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Abstract

An alternative interface finite element is developed. Byngdhe partition of
unity property of finite element shape functions, discamims shape functions
are added to the standard finite element basis. The intebiacaviour is de-
scribed by extra degrees of freedom at existing nodes, axpithe need for
‘doubled nodes’. The element is kinematically equivalenatconventional in-
terface element but is more flexible because it allows thiigien of interface
surfaces within solid elements. In describing interfacermmena, the methodol-
ogy proposed here makes possible the use of coarser meshiégsaszompletely
insensitive to mesh topology. The new formulation is aredythroughly and
comparisons are drawn with the conventional formulation.
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1 INTRODUCTION

The modelling of displacement discontinuities has beeredas the inclusion of

interface elements at inter-element boundaries and, tigcéy so-called embedded
discontinuity models. In the former, a discontinuous dispiment field is described
through the notion of ‘relative displacement’ between aldeiset of nodes; in the
latter, the discontinuity stems from the decompositiorhef displacement field into a
continuous and a discontinuous part. Unlike some embeddedrdinuity models [1—

3], interface elements are variational consistent butiariédd in their applications by

a dependence on mesh alignment, since it is not possibladatiscontinuity surface
to cross an element.

Recently, different numerical techniques have been dpeelovhich allow the use
of discontinuous finite element shape functions, thus plingithe natural environment
for the description of interface phenomena by the inclugbuliscontinuity in the
displacement field [4]. The technique proposed here makesfile partition of unity
property of finite element shape functions (the sum of th@skianctions must equal
unity at each spatial point [5]). Within the partition of @napproach, it is possible to
extend the standard approximation basis with enrichedtifiume. This enhancement
results in extra degrees of freedom for an enhanced nodkputitmodification of
the mesh topology. In this report, following Wells and SIy§§ the standard FEM
polynomial basis is enriched with discontinuous functiommodel cohesive zones.

This approach generates a class of elements (PUM interfaneerts) which are
kinematically equivalent to conventional interface eletsgthe key difference being
the possibility of arbitrarily locating the interface withan element itself. The inter-
face behaviour is described by an enhanced set of globateegf freedom and by a
constitutive law at the discontinuity. The formulation isngral and can be used for
the computational modelling of a large class of interfacer@mena.

In this report, the response of PUM interface elements fa-dimensional line
elements and two-dimensional quadrilateral elements adyaed and the kinematic
equivalence with conventional interface elements is shoWwms report is organised
as follows. In the next section the kinematics and the stramg) weak governing
equations for a body crossed by a discontinuity are predeiitee discrete equations
are given in Section 3 followed by remarks on implementatispects in Section 4.
Finally, the comparison between conventional interfaceefialements and partition
of unity interface elements is discussed in Section 5. Betdithe comparison are
included in Appendix B.

2 PROBLEM FORMULATION

In this section, after reviewing the kinematics for a bodgssed by a discontinuity
and illustrating the link between the partition of unity imed and the finite element
method, the governing equations and the associated waghfiormulation for a body
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Figure 1: Body§ crossed by a discontinuifyy.

crossed by a discontinuity are presented.

2.1 Kinematics

A body Q bounded by™ and crossed by a discontinuify is considered (Figure 1).
Displacementsi are prescribed ohy, while tractionst are prescribed oR;. The in-
ternal discontinuity surfacEqy divides the body into two sub-domain®@;" and Q~
(Q=Q"UQ"). The boundary surface of the bofyconsists of three mutually dis-
joint boundary surfaceB, 't andl'y. The displacement field can be decomposed

by
u(x,t) = G(x,t) + 72, (x)b(x,t), (1)

wheresZr ,(x) is the Heaviside function centred at the discontinuityacef 4 (¢, =
1ifxe QF, #r, =0if xe Q) andl andii are continuous functions d. Note

that the discontinuity is introduced by the Heaviside fimct7 -, at the discontinuity
surfacel’ 4 and that the magnitude of the displacement juympat the discontinuity
surface is given byi. For small displacements, the strain field is computed as the
symmetric part of the gradient of the displacement field:

0%a if xe Q™
— M5 —
E_Du_{DSO+DSG if x € QF @

which can be written, in a compact form and away from the difinaity (x ¢ I'g), as
e = 00+ 71, O°0, 3)

where(-)® refers to the symmetric part ¢f).
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2.2 Partitions of unity and finite elements

The construction of a partition of unity is based on the dediniof clouds [7], which
are overlapping open seis (of arbitrary shape and centredx) covering the solution
domainQ of a boundary-value problen®(C |J;"_; @, wheren is the number of nodes
of the discretisation). A partition of unity is defined as dextion of global functions
¢i(x) whose support is contained in a cloud and whose value sunitioaireach point
X in the solution domain:

_i«pi X)=1 VYxeQ. (4)

Note that the partition of unit paradigm [5] is equivalenthe requirement of zeroth
order consistency (rigid body modes are exactly repredgnte

In the finite element method, the support of a node can be stutet as a cloud
[8, 9] and moreover, for the global badisassociated to the nodge Q, is

i Ni(x) =1 vx € Q. (5)

The connection between PUM and FEM is clear and FEM can beassadramework
for the construction of clouds, since also finite elemenfpshfunctions satisfy the
partition of unity requirement.

Using polynomial partitions of unity of ordér (¢; K) as basis functions in a FEM
framework [10], a scalar field(x) can be interpolated by

n n
f(x) = _Zfﬁik(X)ai +_Z¢i"(><)vi(><)bi, (6)
1= 1=
A/—/ -~ J
regular interpolation enhanced interpolation

whereg; (called ‘regular’ degrees of freedom) are nodal valuestedldao the basis
¢kandbj=[ bl b2 ... b™ ]T (called ‘enhanced’ degrees of freedom) are the
nodal parameters related to the bagis [ y1  y2 y™ ], wheremis the num-
ber of terms in the enhanced basis for nederhe terms ‘regular’ and ‘enhanced’
make reference to the fact that the ‘regular’ interpolafietd is considered as the
background field upon which the ‘enhanced’ interpolatioldfie superimposed. Note
that the interpolation could have been expressed in a mon@act form by including
1iny,. The term corresponding to 1 is extracted and termed thdanemterpolation
to draw the comparison with conventional procedures. Tadalear dependency,
the order of any polynomial terms in the enhanced basis naugtdater thak. Since
FEM shape functions form a partition of unity, the interginla of the scalar field (x)

in equation (6) can be expressed as the combination of thdata finite element in-
terpolation field and an enhanced interpolation field; titetaan be used to improve
the standard interpolation. In finite element notation, ititerpolation for a vector

4
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field f(x) of an-node enriched element witldegrees of freedom for node, with all the
nodes enriched, can be written as

f(x) = N(x)a+ N(x)Ny(x)b, (7)

whereN is al x (I x n) matrix containing the standard finite element shape funstio
Ny is a(l x n) x (I x mx n) matrix containing the enhanced basis termss a (I x
n) x 1 vector containing standard degrees of freedombaisda (I x mx n) x 1 vector
containing the enhanced degrees of freedom. The numberhainead degrees of
freedom per noddx) is equal to the number of terms in the enhanced basis matlipl
by the number of nodal unknowns. In standard finite elemémesnatrixN, is empty.
As noted by Oden et al. [9], the approach of equation (7) altve enhancement
to be performed from node to node in a mesh by activating themced degrees
of freedomb when needed (a hierarchical finite element formulation thase the
partition of unity method). For instance, in describing scdintinuity, if the standard
displacement field is interpolated by the regular interpataNa, the displacement
jump, described by means of a difference in displacementsinwentional interface
finite elements, can be described by the enhanced inteiquoMN,b.

2.2.1 Discontinuities in the enhanced basis

To simulate a displacement discontinuity, the enhanceis barsns in the matriN, in
equation (7) are replaced by the scalar valued Heavisidgtim[4, 6]. This results
in the (I x n) x 1 vector of enhanced degrees of freedbortsame dimensions as the
vector of standard degrees of freedajrand in the(l x n) x (I x n) diagonal7Zr, H
matrix identifying through a 1/0 switch which degrees otfilem to enhance is the
identity matrix if all the degrees of freedom of the elemaet@nhanced.

The enhancement concerns only nodes whose support is dregsediscontinu-
ity. For nodes whose support is not crossed by a disconyirthié enhanced basis is
empty since the Heaviside function is a constant functicer diveir supports and can
be neglected. In the domain of an element where enhancedasegf freedom are
active, the displacement field in equation (1), expresseaidiscrete format, can be
written as

u=Na-+.#7, NHb, 8)

in which the regular degrees of freed@mepresent the continuum displacement field
and the enhanced degrees of freedomepresent the displacement jump across the
discontinuityl” . Consequently, the strain field in equation (3), away froexdtscon-
tinuity (x ¢ I'y), is equal to

€ = Ba+ 7, BHb, 9)



A. Smone, J. J. C. Remmers, G. N. Wells

whereB = LN andL is the differential operator

(10)
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In a finite element discretisation, the resulting ‘enhan@ement stiffness matrix
will be assembled only for the active degrees of freedoms &Hows the use of the
standard operatofd, B and ., in place of the enhanced operato®r, NH and
r, BH, on condition that a database indicating the nodes to beneedaexists.
The extra computational cost due to the computation of the dknematic operators
is related only to elements affected by the enhancementhwikinegligible, since
only relatively few elements are usually enhanced. Therdised kinematic fields
are expressed by

u= Na+ .7, Nb (11)
and
€ = Ba+ T, Bb. (12)

2.3 Governing equations

The equilibrium equations and boundary conditions for théytﬁ (Figure 1) without
body forces can be summarised by

O-0=0 in Q (13)
on=t onl (14)
agv =t only (15)

whereg is the Cauchy stress tensor and the last equation represssiisn continuity

at the the discontinuity surfadey. The strong form is completed by the essential
boundary condition

u=u only, (16)
whereu is a prescribed displacement, and by the constitutiveioglat

o=D: in Q @
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for the continuum, where the constitutive fourth-orderstaD links the stress tensor
o to the strain tensag. The traction at a discontinuity is given by

t="f(Ju]) only, (18)

where[u] is the displacement jump across the surfBge To simplify the finite ele-
ment implementation, the additional condition

=0 only (29)

for the magnitude of the displacement jump is imposed. Thenbary condition of
equation (16) now reads

d=u onl,. (20)

2.4 Variational formulation

The displacement field is discontinuous due to the preseingeliscontinuity surface
g and it is assumed that the displacement field is continuadifigrentiable away
from it. The space of admissible displacements is definechbyfunctionu(x,t) =
a(x,t) 4+, G(x,t) with G andl € U where

U= {0 andii | G andi € HY(Q) and{. =, G|, =0} (21)

andH! is the Sobolev space of first order, while the space of adniéssariations is
defined by the functiow(x) = W(x) + ¢, W(x) with w andWw € Ug where

Uo = {W andW | W andW € H'(Q) andw, =W =0}. (22)

To recast the strong governing equations (equations (1@)3) in a variational
setting, the strong form is multiplied by the functisnand then integrated over the
domainQ. The weak form results in

/Q (W+ #r, W) - (0-0) dQ =0. (23)

The term related to the continuous part of the displacemelat §iv) can be expanded
by using integration by parts, Gauss’ theorem and the osishtipon = t:

/Q\Tv-(D-a) dQ:/QD-(U\Tv) dQ—/QDSW:U dQ —
/\Tv-t_dr—/ W0 dQ. (24)
[t Q

The term related to the discontinuous part of the displac¢reld (71, W) is ex-
panded using integration by parts:

/%rd W (0-0) dQ:/ W (0-0) dQ —
Q Q+

/ 0-(oW) dQ— | D%:o dQ. (25)
Qt Qt
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Using Gauss’ theorem and the traction equatioms=t andon = t, the first term of
the RHS of equation (25) reads

O-(oW) dQ _—/ W- (on) dr—/ W-(ov) dr =
r ry
/ Vv-t_dr—/ W-tdr, (26)
ri rd

wherel’{” andl"j are parts of the boundagQ™ of Q. Using the previous relations
in equation (23), the weak form reads

Q+

oo de+ [ Vo do+ [ ddr = [ (o, @) Tar, @7)
0 o My M

in which the terms related 1o andr';~ have been collected under the same integral by
using the Heaviside function. Since the functins continuous across the disconti-
nuity and since the the notatidf; has been introduced to indicate which part of the
discontinuity is under analysis, the domdip of the integral of the traction forces
has been changed inkg,.

From the decomposition of the displacement field it folloWwattany admissible
variationw of u can be regarded as admissible variati@handw, thus leading to
two variational statements. Taking first variatian(w = 0) and thenw (W = 0), the
problem is to findl and( € U such that

/ DW:odQ = [ Widr W e U (28a)
Q It

/ 050 dQ + / Wtdr= [ Widr W e U, (28b)
Q+ Fg r

The second variational statement ensures that tractioincity is satisfied in a weak
sense across the discontinuity. Moreover, if the tractiom acting on the discontinuity
surfacel 4 is set to zero then the discontinuity is traction-free in aakveense. The
two variational statements in equation (28) resemble aleduyproblem in which the
fieldsi and( are coupled in the continuum through the stress field andftbet ef
the discontinuity is taken into account by the integral dvgr

3 DISCRETISATION

In this section the linearised form of the governing equeitor a body crossed by a
discontinuity is developed.
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3.1 Kinematic description

Using a Bubnov-Galerkin approach, the kinematic fields cardiscretised in each
element ‘affected’ by the enhancement using

0 =Na i =Nb (29)
[0 = Ba 0%t = Bb (30)
W = N&’ W = Nb’ (31)
O = Ba/ O = Bb’ (32)

where the primes refer to admissible variations.

3.2 Discretised and linearised weak equations

Inserting the discrete format of the kinematic fields intaiaipn (28), leads to two
discrete weak governing equations which are valid at el¢tegal:

/ BTo dQ = NTt dr (33a)

B'odQ+ [ N'tdr= /[ NTtdr. (33h)
Q+ g ry

From equation (33), the equivalent nodal forces relateditissible variations o&
andb resultin

fima:/ BTodr (34a)

f,mb_/ BTo dQ + NTtdr (34b)

The stress rate in the continuum is expressed in terms of nodal displacement
velocities as

0 =Dé =D (Ba+ #r, Bb). (35)
Similarly, the traction rate at a discontinuity is expresas
t = T[u] = TNb, (36)

whereT relates traction rate and displacement jump rafé]. The linearised weak
form is formed by inserting the above stress and tractioa expressions into the
discretised weak governing equations in equation (33} taining

Kaa Kap _ f exta,t+dt B f intat 7 (37)
Kba Kbb f extb,tt fintb.t
9

Aa
Ab
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Figure 2: Enhanced nodes, represented by a white circieg [@) on and (b) around a
discontinuity. The discontinuity is represented by theviydme and. 7, = 1 in the
grey shaded zones for the enhanced elements.

where the sub-matrices are defined as

Kaa:/ BTDB dQ (38a)

Q

K= [ BTDBdQ (38b)
Q+

Kpa =Kl = BTDB dQ (38¢)

K bp _/ BTDB dQ + NTTN dr (38d)

and feyx are the externally applied forces (RHS of equation (33)).teNbat if the
material tangent matricd3 andT are symmetric, symmetry of the stiffness matrix is
assured.

4 ELEMENT TECHNOLOGY

The position of the discontinuity is dictated by the geometi the problem. In sit-
uations in which the interface describes a physical boyndatween two bodies, a
natural choice would be to locate the discontinuity at thernatary (interface-like el-
ement, Figure 2a) to capture the strain discontinuity antlaéerial interface. In this
special case, only the nodes on the discontinuity need tolthereed. A discontinuity
can also be arbitrarily placed in the continuum (generarfate-like element, Fig-
ure 2b). For an element crossed by a discontinuity, all titees@re enhanced but the
integration is carried out only in the shaded grey part oftbimain Q¢ ) for the terms
of the stiffness matrix involving the enhanced nodes. Wheelament has enhanced
nodes and no discontinuity, the enhancement is similar @b @h the interface-like
element (cf. Appendix A).

The two characterisations are equivalent as they prodecsatime kinematic fields,
the main difference regards the number of enhanced nodeke lcase of a crossing
discontinuity, like in Figure 2b, the enhancement concarmgder set of nodes. Note

10
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Figure 3: Procedure for the enhancement of nodes and elsm@jtall the nodes
whose support is crossed by a discontinuity are enhancetthambdes on the crack tip
are constrained ; (b) only the nodes which satisfy the aiig=rion are kept. Enhanced
nodes are indicated by the circles and enhanced elementaaked with *. The
positive part of the domain is shaded grey.

that the enhancement of the kinematic fields with the Hedwifinction concerns only
those nodes whose support is crossed by a discontinuitycauwehich

min(Qg’, Qs )

> tolerance (39)
Qs

whereQs is the area of the support of a nodlg/* is the area of the support of a node
that belongs t€*/~, and the tolerance depends on the precision of the solvés. Th
‘area criterion’ ensures a well-conditioned global seffs matrix in the case the dis-
continuity lies very close to the boundary of the supportbde and allows situations
in which the discontinuity aligns with the boundary of anreént to be dealt with. In
the latter situation and, more generally, when the supg@&tmde is not crossed by a
discontinuity, the Heaviside function is constant and nme$be added to the enhanced
basis, since a constant function forms part of the span oflata polynomial shape
functions, thus violating the requirements of the integtioh field of equation (6) and
generating a linearly dependent system of equations. Bgoglortant is that the dis-
placement jump at a discontinuity tip is zero. To enforcs,tdiscontinuity tips must
coincide with element boundaries and the nodes on the boyadanot enhanced [6].
The area criterion and the requirement on the crack tip lstridted in Figure 3 (the
crack tip is in the upper part of the mesh).

Due to the presence of an integral over the discontinuitiasef 4, the integration
scheme needs to be adjusted in order to perform the integrafithe traction forces
acting at a discontinuity. In the case of an interface-likament, extra integration
points placed on the discontinuity suffices. It is streskat] even if the discontinuity
is placed along the boundary of two elements (see FiguretBa)iractions at the
interface-like element are integrated only along the sidé® element on which the
Heaviside function is equal to unity. For the general irstegflike element, care must
also be taken to correctly integrate the continuum contiobs to the stiffness matrix
on both sides of the discontinuity [4].

11
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Figure 5: Discretisation for the tension test: (a) convamdi interface element, (b)
interface-like element and (c) and general interface-gdileenent.

Although it is possible to activate a discontinuity afterpesific condition is met,
here it is assumed that the discontinuity is present fronb#ggnning of an analysis.
This keeps the implementation relatively simple and allé@rsa direct comparison
with conventional interface elements.

5 A COMPARISON

5.1 One-dimensional tension test.

The equivalence between PUM interface elements and caowehinterface elements
is illustrated by means of a tension test (Figure 4). Theeththiscretisations to be
considered are depicted in Figure 5. The discontinlijtys first modelled by a con-
ventional interface element (Figure 5a). The PUM decomjowosof the displacement
field is exploited for the last two discretisation (Figure&b Note that in Figure 5b
the discontinuity is placed between two elements (intedide element), while in
Figure 5c it is placed within an the element (general intarfike element). The do-
main Q™ is given by O< x < L. Details of the stiffness matrix computations are in
Appendix A. In the following,E is the Young’s modulusA is the cross-section area
andd is the stiffness of the interface/discontinuity.

5.1.1 Analysis with conventional interface element

For the bar with the discontinuity modelled by a conventlonterface element (Fig-
ure 5a), assembly of local stiffness matrices into the dlshfiness matrix for the

12
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active degrees of freedom results in the system of equations

EAyd -d 0 U 0
—d ETA-i-d —ETA us | =1 0 |. (40)
0 —ETA ETA Uy P

Solving this system of equations yields:

PL
uz EA
P(dL+EA
ug | = | PUZEA | (41)
Ug P(2dL+EA)
~ dEA

5.1.2 Analysis with interface-like element

Considering the discretisation with an interface-likensdat (Figure 5b), assembly of
local stiffness matrices into the global stiffness mategults in the global system of
equations

BA BALd 0 G | =| 0|, (42)
EA EA
- 0 T Us P

which after solving yields

. P(dL+EA)
Uz dEA
~ p
U | = —d : (43)
Us P(2dL+EA)
dEA

5.1.3 Analysis with general interface-like element

For the discretisation with the general interface-likemedat (Figure 5c¢), the global
system of equations reads

r  3EA EA 5 1 ~
T TT 2t 2T Uz 0
_EA  3EA  _1EA 1EA  _2BA | | 4 0
L L 2L 2L L 3
5EA 1EA 5EA d 1EA | d ~ _
> —3tr 30 ta —3t+ta O o | = | 01, (44)
1EA 1EA 1EA | d 1EA | d 1
—2T 2L 2Ltz 3L T4 Us 0
2EA 2EA
0 - 0 0 o] L Ua _P_
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discretisation displacement in the middle sectiordisplacement jump
conventional interface elementu, = PL/EA uz—upx =P/d
interface-like element Up+ 0, = PL/EA 0, = —P/d

general interface-like element (0 + G + 3+ U3) /2= PL/EA (Gp+0s) /2= —-P/d

Table 1: Value of significant displacements for the threereissations.

from which yields:

[ P(L42EA) T
Gp —dEA
A P(3dL+2EA)
U3 —2dEA
. p
Uy | = —d : (45)
~ _P
us d
P(2dL+EA)
| Us | dEA

The value of significant displacements is reported in tab{eh& minus sign in the
displacement jump is due to the direction of the unit norneaterv, which is pointing
to Q™).

5.1.4 Remarks

Although this simple example gives little insight into thenceptual similarities of the
two approaches (conventional interfacesus PUM interface elements), it shows the
equivalence of the results given by PUM interface elememidy conventional inter-
face elements and highlights the differences between th@&tWM interface elements.
Indeed, when a discontinuity is placed at the boundary ofement, the interface-like
element is very versatile since it does not require the diefinof doubled nodes (like
with conventional interface elements) and it is based onlpe element (unlike the
general interface-like element).

5.2 Two-dimensional tension test

The similarities of the two approaches (conventional fatssversus PUM interface
elements) can be analysed by means of the two-dimensios@a(Eaure 6) of the pre-
vious example (Poisson’s ratie 0). The bar is discretised by means of linear quadri-
lateral elements and the discontinuity is described by aemtional linear interface
element and by an interface-like element. The structureegtobal stiffness matrix is
depicted schematically in Figure 8. When a conventionatfate element is used, the
displacement jump is represented by the relative displacéof doubled nodes. This

14
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Figure 6: Geometry for the tension test (2d configuration).

jI jr J
(a) (b)

Figure 7: Sets of nodes for the description of (a) relatigpldicement with a conven-
tional interface element and for (b) displacement jump aithinterface-like element.

results in, for the degrees of freedom in the horizontaldafioe for the grey shaded
node in Figure 6, the shaded rows depicted in Figure 8a. lhearface-like element
is used, the displacement jump is represented by a degresealidm and the equation
to which it is related is represented by the shaded row inrEi@b. In Figure 8, the
squares represent terms related to the stiffness of thencom while the circles are
related to the stiffness of the interface/discontinuitjhe white circles indicate those
integrals with zero value after Newton-Cotes/Lobattogné¢ion and are referred to
as the terms representing the ‘coupling’ between sets acds10the coupling between
node sets (nodesand j in Figure 7) is here understood in the sense that, for the
conventional interface element, an action on npdeill produce not only a reaction
in nodei;, but also a reaction at thigset of nodes. Similarly, for the interface-like
element, an action at nod&vill produce a reaction at node

Figure 8 reveals that the interface-like element destrbgsbianded structure of
the system for this small problem. This is a local effecttedao the portion of the
structure affected by the enhancement, here made morenébieeause of the limited
number of degrees of freedom. Moreover, the terms relateédetantegration over
the discontinuity (the circles) are concentrated in a sipailt of the global stiffness
matrix close to the diagonal when an interface-like elenentsed (only one degree
of freedom is necessary to describe the displacement jumpls can improve the
conditioning number of the system when a high interfacefminuity is used. Beside
this, the structure of the global system is similar in botbesa The off-diagonal terms
(circles in white) are acting in the same way for the two ditisations, providing the
coupling between the sets of nodes related to the displadgarap.

15
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Figure 8: Structure of the stiffness matrix for the dis@ation with (a) conventional
interface element and with (b) interface-like element.

5.3 Linear elastic analysis of a notched beam.

In Schellekens and de Borst [11], it was suggested that tirermientioned coupling is
the reason for the poor performance of numerically integtatonventional interface
elements, when a large traction gradient exists over anface element. This leads
to the conclusion that PUM interface elements and conveatinterface elements are
expected to perform similarly. To illustrate this, the tdibrensional notched beam
depicted in Figure 9 has been analysed using PUM interfammegits. This linear
elastic test was used by Rots [12] to test the performancaiafenically integrated
continuous conventional interface elements. Four-nodeeight-node quadrilateral
elements are used under plane stress conditions. A Yourglsiurs of 2< 10* N/mn?
and a Poisson’s ratio of P have been used for the continuum.

The traction-separation relatidr= T [u] of equation (36) is formulated in a local
n,s coordinate system. A simple law of the type

th d, O Cn
o)-15alls] @

is used, wherd, andds are constant),, andug are the displacement jumps in the local
(discontinuity) reference system atdandts are the normal and tangential interface
tractions. This approach is usually called the ‘dummy séiffs’ approach and it is
used often in combination with conventional interface edats. To reproduce pure
mode-Il opening, only displacement jumps in the horizontalation are activated. The
notch is simulated as a traction-free discontinuity-€ ds = 0 N/mn?). The analyses
reported by Rots show a normal traction profile along thereéfine of the beam
which is highly dependent on the stiffness of the interfawg@n the chosen numerical
integration scheme. In particular, it was shown that highesof the normal stiffness
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100 i

450

Figure 9: Notched beam. All dimensions in millimetres (defit00 mm).

Figure 10: Schematic representation of the position of ieeamtinuity, represented
by the heavy line, for the simulations with a structured mesh

in combination with Gauss integration lead to significantilketions of the normal
traction profile.

The results of the analyses are reported in Figures 12 tanlhich the normal
tractions have been sampled at the integration points odislsentinuity. The stiffness
dn at the discontinuity ranges fromx210° to 2 x 10° N/mm?®. Results depicted in the
upper and central parts of Figures 12 and 13 and in Figure \& lbeen obtained us-
ing structured meshes with the discontinuity lying on tlieesif the elements (element
size = 5 mm, Figure 10a) or within elements (element size 3 &8, Figure 10b).
The mesh in Figure 11 has been used for the results depictie ibottom parts of
Figures 12 and 13. In structured meshes, PUM interface elesnsbow the same spu-
rious traction oscillations of conventional interfacensénts when a Gauss quadrature
scheme is used for the integration of the traction forceBeatiscontinuity (upper and

P —
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Figure 11: Notched beam with 943 elements. The discontinsiitepresented by the
heavy line.

17



A. Smone, J. J. C. Remmers, G. N. Wells

Gauss integration scheme

linear elements guadratic elements
100 —= 100 —=s
S IS
g dn = 2 x 10° N/mn?® S dn = 2x 10° N/mm?
5 80t == == dh=2x10Nmm® 1 & g | - === dy=2x10 Nimm® |
| dh=2x1CNmm? | & |\ e dy = 2 x 165 N/mmm?
(O] (0]
£ 60} S 60 | .
8 e
8 8
S 40t S 40t E
@ ©
o S
20 e 20 N S
-2 0 2 4 -2 0 2 4
normal traction (N/mrf) normal traction (N/mrf)
interface-like element
_ 100 — . . 100
IS IS
3 0y = 2x 10° N/mm® 3 dn = 2 x 10° N/mm?®
S s f == == dh=2x10Nmm* | & gof - === Oy =2x10* N/mm® |
2 |\ dh=2x1°Nmm® | S |\ e dy = 2% 10° N/mn?
(] (]
< 60t 1 5 60t .
8 s
[} [}
Q o
g 40t 1 g 4wt ]
4] k4]
20 i S S 20 e
-2 0 2 4 -2 0 2 4
normal traction (N/mrf) normal traction (N/mrf)
general interface-like element / structured mesh
___ 100 — ; ; __100
S IS
£ dh = 2x 10° N/mm® g dn = 2 x 10° N/mm?
S st - == dh=2x10°NImm? ] & g f - === dy=2x10* N/mm® |
s |\ e dh=2x1C°Nmm® | S |\ e dy = 2 10° N/mn?
(] (]
S 60} S 60
8 8
<) [}
[&] Q
S 4+t Saf
2 @
© ©
20 LTI e e 20 J—
-2 0 2 4 -2
normal traction (N/mrf) normal traction (N/mrf)

general interface-like element / unstructured mesh

Figure 12: Traction profile in front of the notch of the beanthwGauss integration
scheme for different mesh structures.
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Newton-Cotes/Lobatto integration scheme
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Figure 13: Traction profile in front of the notch of the beamthwiNewton-
Cotes/Lobatto integration scheme for different mesh sires.
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100 =

2 integration points
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20

normal traction (N/mrf)

Figure 14: Effect of over-integration on the traction pmfih front of the notch of
the beam with linear interface-like elements and Newtote€/hobatto integration
schemed, = 2 x 10° N/mm?d).

central parts of Figures 12 and 13). Only a Newton-Cotesdltolintegration scheme
gives a smooth traction profile for all the values of the dunstiffness. These re-
sults are similar to those reported by Schellekens and dstBot]. In unstructured
meshes with high value of the dummy stiffness, the osaltetiin the traction profile
are always present (bottom parts of Figures 12 and 13). Ibishawhile to note that
spurious traction oscillations are also introduced by -onergration with a Newton-
Cotes/Lobatto integration scheme as reported in FigureflAppendix B.3).

To gain more insight into the behaviour of PUM interface edats and to draw
comparisons with conventional interface elements, anneaae analysis has been
performed on an interface-like element. The eigenvaluéysisahas been performed
on the partfrd NTTN dI of the sub-matriX , which directly contributes to the stiff-
ness of the discontinuity. Unit values for the length, theage area and the dummy
stiffnessed,, andds have been assumed. The results of the eigenvalue analgses ar
shown in Figures 15 and 16 for an interface-like element aittiscontinuity along
the right vertical side. The coupling of the nodal displaeets is evident when a
Gauss integration scheme is used; on the contrary, the ingugisappears with a
Newton-Cotes/Lobatto integration scheme. These restdtgery similar to those re-
ported by Rots and Schellekens [13] and by Schellekens [C4nsequently, with
two-dimensional linear and quadratic PUM interface-likengents, only the use of a
Newton-Cotes/Lobatto integration scheme for the intégmnadf the terms related to the
discontinuityl ¢ guarantees a smooth traction profile for all the values ofitmamy
stiffness. For general interface-like elements, this tsion holds only under the
condition that a discontinuity crosses an element from tpoosite sides as depicted
in the right-hand side of Figure 10. This issue is discuseedktail in Appendix B,
along with the formal equivalence of PUM interface elememd conventional inter-
face elements.
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A=0.1667 A=0.1667 A=0.5000 A=0.5000

A=0.5000 A=0.5000 A=0.5000 A=0.5000
@ (b)

Figure 15: Eigenmodes and corresponding eigenvalues foearlinterface-like ele-
ment: (a) 2—point Gauss integration; (b) 2—point NewtorteSt.obatto integration.

6 CONCLUSIONS

A framework has been established for the implementation déss of interface el-
ements within a partition of unity method. The displacenfezitl is enriched with
the Heaviside jump function, thus providing a natural emwinent to describe any
phenomena in which a material discontinuity is expected.

Unlike conventional interface elements, PUM interfacersdats do not need mod-
ification of the existing mesh to locate a discontinuity. histapproach, extra global
degrees of freedom are added to the nodes that correspohd tontérface. More-
over, PUM interface elements are kinematically equivaterntonventional interface
elements but are more flexible because a discontinuity datraly cross the mesh.
This results in a decoupling of the mesh topology and the ma&teehaviour. In un-
structured meshes however, the presence of spuriousatiecil in the traction field
along the discontinuity when a ‘dummy stiffness’ approadthwigh values of the
dummy stiffness is used, limits the potential of the methidds can be largely avoided
by activating the degrees of freedom responsible for thglaiement jump when they
are required, thus avoiding the initial elastic branch. @Big problem may still persist
if elastic unloading with high value of the elastic modulakds place.
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Figure 16: Eigenmodes and corresponding eigenvalues foadrgtic interface-like
element: (a) 3—point Gauss integration; (b) 3—point NewZates/Lobatto integration.

22



A. Smone, J. J. C. Remmers, G. N. Wells

Figure Al: One-dimensional truss element.

A STIFFNESS MATRIX COMPUTATION FOR PUM INTER-
FACE ELEMENTS

In the following, the computation of the stiffness matri¢estruss elements are per-

formed. The degrees of freedom for an enhanced element leavedsdered in the se-

quence| G G G UGj ]. The notatiorB ,» = BH has been used (cf. Section 2.2.1).
This results in the following expressions for the sub-neasiin equation (38):

K oo = /Q BTDB dQ (Ala)
K ap = /Q _BTDB, dQ (Alb)
Kpa = K, = /m BT, DB dQ (Alc)
Kbb:/m BT, DB, dQ + 5 NTTN dr. (Ald)

in which the effect of the Heaviside jump function has beemsadered by the integra-
tion overQ™.

A.1 Truss and conventional interface element

For completeness, the stiffness matrices of the truss anddhventional interface
elements are reported. For a one-dimensional truss elgFigate Al)
EA 1 -1
Ktruss: T |: -1 1:| y (AZ)
whereE is the Young's modulus and is the cross-section area. A one-dimensional

conventional interface element can be understood as adat@amsl spring element
(Figure A2) with stiffnessl for which

Km=d| 1 7] (A3)
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Figure A2: One-dimensional conventional interface (gprielement.
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Figure A3: Interface-like truss element.

A.2 Interface-like truss element

The sub-matrices in equation (Al) are expanded for an sterfike truss element. In
the element depicted in Figure A3, the discontinuity is pthat the right-hand end.
Sub-matrixK 45 is the same aKyss Only the node placed on the discontinuity (node
j) is enhanced and thi,» = BH = # [0 1] with

00
H:{O 1} (A4)

The integrals with the subscrip#” can be expanded as

L EA -
Kab:/ BTDB%dQ:/ BTDB%dx:—[O 11 (A5)
Q+ 0 L0 1
and
L EA| 0O
_ T _ T _ ="
Kba_/mB%DBdQ_/O B], DB dx= " l—l 11 (A6)
For Kpp, the volume integral reads
L EA{ 0 O
T _ T . -
/.. BYDB da = [ B],DB, dx= [0 11 (A7)
and the surface integral is evaluatedxor L to obtain
T T 00
rdN TN dQ = (N'TN) |x:L:d{O 1} (A8)
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Figure A4: Embedded-discontinuity truss element.

Assembly of the sub-matrices into the element stiffnessirgives

T EA _EA EA
T —© 9 -T
_EA EA o EA
L L L
K pum = (A9)

0 0O O 0

EA EA EA

and, after deleting the third row and column for the unused thegree of freedom,

EA _EA _EA
L L L
— EA EA EA
EA EA EA
-T T 1 td

A.3 General interface-like truss element

Discontinuity crossing the element. The sub-matrices in equation (Al) are expanded
for a truss element with a discontinuity in the middle seti{iBigure A4). Sub-matrix
Kaa is the same aKyss The nodes are both enhanc&l,4 = B) and.#r, = 1 for

X < L/2. The integrals are expanded as

L/2 EA[ 1 -1
_ T T
Kab_/mB DB, dQ = [ BTDBdx ZL[ » 1} (A11)
K —/ BT, DB dQ — /LZBTDBd EAL 1 -1 (A12)
ba = Jo. 2L -1 1
For K pp, the volume integral reads
L/2 EA[ 1 -1
.
/ B,DB., d2 ~ [ " "B'DB dx ZL{ i 11 (A13)
and the surface integral is evaluatedxoa L /2 to obtain
dl1 1
T _ T _ Y
rdN TN dQ = (N'"TN) |xey o= 1 [ 1 1] (A14)
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Assembly of the sub-matrices into the element stiffnessirgives

r EA _EA EA _EA T
L L 2L 2L
_EA EA _EA EA
L L 2L L
K pum = (A15)
EA _EA &\+Q &\+Q
2L 2L 2L 4 2L 4
EA EA EA d EA d
| 2t & A ta AL ta

Discontinuity not crossing the element. In this special case, there is only one node
to enhance and there is no discontinuity. The element isdere as an interface-like
element in which no discontinuity is considered. The stiffe matrix results in

1 -1 -1
EA
-1 1 1

B THE FORMAL EQUIVALENCE OF PUM INTERFACE ELE-
MENT AND CONVENTIONAL INTERFACE ELEMENT

The equivalence of the two approaches (PUM interface elermed conventional
interface element) is demonstrated for line interface el&sand two-dimensional
interface-like elements. The general case of a crossirmguiigmuity is also analysed.
The key point in drawing the comparison is that the two apghea use the same con-
stitutive model at the interface, with the only differencairiy the way in which the
displacement jump is described. Conventional interfaeeehts use the relative dis-
placement of doubled nodes while in PUM interface eleméresitsplacement jump
is naturally introduced in the formulation as a degree oédi@am. The similarities of
the two approaches will be highlighted by the analysis ofrttsrices related to the
behaviour of the interface.

B.1 Conventional continuous interface element
The stiffness matrix of a conventionatnode line interface element [12] is

=+ ox

'3 1
K=b BTCB-= d¢, B1

whereb is the thickness of the interfacB,is a 2x 2m matrix containing shape func-
tionsN;:

~N N
B:{ 0 0 —N N} (B2)
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Figure B1: Quadratic field interface modelling with (a) 6dedine interface element
and (b) 8-node interface-like element.

with
N =[ Ng,...,Nm | (B3)

and¢ is a normalised coordinate. The interface constitutiverimdt relating tractions
and relative displacements has the same structufeiagquation (46). The degrees
of freedom have been ordered in the sequenagt, ...,u,™ ugt,...,us™ ] according
to the node numbering of Figure Bla. For conventional lifie& interface element
theN matrix is equal to

N=[3(1-&) 3(1+&) ] (B4)
while for conventional quadratic line interface elementeads

N=[3(-¢+&) 3(&+&) (1-&%) . (BS)
Expansion of the terrB"CB results in a block diagonal matrix:

T - Kn 0

aca-[ 40 9 | &0

whereK; is given by

(B7)

K —K
K K|

Ki=d { -
whered; is the stiffness at the interface in the directionThe structure of the sub-

matrix K depends on the interpolation along the conventional iaterelement. For
line elements it results in

_ NZ  NiNp
K = . (B8)
NiNz N2
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Analytical integration (and a 2—point Gauss integratiomesee) of the terms|N; in
equation (B8) results in

— 112 1],

K=1 { 2 1 ] , (89)
a 2—node Newton-Cotes/Lobatto integration scheme gives

— 10

K= [ 0 1} . (B10)

For a conventional quadratic line interface element is
N2 NiNz NiNs
K=1] NNy N3 NN |. (B11)
NaNi N3Nz N2

Analytical integration (and a 2—point Gauss integratidmesae) results in

_ 4 4 -1 2
K=gg| -1 4 2 (B12)
2 2 16

while a 3—node Newton-Cotes/Lobatto integration schemwesgi

4100
K=3|0 10 (B13)
00 4

B.2 Interface-like element

For a generic plane interface-like element witihodes on the side of the discontinuity,
the contribution oK, onlyis

- E=+1 T
Kbb;d:/r NTTN dr:b/f NTTNZZ e, (B14)
| -

in which N reduces to a 2 2m matrix containing the shape functions related to the
side on which the discontinuity lies (sid® in Figure B1b):

N 0
N = [ 0 I\—l} (B15)
with
N=[ Ng....Nm ]. (B16)
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Figure B2: Possible configurations for a discontinuity sig a general interface-like
guadrilateral element.

The sequenc% ul, ..., um uyl,...,uym } according to the node numbering of Fig-

ure Blb, has been used for the ordering of the degrees ofdine&d equation (B15).
Expansion oKy, r, gives

Kn 0 } , (817)

Kbo,ry = { 0 K
whereK; = diK, d is the stiffness at the discontinuity surface in the dittiandK
has the structure df given previously for conventional line interface elements

It is therefore demonstrated that conventional line iatefelements and PUM
interface-like elements have the same stiffness matrixthadsame block diagonal
structure for the terms related to the discontinuity. Itigbavorthwhile noting that the
coupling appears if over-integration is used in the nuna¢mtegration oK py, r, with
a Newton-Cotes/Lobatto integration scheme (see Figure 14)

B.3 General interface-like element

When a discontinuity crosses an element (general intetfike@lement of Figure B2),
all the nodes of the element are enhanced and the vidatdequation (B16) contains
all the shape functions of the element. In the following,yathle linear quadrilateral
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element is analysed. For this element the mariis given by

NZ  NiN» NiN3 NgNg |
NoNz N2 NpN3 NoNg

Al
I

(B18)
NaN; NsN2 N2 N3Ny

NaNz NsN2 NNz N2

In the case of Figure B2a, the use of a 2—point Newton-Cotdstto integration
scheme will delete the coupling between the nodes lying da 52 and34; more
specifically, the term®;N3, N1N4, NoN3 andNoN,4 cancel. When a discontinuity is
placed such as the one in Figure B2b, the coupling is to berstuts between node
4 and the remaining nodes. By using a 2—point Newton-Cotdstto integration
scheme, the coupling is only partially reduced (see bottarhqf Figures 12 and 13)
but it is still present since the teriksN, does not cancel. The limit cases of Fig-
ures B2c,d fall under the the same category of Figure B2alo§oas considerations
hold for quadratic quadrilateral elements. The case ofealior quadratic triangular
element with crossing discontinuity is analogous to thatigire B2b and the pres-
ence of spurious oscillations with Gauss or Newton-Cotasétto integration scheme
has been confirmed by van Zail (private communication, 2001)
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