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Abstract

The presence of cross-sectionally correlated error terms invalidates much inferential
theory of panel data models. Recently work by Pesaran (2006) has suggested a method
which makes use of cross-sectional averages to provide valid inference for stationary
panel regressions with multifactor error structure. This paper extends this work and
examines the important case where the unobserved common factors follow unit root
processes and could be cointegrated. It is found that the presence of unit roots does not
affect most theoretical results which continue to hold irrespective of the integration and
the cointegration properties of the unobserved factors. This finding is further supported
for small samples via an extensive Monte Carlo study. In particular, the results of the
Monte Carlo study suggest that the cross-sectional average based method is robust
to a wide variety of data generation processes and has lower biases than all of the
alternative estimation methods considered in the paper.
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1 Introduction

Panel data sets have been increasingly used in economics to analyze complex economic

phenomena. One of their attractions is the ability to use an extended data set to obtain

information about parameters of interest which are assumed to have common values across

panel units. Most of the work carried out on panel data has usually assumed some form of

cross sectional independence to derive the theoretical properties of various inferential proce-

dures. However, such assumptions are often suspect and as a result recent advances in the

literature have focused on estimation of panel data models subject to error cross sectional

dependence.

A number of different approaches have been advanced for this purpose. In the case of

spatial data sets where a natural immutable distance measure is available the dependence

is often captured through “spatial lags” using techniques familiar from the time series lit-

erature. In economic applications, spatial techniques are often adapted using alternative

measures of “economic distance”. This approach is exemplified in work by Lee and Pesaran

(1993), Conley and Dupor (2003), Conley and Topa (2002) and Pesaran, Schuermann, and

Weiner (2004), as well as the literature on spatial econometrics recently surveyed by Anselin

(2001). In the case of panel data models where the cross section dimension (N) is small

(typically N < 10) and the time series dimension (T ) is large the standard approach is to

treat the equations from the different cross section units as a system of seemingly unrelated

regression equations (SURE) and then estimate the system by the Generalized Least Squares

(GLS) techniques.

In the case of panels with large cross section dimension, SURE approach is not practical

and has led a number of investigators to consider unobserved factor models, where the cross

section error correlations are defined in terms of the factor loadings. Use of factor models

is not new in economics and dates back to the pioneering work of Stone (1947) who applied

the principal components (PC) analysis of Hotelling to US macroeconomic time series over

the period 1922-1938 and was able to demonstrate that three factors (namely total income,

its rate of change and a time trend) explained over 97 per cent of the total variations of

all the 17 macro variables that he had considered. Until recently, subsequent applications

of the PC approach to economic times series has been primarily in finance. See, for ex-

ample, Chamberlain and Rothschild (1983), Connor and Korajzcyk (1986) and Connor and

Korajzcyk (1988). But more recently the unobserved factor models have gained popularity

for forecasting with a large number of variables as advocated by Stock and Watson (2002).
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The factor model is used very much in the spirit of the original work by Stone, in order to

summarize the empirical content of a large number of macroeconomics variables by a small

set of factors which, when estimated using principal components, is then used for further

modelling and/or forecasting. A related literature on dynamic factor models has also been

put forward by Forni and Reichlin (1998) and Forni, Hallin, Lippi, and Reichlin (2000).

Recent uses of factor models in forecasting focuses on consistent estimation of unobserved

factors and their loadings. Related theoretical advances by Bai and Ng (2002) and Bai (2003)

are also concerned with estimation and selection of unobserved factors and do not consider

the estimation and inference problems in standard panel data models where the objects of

interest are slope coefficients of the conditioning variables (regressors). In such panels the

unobserved factors are viewed as nuisance variables, introduced primarily to model the cross

section dependencies of the error terms in a parsimonious manner relative to the SURE for-

mulation.

Despite these differences knowledge of factor models could still be useful for the analysis

of panel data models if it is believed that the errors might be cross sectionally correlated.

Disregarding the possible factor structure of the errors in panel data models can lead to in-

consistent parameter estimates and incorrect inference. Coakley, Fuertes, and Smith (2002)

suggest a possible solution to the problem using the method of Stock and Watson (2002).

But, as Pesaran (2006) shows, the PC approach proposed by Coakley, Fuertes, and Smith

(2002) can still yield inconsistent estimates. Pesaran (2006) suggests a new approach by

noting that linear combinations of the unobserved factors can be well approximated by cross

section averages of the dependent variable and the observed regressors. This leads to a new

set of estimators, referred to as the Common Correlated Effects estimators, that can be com-

puted by running standard panel regressions augmented with the cross section averages of

the dependent and independent variables. The CCE procedure is applicable to panels with

a single or multiple unobserved factors so long as the number of unobserved factors is fixed.

In this paper we extend the analysis of Pesaran (2006) to the case where one or more

of the unobserved common factors could be integrated of order 1, or I(1). This also allows

for the possibility of cointegration amongst the I(1) factors and does not require an a priori

knowledge of the number of unobserved factors, or their integration or cointegration prop-

erties. It is only required that the number of unobserved factors remain fixed as the sample

size is increased. The theoretical findings of the paper are further supported for small sam-

ples via an extensive Monte Carlo study. In particular, the results of the Monte Carlo study
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clearly show that the CCE estimator is robust to a wide variety of data generation processes

and has lower biases than all of the alternative estimation methods considered in the paper.

The structure of the paper is as follows: Section 2 provides an overview of the method

suggested by Pesaran (2006) in the case of stationary factor processes. Section 3 provides

the theoretical framework of the analysis of nonstationarity. In this section the theoretical

properties of the various estimators are presented. Section 4 presents an extensive Monte

Carlo study, and Section 5 concludes.

2 Panel Data Models with Observed and Unobserved
Common Effects

In this section we review the methodology introduced in Pesaran (2006). Let yit be the

observation on the ith cross section unit at time t for i = 1, 2, ..., N ; t = 1, 2, ..., T, and

suppose that it is generated according to the following linear heterogeneous panel data model

yit = α0idt + β
0
ixit + γ

0
ift + εit, (1)

where dt is a n × 1 vector of observed common effects, which is partitioned as dt =
(d01t,d

0
2t,d

0
3t)

0 where d1t is a n1× 1 vector of deterministic components such as intercepts or
seasonal dummies, d2t is a n2×1 vector of unit root stochastic observed common effects and
d3t is a n3×1 vector of stationary stochastic observed common effects, with n = n1+n2+n3,

xit is a k× 1 vector of observed individual-specific regressors on the ith cross section unit at
time t, ft is them×1 vector of unobserved common effects, and εit are the individual-specific
(idiosyncratic) errors assumed to be independently distributed of (dt,xit). The unobserved

factors, ft, could be correlated with (dt,xit), and to allow for such a possibility the following

specification for the individual specific regressors will be considered

xit = A
0
idt + Γ0ift + vit, (2)

where Ai and Γi are n×k and m×k, factor loading matrices with fixed components, vit are

the specific components of xit distributed independently of the common effects and across

i, but assumed to follow general covariance stationary processes. In this paper we allow for

one or more of the common factors, dt and ft, to be I(1).

Combining (1) and (2) we now have

zit
(k+1)×1

=

µ
yit
xit

¶
= B0i

(k+1)×n
dt
n×1

+ C0i
(k+1)×m

ft
m×1

+ uit
(k+1)×1

, (3)
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where

uit =

µ
εit + β

0
ivit

vit

¶
, (4)

Bi =
¡
αi Ai

¢µ In 0
βi Ik

¶
, Ci =

¡
γi Γi

¢µ Im 0
βi Ik

¶
, (5)

Ik is an identity matrix of order k, and the rank of Ci is determined by the rank of the

m× (k + 1) matrix of the unobserved factor loadings

Γ̃i =
¡
γi Γi

¢
. (6)

As discussed in Pesaran (2006), the above set up is sufficiently general and renders a variety

of panel data models as special cases. In the panel literature with T small and N large, the

primary parameters of interest are the means of the individual specific slope coefficients, βi,

i = 1, 2, ..., N . The common factor loadings, αi and γi, are generally treated as nuisance

parameters. In cases where both N and T are large, it is also possible to consider consistent

estimation of the factor loadings. The presence of unobserved factors in (1) implies that

estimation of βi and its cross sectional mean cannot be undertaken using standard methods.

Pesaran (2006) has suggested using cross section averages of yit and xit as proxies for the

unobserved factors in (1). To see why such an approach could work, consider simple cross

section averages of the equations in (3)1

z̄t = B̄
0dt + C̄0ft + ūt, (7)

where

z̄t =
1

N

NX
i=1

zit, ūt =
1

N

NX
i=1

uit,

and

B̄ =
1

N

NX
i=1

Bi, C̄ =
1

N

NX
i=1

Ci. (8)

Suppose that

Rank(C̄) = m ≤ k + 1, for all N. (9)

Then, we have

ft =
³
C̄C̄

0´−1
C̄
¡
z̄t − B̄0dt − ūt

¢
. (10)

But since

ūt
q.m.→ 0, as N →∞, for each t, (11)

and

C̄
p→ C = Γ̃

µ
Im 0
β Ik

¶
, as N →∞, (12)

1Pesaran (2006) considers cross section weighted averages that are more general. But to simplify the
exposition we confine our discussion to simple averages throughout.
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where

Γ̃ = (E (γi) , E (Γi)) = (γ,Γ). (13)

It follows, assuming that Rank(Γ̃) = m, that

ft − (CC0)−1C
¡
z̄t − B̄0dt

¢ p→ 0, as N →∞.

This suggests using h̄t = (d0t, z̄
0
t)
0 as observable proxies for ft, and is the basic insight that

lies behind the Common Correlated Effects estimators developed in Pesaran (2006). It is

further shown that the CCE estimation procedure in fact holds even if Γ̃ turns out to be

rank deficient.

We now discuss the two estimators for the means of the individual specific slope coef-

ficients proposed by Pesaran (2006). One is the Mean Group (MG) estimator proposed in

Pesaran and Smith (1995) and the other is a generalization of the fixed effects estimator that

allows for the possibility of cross section dependence. The former is referred to as the “Com-

mon Correlated Effects Mean Group” (CCEMG) estimator, and the latter as the “Common

Correlated Effects Pooled” (CCEP) estimator.

The CCEMG estimator is a simple average of the individual CCE estimators, b̂i of βi,

b̂MG = N−1
NX
i=1

b̂i. (14)

where

b̂i = (X
0
iM̄Xi)

−1X0
iM̄yi, (15)

Xi = (xi1,xi2, ...,xiT )
0, yi = (yi1, yi2, ..., yiT )0, M̄ is defined by

M̄ = IT − H̄
¡
H̄0H̄

¢−1
H̄0, (16)

H̄ = (D, Z̄), D and Z̄ being, respectively, the T ×n and T × (k+1) matrices of observations
on dt and z̄t.

Efficiency gains from pooling of observations over the cross section units can be achieved

when the individual slope coefficients, βi, are the same. Such a pooled estimator of β,

denoted by CCEP, is given by

b̂P =

Ã
NX
i=1

X0
iM̄Xi

!−1 NX
i=1

X0
iM̄yi. (17)
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3 Theoretical Properties of CCE Estimators in Non-
stationary Panel Data Models

The following assumptions will be used in the derivation of the asymptotic properties of the

CCE estimators.

Assumption 1 (non-stationary common effects): The (n2+m)× 1 vector of stochastic
common effects, gt = (d02t, f

0
t)
0, is a multivariate unit root process given by

gt = gt−1 + ζgt

where ζgt is a (n2+m)× 1 vector of L2 stationary near epoque dependent (NED) processes
of size 1/2, distributed independently of the individual-specific errors, εit0 and vit0 for all i,

t and t0.

Assumption 2 (stationary common effects): The n3 × 1 vector of common effects, d3t,
is a covariance stationary process given by

d3t =
∞X
=0

J ψt− , (18)

where the matrices J satisfy the condition

∞X
=0

s||J ||<∞, (19)

for some s ≥ 1/2, and the ψt are distributed independently of the individual-specific errors,

εit0 and vit0 for all i, t and t0.

Assumption 3 (individual-specific errors): The individual specific errors εit and vjt
are distributed independently for all i, j and t. For each i, εit is serially uncorrelated with

mean zero, a finite variance σ2i < K, and a finite fourth-order cumulant. vit follows a linear

stationary process with absolute summable autocovariances given by

vit =
∞X
=0

Si νi,t− , (20)

where νit are k × 1 vectors of identically, independently distributed (IID) random variables

with mean zero, the variance matrix, Ik, and finite fourth-order cumulants. In particular,

the k × k coefficient matrices Si satisfy the condition

∞X
=0

s||Si ||<∞, (21)

for all i and some s ≥ 1/2.
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Assumption 4 (factor loadings): The unobserved factor loadings, γi and Γi, are in-

dependently and identically distributed across i, and of the individual specific errors, εjt

and vjt, the common factors, gt = (d02t, f
0
t), for all i, j and t with fixed means γ and Γ,

respectively, and finite variances. In particular,

γi = γ + ηi, ηi v IID (0,Ωη), for i = 1, 2, ..., N, (22)

where Ωη is a m×m symmetric non-negative definite matrix, and kγk < K, kΓk < K, and

kΩηk < K.

Assumption 5 (random slope coefficients): The slope coefficients, βi, follow the random

coefficient model

βi = β + υi, υi v IID (0,Ωυ), for i = 1, 2, ..., N, (23)

where kβk < K, kΩυk < K, Ωυ is a k× k symmetric non-negative definite matrix, and the

random deviations, υi, are distributed independently of γj,Γj,εjt, vjt, and gt for all i, j and

t.

Assumption 6: (identification of βi and β): Consider the cross section averages of the

individual specific variables, zit, defined by z̄t = 1
N

PN
j=1 zjt, and let

M̄ = IT − H̄
¡
H̄0H̄

¢−
H̄0, (24)

and

Mg = IT −G (G0G)−G0, (25)

whereG = (D,F),D =(d1,d2, ...,dT )
0, F =(f1, f2, ..., fT )

0 are T×n and T×m data matrices

on observed and unobserved common factors, respectively, Z̄ = (z̄1, z̄2, ..., z̄T )0 is the T×(k+
1) matrix of observations on the cross section averages, and

¡
H̄0H̄

¢−
and (G0G)− denote

the generalized inverses of H̄0H̄ and G0G, respectively. Also denote the T × k observation

matrix on individual specific regressors by Xi = (xi1,xi2, ...,xiT )
0.

6a: (identification of βi): The k×kmatrices Ψ̂iT = T−1
¡
X0

iM̄Xi

¢
andΨig = T−1 (X0

iMgXi)

are non-singular and Ψ̂−1
iT and Ψ

−1
ig have finite second order moments, for all i.

6b: (identification of β): The k × k pooled observation matrix Ψ̂NT defined by

Ψ̂NT =
1

N

NX
i=1

µ
X0

iM̄Xi

T

¶
(26)

is non-singular.

Remark 1 Note that Assumption 3 is slightly stronger than Assumption 2 of Pesaran (2006)

which requires that

V ar (vit) =
∞X
=0

Si S
0
i = Σi ≤ K <∞, (27)
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for all i and some constant matrixK, where Σi is a positive definite matrix, rather than (21).

Further note that (21) implies that vit are L2 stationary near epoque dependent processes of

size 1/2.

Remark 2 Assumption 1 implicitly allows for cointegration among the m unobserved fac-

tors. To see this it is useful to impose some further structure on ζ2gt where ζgt = (ζ
0
1gt, ζ

0
2gt)

0

is a partition of ζgt comformable to the partition of gt in terms of d2t and ft. If we let

ζ2gt =
P∞

=0W t− where t− are i.i.d. with finite variance and
P∞

=0 ||W || < ∞ then

if
P∞

=0W is of reduced rank equal to r, then ζ2gt exhibits cointegration. Further ft may be

represented by a set of r stationary components and m− r random walk components. This

representation will be of use in the proofs of our results. Note that the above MA represen-

tation of ζ2gt implies that ζ2gt is a vector of L2 stationary near epoque dependent (NED)

processes of size 1 and hence satisfy assumption 12.

For each i and t = 1, 2, ..., T , writing the model in matrix notation we have

yi =Dαi +Xiβi + Fγi + εi, (28)

where εi = (εi1, εi2, ..., εiT )
0, and as set out in Assumption 5, D = (d1,d2, ...,dT )

0 and

F = (f1, f2, ..., fT )
0. Using (28) in (15) we have

b̂i − βi =

µ
X0

iM̄Xi

T

¶−1µ
X0

iM̄F

T

¶
γi+

µ
X0

iM̄Xi

T

¶−1µ
X0

iM̄εi
T

¶
, (29)

which shows the direct dependence of b̂i on the unobserved factors through T−1X0
iM̄F. To

examine the properties of this component, writing (2) and (7) in matrix notations, we first

note that

Xi = GΠi +Vi, (30)

and

H̄ = GP̄+ Ū∗, (31)

where Πi = (A
0
i,Γ

0
i)
0, Vi = (vi1,vi2, ...,viT )

0 ,

P̄
(n+m)×(n+k+1)

=

µ
In B̄
0 C̄

¶
, Ū∗ = (0, Ū), (32)

Using Lemma 1 which forms the basis of all the theoretical results of this paper and

assuming that the rank condition (9) is satisfied, it follows that

X0
iM̄F

T
=
X0

iM̄gF

T
+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
, (33)

2Our analysis allows for cointegration in d2t as well. However, for the sake of simplicity we do not
explicitly analyse this case which is a straightforward extension of the results presented in this paper.
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X0
iM̄Xi

T
=
X0

iM̄gXi

T
+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
, (34)

and
X0

iM̄εi
T

=
X0

iM̄gεi
T

+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
. (35)

Note that F ⊂ G and hence that T−1X0
iM̄gF = 0. If the rank condition does not hold

then again by Lemma 1 it follows that

X0
iM̄F

T
=
X0

iM̄qF

T
+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
, (36)

X0
iM̄Xi

T
=
X0

iM̄qXi

T
+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
, (37)

and
X0

iM̄εi
T

=
X0

iM̄qεi
T

+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
. (38)

where

M̄q = IT − Q̄
¡
Q̄0Q̄

¢−
Q̄0, with Q̄ = GP̄. (39)

Using the above results, noting that T−1X0
iM̄qXi = Op (1), and assuming that the rank

condition (9) is satisfied we have

b̂i − βi =

µ
X0

iMgXi

T

¶−1µ
X0

iMgεi
T

¶
+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
. (40)

Since εi is independently distributed ofXi andG = (D,F), then for a fixed T , limN→∞E
³
b̂i − βi

´
=

0. The finite-T distribution of b̂i − βi will be free of nuisance parameters as N → ∞, but
will depend on the probability density of εi. For N and T sufficiently large, the distribution

of
√
T
³
b̂i − βi

´
will be asymptotically normal if the rank condition (9) is satisfied and if N

and T are of the same order of magnitudes, namely, if T/N → κ as N and T →∞, where κ
is a positive finite constant. To see why this additional condition is needed, using (40) note

that
√
T
³
b̂i − βi

´
=

µ
X0

iMgXi

T

¶−1
X0

iMgεi√
T

+Op

Ã√
T

N

!
+Op

µ
1√
N

¶
, (41)

and the asymptotic distribution of
√
T
³
b̂i − βi

´
will be free of nuisance parameters only if

√
T/N → 0, as (N, T )

j→∞. For this condition to be satisfied it is sufficient that T/N → κ,

as (N,T )
j→∞, where κ is a finite non-negative constant as N and T →∞.

In the case where there are no cointegrating relations amongst the elements of ft, and

d3t = 0, the results simplify since by Lemma 2

X0
iM̄F

T
=
X0

iM̄gF

T
+Op

µ
1√
NT

¶
, (42)
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X0
iM̄Xi

T
=
X0

iM̄gXi

T
+Op

µ
1√
NT

¶
, (43)

and
X0

iM̄εi
T

=
X0

iM̄gεi
T

+Op

µ
1√
NT

¶
. (44)

Hence, the condition
√
T/N → 0, as (N,T )

j→∞ will not be needed for the validity of the

asymptotic distribution of
√
T
³
b̂i − βi

´
for large N and T . The following theorem provides

a formal statement of these results and the associated asymptotic distributions in the case

where the rank condition (9) is satisfied.

Theorem 1 Consider the panel data model (1) and (2) and suppose that kβik < K, kΠik <
K, Assumptions 1-5 hold. Let

√
T/N → 0, as (N,T )

j→ ∞, and the rank condition (9) be
satisfied. (a) - (N-asymptotic) The common correlated effects estimator, b̂i, defined by (15)

is unbiased for a fixed T > n+ 2k + 1 and N →∞, in the sense that limN→∞E
³
b̂i
´
= βi.

Under the additional assumption that εit ∼ IIDN(0, σ2i ),

b̂i − βi
d→ N(0,ΣT,bi), (45)

as N →∞, where
ΣT,bi = T−1σ2iΨ

−1
ig , Ψig = T−1 (X0

iMgXi) , (46)

Mg = IT −G(G0G)−1G0, (47)

and G = (g1,g2, ...,gT ) = (F,D). (b) - (Joint asymptotic) As (N,T )
j→∞ (in no particular

order), b̂i is a consistent estimator of βi. Then, as (N,T )
j→∞

√
T
³
b̂i − βi

´
d→ N(0,Σbi), (48)

where

Σbi = σ2iΣ
−1
i . (49)

An asymptotically unbiased estimator of ΣT,bi, as N →∞ for a fixed T > n+ 2k+ 1, is

given by:

Σ̂T,bi = σ̂2i
¡
X0

iM̄Xi

¢−1
, (50)

where

σ̂2i =

³
yi −Xib̂i

´0
M̄
³
yi −Xib̂i

´
T − (n+m+ k)

. (51)

In the case where (N, T )
j→∞, a consistent estimator of Σbi is given by

Σ̂bi = σ̊2i

µ
X0

iM̄Xi

T

¶−1
, (52)
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where

σ̊2i =

³
yi −Xib̂i

´0
M̄
³
yi −Xib̂i

´
T − (n+ 2k + 1) . (53)

Remark 3 It is worth noting that despite the fact that under our Assumptions ft, yit and

xit are I(1) and cointegrated, in the results of Theorem 1 the rate of convergence of b̂i to βi

as (N,T )
j→∞ is

√
T and not T . It is helpful to develop some intuition behind this result.

Since for N sufficiently large ft can be well approximated by the cross section averages we

might as well consider the case where ft is observed. Abstracting from dt, and without loss

of generality substitute (2) in (1) to obtain

yit = β0i (Γ
0
ift + vit) + γ

0
ift + εit = ϑ0ift + κit

where ϑi = Γiβi+γi and κit = εit + β0ivit. It is clear that if ft is I(1), as postulated

under our assumptions, then for all values of βi, κit is I(0) and yit and ft will be I(1) and

cointegrated. Hence, it is easily seen that ϑi can be estimated superconsistently. However, the

OLS estimator of βi need not be superconsistent. To see this note that βi can equivalently be

estimated by regressing the residuals of yit on ft on the residuals of xit on ft. Both these sets

of residuals are stationary processes and the resulting estimator of βi will be
√
T -consistent.

Remark 4 When the rank condition, (9), is not satisfied consistent estimation of the indi-

vidual slope coefficients is not possible.

3.1 Pooled Estimators

We now examine the asymptotic properties of the pooled estimators. Focusing first on the

MG estimator, and using (29) we have

√
N
³
b̂MG − β

´
=

1√
N

NX
i=1

υi +
1

N

NX
i=1

Ψ̂−1
iT

Ã√
NX0

iM̄F

T

!
γi+

1

N

NX
i=1

Ψ̂−1
iT

Ã√
NX0

iM̄εi
T

!
, (54)

In the case where the rank condition (9) is satisfied, again by Lemmas 1-3 we have
√
N
¡
X0

iM̄F
¢

T
= Op

µ
1√
T

¶
,

and
1

N

NX
i=1

Ψ̂−1
iT

Ã√
NX0

iM̄εi
T

!
= Op

µ
1√
T

¶
,
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Thus
√
N
³
b̂MG − β

´
=

1√
N

NX
i=1

υi +Op

µ
1√
T

¶
.

Hence √
N
³
b̂MG − β

´
d→ N(0,ΣMG), as (N, T )

j→∞. (55)

The variance estimator for ΣMG suggested by Pesaran (2006) is given by

Σ̂MG =
1

N − 1
NX
i=1

³
b̂i − b̂MG

´³
b̂i − b̂MG

´0
, (56)

can be used. It can also be shown along identical lines to Pesaran (2006) that the mean

group estimator is valid even if the rank condition is not satisfied. The following theorem

summarises the results for the mean group estimator.

Theorem 2 Consider the panel data model (1) and (2) and suppose that Assumptions 1-5

hold. Then the Common Correlated Effects Mean Group estimator, bMG defined by (14), is

asymptotically (for a fixed T and as N →∞) unbiased for β, and as (N,T )
j→∞

√
N
³
b̂MG − β

´
d→ N(0,ΣMG),

where ΣMG is consistently estimated by (56).

This theorem does not require that the rank condition, (9), holds for any number, m, of

unobserved factors so long as m is fixed, and does not impose any restrictions on the relative

rates of expansion of N and T . But in the case where the rank condition is satisfied As-

sumption 3 can be relaxed and the factor loadings, γi, need not follow the random coefficient

model. It would be sufficient that they are bounded.

Moving to the pooled estimator we have the following. b̂P defined by (17), can be written

as
√
N
³
b̂P − β

´
=

Ã
1

N

NX
i=1

X0
iM̄Xi

T

!−1 "
1√
N

NX
i=1

X0
iM̄(Xiυi + εi)

T
+ qNT

#
. (57)

where

qNT =
1√
N

NX
i=1

¡
X0

iM̄F
¢
γi

T
. (58)

Assuming random coefficients we note that γi = γ̄ + ηi − η̄, where η̄ = 1
N

PN
i=1 ηi. Hence

qNT =
1√
N

NX
i=1

µ
X0

iM̄F

T

¶
(γ̄ − η̄) + 1√

N

NX
i=1

µ
X0

iM̄F

T

¶
ηi.
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Recall that when the rank condition is not satisfied T−1
¡
X0

iM̄F
¢
= Op(1). But since X̄0M̄ =

0, we have
NX
i=1

X0
iM̄F (γ̄ − η̄) = NX̄0M̄F (γ̄ − η̄) = 0,

and it follows that

qNT =
1√
N

NX
i=1

µ
X0

iM̄F

T

¶
ηi (59)

=
1√
N

NX
i=1

µ
X0

iM̄qF

T

¶
ηi +Op

µ
1√
N

¶
+Op

µ
1√
T

¶
,

Substituting this result in (57), and making use of (34) and (35) we have

√
N
³
b̂P − β

´
=

Ã
1

N

NX
i=1

X0
iM̄qXi

T

!−1 "
1√
N

NX
i=1

X0
iM̄q(Xiυi + εi + Fηi)

T

#
+ (60)

Op

µ
1√
T

¶
.

Hence, as (N, T )
j→∞ √

N
³
b̂− β

´
d→ N(0,Σ∗P ),

where

Σ∗P = Ψ∗−1R∗Ψ∗−1, (61)

Ψ∗ = lim
N→∞

Ã
N−1

NX
i=1

Σiq

!
, R∗= lim

N→∞

"
N−1

NX
i=1

¡
ΣiqΩυΣiq +QifΩηQ

0
if

¢#
, (62)

and Σiq and Qif are defined by

Σiq = p lim
T→∞

¡
T−1X0

iM̄qXi

¢
and Qif = p lim

T→∞
¡
T−1X0

iM̄qF
¢
. (63)

The variance estimator for Σ∗P suggested by Pesaran (2006) and given by

Σ̂∗P = Ψ̂∗−1R̂∗Ψ̂∗−1, (64)

where

Ψ̂∗ = N−1
NX
i=1

µ
X0

iM̄Xi

T

¶
, (65)

R̂∗ =
1

(N − 1)
NX
i=1

µ
X0

iM̄Xi

T

¶³
b̂i − b̂MG

´³
b̂i − b̂MG

´0µX0
iM̄Xi

T

¶
. (66)

Again we summarise these results in the following theorem.
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Theorem 3 Consider the panel data model (1) and (2) and suppose that Assumptions 1-5

hold. Then the Common Correlated Effects Pooled estimator, b̂P , defined by (17) is asymp-

totically unbiased for β, and as (N, T )
j→∞ we have

√
N
³
b̂P − β

´
d→ N(0,Σ∗P ),

where Σ∗P is given by (61)-(63).

Overall we see that despite a number of differences in the above analysis, especially

in terms of the results given in (33)-(35), compared to the results in Pesaran (2006), the

conclusions are remarkably similar when the factors are assumed to follow unit root processes

rather that weakly stationary ones.

4 Monte Carlo Design and Evidence

In this section we provide Monte Carlo evidence on the small sample properties of the

CCEMG and the CCEP estimators. We also consider the two alternative principal compo-

nent augmentation approaches discussed in Kapetanios and Pesaran (2006). The first PC

approach applies the Bai and Ng (2002) procedure to zit = (yit,x0it )
0 to obtain consistent

estimates of the unobserved factors, and then uses the estimated factors to augment the

regression (1), and thus produces consistent estimates of β. We consider both pooled and

mean group versions of this estimator which we refer to as PC1POOL and PC1MG. The

second PC approach consists of extracting the principal component estimates of the unob-

served factors from yit and xit separately, regressing yit and xit on their respective factor

estimates separately, and then applying the standard pooled and mean group estimators,

with no cross-sectional dependence adjustments, to the residuals of these regressions. We

refer to the estimators based on this approach as PC2POOL and PC2MG, respectively.

The experimental design of the Monte Carlo study is closely related to the one used in

Pesaran (2006). Consider the following data generating process (DGP):

yit = αi1d1t + βi1x1it + βi2x2it + γi1f1t + γi2f2t + εit, (67)

and

xijt = aij1d1t + aij2d2t + γij1f1t + γij3f3t + vijt, j = 1, 2, (68)

for i = 1, 2, ..., N , and t = 1, 2, ..., T . This DGP is a restricted version of the general linear

model considered in Pesaran (2006), and sets n = k = 2, and m = 3, with α0i = (αi1, 0),

β0i = (βi1, βi2), and γ
0
i = (γi1, γi2, 0), and

A0
i =

µ
ai11 ai12
ai21 ai22

¶
, Γ0i =

µ
γi11 0 γi13
γi21 0 γi23

¶
.
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The observed common factors and the individual specific errors of xit are generated as

independent stationary AR(1) processes with zero means and unit variances:

d1t = 1, d2t = ρdd2,t−1 + vdt, t = −49, ...1, ..., T ,
vdt ∼ IIDN(0, 1− ρ2d), ρd = 0.5, d2,−50 = 0,

vijt = ρvijvijt−1 + υijt, t = −49, ...1, ..., T,
υijt ∼ IIDN

¡
0, 1− ρ2vij

¢
, vji,−50 = 0,

and

ρvij ∼ IIDU [0.05, 0.95] , for j = 1, 2,

but the unobserved common factors are generated as non-stationary processes:

fjt = fjt−1 + vfj,t, for j = 1, 2, 3, t = −49, .., 0, .., T,
vfj,t ∼ IIDN(0, 1), fj,−50 = 0, for j = 1, 2, 3.

The first 50 observations are discarded.

To illustrate the robustness of the CCE and PC estimators to the dynamics of the indi-

vidual specific errors of yit, these are generated as the (cross sectional) mixture of stationary

heterogeneous AR(1) and MA(1) errors. Namely,

εit = ρiεεi,t−1 + σi

q
1− ρ2iεωit, i = 1, 2, ..., N1, t = −49, .., 0, .., T,

and

εit =
σip
1 + θ2iε

(ωit + θiεωi,t−1) , i = N1 + 1, ..., N , t = −49, .., 0, .., T,

where N1 is the nearest integer of N/2,

ωit ∼ IIDN (0, 1) , σ2i ∼ IIDU [0.5, 1.5] , ρiε ∼ IIDU [0.05, 0.95] , θiε ∼ IIDU [0, 1] .

ρvij, ρiε, θiε and σi are not changed across replications. The first 49 observations are dis-

carded. The factor loadings of the observed common effects, αi1, and vec(Ai) = (ai11, ai21, ai12, ai22)
0

are generated as IIDN(1, 1), and IIDN(0.5τ4, 0.5 I4), where τ4 = (1, 1, 1, 1)0, and are not

changed across replications. They are treated as fixed effects. The parameters of the unob-

served common effects in the xit equation are generated independently across replications

as

Γ0i =
µ

γi11 0 γi13
γi21 0 γi23

¶
∼ IID

µ
N (0.5, 0.50) 0 N (0, 0.50)
N (0, 0.50) 0 N (0.5, 0.50)

¶
.
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For the parameters of the unobserved common effects in the yit equation, γi, we considered

two different sets that we denote by A and B. Under set A, γi are drawn such that the rank

condition is satisfied, namely

γi1 ∼ IIDN (1, 0.2) , γi2A ∼ IIDN (1, 0.2) , γi3 = 0,

and

E
³
Γ̃iA

´
= (E (γiA) , E (Γi)) =

⎛⎝ 1 0.5 0
1 0 0
0 0 0.5

⎞⎠ .

Under set B
γi1 ∼ IIDN (1, 0.2) , γi2B ∼ IIDN (0, 1) , γi3 = 0,

so that

E
³
Γ̃iB
´
= (E (γiB) , E (Γi)) =

⎛⎝ 1 0.5 0
0 0 0
0 0 0.5

⎞⎠ ,

and the rank condition is not satisfied. For each set we conducted two different experiments:

• Experiment 1 examines the case of heterogeneous slopes with βij = 1+ ηij, j = 1, 2,

and ηij ∼ IIDN(0, 0.04), across replications.

• Experiment 2 considers the case of homogeneous slopes with βi = β = (1, 1)0.

The two versions of experiment 1 will be denoted by 1A and 1B, and those of experiment
2 by 2A and 2B. For this Monte Carlo study we also computed the CCEMG and the CCEP
estimators as well as the associated “infeasible” estimators (MG and Pooled) that include

f1t and f2t in the regressions of yit on (d1t,xit), and the “naive” estimators that excludes

these factors. The naive estimators illustrate the extent of bias and size distortions that can

occur if the error cross section dependence is ignored.

In relation to the infeasible pooled estimator, it is important to note that this estimator

although unbiased under all the four sets of experiments, it need not be efficient since in

these experiments the slope coefficients, βi, and/or error variances, σ
2
i , differ across i. As a

result the CCE or PC augmented estimators may in fact dominate the infeasible estimator

in terms of RMSE, particularly in the case of experiments 1A and 1B where the slopes as
well as the error variances are allowed to vary across i.

Another important consideration worth bearing in mind when comparing the CCE and

the PC type estimators is the fact that the computation of the PC augmented estimators

assumes thatm = 3, the number of unobserved factors, is known. In practice, m might

be difficult to estimate accurately particularly when N or T happen to be smaller than 50.
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By contrast the CCE type estimators are valid for any fixed m and do not require a prior

estimate for m.

Each experiment was replicated 2000 times for the (N, T ) pairs withN, T = 20, 30, 50, 100, 200.

In what follows we shall focus on β1 (the cross section mean of βi1). Results for β2 are very

similar and will not be reported. Finally, for completeness we state below the exact formulae

for the variance estimators used for the different estimators. The non-parametric variance

estimators of the mean group estimators, b̃MG = N−1PN
i=1 b̃i, are computed as

dV ar(b̃MG) =
1

N (N − 1)
NX
i=1

³
b̃i − b̃MG

´³
b̃i − b̃MG

´0
, (69)

where

b̃i =
³
X0

iM̃xXi

´−1
X0

iM̃xM̃yyi,

M̃x = IT − H̃x

³
H̃0

xH̃x

´−
H̃0

x, M̃y = IT − H̃y

³
H̃0

yH̃y

´−
H̃0

y.

For the CCEMG estimator, H̃x= H̃y = H̄ = (D, Z̄), so that b̃i = b̂i, which is defined

by (15); for the PC1MG estimator, H̃x= H̃y = F̂z, where F̂z is a T × (n + m) matrix of

extracted factors from Zi for all i, together with observed common factors; for the PC2MG

estimator H̃x = F̂x and H̃y = F̂y, where F̂x and F̂y are T × (nx +mx) and T × (ny +my)

matrices of extracted factors fromXi and yi respectively for all i, together with the observed

common factors with nx and ny being the number of observed common factors in Xi and

yi respectively, and mx and my defined similarly; for the infeasible mean group estimator,

H̃x= H̃y = Fy, which is a T ×my matrix of unobserved factors in yi; for the naive mean

group estimator, H̃x= H̃y = D. Next, the non-parametric variance of the pooled estimator,

b̃P , is computed as dV ar(b̃P ) = N−1Ψ̃−1R̃Ψ̃
−1
, (70)

where

b̃P =

Ã
NX
i=1

X0
iM̃xXi

!−1 NX
i=1

X0
iM̃xM̃yyi,

Ψ̃ = N−1
NX
i=1

Ã
X0

iM̃xXi

T

!
,

R̃ =
1

(N − 1)
NX
i=1

Ã
X0

iM̃xXi

T

!³
b̃i − b̃MG

´³
b̃i − b̃MG

´0ÃX0
iM̃xXi

T

!
.

4.1 Results

Results of experiments 1A, 2A, 1B, 2B are summarized in Tables 1 to 4, respectively. We
also provide results for the naive estimator (that excludes the unobserved factors or their

18



estimates) and the infeasible estimator (that includes the unobserved factors as additional

regressors) for comparison purposes. But for the sake of brevity we include the simulation

results for these estimators only for experiment 1A reported in Table 1.
As can be seen from Table 1 the naive estimator is substantially biased, performs very

poorly and is subject to large size distortions; an outcome that continues to apply in the

case of other experiments (not reported here). In contrast, the feasible CCE estimators

perform well, have bias that are close to the bias of the infeasible estimators, show little size

distortions even for relatively small values of N and T , and their RMSE falls steadily with

increases in N and/or T . These results are quite similar to the results presented in Pesaran

(2006), and illustrate the robustness of the CCE estimators to the presence of unit roots in

the unobserved common factors. This is important since it obviates the need for pre-testing

involving unobserved factors.

The CCE estimators perform well, in both heterogeneous and homogeneous cases, and

irrespective of whether the rank condition is satisfied, although the CCE estimators with

rank deficiency have sightly higher RMSEs than those with full rank. The RMSEs of the

CCE estimators of Tables 1 and 3 (heterogeneous case) are higher than those reported in

Tables 2 and 4 for the homogeneous case. The sizes of the t-test based on the CCE estimators

are very close to the nominal 5% level. In the case of full rank, the power of the tests for the

CCE estimators are much higher than in the rank deficient case. Finally, not surprisingly

the power of the tests for the CCE estimators in the homogeneous case is higher than that

in the heterogeneous case.

It is also important to note that the small sample properties of the CCE estimator does

not seem to be much affected by the residual serial correlation of the idiosyncratic errors,

εit. The robustness of the CCE estimator to the short run dynamics is particularly helpful

in practice where typically little is known about such dynamics. In fact a comparison of the

results for the CCEP estimator with the infeasible counterpart given in Table 1 shows that

the former can even be more efficient (in the RMSE sense). For example the RMSE of the

CCEP for N = T = 50 is 3.97 whilst the RMSE of the infeasible pooled estimator is 4.31.

This might seem counter intuitive at first, but as indicated above the infeasible estimator

does not take account of the residual serial correlation of the idiosyncratic errors, but the

CCE estimator does allow for such possibilities indirectly through the use of the cross section

averages that partly embody the serial correlation properties of ft and εit’s.

Consider now the PC augmented estimators and recall that they are computed assuming

the true number of common factors is known. The results summarized in Tables 1-4 bear

some resemblance to those presented in Kapetanios and Pesaran (2006). The bias and

RMSEs of the PC1POOL and PC1MG estimators improve as both N and T increase, but
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the t-tests based on these estimators substantially over-reject the null hypothesis. The

PC2POOL and PC2MG estimators perform even worse. The biases of the PC estimators

are always larger in absolute value than the respective biases of the CCE estimators. The

size distortion of the PC augmented estimators is particularly pronounced in the case of

the experiments 1A and 2A (in Tables 1 and 2) where the full rank conditions are met. It

is also interesting that in the case of some of the experiments the bias distortions of the

tests based on the PC augmented estimators do not improve even for relatively large N

and T . An interesting distinction arises when comparing results for experiments 1A and

1B. For 1A (heterogeneous slopes and full rank) results are very poor for small values of N
and T but improve considerably as N rises and less perceptibly as T rises. For experiment

1B (heterogeneous slopes and rank deficient) results are much better for small values of N
and T . Finally, it is worth noting that in both cases the performance of the PC estimators

actually get worse when N is small and kept small but T rises. This may be related to the

fact that the accuracy of the factor estimates depends on the minimum of N and T .

5 Conclusions

Recently, there has been increased focus in the panel data literature on problems arising in

estimation and inference when the standard assumption that the errors of the panel regression

are cross-sectionally uncorrelated, is violated. When the errors of a panel regression are

cross-sectionally correlated then standard estimation methods do not necessarily produce

consistent estimates of the parameters of interest. An influential strand of the relevant

literature provides a convenient parametrisation of the problem in terms of a factor model

for the error terms.

Pesaran (2006) adopts an error multifactor structure and suggests new estimators that

take into account cross-sectional dependence, making use of cross-sectional averages of the

dependent and explanatory variables. However, he focusses on the case of weakly stationary

factors that could be restrictive in some applications. This paper provides a formal extension

of the results of Pesaran (2006) to the case where the unobserved factors are allowed to follow

unit root processes. It is shown that the main results of Pesaran continue to hold in this

more general case. This is certainly of interest given the fact that usually there is a large

difference between results obtained for unit root and stationary processes. When we consider

the small sample properties of the new estimators, we observe that again the results accord

with the conclusions reached in the stationary case, lending further support to the use of the

CCE estimators irrespective of the order of integration of the data observed.
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6 Appendix

Lemma 1 Under Assumptions 1-5 and if
P∞

=0W is of reduced rank whereW , = 0, ...,

is defined in Remark 2, then as (N, T )
j→∞,

X0
iM̄Xi

T
=
X0

iM̄qXi

T
+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
, (71)

X0
iM̄F

T
=
X0

iM̄qF

T
+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
, (72)

X0
iM̄εi
T

=
X0

iM̄qεi
T

+Op

µ
1√
NT

¶
+Op

µ
1

N

¶
. (73)

Proof. We start by proving (71). The proof for (72) and (73) follow similarly. We

need to determine the order of probability of X
0
iM̄Xi

T
− X0

iM̄qXi

T
. We split the problem in two

parts. By remark 2, ft may be represented, via a common trends representation, by a set of

r stationary components and m − r random walk components. Without loss of generality

we disregard the deterministic component d1t in the analysis. Let K1 denote the matrix

of observations on the nonstationary components of the common trends representation of

ft and the nonstationary components of dt. Let K2 denote the matrix of observations on

the stationary components of the common trends representation of ft and the stationary

components of dt. Note that the transformations needed to get (K1,K2) from G simply

involve nonsingular rotations of ft. Let

H̄j = KjP̄j + Ū
∗,

M̄jq = IT − Q̄j

¡
Q̄0

jQ̄j

¢−
Q̄0

j,

M̄j = IT − H̄j

¡
H̄0

jH̄j

¢−
H̄j,

with Q̄j = KjP̄j for j = 1, 2 where P̄j is a nonsingular transformation of a partition of P̄

comformable to (K1,K2). Then, the order of probability of
X0
iM̄Xi

T
− X0

iM̄qXi

T
is equal to the

maximum of the orders of probability of X
0
iM̄1Xi

T
− X0

iM̄1qXi

T
and X̃0

iM̄2X̃i

T
− X̃0

iM̄2qX̃i

T
where X̃i

are the residuals of Xi when regressed on K1. To see this note that

X0
iM̄Xi

T
=
X̃0

iM̃2X̃i

T
,

and
X0

iM̄qXi

T
=
X̃0

qiM̃2qX̃qi

T
,

where X̃i = M̄1Xi, X̃qi = M̄1qXi,

M̃2 = IT − M̄1H̄2

¡
H̄0
2M̄1H̄2

¢−
H̄0
2M̄1,
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and

M̃2q = IT − M̄1qQ̄2

¡
Q̄0
2M̄1qQ̄2

¢−
Q̄0
2M̄1q.

Then

X0
iM̄Xi

T
− X

0
iM̄qXi

T
≤ C

⎛⎝°°°°°X0
i

¡
M̄1 − M̄1q

¢
M̃2X̃i

T

°°°°°+
°°°°°°
X̃0

i

³
M̃2 − M̃2q

´
X̃i

T

°°°°°°
⎞⎠ ,

for some positive constant, C. The desired result then follows easily from Lemma 2, Lemmas

A.2 and A.3 of Pesaran (2006).

Lemma 2 Under Assumptions 1-5 and if
P∞

=0W is of full rank whereW , = 0, ..., is

defined in Remark 2, then as (N, T )
j→∞,

X0
iM̄Xi

T
=
X0

iM̄qXi

T
+Op

µ
1√
NT

¶
, (74)

X0
iM̄F

T
=
X0

iM̄qF

T
+Op

µ
1√
NT

¶
, (75)

X0
iM̄εi
T

=
X0

iM̄qεi
T

+Op

µ
1√
NT

¶
. (76)

Proof. For simplicity but without loss of generality we assume that d3t is empty. We

start by proving (74). Throughout the proof Ci, i = 1, ..., denote different positive constants.

We need to determine the order of probability of X
0
iM̄Xi

T
− X0

iM̄qXi

T
. But this is equal to

X0
iH̄
¡
H̄0H̄

¢−
H̄0Xi

T
− X

0
iQ̄
¡
Q̄0Q̄

¢−
Q̄0Xi

T
=

µ
X0

iH̄

T 3/2

¶µ
H̄0H̄
T 2

¶−µ
H̄0Xi

T 3/2

¶
−
µ
X0

iQ̄

T 3/2

¶µ
Q̄0Q̄
T 2

¶−µ
Q̄0Xi

T 3/2

¶
≤

C1

°°°°X0
iH̄

T 3/2
− X

0
iQ̄

T 3/2

°°°°+ C2

°°°°H̄0H̄
T 2
− Q̄

0Q̄
T 2

°°°° . (77)

We examine the first term of (77) first. We have

X0
iH̄

T 3/2
− X

0
iQ̄

T 3/2
=
X0

iŪ

T 3/2
,

where Ū = 1
N

PN
i=1Ui. But

X0
iŪ

T 3/2
≤ C3

°°°°F0ŪT 3/2
+
D0Ū
T 3/2

+
V0

iŪ

T 3/2

°°°° , (78)

and
V0

iŪ

T 3/2
= Op

µ
1

T
√
N

¶
+Op

µ
1

N
√
T

¶
, (79)
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by Lemma A.2 of Pesaran (2006). A similar treatment can be applied to the first and second

terms of the RHS of (78). We therefore examine the first term only. Consider the th row

of T−3/2
¡
F0Ū

¢
and note that it can be written as T−3/2

³PT
t=1 f tū

0
t

´
. Consider now the

limit of T−3/2
PT

t=1 f tūt. First note that Assumptions 1-3 and Remark 1, via Theorem 4.1

of Davidson and De Jong (2000), guarantee that uit can play the role of the integrator in

a functional central limit theorem, i.e. the limit of T−1
PT

t=1 f tu
0
it is a stochastic integral

and therefore Op (1). Further note that for all finite N as well as when N →∞, the limit of
T−1

PT
t=1 f t

√
N ūt is a stochastic integral since assumption 3 and Remark 1 state that u0it

is a L2−NED process of size 1/2. This assumption, in turn, implies that ūt is a L2−NED

process of size 1/2 for all finite N and as N →∞, and the result holds again via Theorem
4.1 of Davidson and De Jong (2000). To see this we need to show that for some positive

integer s > 0

E

(
1√
N

NX
i=1

uit −E

Ã
1√
N

NX
i=1

uit

¯̄̄̄
¯ t− s

!)2
= O(s−1). (80)

But

E

(
1√
N

NX
i=1

uit −E

Ã
1√
N

NX
i=1

uit

¯̄̄̄
¯ t− s

!)2
≤ 1

N

NX
i=1

E [uit − E (uit|t− s)]2 , (81)

and since E [uit −E (uit|t− s)]2 = O(s−1) for all i, the desired result follows. From the

above we also have
F0Ū
T 3/2

= Op

µ
1√
NT

¶
. (82)

Similarly,
D0Ū
T 3/2

= Op

µ
1√
NT

¶
, (83)

and hence,
X0

iŪ

T 3/2
= Op

µ
1√
NT

¶
. (84)

We next examine the second term of (77). We have

H̄0H̄
T 2
− Q̄

0Q̄
T 2
≤ C4

°°°°Q̄0Ū
T 2

+
Ū0Ū
T 2

°°°° . (85)

By Lemma A.2 of Pesaran (2006) it follows that

Ū0Ū
T 2

= Op

µ
1

NT

¶
. (86)

Further,
Q̄0Ū
T 2

= Op

µ
F0Ū
T 2

¶
+Op

µ
D0Ū
T 2

¶
= Op

µ
1

T
√
N

¶
, (87)
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by (82). Thus,
H̄0H̄
T 2
− Q̄

0Q̄
T 2

= Op

µ
1

T
√
N

¶
. (88)

We now consider (75). We have

X0
iH̄
¡
H̄0H̄

¢−
H̄0F

T
− X

0
iQ̄
¡
Q̄0Q̄

¢−
Q̄0F

T
=

µ
X0

iH̄

T 3/2

¶µ
H̄0H̄
T 2

¶−µ
H̄0F
T 3/2

¶
−
µ
X0

iQ̄

T 3/2

¶µ
Q̄0Q̄
T 2

¶−µ
Q̄0F
T 3/2

¶
≤

C5

°°°°X0
iH̄

T 3/2
− X

0
iQ̄

T 3/2

°°°°+ C6

°°°°H̄0H̄
T 2
− Q̄

0Q̄
T 2

°°°°+ C7

°°°°H̄0F
T 3/2

− Q̄
0F

T 3/2

°°°° . (89)

We only need to examine the third term of the RHS of (89). But

H̄0F
T 3/2

− Q̄
0F

T 3/2
=
Ū0F
T 3/2

.

But then by (82) and (84), (75) follows.

Finally, we consider (76). The treatment follows closely that in (77) and (89). In partic-

ular
X0

iH̄
¡
H̄0H̄

¢−
H̄0εi

T
− X

0
iQ̄
¡
Q̄0Q̄

¢−
Q̄0εi

T
=µ

X0
iH̄

T 3/2

¶µ
H̄0H̄
T 2

¶−µ
H̄0εi
T 3/2

¶
−
µ
X0

iQ̄

T 3/2

¶µ
Q̄0Q̄
T 2

¶−µ
Q̄0εi
T 3/2

¶
≤

C8

°°°°X0
iH̄

T 3/2
− X

0
iQ̄

T 3/2

°°°°+ C9

°°°°H̄0H̄
T 2
− Q̄

0Q̄
T 2

°°°°+ C10

°°°°H̄0εi
T 3/2

− Q̄
0εi

T 3/2

°°°° . (90)

But,
H̄0εi
T 3/2

− Q̄
0εi

T 3/2
=
Ū0εi
T 3/2

.

By Lemma A.2 of Pesaran (2006), it follows that

Ū0εi
T 3/2

= Op

µ
1

T
√
N

¶
+Op

µ
1

N
√
T

¶
.

Hence, (76) follows.
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Table 1: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 1A (Heterogeneous Slopes + Full Rank)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.05 -0.10 -0.03 0.06 -0.07 9.67 7.89 6.74 5.87 5.54 7.20 6.90 7.15 7.90 7.55 11.65 13.00 16.10 17.50 20.10
30 0.09 -0.01 -0.01 -0.13 0.10 7.69 6.09 5.11 4.54 4.22 6.95 5.30 5.90 6.25 6.35 11.40 14.25 18.05 22.05 26.85
50 -0.19 0.22 -0.11 0.14 -0.04 5.88 4.61 4.01 3.44 3.13 5.70 5.05 6.65 6.20 5.95 15.10 20.40 25.60 34.10 36.65
100 0.00 0.04 0.04 0.03 0.04 4.25 3.46 2.89 2.33 2.27 5.75 5.85 5.25 4.90 6.20 23.35 34.30 44.40 56.00 63.25
200 -0.05 -0.02 -0.03 0.05 0.00 3.07 2.49 2.01 1.72 1.51 4.40 5.15 4.90 5.60 5.10 35.55 52.65 68.70 83.65 90.50

CCEP
20 0.18 0.00 -0.05 -0.01 -0.13 8.75 7.67 6.85 6.32 6.21 7.70 8.10 7.30 8.05 7.15 12.75 13.50 16.05 16.80 18.30
30 -0.17 -0.12 0.09 -0.15 0.13 7.10 5.99 5.32 4.78 4.46 7.55 6.25 6.75 6.65 6.45 12.40 15.00 19.30 20.65 26.90
50 0.00 0.18 -0.07 0.12 -0.01 5.33 4.51 3.97 3.47 3.22 6.80 6.20 5.90 6.35 6.45 17.45 22.15 26.40 32.90 36.25
100 0.00 0.09 0.03 0.00 0.02 3.78 3.25 2.85 2.34 2.28 5.70 5.65 5.60 5.15 6.25 28.15 37.40 44.80 55.20 61.75
200 -0.07 -0.04 -0.05 0.05 0.00 2.71 2.29 1.95 1.70 1.53 5.10 4.35 5.05 4.70 4.75 44.75 56.80 70.30 83.55 89.75

Principal Component Estimators, Augmented
PC1MG

20 -12.27 -11.15 -10.30 -8.87 -8.90 17.09 14.81 13.24 11.51 11.55 22.55 25.35 30.05 33.40 37.40 12.15 12.95 13.30 12.70 13.75
30 -9.25 -7.86 -6.46 -5.72 -5.25 13.55 10.84 8.98 7.80 7.15 20.60 20.90 21.65 24.75 24.70 10.75 8.25 7.35 7.40 6.75
50 -6.84 -5.05 -3.89 -3.01 -3.12 10.10 7.79 5.86 4.67 4.47 19.95 17.65 16.25 14.95 17.90 8.70 8.20 7.65 11.40 9.75
100 -4.78 -3.21 -2.03 -1.57 -1.45 7.44 5.34 3.68 2.87 2.72 20.10 16.80 11.45 9.75 11.10 9.55 12.15 20.25 28.85 36.75
200 -4.31 -2.54 -1.39 -0.81 -0.78 6.39 4.19 2.60 1.93 1.71 25.20 17.95 10.95 8.15 7.65 13.85 21.95 42.85 67.65 77.15

PC1POOL
20 -11.97 -11.04 -10.35 -9.09 -9.23 15.88 14.38 13.07 11.59 12.07 25.50 28.35 32.05 34.45 38.95 12.05 14.10 14.90 14.55 14.90
30 -8.86 -7.66 -6.34 -5.73 -5.37 12.48 10.45 8.89 7.80 7.34 21.45 23.75 22.05 24.70 25.50 11.00 8.80 7.55 7.95 6.35
50 -6.20 -4.86 -3.81 -3.07 -3.19 9.06 7.52 5.72 4.73 4.54 21.40 18.75 16.00 16.05 18.90 8.55 9.55 8.10 10.90 9.65
100 -4.36 -3.00 -2.01 -1.60 -1.49 6.61 5.01 3.61 2.88 2.74 21.05 16.85 11.25 9.35 10.80 11.25 14.55 20.85 27.90 36.30
200 -3.62 -2.32 -1.36 -0.81 -0.79 5.39 3.81 2.51 1.91 1.73 25.15 17.60 10.50 7.80 7.80 16.35 26.75 45.45 68.00 76.15

Principal Component Estimators, Orthogonalised
PC2MG

20 -31.26 -27.06 -24.01 -22.67 -23.11 32.83 28.34 25.00 23.44 23.83 86.50 88.45 91.25 95.20 97.40 74.10 73.95 75.80 82.05 88.20
30 -25.50 -21.21 -18.27 -16.69 -16.33 26.82 22.25 19.13 17.35 16.92 86.85 87.10 89.10 93.35 95.95 70.15 67.80 66.10 69.25 74.70
50 -20.65 -16.23 -13.32 -11.41 -10.89 21.68 17.06 13.98 11.95 11.37 90.15 88.35 88.80 89.05 91.70 70.80 60.25 52.20 45.80 46.10
100 -16.17 -12.44 -9.69 -7.61 -6.60 16.87 12.97 10.18 7.99 7.02 93.65 93.30 89.75 87.50 83.30 72.35 56.20 37.60 19.30 13.60
200 -14.61 -10.78 -8.12 -5.79 -4.59 15.11 11.19 8.45 6.08 4.85 98.95 97.85 95.45 90.75 83.75 79.65 60.20 33.30 10.00 6.75

PC2POOL
20 -31.97 -27.47 -24.27 -23.18 -24.19 33.39 28.69 25.23 23.99 24.99 91.00 90.70 93.20 95.55 98.50 80.65 78.60 78.80 83.35 90.45
30 -26.32 -21.51 -18.24 -16.83 -16.75 27.53 22.48 19.13 17.51 17.37 91.35 90.40 89.70 93.35 96.15 78.50 71.80 66.65 70.65 76.90
50 -21.22 -16.35 -13.17 -11.35 -10.99 22.10 17.15 13.82 11.91 11.48 95.05 90.90 88.95 88.20 91.70 79.65 63.80 52.95 46.20 48.25
100 -16.77 -12.52 -9.62 -7.55 -6.60 17.43 13.06 10.11 7.95 7.03 97.95 95.05 90.50 86.45 82.30 80.90 60.80 38.10 18.30 14.25
200 -15.16 -10.91 -8.00 -5.66 -4.53 15.67 11.33 8.34 5.96 4.79 99.75 98.45 95.95 89.35 82.50 88.65 65.85 33.35 8.40 6.30



(Table 1 Continued)
Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)

CCE Type Estimators
Infeasible Estimators (including f1t and f2t)
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

Infeasible MG
20 0.01 -0.19 -0.08 0.15 -0.08 7.21 6.33 5.62 4.98 4.76 6.40 6.20 6.80 5.95 6.50 12.75 15.35 16.85 19.70 20.40
30 0.02 -0.14 0.01 -0.02 0.12 5.91 4.95 4.43 3.97 3.87 6.50 5.80 6.05 5.30 5.90 16.15 18.05 23.35 25.20 28.80
50 -0.10 0.07 -0.06 0.14 -0.04 4.48 3.75 3.39 3.09 2.94 6.45 5.25 5.90 5.25 5.20 21.70 27.35 31.45 38.45 40.25
100 0.01 0.07 0.02 0.00 0.04 3.16 2.78 2.49 2.15 2.14 5.50 5.15 5.45 4.70 5.45 36.85 46.15 55.10 62.50 66.65
200 -0.07 0.04 -0.07 0.06 0.01 2.22 1.93 1.69 1.57 1.44 4.85 5.00 5.00 5.60 4.70 59.15 72.85 82.25 90.40 92.75

Infeasible Pooled
20 0.15 -0.13 -0.15 -0.26 -0.21 7.30 6.96 6.92 7.11 7.40 6.40 6.80 6.60 7.00 5.10 13.70 13.75 14.55 14.10 12.65
30 -0.20 -0.15 0.22 -0.07 0.27 6.23 5.78 5.79 5.89 6.61 7.05 5.90 7.00 5.25 5.70 15.70 15.35 18.95 16.70 16.60
50 0.12 0.07 -0.08 0.21 0.02 4.61 4.40 4.31 4.71 5.02 5.70 5.80 5.50 6.25 5.00 22.20 22.55 23.65 25.50 21.00
100 -0.05 0.07 0.09 0.06 0.00 3.30 3.26 3.12 3.30 3.52 5.25 5.60 5.20 5.20 5.30 33.45 38.20 38.85 36.75 32.30
200 -0.08 0.06 -0.12 0.07 -0.02 2.35 2.22 2.20 2.45 2.49 4.95 4.70 4.50 5.85 4.70 56.15 62.10 59.50 59.05 52.20

Naïve Estimators (excluding f1t and f2t)
Naïve MG

20 22.18 23.13 26.82 29.96 32.62 31.76 32.97 37.37 41.49 47.04 32.05 32.95 34.85 35.45 31.50 41.00 42.65 43.50 41.95 38.05
30 22.23 25.06 28.36 31.33 34.01 30.51 33.31 37.87 41.46 45.32 40.45 44.10 46.65 43.85 39.45 51.00 53.95 57.45 52.20 47.15
50 22.21 23.91 25.65 29.61 33.64 29.75 31.12 32.75 37.73 42.66 55.80 59.30 58.00 59.25 54.75 68.30 70.85 70.30 69.20 65.05
100 21.97 23.92 26.76 30.04 32.88 28.40 30.02 32.97 36.39 40.06 71.20 75.25 77.90 78.60 75.25 81.05 84.35 85.95 85.85 83.20
200 22.15 24.09 27.49 30.09 33.23 27.87 29.44 32.80 35.71 39.34 81.85 86.00 87.85 88.05 87.95 88.75 91.95 92.30 92.90 92.05

Naïve Pooled
20 25.25 26.60 31.27 33.59 34.84 35.30 37.01 42.66 45.42 47.67 42.15 43.65 47.75 45.20 44.50 52.50 52.65 55.95 53.40 51.95
30 25.76 29.39 32.45 35.37 35.46 35.48 39.13 42.70 45.97 46.81 51.55 56.70 57.65 59.55 56.20 61.05 66.60 66.55 67.75 64.55
50 26.54 28.75 30.39 34.01 35.88 35.61 37.39 39.05 44.04 45.93 64.75 67.15 69.25 70.35 69.35 73.55 76.25 78.25 78.65 77.45
100 25.81 28.47 31.30 33.15 34.91 34.39 36.76 39.90 41.79 44.27 75.85 78.90 81.35 79.30 80.15 85.10 86.55 88.05 86.65 86.40
200 25.95 28.32 31.89 33.65 34.11 34.20 36.21 39.63 42.39 42.68 83.45 86.25 87.70 87.40 87.20 89.95 91.90 93.55 92.20 92.20

Notes: The DGP is yit = αi1d1t + βi1x1it + βi2x2it + γi1f1t + γi2f2t + εit with εit = ρiεεi,t−1 + σi(1 − ρ2iε)
1/2ωit, i = 1, 2, ..., [N/2], and εit = σi(1 + θ2iε)

−1/2 (ωit + θiεωi,t−1),
i = [N/2] + 1, ..., N , ωit ∼ IIDN (0, 1), σ2i ∼ IIDU [0.5, 1.5], ρiε ∼ IIDU [0.05, 0.95], θiε ∼ IIDU [0, 1]. Regressors are generated by xijt = aij1d1t + aij2d2t + γij1f1t + γij3f3t+vijt,
j = 1, 2, for i = 1, 2, ..., N . d1t = 1, d2t = 0.5d2,t−1 + vdt, vdt ∼ IIDN(0, 1− 0.52), d2,−50 = 0; fjt = fjt−1 + vfj,t, vfj,t ∼ IIDN(0, 1), fj,−50 = 0, for j = 1, 2, 3; vijt = ρvijvijt−1 + υijt,
υijt ∼ IIDN(0, 1 − ρ2vij), vij,−50 = 0 and ρvij ∼ IIDU [0.05, 0.95] for j = 1, 2, for t = −49, ..., T with the first 50 observations discarded; αi1 ∼ IIDN (1, 1); aij ∼ IIDN (0.5, 0.5) for

j = 1, 2, = 1, 2; γi11 and γi23 ∼ IIDN (0.5, 0.50), γi13 and γi21 ∼ IIDN (0, 0.50); γi1 and γi2 ∼ IIDN (1, 0.2); βij = 1 + ηij with ηij ∼ IIDN(0, 0.04) for j = 1, 2. ρvij , ρiε, θiε, σ
2
i ,

αi1, aij for j = 1, 2, = 1, 2 are fixed across replications. CCEMG and CCEP are defined by (14) and (17), and their variance estimators are defined by (56) and (64), respectively. The
variance estimators of all other mean group and pooled estimators are defined by (69) and (70), respectively. The PC type estimators are computed assuming the number of unobserved
factors, m = 3, is known. All experiments are based on 2000 replications.



Table 2: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 2A (Homogeneous Slopes + Full Rank)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.05 -0.15 0.02 -0.15 0.09 8.45 6.29 5.10 3.78 3.14 7.15 6.40 6.80 6.75 6.85 11.70 13.80 21.75 31.25 47.90
30 -0.14 0.12 0.04 0.03 0.00 6.44 5.11 3.80 2.67 2.07 6.05 6.75 7.25 6.40 6.45 12.70 20.45 30.70 50.90 71.60
50 0.08 -0.06 0.02 0.05 0.03 5.08 3.79 2.80 1.94 1.39 6.10 5.90 4.85 5.40 5.35 18.00 26.90 44.45 75.65 95.00
100 -0.04 -0.08 0.06 -0.04 -0.01 3.59 2.76 2.02 1.35 0.98 4.55 5.50 6.05 5.10 6.10 28.30 43.00 72.35 95.20 99.90
200 0.06 -0.02 0.03 0.01 0.00 2.83 2.05 1.52 1.00 0.68 5.60 4.45 6.35 5.20 5.70 44.20 67.95 91.90 99.90 100.00

CCEP
20 0.18 0.00 0.03 -0.14 0.08 6.95 5.56 4.94 3.98 3.74 6.60 6.75 7.30 6.75 6.80 14.25 16.25 25.25 33.70 46.25
30 -0.14 0.14 0.07 0.01 0.01 5.20 4.50 3.55 2.67 2.26 5.10 5.90 7.25 6.25 6.40 15.25 24.55 34.90 52.95 70.70
50 0.05 0.07 -0.02 0.04 0.03 4.08 3.29 2.56 1.84 1.39 5.40 5.40 5.45 6.20 5.30 24.60 34.35 51.70 78.65 95.00
100 -0.02 -0.04 0.06 -0.04 -0.01 2.87 2.37 1.78 1.24 0.93 5.60 6.20 6.40 5.25 5.95 41.65 58.35 81.85 97.80 100.00
200 0.07 -0.03 0.01 0.02 0.00 2.17 1.63 1.32 0.92 0.65 5.60 3.95 5.70 5.60 5.35 65.25 84.40 96.95 100.00 100.00

Principal Component Estimators, Augmented
PC1MG

20 -12.34 -11.39 -10.06 -9.44 -8.84 16.76 14.48 12.18 11.24 10.92 24.55 32.55 39.50 58.50 71.95 13.05 15.30 13.80 19.00 21.20
30 -9.35 -7.83 -6.39 -5.66 -5.34 12.96 10.55 8.18 6.93 6.15 22.10 26.10 32.55 46.60 68.25 9.55 10.60 8.40 10.25 10.10
50 -7.05 -5.28 -3.81 -3.08 -3.17 10.12 7.38 5.11 3.86 3.73 23.55 24.05 25.30 35.65 56.85 10.40 9.10 9.45 20.80 30.00
100 -5.00 -3.45 -2.04 -1.64 -1.57 7.19 5.16 3.14 2.20 1.90 22.60 22.00 16.50 22.45 35.70 9.90 14.45 31.05 64.90 91.50
200 -4.23 -2.65 -1.27 -0.87 -0.79 6.27 4.11 2.13 1.37 1.06 28.05 22.90 14.90 16.85 21.95 16.15 30.55 67.35 97.55 100.00

PC1POOL
20 -11.78 -11.12 -9.89 -9.43 -8.93 15.09 13.70 11.86 11.20 10.77 28.20 37.15 46.35 64.10 76.75 14.80 17.20 17.65 21.80 24.55
30 -8.55 -7.35 -6.10 -5.58 -5.35 11.37 9.59 7.66 6.79 6.18 25.60 29.35 35.60 49.60 71.00 10.65 9.95 8.95 10.10 10.30
50 -6.39 -4.86 -3.74 -3.05 -3.19 8.82 6.71 4.87 3.77 3.81 26.60 26.60 28.30 36.55 59.50 10.95 10.25 10.05 22.35 31.90
100 -4.42 -3.23 -1.98 -1.61 -1.56 6.14 4.68 2.89 2.10 1.87 26.80 25.60 19.70 24.80 38.70 12.65 19.40 40.40 73.05 93.65
200 -3.57 -2.37 -1.21 -0.84 -0.78 5.19 3.57 1.93 1.30 1.03 32.05 25.30 16.60 17.35 24.10 24.55 42.80 79.25 98.80 100.00

Principal Component Estimators, Orthogonalised
PC2MG

20 -31.24 -27.21 -23.95 -22.96 -22.95 32.64 28.30 24.70 23.46 23.37 89.70 92.75 96.35 99.60 100.00 78.30 82.20 85.40 95.90 98.25
30 -25.74 -21.23 -18.28 -16.52 -16.52 26.93 22.12 18.86 16.89 16.81 90.55 93.60 97.60 99.60 100.00 78.20 76.50 82.60 90.75 97.65
50 -20.76 -16.51 -13.40 -11.39 -10.92 21.63 17.17 13.81 11.69 11.12 94.65 95.85 98.35 99.85 100.00 78.65 73.60 70.95 73.80 86.75
100 -16.31 -12.50 -9.58 -7.70 -6.67 16.92 12.94 9.90 7.88 6.81 96.60 97.65 98.25 99.80 99.95 79.25 68.50 52.60 40.60 32.25
200 -14.51 -10.80 -8.05 -5.85 -4.57 14.98 11.13 8.28 5.98 4.66 99.50 99.65 99.30 99.85 99.95 83.90 69.50 47.75 14.70 13.00

PC2POOL
20 -31.95 -27.52 -24.18 -23.50 -24.05 33.04 28.47 24.87 24.02 24.56 95.80 96.50 98.25 99.80 100.00 87.95 87.00 89.80 96.95 99.30
30 -26.27 -21.47 -18.38 -16.67 -16.96 27.25 22.29 18.91 17.06 17.28 96.35 96.25 98.95 99.75 100.00 86.75 83.60 86.75 92.40 98.35
50 -21.31 -16.46 -13.29 -11.34 -11.05 22.05 17.04 13.68 11.63 11.26 98.80 98.00 99.00 99.90 100.00 89.35 81.05 76.05 74.65 88.35
100 -16.95 -12.65 -9.52 -7.62 -6.67 17.50 13.05 9.81 7.80 6.81 99.40 99.40 99.50 99.95 100.00 90.45 78.30 58.35 41.55 32.65
200 -15.07 -10.92 -7.93 -5.72 -4.52 15.52 11.24 8.15 5.85 4.60 99.90 99.95 99.90 99.90 99.95 94.80 80.20 51.05 14.00 15.30

Notes: The DGP is the same as that of Table 1, except βij = 1 for all i and j, i = 1, 2, ..., N , j = 1, 2. See notes to Table 1.



Table 3: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 1B (Heterogeneous Slopes + Rank Deficient)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 0.33 -0.19 0.20 0.14 0.23 15.02 13.90 12.61 13.35 13.78 6.80 6.90 6.75 6.60 7.20 9.40 8.95 10.15 10.15 10.15
30 0.30 0.14 0.09 -0.17 0.35 12.91 12.03 10.70 10.07 10.59 5.50 6.80 5.25 6.15 4.80 8.40 10.05 9.45 10.35 11.65
50 -0.15 0.63 -0.20 -0.17 0.02 9.82 8.46 7.87 7.42 7.34 5.80 5.10 6.10 5.75 5.90 9.75 12.90 13.40 14.00 15.20
100 0.25 0.13 0.27 0.00 0.06 7.01 6.55 5.85 5.25 5.01 5.75 5.95 5.45 5.45 6.10 14.50 17.75 21.65 22.65 27.30
200 0.05 -0.11 -0.17 -0.07 -0.05 5.35 4.65 4.15 3.61 3.31 4.80 5.05 4.75 5.15 4.55 19.45 23.70 29.75 37.25 43.45

CCEP
20 0.48 0.06 -0.04 0.16 0.10 13.13 12.81 12.21 13.57 15.30 6.75 7.40 7.00 6.65 6.75 9.90 10.20 10.40 10.35 10.25
30 -0.23 -0.06 0.18 -0.25 0.43 11.48 10.70 10.39 9.95 11.04 6.10 6.90 5.70 6.00 5.50 9.05 9.95 10.55 10.25 10.60
50 0.00 0.48 -0.18 -0.17 -0.02 8.42 7.57 7.23 7.22 7.22 5.25 5.90 6.25 5.30 5.50 11.40 14.05 14.15 14.35 15.20
100 0.11 0.18 0.24 -0.06 0.05 5.87 5.72 5.27 4.87 4.98 5.10 6.00 5.40 4.95 6.00 17.25 19.60 23.50 23.55 27.00
200 0.04 -0.10 -0.16 -0.04 -0.03 4.35 3.99 3.75 3.30 3.15 5.40 4.70 5.25 4.10 3.95 25.75 28.50 34.50 41.10 46.05

Principal Component Estimators, Augmented
PC1MG

20 -8.33 -8.02 -7.93 -7.27 -7.44 14.50 12.28 10.98 9.59 9.25 13.35 16.10 21.45 24.50 28.80 7.20 7.35 7.20 7.90 8.00
30 -5.36 -4.97 -4.70 -4.58 -4.27 10.67 8.66 7.30 6.53 5.96 10.00 11.45 13.80 17.60 18.75 5.85 5.40 5.35 5.40 5.60
50 -3.15 -2.86 -2.99 -2.59 -2.63 7.44 5.94 5.15 4.33 4.07 7.95 8.25 12.35 11.65 14.30 6.40 6.50 8.70 12.45 11.50
100 -1.35 -1.27 -1.33 -1.26 -1.17 5.04 4.01 3.24 2.68 2.55 6.80 8.00 7.85 7.40 8.40 13.50 18.90 24.85 31.90 42.30
200 -0.85 -0.77 -0.72 -0.58 -0.62 3.56 2.83 2.18 1.83 1.64 4.95 6.35 6.05 6.75 6.30 23.40 36.25 53.50 72.15 80.20

PC1POOL
20 -7.93 -7.85 -7.87 -7.23 -7.32 12.94 11.59 10.53 9.43 9.14 13.45 16.70 22.35 25.30 28.35 7.50 7.30 7.60 7.65 7.35
30 -5.33 -4.94 -4.61 -4.54 -4.21 9.81 8.23 7.13 6.50 5.92 11.10 12.55 13.25 17.70 18.40 6.55 5.90 5.60 5.70 5.35
50 -2.98 -2.78 -2.92 -2.63 -2.65 6.62 5.67 5.01 4.37 4.12 8.00 9.85 11.35 12.15 14.20 7.40 7.90 8.40 11.70 11.50
100 -1.41 -1.23 -1.36 -1.31 -1.21 4.37 3.66 3.19 2.71 2.57 6.80 7.25 7.50 7.70 9.15 15.85 21.20 26.30 31.30 40.80
200 -0.82 -0.77 -0.75 -0.60 -0.64 3.02 2.57 2.12 1.82 1.67 6.05 6.35 6.65 5.90 6.75 29.20 42.25 56.25 71.40 78.95

Principal Component Estimators, Orthogonalised
PC2MG

20 -30.74 -26.62 -23.99 -22.56 -23.18 32.50 27.94 25.06 23.36 23.92 82.50 87.55 90.45 95.10 97.55 70.50 72.50 74.75 81.15 87.80
30 -24.89 -20.85 -18.19 -16.68 -16.43 26.28 21.96 19.03 17.35 17.03 84.15 86.05 90.35 93.60 96.05 67.80 65.45 66.75 69.85 75.65
50 -19.61 -15.65 -13.13 -11.38 -10.85 20.69 16.50 13.80 11.93 11.34 87.30 86.20 87.95 89.65 91.70 65.10 57.00 51.20 45.00 46.35
100 -15.19 -11.94 -9.58 -7.57 -6.60 15.96 12.53 10.09 7.96 7.03 91.80 90.95 88.90 87.35 82.65 65.05 50.60 37.45 18.45 14.20
200 -13.64 -10.37 -7.98 -5.75 -4.58 14.16 10.80 8.33 6.05 4.85 98.50 96.95 95.00 90.60 83.65 72.00 55.40 31.15 9.30 6.80

PC2POOL
20 -31.30 -27.08 -24.30 -23.16 -24.26 32.81 28.29 25.32 23.99 25.10 88.95 89.95 93.15 96.00 98.75 79.05 77.70 79.10 83.00 90.25
30 -25.55 -21.11 -18.14 -16.84 -16.86 26.80 22.15 18.99 17.53 17.49 90.25 88.25 90.40 94.00 96.30 75.35 68.95 66.20 70.00 77.15
50 -19.99 -15.74 -13.00 -11.35 -10.96 20.92 16.56 13.65 11.91 11.46 93.30 89.05 88.30 88.65 91.70 74.15 60.30 51.40 45.55 47.50
100 -15.72 -11.98 -9.51 -7.52 -6.60 16.43 12.56 10.01 7.91 7.03 96.00 92.55 89.40 86.50 81.95 74.30 54.45 36.55 17.60 14.00
200 -14.09 -10.47 -7.86 -5.63 -4.52 14.61 10.90 8.21 5.93 4.79 99.30 97.95 95.20 88.75 81.90 82.55 60.20 32.10 8.25 6.15

Notes: The DGP is the same as that of Table 1, except γi2 ∼ IIDN (0, 1), so that the rank condition is not satisfied. See notes to Table 1.



Table 4: Small Sample Properties of Common Correlated Effects Type Estimators
in the Case of Experiment 2B (Homogeneous Slopes + Rank Deficient)

Bias (×100) Root Mean Square Errors (×100) Size (5% level, H0 : β1 = 1.00) Power (5% level, H1 : β1 = 0.95)
CCE Type Estimators
(N,T) 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200 20 30 50 100 200

CCEMG
20 -0.28 -0.26 0.41 -0.31 0.73 14.45 12.85 12.02 12.07 13.47 7.35 5.45 6.40 6.70 6.00 9.35 9.15 10.95 11.55 10.90
30 -0.11 0.07 0.09 0.45 -0.05 11.99 10.78 9.82 9.52 10.33 5.20 5.90 5.95 6.50 6.55 7.85 10.50 12.40 14.35 14.90
50 0.00 0.23 -0.07 -0.02 0.00 9.01 7.97 7.62 6.79 6.72 5.05 4.80 5.00 5.45 4.95 9.40 12.20 15.75 17.60 21.15
100 0.14 -0.08 -0.12 -0.03 0.06 6.66 5.92 5.16 4.78 4.56 4.65 5.40 5.60 4.60 6.35 15.10 18.15 23.95 28.50 34.85
200 0.14 0.11 0.01 -0.17 -0.07 5.13 4.45 3.88 3.27 3.34 5.45 5.10 5.45 4.65 5.15 22.35 28.80 36.60 44.75 56.70

CCEP
20 -0.12 -0.19 0.35 -0.26 0.66 12.66 11.53 11.56 12.12 15.07 7.45 7.00 7.55 6.35 6.50 9.85 10.00 12.60 12.65 11.50
30 -0.09 0.05 0.06 0.39 0.03 10.00 9.57 9.26 9.36 11.05 5.55 5.75 6.80 6.70 6.75 9.90 11.70 13.30 15.20 14.50
50 -0.14 0.39 -0.08 0.01 0.03 7.29 6.92 6.84 6.58 6.79 4.95 5.25 5.45 5.60 4.85 11.25 15.60 16.65 19.95 20.40
100 0.20 -0.13 -0.11 -0.05 0.04 5.44 4.97 4.55 4.45 4.39 4.80 5.35 5.40 4.95 6.05 20.60 22.65 28.35 31.40 36.80
200 0.19 0.11 -0.08 -0.13 -0.07 3.97 3.71 3.35 2.96 3.09 5.25 5.15 5.05 5.00 5.60 31.95 38.45 44.30 50.70 60.40

Principal Component Estimators, Augmented
PC1MG

20 -8.22 -8.36 -7.93 -7.89 -7.48 13.75 11.78 10.07 9.07 8.40 13.30 18.95 27.70 46.00 58.60 7.25 7.80 8.20 9.55 9.40
30 -5.40 -5.01 -4.70 -4.59 -4.52 10.11 8.07 6.49 5.54 5.03 10.35 13.45 19.70 33.45 52.05 5.95 5.45 6.45 5.80 4.95
50 -3.24 -3.09 -2.81 -2.66 -2.66 6.96 5.35 4.22 3.39 3.04 9.40 11.05 15.90 25.40 44.85 6.85 7.80 11.60 22.45 35.50
100 -1.53 -1.45 -1.28 -1.33 -1.28 4.54 3.40 2.57 1.96 1.64 6.10 7.75 10.25 15.80 26.30 13.10 20.95 41.60 71.75 95.70
200 -0.80 -0.76 -0.67 -0.64 -0.63 3.40 2.39 1.74 1.22 0.94 6.00 5.45 7.75 10.75 15.70 27.15 46.80 79.60 98.65 100.00

PC1POOL
20 -7.56 -7.83 -7.57 -7.61 -7.12 11.45 10.60 9.32 8.59 7.81 14.05 21.70 31.20 48.25 57.85 6.40 8.35 7.55 8.90 8.35
30 -5.00 -4.76 -4.50 -4.43 -4.35 8.47 7.20 6.04 5.25 4.82 11.70 15.75 21.45 35.10 51.40 6.00 5.70 6.50 5.65 5.40
50 -2.89 -2.77 -2.75 -2.60 -2.61 5.66 4.63 3.92 3.26 2.97 8.90 11.55 17.50 27.45 44.70 7.85 9.60 12.95 24.65 38.05
100 -1.38 -1.39 -1.26 -1.31 -1.27 3.67 2.95 2.29 1.87 1.60 7.80 8.70 10.50 17.90 28.50 19.90 28.70 51.45 79.70 97.35
200 -0.72 -0.74 -0.67 -0.63 -0.63 2.54 1.93 1.55 1.14 0.91 6.25 5.90 9.00 11.80 17.10 43.25 64.40 89.05 99.45 100.00

Principal Component Estimators, Orthogonalised
PC2MG

20 -30.58 -26.66 -23.75 -22.85 -23.07 32.14 27.74 24.51 23.36 23.51 87.40 91.15 95.95 99.60 99.95 75.80 79.65 85.50 94.95 98.85
30 -25.10 -20.76 -18.15 -16.58 -16.60 26.40 21.70 18.75 16.97 16.90 89.25 92.45 97.20 99.75 100.00 74.35 74.15 80.85 90.90 98.10
50 -19.66 -15.83 -13.16 -11.36 -10.91 20.58 16.50 13.60 11.67 11.12 92.45 94.35 97.90 99.75 100.00 72.90 69.30 69.35 72.45 86.90
100 -15.37 -11.97 -9.44 -7.65 -6.66 16.01 12.43 9.75 7.84 6.80 95.30 96.70 98.00 99.70 99.95 74.25 63.40 50.10 40.00 32.15
200 -13.52 -10.36 -7.93 -5.82 -4.57 14.01 10.70 8.17 5.96 4.66 98.80 99.15 99.40 99.90 99.95 76.85 63.50 45.30 14.80 13.35

PC2POOL
20 -31.34 -27.06 -24.05 -23.47 -24.10 32.52 28.01 24.76 24.00 24.63 95.25 95.90 97.85 99.95 100.00 86.20 86.30 89.00 97.50 99.40
30 -25.58 -20.90 -18.28 -16.76 -17.05 26.61 21.72 18.83 17.15 17.38 95.30 95.80 98.85 99.85 100.00 84.80 81.60 85.35 93.05 98.50
50 -20.12 -15.76 -13.06 -11.33 -11.05 20.90 16.33 13.46 11.63 11.26 97.65 97.50 98.90 99.75 100.00 85.10 77.55 73.60 75.00 88.75
100 -15.88 -12.09 -9.36 -7.58 -6.66 16.46 12.51 9.65 7.76 6.80 99.10 99.00 99.45 99.85 99.95 86.15 72.45 55.15 39.85 32.95
200 -13.95 -10.45 -7.81 -5.69 -4.52 14.41 10.78 8.03 5.82 4.60 99.70 99.85 99.75 99.85 100.00 90.10 74.75 49.05 13.20 15.30

Notes: The DGP is the same as that of Table 1, except γi2 ∼ IIDN (0, 1), so that the rank condition is not satisfied, and βij = 1 for all i and j, i = 1, 2, ..., N , j = 1, 2. See notes to Table
1.


