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Abstract

An alternative interface finite element is developed. By using the partition of
unity property of finite element shape functions, discontinuous shape functions
are added to the standard finite element basis. The interfacebehaviour is de-
scribed by extra degrees of freedom at existing nodes, avoiding the need for
‘doubled nodes’. The element is kinematically equivalent to a conventional in-
terface element but is more flexible because it allows the inclusion of interface
surfaces within solid elements. In describing interface phenomena, the methodol-
ogy proposed here makes possible the use of coarser meshes and it is completely
insensitive to mesh topology. The new formulation is analysed throughly and
comparisons are drawn with the conventional formulation.
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1 INTRODUCTION

The modelling of displacement discontinuities has been based on the inclusion of
interface elements at inter-element boundaries and, recently, by so-called embedded
discontinuity models. In the former, a discontinuous displacement field is described
through the notion of ‘relative displacement’ between a double set of nodes; in the
latter, the discontinuity stems from the decomposition of the displacement field into a
continuous and a discontinuous part. Unlike some embedded discontinuity models [1–
3], interface elements are variational consistent but are limited in their applications by
a dependence on mesh alignment, since it is not possible for the discontinuity surface
to cross an element.

Recently, different numerical techniques have been developed which allow the use
of discontinuous finite element shape functions, thus providing the natural environment
for the description of interface phenomena by the inclusionof discontinuity in the
displacement field [4]. The technique proposed here makes use of the partition of unity
property of finite element shape functions (the sum of the shape functions must equal
unity at each spatial point [5]). Within the partition of unity approach, it is possible to
extend the standard approximation basis with enriched functions. This enhancement
results in extra degrees of freedom for an enhanced node, without modification of
the mesh topology. In this report, following Wells and Sluys[6], the standard FEM
polynomial basis is enriched with discontinuous functionsto model cohesive zones.

This approach generates a class of elements (PUM interface elements) which are
kinematically equivalent to conventional interface elements, the key difference being
the possibility of arbitrarily locating the interface within an element itself. The inter-
face behaviour is described by an enhanced set of global degrees of freedom and by a
constitutive law at the discontinuity. The formulation is general and can be used for
the computational modelling of a large class of interface phenomena.

In this report, the response of PUM interface elements for one-dimensional line
elements and two-dimensional quadrilateral elements is analysed and the kinematic
equivalence with conventional interface elements is shown. This report is organised
as follows. In the next section the kinematics and the strongand weak governing
equations for a body crossed by a discontinuity are presented. The discrete equations
are given in Section 3 followed by remarks on implementationaspects in Section 4.
Finally, the comparison between conventional interface finite elements and partition
of unity interface elements is discussed in Section 5. Details of the comparison are
included in Appendix B.

2 PROBLEM FORMULATION

In this section, after reviewing the kinematics for a body crossed by a discontinuity
and illustrating the link between the partition of unity method and the finite element
method, the governing equations and the associated variational formulation for a body
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Figure 1: BodyΩ̄ crossed by a discontinuityΓd.

crossed by a discontinuity are presented.

2.1 Kinematics

A body Ω̄ bounded byΓ and crossed by a discontinuityΓd is considered (Figure 1).
Displacements̄u are prescribed onΓu, while tractions̄t are prescribed onΓt. The in-
ternal discontinuity surfaceΓd divides the body into two sub-domains,Ω+ andΩ−

(Ω = Ω+ ∪Ω−). The boundary surface of the bodȳΩ consists of three mutually dis-
joint boundary surfacesΓu, Γt and Γd. The displacement field can be decomposed
by

u(x,t) = û(x,t)+H Γd (x)ũ(x,t), (1)

whereH Γd(x) is the Heaviside function centred at the discontinuity surfaceΓd (H Γd =
1 if x ∈ Ω+, H Γd = 0 if x ∈ Ω−) andû andũ are continuous functions on̄Ω. Note
that the discontinuity is introduced by the Heaviside functionH Γd at the discontinuity
surfaceΓd and that the magnitude of the displacement jumpJuK at the discontinuity
surface is given bỹu. For small displacements, the strain field is computed as the
symmetric part of the gradient of the displacement field:

ε = ∇su =

{
∇sû if x ∈ Ω−

∇sû+∇sũ if x ∈ Ω+ (2)

which can be written, in a compact form and away from the discontinuity (x /∈ Γd), as

ε = ∇sû+H Γd ∇sũ, (3)

where(·)s refers to the symmetric part of(·).
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2.2 Partitions of unity and finite elements

The construction of a partition of unity is based on the definition of clouds [7], which
are overlapping open setsωi (of arbitrary shape and centred inxi) covering the solution
domainΩ̄ of a boundary-value problem (̄Ω ⊂

⋃n
i=1 ω̄i, wheren is the number of nodes

of the discretisation). A partition of unity is defined as a collection of global functions
ϕi(x) whose support is contained in a cloud and whose value sum to unity at each point
x in the solution domain:

n

∑
i=1

ϕi(x) = 1 ∀x ∈ Ω̄. (4)

Note that the partition of unit paradigm [5] is equivalent tothe requirement of zeroth
order consistency (rigid body modes are exactly represented).

In the finite element method, the support of a node can be understood as a cloud
[8, 9] and moreover, for the global basisNi associated to the nodexi ∈ Ω̄, is

n

∑
i=1

Ni(x) = 1 ∀x ∈ Ω̄. (5)

The connection between PUM and FEM is clear and FEM can be usedas a framework
for the construction of clouds, since also finite element shape functions satisfy the
partition of unity requirement.

Using polynomial partitions of unity of orderk (ϕ k
i ) as basis functions in a FEM

framework [10], a scalar fieldf (x) can be interpolated by

f (x) =
n

∑
i=1

ϕ k
i (x)ai

︸ ︷︷ ︸

regular interpolation

+
n

∑
i=1

ϕ k
i (x)γ i(x)bi

︸ ︷︷ ︸

enhanced interpolation

, (6)

whereai (called ‘regular’ degrees of freedom) are nodal values related to the basis
ϕ k

i andbi =
[

b 1
i b 2

i . . . b m
i

]T
(called ‘enhanced’ degrees of freedom) are the

nodal parameters related to the basisγ i =
[

γ 1
i γ 2

i . . . γ m
i

]
, wherem is the num-

ber of terms in the enhanced basis for nodei. The terms ‘regular’ and ‘enhanced’
make reference to the fact that the ‘regular’ interpolationfield is considered as the
background field upon which the ‘enhanced’ interpolation field is superimposed. Note
that the interpolation could have been expressed in a more compact form by including
1 in γ i. The term corresponding to 1 is extracted and termed the regular interpolation
to draw the comparison with conventional procedures. To avoid linear dependency,
the order of any polynomial terms in the enhanced basis must be greater thank. Since
FEM shape functions form a partition of unity, the interpolation of the scalar fieldf (x)
in equation (6) can be expressed as the combination of the standard finite element in-
terpolation field and an enhanced interpolation field; the latter can be used to improve
the standard interpolation. In finite element notation, theinterpolation for a vector
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field f(x) of an-node enriched element withl degrees of freedom for node, with all the
nodes enriched, can be written as

f(x) = N(x)a+N(x)Nγ(x)b, (7)

whereN is a l × (l ×n) matrix containing the standard finite element shape functions,
Nγ is a (l × n)× (l ×m× n) matrix containing the enhanced basis terms,a is a (l ×
n)×1 vector containing standard degrees of freedom andb is a(l ×m×n)×1 vector
containing the enhanced degrees of freedom. The number of enhanced degrees of
freedom per node (bi) is equal to the number of terms in the enhanced basis multiplied
by the number of nodal unknowns. In standard finite elements,the matrixNγ is empty.

As noted by Oden et al. [9], the approach of equation (7) allows the enhancement
to be performed from node to node in a mesh by activating the enhanced degrees
of freedomb when needed (a hierarchical finite element formulation based on the
partition of unity method). For instance, in describing a discontinuity, if the standard
displacement field is interpolated by the regular interpolation Na, the displacement
jump, described by means of a difference in displacements inconventional interface
finite elements, can be described by the enhanced interpolation NNγb.

2.2.1 Discontinuities in the enhanced basis

To simulate a displacement discontinuity, the enhanced basis terms in the matrixNγ in
equation (7) are replaced by the scalar valued Heaviside function [4, 6]. This results
in the (l × n)×1 vector of enhanced degrees of freedomb (same dimensions as the
vector of standard degrees of freedoma) and in the(l ×n)× (l ×n) diagonalH Γd H
matrix identifying through a 1/0 switch which degrees of freedom to enhance;H is the
identity matrix if all the degrees of freedom of the element are enhanced.

The enhancement concerns only nodes whose support is crossed by a discontinu-
ity. For nodes whose support is not crossed by a discontinuity, the enhanced basis is
empty since the Heaviside function is a constant function over their supports and can
be neglected. In the domain of an element where enhanced degrees of freedom are
active, the displacement field in equation (1), expressed ina discrete format, can be
written as

u = Na+H Γd NHb, (8)

in which the regular degrees of freedoma represent the continuum displacement field
and the enhanced degrees of freedomb represent the displacement jump across the
discontinuityΓd. Consequently, the strain field in equation (3), away from the discon-
tinuity (x /∈ Γd), is equal to

ε = Ba+H Γd BHb, (9)
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whereB = LN andL is the differential operator

L =
















∂
∂ x 0 0

0 ∂
∂ y 0

0 0 ∂
∂ z

∂
∂ y

∂
∂ x 0

0 ∂
∂ z

∂
∂ y

∂
∂ z 0 ∂

∂ x
















. (10)

In a finite element discretisation, the resulting ‘enhanced’ element stiffness matrix
will be assembled only for the active degrees of freedom. This allows the use of the
standard operatorsN, B andH Γd in place of the enhanced operatorsH Γd NH and
H Γd BH, on condition that a database indicating the nodes to be enhanced exists.
The extra computational cost due to the computation of the extra kinematic operators
is related only to elements affected by the enhancement, which is negligible, since
only relatively few elements are usually enhanced. The discretised kinematic fields
are expressed by

u = Na+H Γd Nb (11)

and

ε = Ba+H Γd Bb. (12)

2.3 Governing equations

The equilibrium equations and boundary conditions for the body Ω̄ (Figure 1) without
body forces can be summarised by

∇·σ = 0 in Ω (13)

σn = t̄ on Γt (14)

σν = t on Γd (15)

whereσ is the Cauchy stress tensor and the last equation representstraction continuity
at the the discontinuity surfaceΓd. The strong form is completed by the essential
boundary condition

u = ū on Γu, (16)

whereū is a prescribed displacement, and by the constitutive relation

σ = D:ε in Ω (17)
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for the continuum, where the constitutive fourth-order tensorD links the stress tensor
σ to the strain tensorε. The traction at a discontinuity is given by

t = f (JuK) on Γd, (18)

whereJuK is the displacement jump across the surfaceΓd. To simplify the finite ele-
ment implementation, the additional condition

ũ = 0 on Γu (19)

for the magnitude of the displacement jump is imposed. The boundary condition of
equation (16) now reads

û = ū on Γu. (20)

2.4 Variational formulation

The displacement field is discontinuous due to the presence of a discontinuity surface
Γd and it is assumed that the displacement field is continuouslydifferentiable away
from it. The space of admissible displacements is defined by the functionu(x,t) =
û(x,t)+H Γd ũ(x,t) with û andũ ∈ U where

U =
{

û andũ | û andũ ∈ H1(Ω) andû|Γu
= ū, ũ|Γu

= 0
}

(21)

andH1 is the Sobolev space of first order, while the space of admissible variations is
defined by the functionw(x) = ŵ(x)+H Γd w̃(x) with ŵ andw̃ ∈ U0 where

U0 =
{

ŵ andw̃ | ŵ andw̃ ∈ H1(Ω) andŵ|Γu
= w̃|Γu

= 0
}
. (22)

To recast the strong governing equations (equations (13) to(15)) in a variational
setting, the strong form is multiplied by the functionw and then integrated over the
domainΩ. The weak form results in

∫

Ω

(
ŵ+H Γd w̃

)
·(∇·σ) dΩ = 0. (23)

The term related to the continuous part of the displacement field (ŵ) can be expanded
by using integration by parts, Gauss’ theorem and the relationshipσn = t̄:

∫

Ω
ŵ·(∇·σ) dΩ =

∫

Ω
∇·(σ ŵ) dΩ−

∫

Ω
∇sŵ:σ dΩ =

∫

Γt

ŵ·t̄ dΓ−
∫

Ω
∇sŵ:σ dΩ. (24)

The term related to the discontinuous part of the displacement field (H Γd w̃) is ex-
panded using integration by parts:

∫

Ω
H Γd w̃·(∇·σ) dΩ =

∫

Ω+
w̃·(∇·σ) dΩ =

∫

Ω+
∇·(σw̃) dΩ−

∫

Ω+
∇sw̃:σ dΩ. (25)
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Using Gauss’ theorem and the traction equationsσν = t andσn = t̄, the first term of
the RHS of equation (25) reads

∫

Ω+
∇·(σ w̃) dΩ =

∫

Γ+
t

w̃·(σn) dΓ−
∫

Γ+
d

w̃·(σν) dΓ =

∫

Γ+
t

w̃·t̄ dΓ−
∫

Γ+
d

w̃·t dΓ, (26)

whereΓ+
t andΓ+

d are parts of the boundary∂Ω+ of Ω+. Using the previous relations
in equation (23), the weak form reads

∫

Ω
∇sŵ:σ dΩ+

∫

Ω+
∇sw̃:σ dΩ+

∫

Γd

w̃·t dΓ =
∫

Γt

(
ŵ+H Γd w̃

)
·t̄ dΓ, (27)

in which the terms related toΓt andΓ+
t have been collected under the same integral by

using the Heaviside function. Since the functionw̃ is continuous across the disconti-
nuity and since the the notationΓ+

d has been introduced to indicate which part of the
discontinuity is under analysis, the domainΓ+

d of the integral of the traction forcest
has been changed intoΓd.

From the decomposition of the displacement field it follows that any admissible
variationw of u can be regarded as admissible variationsŵ and w̃, thus leading to
two variational statements. Taking first variationŵ (w̃ = 0) and thenw̃ (ŵ = 0), the
problem is to find̂u andũ ∈ U such that

∫

Ω
∇sŵ:σ dΩ =

∫

Γt

ŵ·t̄ dΓ ∀ŵ ∈ U0 (28a)

∫

Ω+
∇sw̃:σ dΩ+

∫

Γd

w̃·t dΓ =
∫

Γ+
t

w̃·t̄ dΓ ∀w̃ ∈ U0. (28b)

The second variational statement ensures that traction continuity is satisfied in a weak
sense across the discontinuityΓd. Moreover, if the tractiont acting on the discontinuity
surfaceΓd is set to zero then the discontinuity is traction-free in a weak sense. The
two variational statements in equation (28) resemble a coupled problem in which the
fields ũ andû are coupled in the continuum through the stress field and the effect of
the discontinuity is taken into account by the integral overΓd.

3 DISCRETISATION

In this section the linearised form of the governing equations for a body crossed by a
discontinuity is developed.
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3.1 Kinematic description

Using a Bubnov-Galerkin approach, the kinematic fields can be discretised in each
element ‘affected’ by the enhancement using

û = Na ũ = Nb (29)

∇sû = Ba ∇sũ = Bb (30)

ŵ = Na′ w̃ = Nb′ (31)

∇sŵ = Ba′ ∇sw̃ = Bb′ (32)

where the primes refer to admissible variations.

3.2 Discretised and linearised weak equations

Inserting the discrete format of the kinematic fields into equation (28), leads to two
discrete weak governing equations which are valid at element level:

∫

Ω
BTσ dΩ =

∫

Γt

NT t̄ dΓ (33a)

∫

Ω+
BTσ dΩ+

∫

Γd

NTt dΓ =
∫

Γ+
t

NT t̄ dΓ. (33b)

From equation (33), the equivalent nodal forces related to admissible variations ofa
andb result in

f int,a =
∫

Ω
BTσ dΓ (34a)

f int,b =
∫

Ω+
BTσ dΩ+

∫

Γd

NTt dΓ. (34b)

The stress ratėσ in the continuum is expressed in terms of nodal displacement
velocities as

σ̇ = Dε̇ = D
(
Bȧ+H Γd Bḃ

)
. (35)

Similarly, the traction rate at a discontinuity is expressed as

ṫ = TJu̇K = TNḃ, (36)

whereT relates traction ratėt and displacement jump rateJu̇K. The linearised weak
form is formed by inserting the above stress and traction rate expressions into the
discretised weak governing equations in equation (33), thus obtaining

[

Kaa Kab

Kba Kbb

][

∆a

∆b

]

=

[

f ext,a,t+dt

f ext,b,t+dt

]

−

[

f int,a,t

f int,b,t

]

, (37)
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(a) (b)

Figure 2: Enhanced nodes, represented by a white circle, lying (a) on and (b) around a
discontinuity. The discontinuity is represented by the heavy line andH Γd = 1 in the
grey shaded zones for the enhanced elements.

where the sub-matrices are defined as

Kaa =
∫

Ω
BTDB dΩ (38a)

Kab =
∫

Ω+
BTDB dΩ (38b)

Kba = KT
ab =

∫

Ω+
BTDB dΩ (38c)

Kbb =
∫

Ω+
BTDB dΩ+

∫

Γd

NTTN dΓ (38d)

and fext are the externally applied forces (RHS of equation (33)). Note that if the
material tangent matricesD andT are symmetric, symmetry of the stiffness matrix is
assured.

4 ELEMENT TECHNOLOGY

The position of the discontinuity is dictated by the geometry of the problem. In sit-
uations in which the interface describes a physical boundary between two bodies, a
natural choice would be to locate the discontinuity at the boundary (interface-like el-
ement, Figure 2a) to capture the strain discontinuity at thematerial interface. In this
special case, only the nodes on the discontinuity need to be enhanced. A discontinuity
can also be arbitrarily placed in the continuum (general interface-like element, Fig-
ure 2b). For an element crossed by a discontinuity, all the nodes are enhanced but the
integration is carried out only in the shaded grey part of thedomain (Ω+

e ) for the terms
of the stiffness matrix involving the enhanced nodes. When an element has enhanced
nodes and no discontinuity, the enhancement is similar to that of the interface-like
element (cf. Appendix A).

The two characterisations are equivalent as they produce the same kinematic fields,
the main difference regards the number of enhanced nodes. Inthe case of a crossing
discontinuity, like in Figure 2b, the enhancement concernsa wider set of nodes. Note
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*
* *

*
*
*

(b)(a)

Figure 3: Procedure for the enhancement of nodes and elements: (a) all the nodes
whose support is crossed by a discontinuity are enhanced andthe nodes on the crack tip
are constrained ; (b) only the nodes which satisfy the area criterion are kept. Enhanced
nodes are indicated by the circles and enhanced elements aremarked with *. The
positive part of the domain is shaded grey.

that the enhancement of the kinematic fields with the Heaviside function concerns only
those nodes whose support is crossed by a discontinuity and for which

min(Ω+
s ,Ω−

s )

Ωs
> tolerance (39)

whereΩs is the area of the support of a node,Ω+/−
s is the area of the support of a node

that belongs toΩ+/−, and the tolerance depends on the precision of the solver. This
‘area criterion’ ensures a well-conditioned global stiffness matrix in the case the dis-
continuity lies very close to the boundary of the support of anode and allows situations
in which the discontinuity aligns with the boundary of an element to be dealt with. In
the latter situation and, more generally, when the support of a node is not crossed by a
discontinuity, the Heaviside function is constant and mustnot be added to the enhanced
basis, since a constant function forms part of the span of standard polynomial shape
functions, thus violating the requirements of the interpolation field of equation (6) and
generating a linearly dependent system of equations. Equally important is that the dis-
placement jump at a discontinuity tip is zero. To enforce this, discontinuity tips must
coincide with element boundaries and the nodes on the boundary are not enhanced [6].
The area criterion and the requirement on the crack tip are illustrated in Figure 3 (the
crack tip is in the upper part of the mesh).

Due to the presence of an integral over the discontinuity surfaceΓd, the integration
scheme needs to be adjusted in order to perform the integration of the traction forces
acting at a discontinuity. In the case of an interface-like element, extra integration
points placed on the discontinuity suffices. It is stressed that, even if the discontinuity
is placed along the boundary of two elements (see Figure 2a),the tractions at the
interface-like element are integrated only along the side of the element on which the
Heaviside function is equal to unity. For the general interface-like element, care must
also be taken to correctly integrate the continuum contributions to the stiffness matrix
on both sides of the discontinuity [4].
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discontinuity

L L

x

Figure 4: Geometry for the tension test (1d configuration).
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(a) (b) (c)

Figure 5: Discretisation for the tension test: (a) conventional interface element, (b)
interface-like element and (c) and general interface-likeelement.

Although it is possible to activate a discontinuity after a specific condition is met,
here it is assumed that the discontinuity is present from thebeginning of an analysis.
This keeps the implementation relatively simple and allowsfor a direct comparison
with conventional interface elements.

5 A COMPARISON

5.1 One-dimensional tension test.

The equivalence between PUM interface elements and conventional interface elements
is illustrated by means of a tension test (Figure 4). The three discretisations to be
considered are depicted in Figure 5. The discontinuityΓd is first modelled by a con-
ventional interface element (Figure 5a). The PUM decomposition of the displacement
field is exploited for the last two discretisation (Figure 5b-c). Note that in Figure 5b
the discontinuity is placed between two elements (interface-like element), while in
Figure 5c it is placed within an the element (general interface-like element). The do-
main Ω+ is given by 0< x < L. Details of the stiffness matrix computations are in
Appendix A. In the following,E is the Young’s modulus,A is the cross-section area
andd is the stiffness of the interface/discontinuity.

5.1.1 Analysis with conventional interface element

For the bar with the discontinuity modelled by a conventional interface element (Fig-
ure 5a), assembly of local stiffness matrices into the global stiffness matrix for the

12
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active degrees of freedom results in the system of equations






EA
L +d −d 0

−d EA
L +d −EA

L

0 −EA
L

EA
L













u2

u3

u4







=







0

0

P







. (40)

Solving this system of equations yields:







u2

u3

u4







=








PL
EA

P(dL+EA)
dEA

P(2dL+EA)
dEA








. (41)

5.1.2 Analysis with interface-like element

Considering the discretisation with an interface-like element (Figure 5b), assembly of
local stiffness matrices into the global stiffness matrix results in the global system of
equations







2EA
L

EA
L −EA

L

EA
L

EA
L +d 0

−EA
L 0 EA

L













û2

ũ2

u3







=







0

0

P







, (42)

which after solving yields







û2

ũ2

u3







=








P(dL+EA)
dEA

−P
d

P(2dL+EA)
dEA








. (43)

5.1.3 Analysis with general interface-like element

For the discretisation with the general interface-like element (Figure 5c), the global
system of equations reads














3EA
L −EA

L
5
2

EA
L −1

2
EA
L 0

−EA
L

3EA
L −1

2
EA
L

1
2

EA
L −2EA

L

5
2

EA
L −1

2
EA
L

5
2

EA
L + d

4 −1
2

EA
L + d

4 0

−1
2

EA
L

1
2

EA
L −1

2
EA
L + d

4
1
2

EA
L + d

4 0

0 −2EA
L 0 0 2EA

L



























û2

û3

ũ2

ũ3

u4














=














0

0

0

0

P














, (44)
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discretisation displacement in the middle sectiondisplacement jump

conventional interface elementu2 = PL/EA u3−u2 = P/d

interface-like element û2 + ũ2 = PL/EA ũ2 = −P/d

general interface-like element (û2 + ũ2 + û3 + ũ3)/2 = PL/EA (ũ2 + ũ3)/2 = −P/d

Table 1: Value of significant displacements for the three discretisations.

from which yields:














û2

û3

ũ2

ũ3

u4














=
















P(dL+2EA)
2dEA

P(3dL+2EA)
2dEA

−P
d

−P
d

P(2dL+EA)
dEA
















. (45)

The value of significant displacements is reported in table 1(the minus sign in the
displacement jump is due to the direction of the unit normal vectorν , which is pointing
to Ω+).

5.1.4 Remarks

Although this simple example gives little insight into the conceptual similarities of the
two approaches (conventional interfaceversus PUM interface elements), it shows the
equivalence of the results given by PUM interface elements and by conventional inter-
face elements and highlights the differences between the two PUM interface elements.
Indeed, when a discontinuity is placed at the boundary of an element, the interface-like
element is very versatile since it does not require the definition of doubled nodes (like
with conventional interface elements) and it is based only on one element (unlike the
general interface-like element).

5.2 Two-dimensional tension test

The similarities of the two approaches (conventional interfaceversus PUM interface
elements) can be analysed by means of the two-dimensional case (Figure 6) of the pre-
vious example (Poisson’s ratio= 0). The bar is discretised by means of linear quadri-
lateral elements and the discontinuity is described by a conventional linear interface
element and by an interface-like element. The structure of the global stiffness matrix is
depicted schematically in Figure 8. When a conventional interface element is used, the
displacement jump is represented by the relative displacement of doubled nodes. This
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P

Figure 6: Geometry for the tension test (2d configuration).

ir

jr

il

jl

(b)(a)

j

i

Figure 7: Sets of nodes for the description of (a) relative displacement with a conven-
tional interface element and for (b) displacement jump withan interface-like element.

results in, for the degrees of freedom in the horizontal direction for the grey shaded
node in Figure 6, the shaded rows depicted in Figure 8a. If an interface-like element
is used, the displacement jump is represented by a degree of freedom and the equation
to which it is related is represented by the shaded row in Figure 8b. In Figure 8, the
squares represent terms related to the stiffness of the continuum while the circles are
related to the stiffness of the interface/discontinuity. The white circles indicate those
integrals with zero value after Newton-Cotes/Lobatto integration and are referred to
as the terms representing the ‘coupling’ between sets of nodes. The coupling between
node sets (nodesi and j in Figure 7) is here understood in the sense that, for the
conventional interface element, an action on nodeir will produce not only a reaction
in nodeil, but also a reaction at thej set of nodes. Similarly, for the interface-like
element, an action at nodei will produce a reaction at nodej.

Figure 8 reveals that the interface-like element destroys the banded structure of
the system for this small problem. This is a local effect related to the portion of the
structure affected by the enhancement, here made more evident because of the limited
number of degrees of freedom. Moreover, the terms related tothe integration over
the discontinuity (the circles) are concentrated in a smallpart of the global stiffness
matrix close to the diagonal when an interface-like elementis used (only one degree
of freedom is necessary to describe the displacement jump).This can improve the
conditioning number of the system when a high interface/discontinuity is used. Beside
this, the structure of the global system is similar in both cases. The off-diagonal terms
(circles in white) are acting in the same way for the two discretisations, providing the
coupling between the sets of nodes related to the displacement jump.
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(b)(a)

Figure 8: Structure of the stiffness matrix for the discretisation with (a) conventional
interface element and with (b) interface-like element.

5.3 Linear elastic analysis of a notched beam.

In Schellekens and de Borst [11], it was suggested that the aforementioned coupling is
the reason for the poor performance of numerically integrated conventional interface
elements, when a large traction gradient exists over an interface element. This leads
to the conclusion that PUM interface elements and conventional interface elements are
expected to perform similarly. To illustrate this, the two-dimensional notched beam
depicted in Figure 9 has been analysed using PUM interface elements. This linear
elastic test was used by Rots [12] to test the performance of numerically integrated
continuous conventional interface elements. Four-node and eight-node quadrilateral
elements are used under plane stress conditions. A Young’s modulus of 2×104 N/mm2

and a Poisson’s ratio of 0.2 have been used for the continuum.
The traction-separation relationt = TJuK of equation (36) is formulated in a local

n,s coordinate system. A simple law of the type
[

tn
ts

]

=

[
dn 0
0 ds

][
ũn

ũs

]

(46)

is used, wheredn andds are constant, ˜un andũs are the displacement jumps in the local
(discontinuity) reference system andtn andts are the normal and tangential interface
tractions. This approach is usually called the ‘dummy stiffness’ approach and it is
used often in combination with conventional interface elements. To reproduce pure
mode-I opening, only displacement jumps in the horizontal direction are activated. The
notch is simulated as a traction-free discontinuity (dn = ds = 0 N/mm3). The analyses
reported by Rots show a normal traction profile along the central line of the beam
which is highly dependent on the stiffness of the interface and on the chosen numerical
integration scheme. In particular, it was shown that high values of the normal stiffness
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20

450

100

P

Figure 9: Notched beam. All dimensions in millimetres (depth=100 mm).

Figure 10: Schematic representation of the position of the discontinuity, represented
by the heavy line, for the simulations with a structured mesh.

in combination with Gauss integration lead to significant oscillations of the normal
traction profile.

The results of the analyses are reported in Figures 12 to 14, in which the normal
tractions have been sampled at the integration points on thediscontinuity. The stiffness
dn at the discontinuity ranges from 2×103 to 2×105 N/mm3. Results depicted in the
upper and central parts of Figures 12 and 13 and in Figure 14 have been obtained us-
ing structured meshes with the discontinuity lying on the side of the elements (element
size = 5 mm, Figure 10a) or within elements (element size = 3.33 mm, Figure 10b).
The mesh in Figure 11 has been used for the results depicted inthe bottom parts of
Figures 12 and 13. In structured meshes, PUM interface elements show the same spu-
rious traction oscillations of conventional interface elements when a Gauss quadrature
scheme is used for the integration of the traction forces at the discontinuity (upper and

Figure 11: Notched beam with 943 elements. The discontinuity is represented by the
heavy line.
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Gauss integration scheme
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Figure 12: Traction profile in front of the notch of the beam with Gauss integration
scheme for different mesh structures.
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Newton-Cotes/Lobatto integration scheme
linear elements quadratic elements
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Figure 13: Traction profile in front of the notch of the beam with Newton-
Cotes/Lobatto integration scheme for different mesh structures.
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Figure 14: Effect of over-integration on the traction profile in front of the notch of
the beam with linear interface-like elements and Newton-Cotes/Lobatto integration
scheme (dn = 2×105 N/mm3).

central parts of Figures 12 and 13). Only a Newton-Cotes/Lobatto integration scheme
gives a smooth traction profile for all the values of the dummystiffness. These re-
sults are similar to those reported by Schellekens and de Borst [11]. In unstructured
meshes with high value of the dummy stiffness, the oscillations in the traction profile
are always present (bottom parts of Figures 12 and 13). It is worthwhile to note that
spurious traction oscillations are also introduced by over-integration with a Newton-
Cotes/Lobatto integration scheme as reported in Figure 14 (cf. Appendix B.3).

To gain more insight into the behaviour of PUM interface elements and to draw
comparisons with conventional interface elements, an eigenvalue analysis has been
performed on an interface-like element. The eigenvalue analysis has been performed
on the part

∫

Γd
NTTN dΓ of the sub-matrixKbb which directly contributes to the stiff-

ness of the discontinuity. Unit values for the length, the surface area and the dummy
stiffnessesdn andds have been assumed. The results of the eigenvalue analyses are
shown in Figures 15 and 16 for an interface-like element witha discontinuity along
the right vertical side. The coupling of the nodal displacements is evident when a
Gauss integration scheme is used; on the contrary, the coupling disappears with a
Newton-Cotes/Lobatto integration scheme. These results are very similar to those re-
ported by Rots and Schellekens [13] and by Schellekens [14].Consequently, with
two-dimensional linear and quadratic PUM interface-like elements, only the use of a
Newton-Cotes/Lobatto integration scheme for the integration of the terms related to the
discontinuityΓd guarantees a smooth traction profile for all the values of thedummy
stiffness. For general interface-like elements, this conclusion holds only under the
condition that a discontinuity crosses an element from two opposite sides as depicted
in the right-hand side of Figure 10. This issue is discussed in detail in Appendix B,
along with the formal equivalence of PUM interface elementsand conventional inter-
face elements.
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λ=0.5000 λ=0.5000

λ=0.1667 λ=0.1667

(a)

λ=0.5000 λ=0.5000

λ=0.5000λ=0.5000

(b)

Figure 15: Eigenmodes and corresponding eigenvalues for a linear interface-like ele-
ment: (a) 2–point Gauss integration; (b) 2–point Newton-Cotes/Lobatto integration.

6 CONCLUSIONS

A framework has been established for the implementation of aclass of interface el-
ements within a partition of unity method. The displacementfield is enriched with
the Heaviside jump function, thus providing a natural environment to describe any
phenomena in which a material discontinuity is expected.

Unlike conventional interface elements, PUM interface elements do not need mod-
ification of the existing mesh to locate a discontinuity. In this approach, extra global
degrees of freedom are added to the nodes that correspond to the interface. More-
over, PUM interface elements are kinematically equivalentto conventional interface
elements but are more flexible because a discontinuity can arbitrarily cross the mesh.
This results in a decoupling of the mesh topology and the material behaviour. In un-
structured meshes however, the presence of spurious oscillations in the traction field
along the discontinuity when a ‘dummy stiffness’ approach with high values of the
dummy stiffness is used, limits the potential of the method.This can be largely avoided
by activating the degrees of freedom responsible for the displacement jump when they
are required, thus avoiding the initial elastic branch. Butthis problem may still persist
if elastic unloading with high value of the elastic modulus takes place.
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Figure 16: Eigenmodes and corresponding eigenvalues for a quadratic interface-like
element: (a) 3–point Gauss integration; (b) 3–point Newton-Cotes/Lobatto integration.
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Figure A1: One-dimensional truss element.

A STIFFNESS MATRIX COMPUTATION FOR PUM INTER-
FACE ELEMENTS

In the following, the computation of the stiffness matricesfor truss elements are per-
formed. The degrees of freedom for an enhanced element have been ordered in the se-
quence

[
ũi ûi ũ j û j

]
. The notationBH = BH has been used (cf. Section 2.2.1).

This results in the following expressions for the sub-matrices in equation (38):

Kaa =
∫

Ω
BTDB dΩ (A1a)

Kab =
∫

Ω+
BTDBH dΩ (A1b)

Kba = KT
ab =

∫

Ω+
BT

H DB dΩ (A1c)

Kbb =
∫

Ω+
BT

H DBH dΩ+
∫

Γd

NTTN dΓ. (A1d)

in which the effect of the Heaviside jump function has been considered by the integra-
tion overΩ+.

A.1 Truss and conventional interface element

For completeness, the stiffness matrices of the truss and the conventional interface
elements are reported. For a one-dimensional truss element(Figure A1)

K truss=
EA
L

[
1 −1

−1 1

]

, (A2)

whereE is the Young’s modulus andA is the cross-section area. A one-dimensional
conventional interface element can be understood as a translational spring element
(Figure A2) with stiffnessd for which

K int = d

[
1 −1

−1 1

]

. (A3)
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Figure A2: One-dimensional conventional interface (spring) element.
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Figure A3: Interface-like truss element.

A.2 Interface-like truss element

The sub-matrices in equation (A1) are expanded for an interface-like truss element. In
the element depicted in Figure A3, the discontinuity is placed at the right-hand end.
Sub-matrixKaa is the same asK truss. Only the node placed on the discontinuity (node
j) is enhanced and thusBH = BH = 1

L [0 1] with

H =

[
0 0
0 1

]

. (A4)

The integrals with the subscriptH can be expanded as

Kab =
∫

Ω+
BTDBH dΩ =

∫ L

0
BTDBH d x =

EA
L

[
0 −1
0 1

]

(A5)

and

Kba =
∫

Ω+
BT

H DB dΩ =
∫ L

0
BT

H DB d x =
EA
L

[
0 0

−1 1

]

. (A6)

ForKbb, the volume integral reads

∫

Ω+
BT

H DBH dΩ =
∫ L

0
BT

H DBH d x =
EA
L

[
0 0
0 1

]

(A7)

and the surface integral is evaluated onx = L to obtain

∫

Γd

NTTN dΩ =
(
NTTN

)
|x=L = d

[
0 0
0 1

]

. (A8)
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Figure A4: Embedded-discontinuity truss element.

Assembly of the sub-matrices into the element stiffness matrix gives

K pum =











EA
L −EA

L 0 −EA
L

−EA
L

EA
L 0 EA

L

0 0 0 0

−EA
L

EA
L 0 EA

L +d











(A9)

and, after deleting the third row and column for the unused third degree of freedom,

K pum =







EA
L −EA

L −EA
L

−EA
L

EA
L

EA
L

−EA
L

EA
L

EA
L +d







. (A10)

A.3 General interface-like truss element

Discontinuity crossing the element. The sub-matrices in equation (A1) are expanded
for a truss element with a discontinuity in the middle section (Figure A4). Sub-matrix
Kaa is the same asK truss. The nodes are both enhanced (BH = B) andH Γd = 1 for
x < L/2. The integrals are expanded as

Kab =
∫

Ω+
BTDBH dΩ =

∫ L/2

0
BTDB d x =

EA
2L

[
1 −1

−1 1

]

(A11)

Kba =
∫

Ω+
BT

H DB dΩ =
∫ L/2

0
BTDB d x =

EA
2L

[
1 −1

−1 1

]

. (A12)

ForKbb, the volume integral reads
∫

Ω+
BT

H DBH dΩ =
∫ L/2

0
BTDB d x =

EA
2L

[
1 −1

−1 1

]

(A13)

and the surface integral is evaluated onx = L/2 to obtain
∫

Γd

NTTN dΩ =
(
NTTN

)
|x=L/2 =

d
4

[
1 1
1 1

]

. (A14)
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Assembly of the sub-matrices into the element stiffness matrix gives

K pum =











EA
L −EA

L
EA
2L −EA

2L

−EA
L

EA
L −EA

2L
EA
2L

EA
2L −EA

2L
EA
2L + d

4
EA
2L + d

4

−EA
2L

EA
2L

EA
2L + d

4
EA
2L + d

4











. (A15)

Discontinuity not crossing the element. In this special case, there is only one node
to enhance and there is no discontinuity. The element is considered as an interface-like
element in which no discontinuity is considered. The stiffness matrix results in

K pum =
EA
L





1 −1 −1
−1 1 1
−1 1 1



 . (A16)

B THE FORMAL EQUIVALENCE OF PUM INTERFACE ELE-
MENT AND CONVENTIONAL INTERFACE ELEMENT

The equivalence of the two approaches (PUM interface element and conventional
interface element) is demonstrated for line interface elements and two-dimensional
interface-like elements. The general case of a crossing discontinuity is also analysed.
The key point in drawing the comparison is that the two approaches use the same con-
stitutive model at the interface, with the only difference being the way in which the
displacement jump is described. Conventional interface elements use the relative dis-
placement of doubled nodes while in PUM interface elements the displacement jump
is naturally introduced in the formulation as a degree of freedom. The similarities of
the two approaches will be highlighted by the analysis of thematrices related to the
behaviour of the interface.

B.1 Conventional continuous interface element

The stiffness matrix of a conventionalm-node line interface element [12] is

K = b
∫ ξ=+1

ξ=−1
BTCB

∂x
∂ξ

dξ , (B1)

whereb is the thickness of the interface,B is a 2×2m matrix containing shape func-
tionsNi:

B =

[
−N N 0 0

0 0 −N N

]

(B2)
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Figure B1: Quadratic field interface modelling with (a) 6-node line interface element
and (b) 8-node interface-like element.

with

N =
[

N1, ...,Nm
]

(B3)

andξ is a normalised coordinate. The interface constitutive matrix T relating tractions
and relative displacements has the same structure asT in equation (46). The degrees
of freedom have been ordered in the sequence

[
u 1

n , ...,u m
n u 1

s , ...,u m
s

]
according

to the node numbering of Figure B1a. For conventional linearline interface element
theN matrix is equal to

N =
[

1
2 (1−ξ ) 1

2 (1+ξ )
]

(B4)

while for conventional quadratic line interface elements it reads

N =
[

1
2

(
−ξ +ξ 2

) 1
2

(
ξ +ξ 2

) (
1−ξ 2

) ]
. (B5)

Expansion of the termBTCB results in a block diagonal matrix:

BTCB =

[
Kn 0
0 Ks

]

, (B6)

whereK i is given by

K i = di

[
K̄ −K̄

−K̄ K̄

]

. (B7)

wheredi is the stiffness at the interface in the directioni. The structure of the sub-
matrix K̄ depends on the interpolation along the conventional interface element. For
line elements it results in

K̄ =

[
N2

1 N1N2

N1N2 N2
2

]

. (B8)
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Analytical integration (and a 2–point Gauss integration scheme) of the termsNiN j in
equation (B8) results in

K̄ =
1
3

[
2 1
1 2

]

; (B9)

a 2–node Newton-Cotes/Lobatto integration scheme gives

K̄ =

[
1 0
0 1

]

. (B10)

For a conventional quadratic line interface element is

K̄ =







N2
1 N1N2 N1N3

N2N1 N2
2 N2N3

N3N1 N3N2 N2
3







. (B11)

Analytical integration (and a 2–point Gauss integration scheme) results in

K̄ =
1
15





4 −1 2
−1 4 2

2 2 16



 (B12)

while a 3–node Newton-Cotes/Lobatto integration scheme gives

K̄ =
1
3





1 0 0
0 1 0
0 0 4



 . (B13)

B.2 Interface-like element

For a generic plane interface-like element withm nodes on the side of the discontinuity,
the contribution ofKbb on Γd is

Kbb,Γd =
∫

Γd

NTTN dΓ = b
∫ ξ=+1

ξ=−1
NTTN

∂x
∂ξ

dξ , (B14)

in which N reduces to a 2×2m matrix containing the shape functions related to the
side on which the discontinuity lies (side12 in Figure B1b):

N =

[
N̄ 0
0 N̄

]

(B15)

with

N̄ =
[

N1, ...,Nm
]
. (B16)
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Figure B2: Possible configurations for a discontinuity crossing a general interface-like
quadrilateral element.

The sequence
[

u 1
x , ...,u m

x u 1
y , ...,u m

y

]

, according to the node numbering of Fig-

ure B1b, has been used for the ordering of the degrees of freedom in equation (B15).
Expansion ofKbb,Γd gives

Kbb,Γd =

[
K̄n 0
0 K̄ s

]

, (B17)

whereK̄ i = diK̄ , di is the stiffness at the discontinuity surface in the direction i andK̄
has the structure of̄K given previously for conventional line interface elements.

It is therefore demonstrated that conventional line interface elements and PUM
interface-like elements have the same stiffness matrix andthe same block diagonal
structure for the terms related to the discontinuity. It is also worthwhile noting that the
coupling appears if over-integration is used in the numerical integration ofKbb,Γd with
a Newton-Cotes/Lobatto integration scheme (see Figure 14).

B.3 General interface-like element

When a discontinuity crosses an element (general interface-like element of Figure B2),
all the nodes of the element are enhanced and the vectorN̄ of equation (B16) contains
all the shape functions of the element. In the following, only the linear quadrilateral
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element is analysed. For this element the matrixK̄ is given by

K̄ =











N2
1 N1N2 N1N3 N1N4

N2N1 N2
2 N2N3 N2N4

N3N1 N3N2 N2
3 N3N4

N4N1 N4N2 N4N3 N2
4











. (B18)

In the case of Figure B2a, the use of a 2–point Newton-Cotes/Lobatto integration
scheme will delete the coupling between the nodes lying on side 12 and34; more
specifically, the termsN1N3, N1N4, N2N3 andN2N4 cancel. When a discontinuity is
placed such as the one in Figure B2b, the coupling is to be understood between node
4 and the remaining nodes. By using a 2–point Newton-Cotes/Lobatto integration
scheme, the coupling is only partially reduced (see bottom part of Figures 12 and 13)
but it is still present since the termN3N4 does not cancel. The limit cases of Fig-
ures B2c,d fall under the the same category of Figure B2a. Analogous considerations
hold for quadratic quadrilateral elements. The case of a linear or quadratic triangular
element with crossing discontinuity is analogous to that ofFigure B2b and the pres-
ence of spurious oscillations with Gauss or Newton-Cotes/Lobatto integration scheme
has been confirmed by van Zail (private communication, 2001).
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