]. Thus, an increase in ωx (TK)
should cause G0.7 to increase at a given temperature,
since G ∝ [1 − (T/TK)2]. However, other models ex-
pect the opposite trend. It has been proposed that the
0.7 structure is related to enhanced interactions as the
electrons slow down on passing through the 1D bar-
rier [6, 12, 13]. Of these models, only one [12] studies
the high-temperature dependence of G0.7 with ωx. If the
1D barrier is a saddle-point potential [33], the value of
G0.7 is predicted to decrease as ωx increases. We do not
observe a strong enough trend in our data to support one
theory above another.
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FIG. 7: (Color online) Conductance as a function of Vsg for
an example split gate, where an anomalous feature appears
near 0.5G0, indicated by the arrow.

VI. ANOMALOUS CONDUCTANCE
FEATURES NEAR G = 0.5G0

Conductance anomalies were also observed at G values
lower than the range shown in Fig 3(a). Figure 7 shows
G as a function of Vsg for a device in which an anoma-
lous feature occurs at 0.5G0 (marked by the arrow). Of
the 241 split gates measured, ≈ 2% showed conductance
anomalies at this value; it is therefore unusual to find
features at 0.5G0 in 1D devices on GaAs/AlGaAs het-
erostructures for B = 0 T (the magnetic field at which
these measurements were performed). These data were
not included in the analysis because of evidence of disor-
der; for example, in Fig. 7 the plateaus do not appear at
correct values [38]. The co-existence of disorder effects
may be responsible for the lowering of the conductance
of the 0.7 structure to 0.5G0.

A statistical measurement makes it possible to distin-
guish the “normal” characteristics from device-specific
effects, which may be related to disorder. Devices which
display unusual conductance anomaly can be investigated
for rare physical phenomena, while very clean devices can
be used to identify standard behavior.

The reproducibility of conductance characteristics has
been investigated by thermally cycling the sample. It
was found that many of the split gates which showed ev-
idence of disorder did so on both cooldowns [39]. The
aim of the current article is to compare properties of 1D
conductance from a large number of devices on a sin-
gle cooldown. The reproducibility of these properties on
thermal cycling warrants a further, separate study.

The sample was also illuminated with a light-emitting
diode (LED), which increased n2D and µ to 2.9 × 1011

cm−2 and 2.2 × 106 cm2V−1s−1, respectively. This re-
sulted in longer, better-defined plateaus in conductance,

since the 1D confining potential becomes stronger and
the 1D subband spacing increases. However, many de-
vices showed occasional structure in conductance which
had the appearance of resonant transmission through the
quantum wire, consistent with an enhancement of reso-
nant effects due to sharper confinement [30]. We did not
investigate G0.7 or ~ωx in this case since the estimates
are very likely to be affected by the resonances.

VII. CONCLUSION

Across an array of nominally identical split gates (mea-
sured at a single T ), significant fluctuations were seen to
exist in the 1D potential. These have been quantified
by estimating the curvature of barrier in the transport
direction (~ωx) for each device. Large variations were
observed in both the appearance of the 0.7 structure and
the value at which it occurred. The 0.7 structure appears
to be extremely sensitive to the specific 1D potential in
each device. Measuring many devices has enabled a sta-
tistical study to be performed. No correlations were ap-
parent between G0.7 and ~ωx, or other properties of the
1D conductance trace.

A specific set of physical conditions combine to give
a particular conductance trace for a split gate. With
the current analysis, the effect of individual factors influ-
encing the conductance properties cannot be separated.
Thus, parameters which may govern G0.7 and ~ωx have
not been identified. This may become possible by per-
forming dc bias spectroscopy for each device in order to
accurately measure 1D subband spacing and lever arm
α, thereby giving a better estimate of ~ωx.

The confining potential will be affected by fluctuations
in the background potential due to the ionized dopants
(leading to local density variations) and the existence of
impurities (giving rise to disorder effects). We removed
data which showed evidence of disorder from the analy-
sis, although a fuller study requires B- and T -dependent
measurements (since disorder effects will be masked at
the temperature at which the measurements were per-
formed). We have shown that disorder does give rise to
conductance anomaly at unexpected values, e.g., close
to 0.5G0. Disorder effects can be reduced by fabricat-
ing samples on a wafer with higher electron mobility, or
using an undoped heterostructure and electrostatically
inducing the 2DEG [40–42].
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