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Abstract The mathematics associated with the representation surfaces for elastic stiffness
and compliance shear coefficients and shear moduli for planes in the standard 001–011–
111 stereographic triangle for cubic materials is examined as a function of the degree of
anisotropy, A = 2c44/(c11 − c12), of the material under consideration. Similarities and dif-
ferences between the surfaces for the elastic stiffness and compliance shear coefficients and
the shear moduli are highlighted.
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1 Introduction

The representation of Young’s modulus for cubic crystals as a function of crystal orientation
as a single surface whose radius vector is in the direction under consideration and the length
of which is proportional to Young’s modulus is well known [1–4]. The representation of
the shear modulus, which depends on both plane and direction, and its associated stiffness
and compliance coefficients has, however, received significantly less attention. Wortman
and Evans [1] produced a table in which they gave formulae for the elastic stiffness and
compliance shear coefficients c′

rr and s ′
rr for r = 4, 5 and 6 using the Voigt notation [5] and

a shear modulus which they defined as G′
r = 1/s ′

rr for r = 4, 5 and 6 in their consideration of
the elastic properties of silicon and germanium. They also showed in Table 3 of their paper
that G′

r is isotropic for these two materials, and, by implication, for all cubic materials,
when the shear plane is either {001} or {111}, or when the shear direction is either 〈001〉
or 〈111〉. In addition, Wortman and Evans produced graphical plots of the shear modulus
as a function of direction in the (100) and (110) planes, in which the radius vector is in the
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direction under consideration and the length of which is proportional to the shear modulus.
These graphical plots either had the direction of observation in the shear plane (Figs. 6 and 7
of their paper) or parallel to the normal to the shear plane (Fig. 8 of their paper) and clearly
show the directional dependence of G′

r for planes other than {001} or {111}.
Later, in a series of papers, Turley and Sines [6–8] reported the results of numerical com-

putations of the directional dependence of elastic stiffness and compliance shear coefficients
and shear moduli in silicon, copper and molybdenum using the same graphical representa-
tions as Workman and Evans, with, in addition, a very powerful graphical representation
using a standard stereographical triangle on which to represent c′

rr and G′
r for silicon for

various (hkl). The mathematical expressions given by these authors for the shapes of c′
44 and

G′
4 as a function of the shear direction and the normal to the shear plane are highly complex,

although readily amenable to numerical computation.
Turley and Sines made a number of interesting observations about their numerical results

without showing formal mathematical proofs. For example, it is apparent from Fig. 2 of [6]
that for planes of the form (0kl), (hhl) and (hkk) defining the borders of the standard 001–
011–111 stereographic triangle for cubic materials, the polar plots of c′

rr as a function of
shear vector in the plane are symmetrical about [100] and [0lk̄], [11̄0] and [llh̄], and [011̄]
and [k̄hh] respectively, and have 2mm point symmetry at the origin. However, for a general
plane (hkl) within this standard stereographic triangle, such as (156), the two perpendicular
directions about which the polar plots are symmetrical are not specified in terms of directions
[uvw] lying in (hkl). For the specific plane (156) Turley and Sines show graphically in [6] that
these directions will be rotated by what they term a phase angle φ from the two perpendicular
directions [510] and [3 15 13] lying in (156).

In addition, they comment in [8] that the shapes (or loci) of the shear stiffness coefficient,
c′

44, for silicon when plotted on the standard stereographic triangle closely resemble those of
the shear modulus, G′

4, but are not identical, without quantifying this degree of resemblance.
Subsequent to the work of Turley and Sines, Walpole [9] independently examined the

variation of shear modulus as a function of the shear direction and the normal to the shear
plane and identified mathematically the extremum values of the shear modulus as (i) when
either the shear direction is parallel to 〈001〉 or the shear plane is {001}, and (ii) when the
shear direction is 〈110〉 and the shear plane is {1̄10}. These extrema are apparent in the
numerical simulations of Turley and Sines [7], e.g., their Fig. 3(a).

In the work reported here we have revisited the mathematics associated with the repre-
sentation surfaces for c′

rr , s ′
rr and G′

r for (hkl) in the standard 001–011–111 stereographic
triangle for cubic materials, paying particular attention to the specification of principal axes
of these polar plots for different choices of (hkl) and the forms of the loci of these plots
with respect to these principal axes. We have also extended our analysis to the examination
of polar plots for c′

qr and s ′
qr for q , r = 4, 5 and 6 with q �= r , the coefficients of which

are zero when the rotated axis system within which c′
qr and s ′

qr are specified aligns with
the cubic axes defining the lattice of the material under consideration. As others have noted
[6, 8], these considerations are relevant to the study of imperfections in anisotropic crystals,
such as the strain fields and stress fields associated with point defects and dislocations (e.g.,
[10–14]).

2 General Stiffness and Compliance Tensor Transformation Relations

For an arbitrary rotation of axes from one axis system to another, tensors of the fourth rank
Tijkl (in full tensor notation) transform as

T ′
ijkl = aimajnakpalqTmnpq, (1)
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for i, j , k, l, m, n, p and q all taking values from 1 to 3 [3, 15], where the aim are direction
cosines specifying the angle between the ith axis of the ‘new’ axis system and the mth axis
of the ‘old’ axis system. The stiffness tensor Cijkl and the compliance tensor Sijkl relate a
stress σij to a strain εkl through the equations

σij = Cijklεkl and εij = Sijklσkl . (2)

For our purposes here the ‘old’ axis system is the orthonormal axis system aligned with
respect to the 〈100〉 directions of the cubic crystal. Sixty coefficients of tensors of the fourth
rank are zero in this axis system for cubic crystals. The twenty one non-zero Cijkl and Sijkl

for cubic crystals are

c11 = Ciiii , c12 = Ciijj , c44 = Cijij ,

s11 = Siiii , s12 = Siijj , s44 = 4Sijij
(3)

(i �= j ) [3, 15], in which the contracted two suffix Voigt notation is denoted by c and s for
stiffness and compliance to distinguish these from the full tensor C and S components. The
non-zero cij and sij are related to one another through the equations

s11 = c11 + c12

(c11 − c12)(c11 + 2c12)
, s12 = −c12

(c11 − c12)(c11 + 2c12)
, s44 = 1

c44
, (4)

with the shear moduli G4 = G5 = G6 = 1/s44 for cubic crystals in this axis system.
Thomas [16] has shown that the Cijkl and Sijkl transform from axes 1, 2 and 3 aligned

with respect to the 〈100〉 directions of the cubic crystal to a new orthonormal set of axes 1′,
2′ and 3′, so that in the new axis system the C ′

ijkl and S ′
ijkl can be written in the succinct

forms

C ′
ijkl = c12δij δkl + c44(δikδjl + δilδjk) + (c11 − c12 − 2c44)aiuajuakualu,

4S ′
ijkl = 4s12δij δkl + s44(δikδjl + δilδjk) + (4s11 − 4s12 − 2s44)aiuajuakualu,

(5)

in which δ is the Kronecker delta and the dummy suffix u takes the values 1, 2 and 3.

3 Directional Dependence of the Elastic Stiffness and Compliance Shear Coefficients

To establish how the shear modulus varies as a function of shear plane and shear direction,
the co-ordinate transformation from the ‘old’ set of axes to the ‘new’ set of axes can be
chosen without loss of generality so that axis 3′ is parallel to the normal of the plane of
shear and 2′ is parallel to the direction of shear. Hence,

C ′
3232 = c′

44 = c44 + (c11 − c12 − 2c44)
(
a2

31a
2
21 + a2

32a
2
22 + a2

33a
2
23

)
, (6)

4S ′
3232 = s ′

44 = s44 + (4s11 − 4s12 − 2s44)
(
a2

31a
2
21 + a2

32a
2
22 + a2

33a
2
23

)
. (7)

It is apparent from Eqs. (6) and (7) that interchanging directions 3′ and 2′, i.e., inter-
changing the direction of shear and the normal to the plane of shear, has no effect on either
c′

44 or s ′
44, so that these are invariant with an exchange of plane of shear and direction of

shear. It is also evident that a further simplification can be made to these two coefficients.
Both c′

44 and s ′
44 can be written as linear combinations of c44 and (c11 − c12)/2:

C ′
3232 = c′

44 = c44

(
1 − 2a2

31a
2
21 − 2a2

32a
2
22 − 2a2

33a
2
23

)

+ (c11 − c12)

2

(
2a2

31a
2
21 + 2a2

32a
2
22 + 2a2

33a
2
23

)
, (8)
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4S ′
3232 = s ′

44 = 1

c44

(
1 − 2a2

31a
2
21 − 2a2

32a
2
22 − 2a2

33a
2
23

)

+ 2

(c11 − c12)

(
2a2

31a
2
21 + 2a2

32a
2
22 + 2a2

33a
2
23

)
. (9)

It also follows that both can be expressed in terms of c44 and the anisotropy ratio

A = 2c44

c11 − c12
(10)

[3, 15, 17]:

C ′
3232 = c′

44 = c44

(
1 + 2

(
1

A
− 1

)(
a2

31a
2
21 + a2

32a
2
22 + a2

33a
2
23

))
, (11)

4S ′
3232 = s ′

44 = 1

c44

(
1 + 2(A − 1)

(
a2

31a
2
21 + a2

32a
2
22 + a2

33a
2
23

))
. (12)

Physically, (c11 − c12)/2 is the resistance to deformation by shear on the (110) plane in
the [11̄0] direction ([17], p. 16). c44 is the resistance to deformation by shear when the shear
direction is 〈001〉 and is independent of the direction cosines of the specific plane containing
this shear direction. Thus, for example, if the shear direction is [001], a21 = a22 = 0 and
a23 = 1, and the plane of shear must have a33 = 0 for [001] to lie in this plane, because it is
a requirement that

a31a21 + a32a22 + a33a23 = 0 (13)

by the Weiss zone law [15].
If A = 1, as will be the case for isotropic cubic materials such as W ([12], p. 837), Eqs. (6)

and (7) reduce to the equations c′
44 = c44 and s ′

44 = s44 = 1/c44 respectively. It is also evident
from Eqs. (11) and (12) that c′

44, s ′
44 and G′

4 = 1/s44 can all be normalised with respect to
c44 so that they are only functions of A.

3.1 Plane of Shear {001} or Direction of Shear 〈001〉

If 3′ is the plane (001) in the standard stereographic triangle, a31 = a32 = 0 and a33 = 1.
Since 2′ lies in (001), a23 = 0, so that c′

44 = c44 and s ′
44 = s44 = 1/c44, and so G′

4 = c44,
i.e., if the plane of shear is (001) the elastic stiffness coefficient c′

44 and the shear modulus
are both identical and independent of the direction of shear in (001) and A. By symmetry
this result is true for {001} or on any plane when the direction of shear is 〈001〉, as we have
already noted. c′

44 and G′
4 therefore plot as identical circles on the representation of the shear

modulus within a plane used by Wortman and Evans [1] and Turley and Sines [6].

3.2 Plane of Shear {111} or Direction of Shear 〈111〉

If 3′ is the plane (111) in the standard stereographic triangle, a31 = a32 = a33 = 1/
√

3.
Hence,

c′
44 = 1

3
(c11 − c12 + c44) ≡

(
2 + A

3A

)
c44, (14)

s ′
44 = 1

3
(4s11 − 4s12 + s44) = 1

3

(
4

c11 − c12
+ 1

c44

)
≡ (1 + 2A)

3c44
, (15)

since a2
21 +a2

22 +a2
23 is unity. The result for s ′

44 agrees with the special case of shear on (111)
in the [2̄11] direction considered by Zener ([17], p. 13).
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Once again, it is evident that the elastic stiffness coefficient c′
44 and the shear modulus are

both independent of the direction of shear in (111), and that they will be identical if A = 1.
By symmetry this result is true for {111} and when the direction of shear is 〈111〉. However,
the circles representing the loci of c′

44 and G′
4 will have different radii unless A = 1 because

c′
44

G′
4

= (2 + A)(1 + 2A)

9A
. (16)

For a material such as Si for which A = 1.564, this ratio is 1.045, and for Cu with A = 3.21,
this is 1.338. For highly anisotropic cubic materials such as δ-Pu at room temperature with
A = 7.03 and Li at 78 K with A = 9.39 [18], c′

44/G′
4 rises to 2.149 and 2.666 respectively.

3.3 Plane of Shear {hkl}

Without loss of generality, we can consider the specific plane (hkl) with h ≤ k ≤ l within
the standard stereographic triangle. We will consider plotting the loci of c′

44 and s ′
44 first.

Suppose two orthonormal directions β1 and β2 are identified within (hkl) that together with
the direction cosines corresponding to the normal to (hkl), 3′, form a right-handed set of
axes. The table of direction cosines between the axis set 1, 2 and 3 and the axis set β1, β2

and 3′ will be of the form

x1 x2 x3

x ′
β1

x ′
β2

x ′
3

α11 α12 α13

α21 α22 α23

a31 a32 a33

. (17)

Hence, with respect to β1 and β2, a shear direction of unit length making an angle θ with β1

and (90◦ − θ ) with β2 will have direction cosines

[a21, a22, a23] = [α11 cos θ + α21 sin θ,α12 cos θ + α22 sin θ,α13 cos θ + α23 sin θ ]. (18)

Substitution of these expressions for a21, a22 and a23 into Eqs. (6) and (7) readily shows that
there will be no sin θ cos θ terms in these equations if

a2
31α11α21 + a2

32α12α22 + a2
33α13α23 = 0. (19)

Under these circumstances, Eqs. (6) and (7) are both of the general form

r = P + Q cos2 θ + R sin2 θ ≡ p + q cos 2θ, (20)

where p = P + (Q+R)

2 and q = (Q−R)

2 . Consideration of this polar equation shows that, for
non-zero values of q , it represents the locus of the solutions of a sextic equation; defining
tan θ = y/x, Eq. (20) becomes

√
x2 + y2 = p + q

(
x2 − y2

x2 + y2

)
. (21)

This is one form of the sextic equation
(
x2 + y2

)3 = (
(p + q)x2 + (p − q)y2

)2
. (22)

The locus defined by Eq. (20) is symmetric about the two perpendicular directions defined
by θ = 0◦ and θ = 90◦. Hence, for two randomly chosen perpendicular directions, β1 and
β2, Eq. (19) enables the phase angle φ defined by Turley and Sines [6] to be determined.

Equation (19) can be further simplified. Since β1, β2 and 3′ form an orthonormal right-
handed set of vectors,
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Table 1 Direction cosines
defining the principal axes η1 and
η2 of the loci of c′

44, s′
44 and G4

for various (hkl) within the
standard 001–011–11
stereographic triangle

hkl η1 η2

(156) [0.0243 0.7660 0.6424] [0.9916 0.1001 0.0818]

(159) [0.0622 0.8695 0.4900] [0.9934 0.1015 0.0540]

(125) [0.2294 0.8870 0.4007] [0.9561 0.2826 0.0782]

(123) [0.1410 0.8014 0.5813] [0.9532 0.2684 0.1388]

(234) [0.1763 0.7431 0.6455] [0.9116 0.3707 0.1778]

α11 = α22a33 − α23a32,

α12 = α23a31 − α21a33, (23)

α13 = α21a32 − α22a31,

so that the condition expressed by Eq. (19) becomes

α21α22a33
(
a2

31 − a2
32

) + α22α23a31
(
a2

32 − a2
33

) + α23α21a32
(
a2

33 − a2
31

) = 0. (24)

This together with the condition that β2 lies in (hkl),

α21a31 + α22a32 + α23a33 = 0, (25)

enables the two perpendicular directions about which the polar plots are symmetrical for a
general plane (hkl) within this standard stereographic triangle to be found. If the required
directions are taken to be of the form [1vw], then v is a solution of the quadratic equation

hk
(
l2 − k2

)
v2 − 2l2

(
k2 − h2

)
v − hk

(
l2 − h2

) = 0. (26)

Solutions of Eq. (26) for various (hkl) of interest within the standard 001–011–111 stere-
ographic triangle relevant for c′

44 and s ′
44, as well as for G′

4, are shown in Table 1. Thus,
for example, for (156), one of the perpendicular directions is rotated some 7.26° away from
[510], in agreement with Fig. 3 of Turley and Sines [6], with axes 1′, 2′ and 3′ in our notation
permuting cyclically to become 2′, 3′ and 1′, in their notation.

That these are the perpendicular directions defining the principal axes of the loci of c′
44,

s ′
44 and G′

4 for (hkl) within the standard stereographic triangle can be confirmed by a sec-
ond consideration of Eqs. (6) and (7) with the substitution in Eq. (18). Defining the func-
tion

f (θ) =
∑

u=1,3

a2
3ua

2
2u (27)

under these circumstances, an examination of f (θ) shows that it has turning points whenever

tan 2θ =
2

∑

u=1,3
a2

3uα1uα2u

∑

u=1,3
a2

3u(α
2
1u − α2

2u)
. (28)

Thus, for example, for (156), if β2 is chosen to be parallel to [510], solution of Eq. (27) con-
firms that an anti-clockwise rotation of 7.26° is required to align the axes with the principal
axes of the loci of c′

44, s ′
44 and G′

4.
For planes on the border of the standard 001–011–111 stereographic triangle, identifica-

tion of the two perpendicular directions about which the polar plots are symmetrical is more
straightforward. Planes on the great circle connecting 001 and 011 are of the form (0kl) and
so in terms of their directions cosines, a31 = 0, giving solutions from Eqs. (24) and (25) for
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the two perpendicular directions about which the polar plots are symmetrical of ± [100] and
±[0l̄k]. Similarly, for planes of the form (hhl) a31 = a32, and so these directions are ±[11̄0]
and ±[l̄ l 2h]. Finally, for planes of the form (hkk) a32 = a33, and so these directions are
±[01̄1] and ±[2k h̄ h̄]. Having determined the two perpendicular directions about which the
polar plots are symmetrical, the forms of the polar plots can be examined for planes of the
various special and general forms.

3.3.1 Plane of Shear (0kl)

For (0kl) the table of direction cosines between the axis set 1, 2 and 3 and the axis set β1,
β2 and 3′ can be chosen to be of the form

x1 x2 x3

x ′
β1

x ′
β2

x ′
3

0 a33 −a32

−1 0 0
0 a32 a33

, (29)

with a2
32 + a2

33 = 1. Substituting from Eq. (18), Eqs. (11) and (12) become

c′
44 = c44

(
1 + 4a2

33

(
1 − a2

33

)( 1

A
− 1

)
cos2 θ

)
(30)

and

s ′
44 = 1

c44

(
1 + 4a2

33

(
1 − a2

33

)
(A − 1) cos2 θ

)
, (31)

respectively. The polar plots of c′
44 and s ′

44 depart from circles most noticeably for planes on
the great circle connecting 001 and 011 at (011), taking the forms

c′
44 = c44

2A

(
(A + 1) − (A − 1) cos 2θ

)
and s ′

44 = 1

2c44

(
(A + 1) + (A − 1) cos 2θ

)
.

(32)

For A > 1, c′
44 will take its minimum value and s ′

44 its maximum value for (0kl) when θ = 0◦

and a33 = 1/
√

2, i.e., for (011) when the shear direction is [011̄], when these equations
simplify to

c′
44 = c44

A
and s ′

44 = A

c44
, (33)

and so for this particular shear system G′
4 = c′

44. Clearly, for A < 1, c′
44 will take its maxi-

mum value and s ′
44 its minimum value for shear on (011) in the direction [011̄].

More generally for a plane of shear (0kl) between 001 and 011 and an angle θ defining
the direction of shear within (0kl) with respect to the vector [0lk̄], the ratio c′

44/G′
4 departs

from unity. A consideration of Eqs. (30) and (31) shows that this departure from unity is a
maximum when

a2
33

(
1 − a2

33

)
cos2 θ = 1

8
and

c′
44

G′
4

= (A + 1)2

4A
. (34)

For Li at 78 K, this ratio of c′
44/G′

4 is 2.87. It is evident that the shapes of c′
44 and G′

4 are
most different on (011) when θ = 45◦. For a plane midway between (001) and (011) for
which a2

33 = 1
2 +

√
2

4 , this difference is most accentuated at θ = 0◦.
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3.3.2 Plane of Shear (hhl)

For (hhl) the table of direction cosines between the axis set 1, 2 and 3 and the axis set β1, β2

and 3′ can be chosen to be of the form

x1 x2 x3

x ′
β1

x ′
β2

x ′
3

a33√
2

a33√
2

− 2a31√
2

− 1√
2

1√
2

0
a31 a31 a33

, (35)

with 2a2
31 + a2

33 = 1. Substituting from Eq. (18), Eqs. (11) and (12) become

c′
44 = c44

(
1 + 2a2

31

(
1

A
− 1

)
(
1 + 2 cos2 θ − 6a2

31 cos2 θ
)
)

(36)

and

s ′
44 = 1

c44

(
1 + 2a2

31(A − 1)
(
1 + 2 cos2 θ − 6a2

31 cos2 θ
))

, (37)

respectively. The polar plots of c′
44 and s ′

44 are circles for (001) and (111) (Sects. 3.1 and 3.2).
Both polar plots have turning points at a31 = 1/2 when θ = 0◦: a minimum in c′

44 and a
maximum in s ′

44 for A > 1, and vice-versa for A < 1. The greatest departure from the shape
of a circle for the polar plots for c′

44 for shear planes of the form (hhl) can be defined by the
direction cosines for which the function

c′
44(θ = 90◦)
c′

44(θ = 0◦)
= (1 + 2a2

31(
1
A

− 1))

(1 + 6( 1
A

− 1)(a2
31 − 2a4

31))
(38)

is a maximum. This leads to the following condition on a31:

6

(
1

A
− 1

)
a4

31 − 6a2
31 + 1 = 0. (39)

For Si with A = 1.564, this function takes a maximum value of 1.159 when a31 = 0.422
between (001) and (111), so that (hhl) is close to (112); for Li, this function has a maximum
of 1.802 when a31 = 0.451, so that (hhl) is close to (335).

3.3.3 Plane of Shear (hll)

For (hll) the table of direction cosines between the axis set 1, 2 and 3 and the axis set β1, β2

and 3′ can be chosen to be of the form

x1 x2 x3

x ′
β1

x ′
β2

x ′
3

0 1√
2

− 1√
2

− 2a33√
2

a31√
2

a31√
2

a31 a33 a33

, (40)

with a2
31 + 2a2

33 = 1. Substituting from Eq. (18), Eqs. (11) and (12) become

c′
44 = c44

(
1 + 2a2

33

(
1

A
− 1

)
(
1 + 2 sin2 θ − 6a2

33 sin2 θ
)
)

(41)

and

s ′
44 = 1

c44

(
1 + 2a2

33(A − 1)
(
1 + 2 sin2 θ − 6a2

33 sin2 θ
))

, (42)
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respectively. These polar plots vary from a circle at (111) to the polar plot at (011) which
accentuates anisotropy the most.

3.3.4 Plane of Shear (hkl)

For (hkl) planes within the standard stereographic triangle the full forms of Eqs. (11) and
(12) have to be used with Eq. (18). If the methodology used by Turley and Sines [6] is used
for the polar plots of polar plots of c′

44 s ′
44 and G′

4, so that axes are referred to the meridian
tangent in the plane and the direction in the plane perpendicular to the meridian direction, as
for example in their Fig. 3, the principal axes of the polar plots will be rotated with respect
to the axes chosen by a predictable angle θ defined by a suitable solution of Eq. (28).

4 Polar Plot Representations for c′
44 s ′

44 and G′
4

As has been noted in Sect. 3, both C ′
3232 and S ′

3232 are expressions which can be rearranged
to be of the general form

r = p + q cos 2θ

(Eq. (20)) with respect to the two perpendicular axes about which the polar plots are sym-
metrical for the (hkl) plane under consideration. The most extreme departure from a circle
occurs for shear on the (011) plane in the 001–011–111 stereographic triangle, but it is ev-
ident from Eq. (32) that even for this plane p > |q| for both C ′

3232 and S ′
3232, and so there

is a defined limit with respect to which the cos 2θ term dominates the polar plot of a circle
represented by r = p.

Since C ′
3232 and S ′

3232 are quantities defined by both a plane and a direction, it is not
possible to plot them on a single surface, as is routinely done for Young’s modulus and
Poisson’s ratio in cubic materials (see, for example, [1]). It is therefore necessary to ex-
plore alternative methods of representing these quantities graphically. One method of pre-
senting a tensor component T ′

3232 and its reciprocal 1/T ′
3232 introduced by both Wortman

and Evans [1] and developed by Turley and Sines [6] is to view the polar plot in the 1′–2′
plane, i.e., viewed down the antiparallel direction to the normal to the plane of shear, 3′. The
development of Turley and Sines was to group together a number of such plots on a stan-
dard 001–011–111 stereographic triangle. Examples of such representations are shown in
Figs. 1, 2, 3 for c′

44 s ′
44 and G′

4 for (a) Cu, (b) δ-Pu and (c) Nb, for which A = 0.51 [19],
using the representation of Turley and Sines on the 001–011–111 stereographic triangle. It
can also be instructive to examine the polar plots for (0kl), (hhl) and (hll) planes as groups,
as in the example shown for c′

44 for Cu in Fig. 4.
For a general (hkl) in Figs. 1, 2, 3, the polar plots are oriented with respect to the vector

[uv0] common to (hkl) and (001). Hence, for (0kl) planes, the plots are oriented with respect
to [100]; they are therefore symmetric about the vertical and horizontal plotting axes. For
(hhl) planes the plots are oriented with respect to the common [1̄10] direction, and so the
principal axes are at 45° to the horizontal plotting axes.

For the (hll) planes, the common [01̄1] direction, and therefore the common principal
axis, follows the great circle between 111 and 011. Finally, for a plane such as (123), the
vector [2̄10] common to (hkl) and (001) defines the direction and sense with respect to which
the principal axes of the polar plot must be oriented.

It is evident from a comparison of Figs. 1 and 3 for c′
44 and G′

4 that there are clear
differences in the shapes of the polar plots for c′

44 and G′
4 if the plane of interest is not (001).
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Fig. 1 (a) Stereographic
projection of polar plots of
C′

3232 = c′
44 for Cu (A = 3.21)

viewed on the standard
stereographic triangle. In this
representation the viewing
direction is antiparallel to the
normal to the plane of shear, 3′ .
The locus at 001 has unit radius
in units of c44. (b) Stereographic
projection of polar plots of c′

44
for δ-Pu (A = 7.03) viewed as in
Fig. 1(a). The locus at 001 has
unit radius in units of c44.
(c) Stereographic projection of
polar plots of c′

44 for Nb
(A = 0.51) viewed as in
Fig. 1(a). The locus at 001 has
unit radius in units of c44

(a)

(b)

The differences are most apparent at and around the 011 pole, i.e., one of the likely slip
planes for dislocations in b.c.c. metals, as is shown in Fig. 5 for the 011 pole for δ-Pu.
These differences between c′

44 and G′
4 for highly anisotropic cubic materials need to be

borne in mind when considering their mechanical behaviour. For situations involving the
imposition of external shear stresses to a single crystal of a cubic material, s ′

44 is the relevant
shear coefficient to consider, and therefore G′

4 is the effective shear modulus. For local
strain fields around dislocations in single crystals, c′

44 is the relevant shear coefficient usually
considered [12], although others use compliance coefficients for their analysis when deriving
expressions such as the energy of a dislocation or its displacement field [20, 21].
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Fig. 1 (Continued)

(c)

5 Further Polar Plot Representations for the Elastic Stiffness and Compliance Shear
Coefficients and Shear Moduli

A second method used by Wortman and Evans [1] and Turley and Sines [6] of plotting co-
efficients is to view down the direction antiparallel to 3′ so that both the normal to the plane
of shear, 1′, and the shear direction lying in the plane 2′, rotate in the plane of observation.
To consider such representations, we shall use the convention adopted by both these sets
of authors; as we have noted in Sect. 3, the elastic stiffness and compliance shear coeffi-
cients are invariant with an exchange of the direction of shear and the normal to the plane
of shear.

In the general case, the methodology in Sect. 3.3 can be followed, so that the loci for
C ′

1212 ≡ c′
66, 4S ′

1212 ≡ s ′
66 and G′

6 (with the subscript for G′ in the contracted notation to
denote shear in the 2′ direction on the plane whose normal is in the 1′ direction) are plotted
with respect to principal axes in the plane aligned in the plane. The methodology for C ′

1212
will be considered here primarily; similar methodologies will pertain for S ′

1212 and G′
6 as

noted below.
Using (17) for the relationship between the 1, 2 and 3 and the axis set β1, β2 and 3′, we

can then define the perpendicular orthonormal directions 1′ and 2′ so that

[a11, a12, a13] = [α11 cos θ + α21 sin θ,α12 cos θ + α22 sin θ,α13 cos θ + α23 sin θ ] (43)

and

[a21, a22, a23] = [−α11 sin θ + α21 cos θ,−α12 sin θ + α22 cos θ,

− α13 sin θ + α23 cos θ ]. (44)

Hence, using Eq. (5) we have the following formula for C ′
1212 = C ′

2121:

C ′
1212 = c′

44 = c44 + (c11 − c12 − 2c44)
(
a2

11a
2
21 + a2

12a
2
22 + a2

13a
2
23

)
. (45)
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Fig. 2 (a) Stereographic
projection of polar plots of s′

44
for Cu (A = 3.21) viewed as in
Fig. 1(a). The locus at 001 has
unit radius in units of (1/c44).
(b) Stereographic projection of
polar plots of s′

44 for δ-Pu
(A = 7.03) viewed as in
Fig. 1(a). The locus at 001 has
unit radius in units of (1/c44).
(c) Stereographic projection of
polar plots of s′

44 for Nb
(A = 0.51) viewed as in
Fig. 1(a). The locus at 001 has
unit radius in units of (1/c44)

(a)

(b)

Now,

a2
11a

2
21 = {(

α2
21 − α2

11

)
sin θ cos θ + α11α21

(
cos2 θ − sin2 θ

)}2
, etc. (46)

A consideration of Eq. (45) shows that there will be no term in sin 2θ cos 2θ , i.e., no term
in sin 4θ if

(
α2

21 − α2
11

)
α11α21 + (

α2
22 − α2

12

)
α12α22 + (

α2
23 − α2

13

)
α13α23 = 0. (47)
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Fig. 2 (Continued)

(c)

Under these circumstances, Eq. (45) is of the general form

r = P + Q cos2 2θ + R sin2 2θ ≡ p + q cos 4θ, (48)

where p = P + (Q+R)

2 and q = (Q−R)

2 . Consideration of this polar equation shows that,
for non-zero values of q , it represents the locus of solutions of a tenth order polynomial
equation; defining tan θ = y/x, Eq. (48) becomes

√
x2 + y2 = p + q

(
x4 + y4 − 6x2y2

(x2 + y2)2

)
. (49)

This is one form of the polynomial equation of order 10:

(
x2 + y2

)5 = (
p
(
x2 + y2

)2 + q
(
x4 + y4 − 6x2y2

))2
. (50)

The locus defined by Eq. (48) is symmetric about the two perpendicular directions defined
by θ = 0◦ and θ = 90◦.

Making the substitutions

α2
11 + α2

21 + a2
31 = 1, α2

12 + α2
22 + a2

32 = 1, α2
13 + α2

23 + a2
33 = 1, (51)

which follow from the properties of a rotation matrix defined by the table of direction cosines
in Eq. (18) [3, 15], and recognising that

α11α21 + α12α22 + α13α23 = 0, (52)

it is apparent that Eq. (47) can be recast into the form

(
2α2

21 + a2
31

)
α11α21 + (

2α2
22 + a2

32

)
α12α22 + (

2α2
23 + a2

33

)
α13α23 = 0. (53)
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Fig. 3 (a) Stereographic
projection of polar plots of G′

4
for Cu (A = 3.21) viewed as in
Fig. 1(a). The locus at 001 has
unit radius in units of c44.
(b) Stereographic projection of
polar plots of G′

4 for δ-Pu
(A = 7.03) viewed as in Fig. 1(a).
The locus at 001 has unit radius
in units of c44. (c) Stereographic
projection of polar plots of G′

4
for Nb (A = 0.51) viewed as in
Fig. 1(a). The locus at 001 has
unit radius in units of c44

(a)

(b)

This condition is different from that expressed by Eq. (19). However, for planes on the
border of the standard 001–011–111 stereographic triangle, the two perpendicular direc-
tions about which these polar plots are symmetrical when viewed down the antiparallel
direction to 3′ are the same as for C ′

3232 and S ′
3232—the difference only manifests itself for

planes within this standard 001–011–111 stereographic triangle. For these planes, defining
the function

g(θ) =
∑

u=1,3

a2
1ua

2
2u, (54)
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Fig. 3 (Continued)

(c)

it is evident that g(θ) has turning points whenever

tan 4θ =
∑

u=1,3
(α2

2u − α2
1u)α1uα2u

∑

u=1,3
α2

1uα
2
2u − 1

4 (α2
2u − α2

1u)
2
, (55)

confirming that the loci for C ′
1212, S ′

1212 and G′
6 have 4mm point symmetry at the ori-

gin and that, with respect to the principal axes, the loci for C ′
1212, S ′

1212 are both of the
form

r = p + q cos 4θ. (56)

Thus, for example, for (156), if β is chosen to be parallel to [510], the solution of Eq. (55)
confirms that an anti-clockwise rotation of 9.12° is required to align the axes with the prin-
cipal axes of the loci of C ′

1212, S ′
1212 and G′

6, aligned along maxima of C ′
1212 and G′

6 and
minima for S ′

1212 for A > 1, and vice-versa for A < 1.
Solutions to Eq. (55) on these criteria are shown in Table 2. A comparison of the data

in Tables 1 and 2 shows that the directions η1 and η2 in the two tables are very similar for
(156), the plane considered by Turley and Sines for Figs. 3 and 4 of [6], but that they are
noticeably different for other planes such as (125), (123) and (234). A demonstration of this
is shown in Fig. 6 for C ′

3212 and C ′
1212 for Cu plotted on the (123) plane.

6 Polar Plot Representations for C′
3231 and S′

3231

Using Eq. (5), the equations for C ′
3231 and S ′

3231 are seen to be:

C ′
3231 = c′

45 = (c11 − c12 − 2c44)
(
a2

31a21a11 + a2
32a22a12 + a2

33a23a13

)
,

4S ′
3231 = s ′

45 = (4s11 − 4s12 − 2s44)
(
a2

31a21a11 + a2
32a22a12 + a2

33a23a13

)
,

(57)
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(a)

(b)

Fig. 4 (a) Stereographic projection of (0kl) polar plots of c′
44 for Cu (A = 3.21) viewed with the common

[100] direction as the vertical axis for each polar plot, with the viewing direction antiparallel to the normal to
the plane of shear, 3′ . The locus at 001 has unit radius in terms of c44. The shear planes are indexed. (b) Stere-
ographic projection of (hhl) polar plots of c′

44 for Cu (A = 3.21) viewed with the common [11̄0] direction as
the vertical axis for each polar plot, with the viewing direction antiparallel to the normal to the plane of shear,
3′ . The locus at 001 has unit radius in terms of c44. The shear planes are indexed. (c) Stereographic projection
of (hll) polar plots of c′

44 for Cu (A = 3.21) viewed with the common [01̄1] direction as the vertical axis for
each polar plot, with the viewing direction antiparallel to the normal to the plane of shear, 3′ . For the (011)
polar plot there is unit radius in terms of c44 parallel to the vertical axis
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Fig. 4 (Continued)

(c)

Fig. 5 A comparison of the loci
of c′

44 and G′
4 for shear on (011)

as a function of shear direction
within the plane for δ-Pu
(A = 7.03) with the viewing
direction antiparallel to the
normal to the plane of shear, 3′ .
While c′

44 and G′
4 are the same

along the two perpendicular
directions [01̄1] and [100]
defining the axes of both loci,
clear differences between c′

44 and
G′

4 are evident at orientations
between these two directions,
such as the two 〈111〉 directions
within this plane. For both c′

44
and G′

4 there is unit radius in
terms of c44 parallel to [100]

and so for a general plane of projection (hkl) as the planes with normal 3′, vectors 1′ and 2′,
in the plane can be taken to have the forms given in Eqs. (43) and (44). Substituting these
equations into Eq. (57), the condition that there are no terms in cos2 θ − sin2 θ = cos 2θ for
both equations becomes

a2
31α11α21 + a2

32α12α22 + a2
33α13α23 = 0, (58)

that is, the condition on the two perpendicular directions about which the polar plots are
antisymmetrical for a general plane (hkl) is the same for tensors of the form T ′

3232 and tensors
of the form T ′

3231. Hence, as is evident in [6], plots of C ′
3132 and C ′

3232 (C ′
1312 and C ′

1313 in
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Table 2 Direction cosines
defining the principal axes η1 and
η2 of the loci of C′

1212, S′
1212

and G′
6 viewed down the

antiparallel direction to 3′ for
various (hkl) as the plane normal
to 3′ within the standard
001–011–111 stereographic
triangle

hkl η1 η2

(156) [0.0079 0.7688 0.6394] [0.9919 0.0752 0.1027]

(159) [0.0136 0.8747 0.4844] [0.9952 0.0350 0.0911]

(125) [0.0279 0.9300 0.3664] [0.9828 0.0414 0.1800]

(123) [0.0386 0.8373 0.5453] [0.9628 0.1148 0.2444]

(234) [0.0567 0.8121 0.5807] [0.9267 0.1736 0.3332]

Fig. 6 C′
3232 (continuous curve)

and C′
1212 (dashed curve) for Cu

(A = 3.21) plotted on the (123)
plane containing 1′ and 2′ , with
the vertical direction fixed as
[2̄10], showing that there is a
noticeable difference in the
orientation of the principal axes
on this plane aligned along
maxima for these two polar plots

their notation) on (156) both have the identical ‘phase angle’, φ. For C ′
3231 and S ′

3231 this
also defines the angle at which these functions are zero [6].1

7 Average Shear Elastic Constants

As Hirth and Lothe [12] note, the complexity of most problems involving dislocations of
differing orientation and Burgers vectors is such that average elastic constants must be used.
For such averages, Voigt averages over Cijkl are appropriate for situations in which uniform
strain can be assumed, while Reuss averages over Sijkl are appropriate for situations in which
uniform stress is a better assumption. Hirth and Lothe state that both averages agree to first
order in the anisotropy, but differ to second order (pp. 425, 430 and 431).

1We note that the representation chosen by Turley and Sines [6] to show C′
1312 graphically has 2mm point

symmetry and is of the form

r = r0 + b sin 2θ

so that an (arbitrary) offset r0 > b is added to C′
1312 to enable its graphical representation for an angle θ to

be always positive definite. An equivalent representation to show the sin 2θ dependence of C′
1312 would be

simply to plot C′
1312 vertically against the polar angle θ horizontally.
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For the specific case of the average elastic stiffness and compliance shear coefficients in
cubic materials, c̄44 and s̄44 respectively, the results quoted by Hirth and Lothe can be shown
to be:

c̄44 = c44 − 1

5
(2c44 + c12 − c11) = c44 − H

5
, (59)

1

μR

= s̄44 = 1

c44
+ 2

5

H

(c11 − c12)c44
, (60)

after some elementary rearrangement of the form given by Hirth and Lothe of s̄44, where
μR is the Reuss average shear modulus, c̄44 the Voigt average shear modulus and H is the
anisotropy factor

H = 2c44 + c12 − c11. (61)

Clearly, if H = 0, c̄44 = μR . Algebraic manipulation of Eqs. (59) and (60) produces the
equation given in Exercise 13-3 of Hirth and Lothe, p. 431:

1

μR

= s̄44 = 1

c̄44
+ 3H 2

25c2
44(c11 − c12)

(
1 − H

5c44

)−1

, (62)

consistent with the statement that the Voigt and Reuss averages differ to the second order
in H .

An alternative version of Eqs. (59) and (60) is equally instructive. In terms of c44 and A,
these two equations become

c̄44 = 3A + 2

5A
c44 and μR = 5

3 + 2A
c44, (63)

so that
c̄44

μR

= (3A + 2)(3 + 2A)

25A
. (64)

Hence, for Cu, for which A = 3.21, this ratio is 1.36, while for δ-Pu (A = 7.03), this ratio
is 2.24. While Eq. (62) has the interpretation given by Hirth and Lothe, it is apparent that
significant errors can arise in calculations for highly anisotropic cubic materials if the wrong
average is unwittingly assumed.

8 Alternative Graphical Representations of the ‘Torsion Modulus’ or ‘Rigidity
Modulus’

An excellent account of the theory of elastic anisotropy and practical considerations of how
to measure elastic constants up to the end of 1944 is given by Hearmon [22]. Of particular
interest here is the measurement of what Hearmon terms the rigidity modulus, and what
others have termed the torsion modulus [23], or ‘the shear stress that would develop on
the periphery of a cylindrical specimen having a length and diameter = 1 when twisted
round an angle of 1 radian’ [24] in static methods of measuring the elastic coefficients of
single crystals. In general, if a twisting couple is applied to a cylinder of a single crys-
tal of an anisotropic material, bending can also take place in addition to torsion: these are
conditions under which the free rigidity modulus, GF , is defined by Hearmon through the
equation

GF = 2

s ′
44 + s ′

55

, (65)
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for a specimen of circular cross-section having its axis along 3′. In full tensor notation the
equations for s ′

44 and s ′
55 are

4S ′
3232 = s ′

44 = s44 + (4s11 − 4s12 − 2s44)
(
a2

31a
2
21 + a2

32a
2
22 + a2

33a
2
23

)
, (66)

4S ′
3131 = s ′

55 = s44 + (4s11 − 4s12 − 2s44)
(
a2

31a
2
11 + a2

32a
2
12 + a2

33a
2
13

)
. (67)

Noting that

a2
11 + a2

21 + a2
31 = 1, a2

12 + a2
22 + a2

32 = 1, etc., (68)

from the properties of direction cosines, it is evident from adding Eqs. (66) and (67) together
that

s ′
44 + s ′

55 = 4(s11 − s12) − 4

(
s11 − s12 − 1

2
s44

)(
a4

31 + a4
32 + a4

33

)
(69)

(Eq. (7.4) of [22]). Further algebraic manipulation of (69) produces the form of the rigidity
modulus GGS defined by Goens and Schmid [23]:

1

GGS

= 1

2

(
s ′

44 + s ′
55

) = s44 + 4

(
s11 − s12 − 1

2
s44

)(
a2

31a
2
32 + a2

32a
2
33 + a2

33a
2
31

)
, (70)

since
(
a2

31 + a2
32 + a2

33

)2 = 1. (71)

The formula in Eq. (70) is the formula given in Eq. 10/1 of [24]. This formula is also used by
Date and Andrews [25] in their consideration of what they describe as the shear or torsion
modulus of a cylindrical bar cut from a single crystal.

The advantage of the torsion modulus defined through either Eq. (69) or Eq. (70) is that
it depends only on the direction defining the axis of the cylinder, and therefore only on the
direction cosines of the cylinder axis with respect to the crystallographic axes of the cubic
material under consideration; it is independent of the perpendicular directions of 1′ and 2′.
This independence of the perpendicular directions of 1′ and 2′ also holds for the term

1

2

(
c′

44 + c′
55

)
, (72)

and so it is evident that 1
2 (c′

44 +c′
55),

1
2 (s ′

44 + s ′
55) and the torsion modulus for cubic materials

can all be represented by a single surface in three dimensions in which the radius vector is
in the direction [hkl] under consideration and the length of which is proportional to the term
under consideration. This is the principle behind the representation of the torsion modulus in
three dimensions in Fig. 4 of [23], reproduced in Fig. 154(b) of [24]. Other representations
of 1

2 (s ′
44 + s ′

55) can be found in §373 of [5] and in Wooster [26]; Wooster uses a different
definition of the sij (see the footnote on p. 237 in Wooster [26]), so that the representations
he shows are of what he defines as 2(s ′

44 + s ′
55) in his notation instead of 1

2 (s ′
44 + s ′

55) in the
Voigt notation.

The clear advantage of these representations is that they can all be represented by a single
surface in three dimensions. The clear disadvantage is that they average out differences
between moduli in different directions within a plane that are evident in Figs. 1–5.

9 Discussion and Conclusions

The elastic stiffness coefficients and the shear moduli on high symmetry planes in high
symmetry directions of cubic materials are summarised in Table 3. While for cubic mate-
rials that are relatively weakly anisotropic, such as Si, it is reasonable to presume that the
dependence of c′

44 and G′
4 on the choice of shear plane and shear direction are very similar, a
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Table 3 Elastic stiffness coefficients c′
44 and shear moduli G′

4 = 1/s′
44 on high symmetry planes {hkl} in

high symmetry directions 〈uvw〉 of cubic materials in terms of c44 and A

hkl uvw c′
44 G′

4

{001} Any direction in {001} c44 c44

{111} Any direction in {111} ( 2+A
3A

)c44 ( 3
1+2A

)c44

{110} 〈11̄0〉 c44
A

c44
A

{110} 〈11̄1〉 ( 2+A
3A

)c44 ( 3
1+2A

)c44

{112} 〈111̄〉 ( 2+A
3A

)c44 ( 3
1+2A

)c44

{123} 〈111̄〉 ( 2+A
3A

)c44 ( 3
1+2A

)c44

{112} 〈11̄0〉 ( 1+2A
3A

)c44 ( 3
2+A

)c44

consideration of the tensor algebra and graphical representations relevant to these two quan-
tities shows that there are clear differences which emerge for cubic materials that are highly
anisotropic (A > 3 or A < 1/3) in their elastic coefficients. For materials of high anisotropy,
particular differences between c′

44 and G′
4 are evident on {111} and {110} planes, the former

in terms of the magnitudes of c′
44 and G′

4, both of which are isotropic on {111} planes, the
latter in terms of the differences between c′

44 and G′
4 that manifest themselves on directions

other than the perpendicular 〈001〉 and 〈11̄0〉 directions within the {110} planes.
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