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Abstract

Due to a shortage of data and increased international mergers, national energy regulators are

looking to international benchmarking analyses for help in setting price controls within

incentive regulation. We present an international benchmarking study of 63 regional electricity

distribution utilities in 6 European countries that aims to illustrate the methodological and data

issues encountered in the use of international benchmarking for utility regulation. The study

examines the effect of the choice of benchmarking methods using DEA, COLS and SFA

models. We discuss what problems of international benchmarking are highlighted by the study

and how they can be overcome.
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1. Introduction

Electricity sector reforms are transforming the structure and operating environment

of the electricity industries across many countries. The central aims of these reforms

are to introduce market-oriented measures in electricity generation and supply, and

improve the efficiency of the natural monopoly activities of distribution and

transmission through regulatory reforms. This paper is concerned with this latter

aspect of the reforms.

Recent regulatory reforms have tended to move away from traditional rate-of-return

regulation towards incentive-based regulation models.1 A number of regulators have

adopted price and revenue cap regulation based on the RPI-X formula. A central

issue is how the efficiency requirements or X-factors are to be set. A widely

favoured approach is through benchmarking of utilities based on their relative

efficiency. Countries such as The Netherlands, United Kingdom, and Norway have

adopted benchmarking as part of the process of setting the X-factors. Benchmarking

identifies the most efficient firms in the sector and measures the relative

performance of less efficient firms against these. Individual X-factors are then

assigned to utilities based on their relative inefficiency. Generally, the more

inefficient a utility is, the higher is the X-factor assigned to that firm. The aim is to

provide the firms with an incentive to close their efficiency gap with the frontier

firms.
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However, the number of utilities in many countries is limited and does not lend itself

to the data requirements of some of the widely used benchmarking techniques. Also,

due to electricity market liberalisation and privatisation policies, power markets and

ownership of the utilities are becoming increasingly international, and mergers and

acquisitions tend to reduce the domestic information base. Regulators can use cross-

country benchmarking in order to evaluate the performance of national utilities

within the larger context of international practice. The addition of international

comparators to a sample can improve the validity of the analysis as utilities are more

likely to be benchmarked against similar firms. Further, international comparisons

enable the regulators to measure efficiency of the utilities relative to international

best practice. The advantage of using international best practice is that the measured

efficiencies are more likely to reflect technical possibilities rather than the degree of

comprehensiveness of the sample used.

While international utility benchmarking has clear advantages, the methodological

and practical aspects, as well as possible implications of this approach, need careful

consideration. Empirical studies can be a useful instrument to identify and shed light

on some of the main issues arising in international benchmarking. There are a

number of single-country and a few cross-country studies of relative efficiency of

electricity distribution utilities. However, most of these either do not have an explicit
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regulatory focus or use physical measures of inputs as proxies for the operating and

capital costs.

Benchmarking with the use of physical quantities of inputs measures the potential

for efficiency improvements in terms of reductions in physical units. However, the

primary aim of regulators when using benchmarking is to promote cost savings in

the utilities that result in lower prices for the end-users. Relative performance

measured in terms of units of physical inputs bears an indirect relationship with cost

savings potential as the basis for setting X-factors.

It should be noted that this study uses an empirical analysis of selected electricity

distribution utilities to highlight and discuss the main issues in international

benchmarking and the results have not been intended for direct use in an actual

regulatory process. In this paper we examine some methodological and applied

aspects of cost-based international benchmarking in electric utility regulation. We

apply the widely used benchmarking techniques of Data Envelopment Analysis

(DEA), Corrected Ordinary Least Square (COLS), and Stochastic Frontier Analysis

(SFA) to an international sample of utilities and compare the results. We then

examine the significance of the choice of method for currency conversion for the

DEA results. We also compare the DEA results with a model specification that uses

measures of physical units as a proxy for capital costs. We finally outline the
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regulatory implications of international benchmarking and draw some conclusions.

2. Benchmarking Techniques2

There are several different approaches to the measurement of the relative efficiency

of firms in relation to an efficient frontier of a sample. These approaches can be

placed into two broad categories of programming (non-parametric) or statistical

(parametric) techniques. Data Envelopment Analysis (DEA) is a programming

approach, while Corrected Ordinary Least Squares (COLS) and Stochastic Frontier

Analysis (SFA) are statistical techniques. We use these three techniques in this study

and discuss them in this section.

2.1 Data Envelopment Analysis (DEA)

DEA is a non-parametric method and uses piecewise linear programming to

calculate (rather than estimate) the efficient or best-practice frontier of a sample (see

Farrell 1957; Färe et al. 1985). The decision-making units (DMUs) or firms that

make up the frontier envelop the less efficient firms. The efficiency of the firms is

calculated in terms of scores on a scale of 0 to 1, with the frontier firms receiving a
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score of 1. DEA can calculate the allocative and technical efficiency of the firms.

The latter can be decomposed into scale, congestion, and pure technical inefficiency.

DEA models can be input and output oriented and can be specified as constant

returns to scale (CRS) or variable returns to scale (VRS). Output-oriented models

maximise output for a given amount of input factors. Conversely, input-oriented

models minimise input factors required for a given level of output. An input-oriented

specification is generally regarded as the appropriate from for electricity distribution

utilities, as demand for distribution services is a derived demand beyond the control

of utilities that has to be met.

The linear program calculating the efficiency score of the i-th firm in a sample of N

firms in CRS models takes the form specified in Equation (1) where θ is a scalar

(equal to the efficiency score) and λ represents an N×1 vector of constants.

Assuming that the firms use E inputs and M outputs, X and Y represent E×N input

and M×N output matrices respectively. The input and output column vectors for the

i-th firm are represented by xi and yi respectively. The equation is solved once for

each firm. In VRS models a convexity constraint Σλ=1 is added. This additional

constraint ensures that the firm is compared against other firms with similar size.
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In equation (1) firm i is compared to a linear combination of sample firms which

produce at least as much of each output as it does and the minimum possible amount

of inputs. Figure 1 illustrates the main features of an input-oriented model with

constant returns to scale. The figure shows three firms (G, H, R) that use two inputs

(capital K, labour L) for a given output Y. The vertical and horizontal axis represent

the capital and labour input per unit of output respectively and the line PP shows the

relative price of the two inputs.

[Figure 1 here]

Firms G and H produce the given output with less inputs and form the efficient

frontier that envelops the less efficient firm R. The technical and allocative

efficiencies of firm R relative to the frontier can be calculated from OJ/OR and

OM/OJ ratios respectively. Technical efficiency measures the ability of a firm to

minimise inputs to produce a given level of outputs. Allocative efficiency reflects

the ability of the firm to optimise the use of inputs given the price of the inputs. The

overall efficiency of firm R is measured from OM/OR.
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A central step in DEA is the choice of appropriate input and output variables. The

variables should, as far as possible, reflect the main aspects of resource-use in the

activity concerned. DEA can also account for factors that are beyond the control of

the firms and can affect their performance (environmental variables).

An advantage of DEA is that inefficient firms are compared to actual firms rather

than some statistical measure. In addition, DEA does not require specification of a

cost or production function. However, the efficiency scores tend to be sensitive to

the choice of input and output variables. Also, the method does not allow for

stochastic factors and measurement errors. Further, as more variables are included in

the models, the number of firms on the frontier increases. Therefore, it is important

to examine the sensitivity of the efficiency scores and rank order of the firms to

model specification.

2.2 Corrected Ordinary Least Squares (COLS)

An alternative frontier-oriented approach to measure relative efficiency of firms is to

use statistical methods to ‘estimate’ the best practice frontier and efficiency scores.

COLS is one such method based on regression analysis (Richmond, 1974). Similar

to DEA, the method estimates the efficiency scores of the firms on a 0 to 1 scale.

The regression equation is estimated using the OLS technique and then shifted to the
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efficient frontier by adding the absolute value of the largest negative estimated error

to that of the other errors (for a cost function).

The COLS method requires specification of a cost or production function and

therefore involves assumptions about technological properties of the firms’

production process. A drawback of the method is that the estimated parameters may

not make engineering sense. In addition, the method makes no allowance for

stochastic errors and relies heavily on the position of the single most efficient firm.

Similar to DEA, COLS assumes that all deviations from the frontier are due to

inefficiency.

The COLS technique can be used to calculate efficiency scores of models involving

multiple inputs and outputs by estimating distance functions. Following Coelli and

Perleman (1999) and Coelli, Rap et al. (1998), Equation (2) show a translog input

distance function.3 DIi is the input-oriented distance for the i-th firm in a sample of N

firms with K inputs and M outputs and where α, β, and δ are unknown parameters.

The function is homogeneous of degree +1 in inputs. Inputs and outputs are denoted

x and y respectively and x*
k=xk/xK. Equation (2) can rewritten as in (3) where TL is

the translog function in (2) and “–Ln(DIi)” is an unobservable term interpreted as the

random error term µi.
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The function in Equation (3) is estimated using the Ordinary Least Square (OLS)

technique. The estimated constant term of the function is then adjusted by

subtracting the value of the largest positive residual from those of all units. This

transformation ensures that the function passes through the most efficient unit and

bounds the other units. The distance measures for the inefficient units are then

calculated as the exponential of their corrected residuals.

2.3 Stochastic Frontier Analysis (SFA)

SFA is another parametric method used to estimate the efficient frontier and

efficiency scores. The statistical nature of the method allows for inclusion of

stochastic errors in the analysis and testing of hypotheses. Similar to COLS, this

method requires specification of a cost or production function involving assumptions

about the firms’ production technologies. Estimation of efficiency scores in SFA is



10

similar to that of COLS. In addition, SFA recognises the possibility of stochastic

errors (see Coelli, Rap et al., 1998).

The notation of an input-oriented distance function for multiple input and output

models is similar to that described for COLS. However, when applying SFA a

symmetric error term ν is added to the random error term µ to account for noise.

SFA reduces reliance on measurements of a single efficient firm. However,

accounting for stochastic errors requires specification of a probability function for

the distribution of the errors and distribution of inefficiencies (e.g. half normal). As

for the result of stochastic factors and their effect on the position of the most

efficient firm, the estimated scores are higher than those estimated by COLS. Figure

2 illustrates a COLS model with a single cost input C and one output Y.

[Figure 2 here]

The cost equation COLS .�f1(Y) is estimated using OLS regression and then shifted

by CA to CCOLS �.�&$��I1(Y) on which the most efficient firm A lies. The

efficiency score for an inefficient firm B is calculated as EF/BF. The figure also

shows the estimated cost equation CSFA=f2(Y) using SFA. A firm, such as A, which

lies below the stochastic frontier might be regarded as 100% efficient, i.e. the

difference between its actual costs and its expected costs on the frontier are effected

by a negative cost shock. A drawback of the method is that even if there are no
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errors in efficiency measurements, some inefficiency may be wrongly regarded as

noise.

3. Data

The benchmarking study reported here is based on data on 63 electricity distribution

and regional transmission utilities in Italy, Netherlands, Norway, Portugal, Spain,

and United Kingdom. The data used in the study is collected by the regulators in the

relevant countries for the purpose of an international benchmarking exercise. Table

1 shows the number of utilities included in the study from each country. As shown

in the table, the number of utilities varies across the countries and in most of these it

is not large enough for identifying broad-based production possibilities using

benchmarking techniques.4 Table 2 shows the variables and summary statistics of

data used.

[Table 1 here]

[Table 2 here]
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3.1 Cost data

As mentioned previously, this study uses monetary values of the input variables and

differs from many of the previous studies where inputs are expressed in physical

units. This is particularly advantageous from a regulatory point of view, as monetary

values of the inputs can reflect all operating and capital inputs and measure the

relative cost efficiency of utilities. In addition, expression of different inputs in a

single measure recognises the possible trade-offs among these. This section presents

adjustment of the cost data to a common reference year and their subsequent

conversion into a single monetary unit.

3.1.1 Harmonisation and adjustment of costs

The task of standardisation of cost data for this study has was carried out by the

participating regulators. The controllable operating costs used in the benchmarking

of the utilities were derived from company law accounts adjusted for: (i) cost of

sales, (ii) transmission system exit charge, (iii) income or federal taxes paid to local

governments, (iv) licence fees, (v) depreciation and amortisation of tangible fixed

assets, and (vi) federal and state employers taxes.
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The capital expenditures data used in this study represent new investments in one

year and exclude capital stocks and depreciation. A shortcoming of using annual

capital expenditures is that these may not reflect the value of capital stocks. The

problem can, due to the cyclical nature of investments in distribution utilities, be

more profound when the scope of analysis is limited to one year as unusually large

(small) investments by a utility in that year may under (over) estimate its efficiency.

The choice of annual capital expenditures has largely been dictated by availability of

comparable data across different countries.

As noted previously, the main focus of this study is on methodological issues of

international benchmarking. An alternative approach would be to use the value of

the capital stocks and work out the rental cost of the capital. However, capital stocks

have long economic lives and difficulties involved in accounting for factors such as

inflation, assets depreciation, and currency fluctuations over many years for several

countries would reduce the accuracy of measurements.

The cost data collected for this study refer to different years. Table 3 shows the

years for which data from participating countries was available. In order to establish

a common time reference for the cost data these were adjusted to mid-1999 levels

using the OECD statistics on quarterly Consumer Price Index (CPI) changes. The

adjustments resulted in minor changes to cost data. Table 3 shows the percentage

change to cost data to bring these to the level of the reference year.
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[Table 3 here]

3.1.2 Currency conversions

An important step in cross-country comparisons is how to convert the cost data

expressed in national currencies into a single monetary unit. A commonly used

approach is to convert the costs using the Purchasing Power Parities (PPPs) of

currencies. The PPPs equalise the differences in the price levels in different

countries and measure the purchasing power of the currencies in relation to a certain

basket of goods. The conventional exchange rates, however, do not account for these

differences.

As the currency exchange rates often differ from the PPPs, the choice of conversion

method affects the relative costs to be compared. The extent of this effect depends

on the countries that comprise the sample. The significance of the conversion

method may vary with the type of cost inputs. For example, with regards to

operating costs, the PPPs may appear as the appropriate measure as they are largely

incurred in local currencies and affected by domestic price levels. Capital costs

include purchase of large amounts of materials and equipment traded in the

international markets and settled in foreign currencies.
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The operating and capital costs used in this study were converted into a single

monetary unit using the PPPs of the currencies against the US dollar. The choice of

the reference currency for the PPPs is, however, arbitrary and the conversion can use

the PPPs against any currency without affecting relative cost differences among the

utilities. Table 4 shows US dollar based PPPs for the relevant currencies in 1999.

[Table 4 here]

3.2 Technical data

As noted in the previous section, cost data definitions can be harmonised and

different currencies can be converted into a single unit for currency differences.

Another factor that complicates international efficiency comparisons is that technical

standards and definitions of transmission and distribution systems vary across the

countries. These differences can have implications for the level of capital stock and

operating expenditures of utilities and influence the benchmarking results. In

particular, the voltage levels of the cut-off points between the transmission and

distribution functions of networks differ across the countries. At the same time, it is

difficult to determine the direction and extent of cost implications of these

differences for the utilities.
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However, given sufficient data, it is possible to attempt to account for technical

differences by using categorical variables representing different voltage levels or,

given the data, separation of sub-functions (e.g. low or high voltage) of utilities.

Table 5 shows the differences in the voltage levels of the transmission and

distribution networks across the countries. The maximum voltage level of

distribution utilities in this study range from 22 and 132 kV for the Norwegian

distribution and regional transmission utilities to 132 kV for the RECs in England

and Wales.

[Table 5 here]

3.3 Preferred models

This study uses the frontier-oriented benchmarking techniques DEA, COLS, and

SFA described in the previous section. The data available for this study give the

framework within which important features of the operation of distribution utilities

can be modelled. The data on electricity distribution utilities can be used in various

combinations and model specifications. For comparison of the results of different

techniques, it is desirable that the models include similar variables. In this paper we

report the results form ten models, six DEA, two COLS, and two SFA models. An
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overview of the preferred models for this study, the methods used, and the input and

output variables are given in Table 6.

[Table 6 here]

In DEA the number of frontier firms tends to increase with addition of variables to

the models. In particular, when the sample size is not large, this results in loss of

information. There is therefore a trade-off between capturing the main aspects of the

utilities’ operation and revealing the performance variations among the firms. Our

base model DEA-1CRS comprises the total units of electricity delivered, number of

customers, and network length as the outputs. These variables are among the most

important cost drivers and are frequently used in efficiency studies of electricity

distribution and transmission utilities. A summary of the inputs and outputs used in

20 benchmarking studies of electricity distribution utilities outlined in Jamasb and

Pollitt (2001) shows that our outputs are among the most frequently used variables

(Table 7).

[Table 7 here]

Some authors such as Neuberg (1977) have suggested that only traded outputs can

be regarded as outputs. However, inclusion of the ‘number of customers’ reflects the

spread of demand among the connection points that is generally regarded as a major
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cost driver. This variable also captures the important differences in average

consumption levels as well as between the regional transmission and distribution

utilities both of which types are included in the sample. Also, the ‘size of the

network’ reflects the geographical dispersion of the output and the scope of

operation. These variables are used by OFGEM to derive a composite measure of

output (number of customers 50%, units distributed 25%, and network length 25%)

in a COLS-type analysis of the operating costs of the distribution utilities in England

and Wales (see OFGEM, 1999).

The total costs of the utilities were used as the only input variable. Subsequent

model runs showed that the efficiency scores obtained when splitting the number of

customers into residential and non-residential users, have a high correlation with

those from the initial model. A similar result was also obtained when output variable

network length was divided into overhead and underground cables. We then split the

total costs into separate operating and capital cost variables and the efficiency

scores' correlation with the initial model remained high. We therefore retain the

initial model as one of preferred models. DEA-1VRS is a VRS specification of the

base model.

In DEA-2CRS model we use the controllable operating expenditures together with

T&D losses and network length (as proxy for capital stocks) as input variables.

These variables are often used as inputs in DEA models of distribution utilities. The
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model specifies the network length and T&D losses as non-discretionary variables.

This means that the distance of variable to the frontier does not affect the efficiency

scores of the firms. This specification assumes that these technical characteristics of

the network lie outside management control and can be regard as given. This

assumption is suitable for this study as the T&D of some of the utilities in the

sample are derived from standard rates rather than their actual losses.

The DEA-2VRS model is the VRS version of DEA-2CRS and all input variables are

by definition discretionary. DEA-1E model uses a similar specification as DEA-

1CRS while total expenditures are converted into Euro (1999-rates). DEA-1OP uses

operating expenditures as the only input while output variables are similar to DEA-

1CRS.

In addition, the loglinear and translog specifications of the initial DEA model (DEA-

1CRS) are calculated using COLS, and SFA techniques. The specification of

loglinear and translog models used with COLS and SFA methods are shown in

Equations 4 and 5 respectively.

Loglinear model specification:

νββββ ++++
=−

LnNETWLnCUSTLnUNIT

LnTOTEX

NCU0
           (4)
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Translog model specification:
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where:

TOTEX total expenditures UNIT units of electricity delivered

CUST total number of customers NETW network length

ν error term (in SFA models)

It should be noted that loglinear specification assumes constant elasticity of

substitution among output variables. Translog specification is a generalised form of

loglinear that is more flexible and allows for variations in elasticity of substitution

among inputs. However, due to this flexibility, translog models they may not always

produce statistically significant results for all samples. In particular, parameter

values may be meaningless when the scale of the firms included in the sample

covers a rather wide range (see for example Coelli, Rap and Battese, 1998, pp.52-53,

and Coelli and Perelman, 1996, p.19).
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4. Results

This section presents the results of the selected models outlined in Table 6. The

results from the base model DEA-1CRS are discussed in some detail. The results

from the other models are then presented in less detail as these can be regarded as

derivatives of the base model. The efficiency scores of the utilities with different

models and summary statistics of the efficiency scores are shown in are summarised

in Tables 8 and 9 respectively.5 Tables 10 and 11 show the simple and rank

correlation of the efficiency scores respectively for the eight selected models. A high

correlation among the scores reflects high consistency of the rankings when the

variables, model specifications, or methods used change.

4.1 DEA models

As shown in the table, in the DEA-1CRS model, three utilities have efficiency

scores of 100% and dominate the frontier. Utility F32 on the frontier is almost

entirely a regional distribution utility, as this may have reduced comparability of the

utility with some of the firms in the sample.6 The results show a considerable

variation in efficiency scores ranging from 26% to 100%.7 The mean of the

efficiency score for all the firms in the sample is 61%. Table 12 shows the

minimum, maximum, and mean of the efficiency scores for the sample as well as the
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individual countries. As shown in the table, the mean values of the efficiency scores

for the countries are comparable.

In the DEA-1VRS model the number of frontier firms increases from three to 15 and

the mean efficiency score increases from 61% to 79% in DEA-1VRS. The validity

of results of VRS models depends on the extent to which cost efficiency of

distribution utilities is affected by their scale of operation and whether various size

categories are sufficiently represented in the sample as lack of comparable firms

may place inefficient firms on the frontier. One concern with having a large number

of frontier firms is that of loss of information as inefficiencies of these will not be

revealed. In addition, in VRS models, the efficiency scores of firms tend to increase.

Therefore, it is important that VRS models include sufficient number of comparators

in all size categories. The DEA-1VRS scores reveal that some large and fairly

inefficient firms in DEA-1CRS move to the frontier. The magnitude of change in

some of scores indicates that while the size of the utilities in our sample cover a

wide range, some of these lack suitable comparators. Within this background we

have reason to treat the VRS scores of our data with caution.

In DEA-2CRS, the use of controllable operating expenditures as input and inclusion

of non-discretionary variables (network length and T&D losses) has a mixed effect

on efficiency scores. The scores for some utilities show considerable increase while

for others they decrease significantly. The efficient frontier is dominated by six
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firms, two of which (F32 and F57) were also on the frontier in DEA-1CRS. The

mean and minimum scores are 54% and 20% respectively and lower than in DEA-

1CRS. In addition, the efficiency scores show low correlation with the scores from

DEA-1CRS.

In DEA-2VRS, there are 21 frontier firms while the mean and minimum efficiency

scores (78% and 26%) are very similar to those of DEA-1VRS. However, the scores

show low correlation with those of the DEA-1VRS model. The results from DEA-

2CRS and DEA-2VRS underline the importance of the choice of model type and

economising the number of variables in order to limit loss of information on relative

inefficiencies of the frontier firms.

DEA-1E examines the effect of the choice of monetary conversion method on

scores. As shown in Table 8, replacing the PPP conversion rate with Euro exchange

rates has a limited effect on the efficiency scores. The minimum and mean scores for

the sample amount to 27% and 63% respectively. The scores and rank orders in

DEA-1CRS and DEA-1E show high correlations. The composition of the efficient

frontier is rather stable and the three efficient firms in DEA-1CRS model also

remain on the DEA-1E frontier.

The DEA1-OP model uses the controllable operating expenditures as the only input

variable. This specification allows examination of the effect of exclusion of capital
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expenditures on the scores as utilities with high capital expenditures may score low.

As shown in Table 8, in relation to DEA-1CRS model, the scores of some utilities in

the DEA1-OP increase while the scores of others decrease. The minimum and mean

efficiency scores in DEA1-OP are higher than in the DEA-1CRS model with 28%

and 65% respectively. At the same, the simple and rank correlations of the scores

between the DEA-1CRS and DEA1-OP models are 67% and 66% respectively.

4.2 COLS Models

Models COLS-1LL and COLS-1TL models use loglinear and translog functional

forms of the input and output variables of the initial DEA-1CRS model as specified

in Equations (4) and (5). As mentioned in previously, when the operating scale of

firms covers a wide range, the translog functional forms may not produce

statistically significant results. This is also the case here. Table 13 shows the

estimated parameters and t-values for the four regression-based models. However, as

the occurrence of the problem can be caused by the composition of the data rather

than the choice of model specification, for the purpose of comparison, we report the

results of the translog models used with COLS and SFA methods.

Table 8 shows the calculated efficiency scores of the COLS models. The mean

efficiency scores of COLS-1LL and COLS1-TL models are 60 and 63% respectively
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relative to 61% in DEA-1CRS (Table 9). Higher scores calculated in the COLS-1TL

model can be attributed to the flexibility of translog functional forms.

4.3 SFA Models

The SFA-1LL and SFA-1TL models use the same loglinear and translog variable

specifications as the COLS method. As SFA allows for statistical noise in the data,

the calculated SFA scores are somewhat higher than those of the COLS method. The

mean efficiency scores of SFA-1LL and SFA-1TL models are 62% and 72%

respectively.

The summary statistics in Table 13 show the relative importance of statistical noise

with assumed normal distribution and inefficiency in estimation of the stochastic

frontier. The sigma square σ2 is the sum of variances of statistical noise σv
2 and

inefficiency σµ
2. The relative importance of inefficiency is measured by gamma as γ

= σµ
2 / (σµ

2 + σv
2).8 The value of gamma (99.9%) for SFA-1LL and SFA-1TL

models suggest that noise has nearly no influence in the estimated function. These

very high values of γ need be treated with caution as others have previously reported

similar unusually high values that cannot be readily explained (see for example

Coelli and Perleman, 1996).
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To summarise the results, the efficiency scores for the DEA-1CRS model show

significant changes in some scores and a relatively low correlation (0.29) with those

of the DEA-2CRS model (see Tables 8 and 10). The DEA-1CRS model’s efficiency

scores also show a high correlation (0.84) with those of COLS-1TL. This is despite

the weak significance of the estimated parameters with translog specification. The

correlation of the DEA-2CRS scores with regression-based models is relatively

weak. However, we find stronger correlation among the scores of the regression-

based models.

For example, the COLS-1LL and SFA-1LL models exhibit a correlation factor of

0.98, which indicates a rather high degree of consistency of the scores across the two

methods with translog specification. We also find a high correlation factor between

the scores of the COLS-1TL and SFA-1TL models. This shows that with consistent

specification forms, the SFA and COLS methods produce very comparable

efficiency scores. Indeed, model specification form appears to be more important for

consistency or high correlation among the scores than the moving from COLS to

SFA method.

[Table 8 here]

[Table 9 here]

[Table 10 here]

[Table 11 here]
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[Table 12 here]

[Table 13 here]

5. Conclusions and Regulatory Implications

The X-factors in price and revenue cap regulation models have significant financial

consequences for the regulated utilities. As we discussed, international

benchmarking is potentially an effective approach to setting the X-factors. However,

our results show that the choice of benchmarking techniques, model specifications,

and choice of variables can affect the efficiency scores as well as the rank order of

firms.

Our results show a strong correlation between the non-parametric base model DEA-

1CRS and the parametric COLS and SFA models. However, we found that the mean

and minimum efficiency scores in DEA-1CRS model are significantly lower than

the other two models. We also found that the DEA-1CRS efficiency scores are

significantly lower than those of DEA-1VRS and the VRS model exhibits a

somewhat weaker correlation with the latter model than with COLS and SFA

models. Although CRS scores are generally lower than those of VRS models, as we

pointed out, this is also partly due to lack of suitably comparable firms for some of

the larger utilities in the sample.
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From a regulatory point of view, substantial variations in the scores and rankings

from different methods is not reassuring. In addition, a one-to-one translation of

efficiency scores to X-factors is not justified. A practical approach in the absence of

consensus on the most appropriate technique, model specification, and variables is to

combine the results from different models. Coelli and Perleman (1999) suggest the

use of geometric means of the scores of preferred methods for each data point as this

tends to reduce the possible bias in individual models.

Our results also showed that the choice of cost conversion method (PPP vs. Euro

exchange rates) has a rather limited effect on the results. We however, found a

considerable difference in the results when using network length as proxy for capital

stocks instead of capital expenditures in a given year. Although it is preferable to

also account for depreciation and weighted average capital costs, the magnitude of

variations observed here signifies the importance of how capital costs are

represented in the models. This suggests a need for more data and investigation into

the appropriate measures of capital and capital costs in the models.

Issues to be Addressed

Utilities adapt to their regulatory framework. Benchmarking, by highlighting certain

variables, improves performance measured in terms of those variables, possibly at

the expense of other variables such as quality. Also, for the regulator, benchmarking
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involves decisions about data requirements, collection procedures, reporting formats,

and quality of supply as well as regulatory governance issues such as commitment

and transparency. Therefore, the use of cross-country benchmarking for regulatory

purpose and to derive the X-factors requires careful consideration of these issues.

Consistency of data - The reliability of and benefits from benchmarking are greatly

enhanced by continuity and consistency. This requires continuing co-operation and

commitment for collection and exchange of data between countries. Achieving co-

ordination among the regulators may be serious problem. This may because some

types of information may be readily available in some countries but difficult to

obtain in others - for instance some countries collect much better data on system

losses than others. Also the quality of the auditing process for company supplied

data may vary between countries.

Timing of rate reviews - The timing of price reviews varies across the countries and

international benchmarking inevitably leads to some dissemination of data and

results. Regulators may find the timing of rate reviews in other countries is

disruptive.  International benchmarking may therefore not be suitable for closed rate

setting practices.

Pressure to converge - A consequence of international benchmarking may be that a

given set of data shared by different regulators may be used with different methods
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and model specifications. Although many regulators enjoy full discretion with

regard to the choice of methods, models, and data, widely different uses of similar

data may be questioned and even met with legal challenges. International

benchmarking is likely to lead to pressure for convergence in use of methods and

models. It is therefore conceivable that the benchmarking practices in different

countries can gradually converge, as it may be difficult to impose different X-factors

to equally efficient utilities that operate in different countries.

Recommendations for Best Practice

If regulators were to decide it is worth co-ordinating further international

benchmarking exercises we would recommend the following. Regulators need to

agree upon long-term commitment and procedures for data collection, common

templates, and submission deadlines for data standardisation. It is important to

identify and define a minimum set of input, output, and environmental variables for

data collection. Some potentially useful additional variables are maximum demand,

transformer capacity, service area, quality of service, and voltage-based physical and

monetary breakdown of assets. The sample should also sufficiently represent

different size groups and types of utilities.

In addition, in order to reduce the effect of measurement errors and data shocks; the

data should be in the form of time-series for the recent past and then collected

annually for future years. Regulators should also discuss benchmarking models and



31

functional forms such as CRS versus VRS models or consider assigning different

weights to inputs and outputs suitable for regulation of electricity distribution and

transmission utilities. The benchmarking results can also be followed up by in-depth

examination of the extent of similarities and differences between the inefficient

firms and their peers. Finally, exchange of data and experience can be facilitated by

co-operation with bodies involved in international utilities data such as the US

Federal Energy Regulatory Commission (FERC), Secretaría General de la Comisión

de Integración Eléctrica Regional (CIER) in Latin America, and the Australian

energy regulators.

                                                          
End Notes

1 See Hall (2000), Comnes et al. (1995), Hill (1995), and Joskow and Schmalensee

(1986) for reviews and comparisons of different incentive regulation models.

2 This section draws mainly on Jamasb and Pollitt (2001).

3 See above references for detailed descriptions and various steps involved in the

technique.
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4 There are over 200 distribution utilities in Norway. The firms used in this study

represent the largest 25 utilities.

5 For calculations of DEA, COLS, and SFA models computer programmes EMS,

Excel, and Frontier4.1 were used respectively.

6 However, a closer examination of the results showed that the degree of the

influence of the firm on scores of other utilities has been rather less than the other

two frontier firms.

7 The wide range in the scores may partly be due to extraordinary levels of operating

or capital costs in the observation year. In practice, in order to increase confidence in

extreme scores, such costs for the utilities concerned in the reference year can be

compared with those of other years.

8 See Coelli (1996) for a further description of these measures.
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Figure 2: COLS and SFA
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Table 1:

Number of utilities in the sample

Country No.

Italy 1

Netherlands 18

Norway 25

Portugal 1

Spain 4

UK 14

Total 63
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Table 2:

Summary statistics over variables

Variables Min Max Mean

Operating costs (mill ¼� 1.1 3430.6 160.07

Capital expenditures (mill ¼� 0.21 1785.75 83.99

Total costs (mill. ¼� 1.72 5216.38 244.06

Units of energy delivered (GWh) 70.123 226010 13944.11

Number of customers (000)

   • residential

   • non-residential

0.03

   0.00

   0.02

28906.55

 22553.04

   6353.51

1430.44

   1260.29

   170.16

Length of network (km)

   • overhead cables

   • underground cables

180

   0

   0

1038145

   732505

   305640

47247.91

   27969.84

   19278.03

Distribution / transmission

losses (GWh)

4.37 10651 850.12

Number of transformers 59 343833 20654.03
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Table 3:

Reference years for the data and CPI change to mid-1999

Source: OECD (1999)

Country Reference year
for data

CPI Change
(reference year to mid-

1999)

Italy 1997 3.0.%

Norway 1998 2.2%

UK 1997/98 4.1%

Portugal 1999 0.0%

Spain 1998 2.3%

Netherlands 1999 0.0%
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Table 4:

PPPs and Euro conversion rates (1999)

Source: EUROSTAT

Country Purchasing Power
Parity

(1999) 1 PPP=

Euro Conversion
Rate

(1999) 1 Euro=

Italy 1668 1936.3

Norway 9.6 8.31

UK 0.673 0.659

Portugal 127 200.48

Spain 130 166.39

Netherlands 2.04 2.20
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Table 5:

Voltage boundaries between and within T&D networks

Source: CEER survey returns

Voltage boundaries
between T & D

Voltage boundaries
within T & D

Norway T: 30-420 kV

D: 0-22 kV

(regional networks 30-132 kV)

T: 45, 66, 132, 220, 300, 420

kV

D: 0.22, 0.4, 11, 22, (132) kV

Portugal T: >110 kV

D: �����N9

T: VHV>110 kV

D: 45<HV�����N9

1 kV<MV����N9

LV���N9

Netherlands T: 220-380 kV

D: 110-150 kV (regional

distribution) and <50 kV

T: EHV 220-380 kV

D: HV 110-150 kV

IV 25-50 kV MV 10-20 kV

LV<10 kV

Great

Britain

T: E&W�����N9

Scotland������N9

D: E&W <132 kV

Scotland<132 kV

D: EHV����N9

(����N9�DW�VXEVWDWLRQV�

22 kV>HV>1000 V

LV<1000 V

Italy T: �����N9��(+9��DQG�SRUWLRQV

of 120-220 kV (HV) grid

D: <220 kV

D: portions of 120-220 kV

grid, 10, 15, 20 kV (MV),

and 380 V (LV)

Spain T: �����N9

D: <220 kV

T: EHV 400 kV, HV 220 kV

D:   36 kV�+9�����N9

1 kV�09����N9���/9���N9
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Table 6:

Overview of methods, models, and variables

Model
1

Model
2

Model
3

Model
4

Model
5

Model
6

Model
7

Model
8

Model
9

Model
10

DEA-

1 CRS

DEA-

1VRS

DEA-

2CRS

DEA-

2VRS

COLS-

1LL

COLS-

2TL

SFA-

1LL

SFA-

2TL

DEA-

1E

DEA-

1OP

Inputs

OPEX (PPP) X X X

TOTEX (PPP) X X X X X X X

(Euro)

Network length X

T&D losses X

Non-
discretionary
inputs

Network length X

T&D losses X

Outputs

Units delivered X X X X X X X X X X

No. of

customers

X X X X X X X X X X

Network length X X X X X X X X
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Table 7:

Frequency of the use of main input and output variables used in 20

Benchmarking studies of electricity distribution utilities.

Input Output

• units sold (2) • units sold (12)

• residential  sale (6)

• non-residential sale (6)

• no. of customers • no. of customers (11)

• no. residential customers (5)

• no. non-residential customers (5)

• network size (11)

• LV lines (2)

• MV lines

• HV lines (2)

• network size (4)

• transformer capacity (11)

• MV transformer capacity

• HV transformer capacity

• transformer capacity

• no. of transformers

• service area (2) • service area (6)

• maximum demand • maximum demand (4)

• purchased power (2) • power sold to other utilities

• transmission/distribution losses (4)

• labour/wages (15)

• administrative labour

• technical labour

Cost measures:

• OPEX (7)

• OPEX+annualised standard capital costs
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• administrative/accounting costs (2)

• maintenance costs

• capital (5)

• CAPEX user cost+labour costs

• materials

Miscellaneous:

• industrial demand

• customer dispersion (2)

• share of industrial energy

• network size/customers

• % system unload

• residential/total sales

• outage

• no. residential customers/network size

• inventories

• line length*voltage

Miscellaneous:

• service reliability

• load factor

• net margin

• revenues

• distance index

• network density

• categorical variable for urban areas
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Table 8:

Efficiency scores for alternative models

DEA-
1CRS

DEA-
1VRS

DEA-
2CRS

DEA-
2VRS

COLS-
1LL

COLS-
1TL

SFA-1
LL

SFA-2
TL

DEA-
1E

DEA-
1OP

F1 60.5% 100% 70.5% 100.0% 62.1% 69.9% 68.3% 86.2% 57.2% 70.4%

F2 50.4% 85.2% 49.3% 94.1% 55.1% 59.6% 60.0% 73.1% 48.3% 51.2%

F3 43.2% 76.8% 79.1% 100.0% 46.7% 49.7% 47.7% 71.2% 39.6% 50.1%

F4 50.4% 77.5% 48.3% 75.9% 54.6% 57.9% 59.1% 67.1% 48.9% 53.5%

F5 58.1% 98.3% 56.2% 100.0% 63.8% 68.5% 69.2% 84.6% 55.5% 56.9%

F6 49.5% 70.3% 40.9% 85.7% 51.0% 55.4% 55.3% 63.1% 47.6% 43.4%

F7 34.6% 55.4% 51.8% 97.8% 36.8% 39.8% 39.9% 48.7% 32.7%50.7%

F8 65.8% 100% 87.6% 100.0% 68.5% 73.6% 73.0% 92.5% 60.7%76.5%

F9 58.5% 100% 87.4% 100.0% 64.1% 69.2% 69.7% 87.3% 55.6%86.2%

F10 35.1% 48.4% 38.1% 82.7% 37.1% 39.1% 39.9% 43.7% 34.1%42.8%

F11 54.7% 72.6% 59.1% 84.4% 52.3% 59.7% 57.7% 64.0% 53.3%71.4%

F12 50.8% 83.0% 66.1% 96.8% 55.1% 58.8% 59.4% 72.7% 48.0%63.8%

F13 51.7% 76.4% 51.3% 77.8% 51.5% 58.6% 57.0% 65.5% 50.3%60.3%

F14 42.2% 49.2% 34.4% 52.2% 33.2% 44.9% 37.9% 41.8% 43.9%68.7%

F15 61.4% 100% 42.2% 79.6% 88.7% 77.2% 89.8% 95.6% 54.7%48.9%

F16 51.8% 71.0% 43.7% 63.5% 72.1% 58.6% 74.9% 68.2% 49.7%75.0%

F17 67.5% 70.7% 30.1% 37.4% 66.5% 64.0% 71.3% 67.9% 64.5%61.3%

F18 59.2% 62.3% 41.2% 45.1% 67.7% 58.1% 70.4% 64.4% 55.5%69.2%

F19 72.5% 88.4% 23.9% 29.4% 57.9% 65.4% 64.8% 68.2% 72.5%80.6%

F20 59.9% 62.4% 41.1% 46.2% 77.3% 62.3% 77.6% 72.1% 54.9%56.5%

F21 53.4% 60.0% 28.7% 31.4% 54.9% 50.0% 59.3% 55.1% 53.3%75.1%

F22 66.1% 69.0% 36.2% 38.9% 71.4% 61.7% 76.2% 69.0% 65.4%86.8%

F23 65.6% 65.6% 49.5% 54.8% 83.1% 65.2% 84.0% 75.7% 61.4%76.0%

F24 60.5% 83.4% 56.6% 100.0% 100.0% 71.5% 98.3% 90.6% 58.7%82.8%

F25 100% 100% 35.1% 38.7% 91.6% 89.8% 100.0% 98.2% 100.0%100%

F26 59.6% 68.3% 50.1% 58.3% 97.5% 69.8% 95.3% 88.3% 57.2%70.3%

F27 81.1% 86.4% 21.5% 25.7% 54.4% 63.1% 61.1% 69.8% 81.1%90.0%
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F28 46.1% 46.6% 24.4% 26.9% 39.7% 38.6% 43.4% 43.4% 46.1%76.4%

F29 69.3% 71.5% 28.6% 35.6% 53.2% 56.9% 58.4% 63.4% 69.3%90.1%

F30 49.3% 100% 48.1% 100.0% 39.8% 44.2% 34.8% 52.4% 49.3%48.2%

F31 80.7% 100% 83.8% 100.0% 48.2% 76.6% 42.7% 86.4% 80.7%83.9%

F32 100% 100%100.0% 100.0% 59.0% 82.8% 51.8% 98.9% 100.0%93.9%

F33 50.6% 52.4%100.0% 100.0% 27.3% 46.1% 24.2% 53.9% 50.6%100%

F34 88.1% 94.8%100.0% 100.0% 97.4% 62.5% 86.5% 88.0% 88.1%75.2%

F35 89.8% 92.4% 42.5% 44.8% 81.0% 74.6% 85.6% 85.9% 87.1%96.2%

F36 71.7% 71.9% 24.9% 27.4% 60.2% 61.3% 65.6% 67.2% 70.9%69.5%

F37 54.5% 55.1% 44.5% 51.9% 84.5% 61.8% 79.8% 78.0% 50.5%53.9%

F38 85.6% 86.6% 43.9% 45.9% 85.5% 74.6% 88.7% 84.9% 81.0%81.8%

F39 48.2% 48.9% 31.8% 39.4% 57.8% 45.1% 57.6% 53.2% 44.8%47.4%

F40 62.7% 100% 46.1% 100.0% 63.3% 72.8% 70.4% 84.6% 66.7%52.3%

F41 57.0% 61.0%100.0% 100.0% 49.7% 56.1% 50.0% 56.9% 58.3%60.6%

F42 65.0% 83.5% 53.2% 100.0% 93.1% 78.1% 93.8% 94.2% 73.2%61.8%

F43 26.0% 26.3% 41.7% 62.0% 29.4% 28.5% 28.2% 32.0% 27.3%39.1%

F44 53.5% 53.7% 96.0% 98.9% 47.5% 53.6% 47.1% 55.1% 54.6%85.0%

F45 50.2% 95.4% 20.1% 98.1% 53.0% 51.2% 57.4% 56.8% 62.6% 58.8%

F46 67.5% 100% 51.0% 95.8% 75.9% 77.7% 81.5% 88.7% 73.2% 59.6%

F47 88.6% 100% 46.8% 96.8% 77.8% 98.2% 88.2% 96.0% 100.0% 83.1%

F48 54.7% 56.2% 61.8% 85.0% 38.8% 51.5% 38.5% 50.8% 55.5% 54.2%

F49 95.7% 99.1% 100.0% 100.0% 73.6% 89.3% 73.1% 93.0% 99.6% 100%

F50 65.8% 66.5% 66.6% 75.1% 45.4% 56.9% 47.2% 57.3% 70.9% 86.3%

F51 60.9% 92.3% 57.1% 97.3% 62.9% 66.6% 65.5% 79.2% 61.7% 49.0%

F52 49.3% 72.8% 55.7% 100.0% 46.3% 50.9% 47.5% 55.5% 49.5% 46.8%

F53 67.5% 74.2% 100.0% 100.0% 40.7% 82.6% 36.2% 80.0% 67.5% 42.8%

F54 42.6% 91.6% 52.9% 100.0% 24.0% 42.6% 22.7% 43.3% 42.6% 35.2%

F55 94.8% 100% 75.2% 100.0% 73.8% 88.5% 72.8% 95.3% 99.5% 77.9%

F56 49.3% 52.4% 83.3% 91.8% 40.5% 52.9% 38.0% 54.6% 49.6% 43.0%

F57 100% 100% 100.0% 100.0% 82.9% 100.0% 82.1% 99.7% 100.0% 84.7%

F58 49.6% 100% 29.4% 94.7% 44.7% 59.0% 51.6% 73.8% 61.9% 32.0%

F59 65.9% 88.5% 40.7% 67.7% 70.3% 71.0% 74.1% 77.8% 83.9% 45.7%

F60 44.9% 96.1% 29.0% 100.0% 41.2% 50.9% 46.7% 66.1% 54.9% 27.7%

F61 51.9% 86.1% 33.2% 78.1% 43.5% 55.9% 49.3% 59.6% 65.4% 33.2%

F62 53.4% 97.9% 32.3% 88.6% 38.8% 57.5% 45.3% 58.9% 83.2% 38.2%

F63 49.5% 100% 35.0% 100.0% 45.9% 70.4% 55.2% 99.2% 57.1% 43.0%
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Table 9:

Summary statistics of efficiency scores

DEA-
1CRS

DEA-
1VRS

DEA-
2CRS

DEA-
2VRS

COLS-
1LL

COLS-
1TL

SFA-1
LL

SFA-2
TL

DEA-
1E

DEA-
1OP

Mean
score

0.613 0.793 0.539 0.777 0.595 0.627 0.619 0.716 0.626 0.648

Std.
Error

0.021 0.024 0.030 0.033 0.024 0.018 0.024 0.022 0.022 0.024

Min.
score

0.260 0.263 0.201 0.257 0.240 0.285 0.227 0.320 0.273 0.277
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Table 10:

Efficiency score correlations

DEA-
1CRS

DEA-
1VRS

DEA-
2CRS

DEA-
2VRS

COLS-
1LL

COLS-
1TL

SFA-
1LL

SFA-
2TL

DEA-
1E

DEA-
1OP

DEA-1CRS 1.00

DEA-1VRS 0.54 1.00

DEA-2CRS 0.29 0.11 1.00

DEA-2VRS -0.09 0.41 0.62 1.00

COLS-1LL 0.61 0.35 0.04 -0.16 1.00

COLS-1TL 0.84 0.67 0.31 0.17 0.68 1.00

SFA-1LL 0.59 0.39 -0.09 -0.21 0.98 0.69 1.00

SFA-1TL 0.73 0.73 0.29 0.23 0.75 0.92 0.75 1.00

DEA-1E 0.94 0.61 0.20 0.00 0.51 0.82 0.50 0.67 1.00

DEA-1OP 0.67 0.10 0.29 -0.27 0.41 0.44 0.40 0.36 0.53 1.00
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Table 11:

Rank order correlations

DEA-
1CRS

DEA-
1VRS

DEA-
2CRS

DEA-
2VRS

COLS-
1LL

COLS-
1TL

SFA-
1LL

SFA-
2TL

DEA-
1E

DEA-
1OP

DEA-1CRS 1.00

DEA-1VRS 0.47 1.00

DEA-2CRS 0.19 0.14 1.00

DEA-2VRS -0.06 0.49 0.69 1.00

COLS-1LL 0.69 0.34 0.08 -0.12 1.00

COLS-1TL 0.84 0.66 0.27 0.19 0.75 1.00

SFA-1LL 0.63 0.37 -0.06 -0.17 0.97 0.72 1.00

SFA-1TL 0.68 0.70 0.26 0.27 0.80 0.92 0.79 1.00

DEA-1E 0.99 0.58 0.07 0.05 0.52 0.77 0.52 0.62 1.00

DEA-1OP 0.66 0.10 0.23 -0.15 0.45 0.42 0.40 0.34 0.49 1.00
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Table 12:

Summary statistics for efficiency scores – DEA-1CRS model

Min Max Mean

Sample 26.0% 100.0% 61.0%

Country 1 - - 49.5%

Country 2 - - 67.7%

Country 3 - - 50.4%

Country 4 - - 53.4%

Country 5 - - 53.1%

Country 6 - - 63.9%
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Table 13:

Estimated variable parameters and statistics for the COLS and SFA models (t

statistics in parenthesis)

COLS-
1LL

COLS-
1TL

SFA-
1LL

SFA-
   1TL

Intercept -4.498 (-15.65) -0.407 (-0.36) -5.33 (-20.5) -1.53 (-1.08)

UNIT 0.662 (9.55) 0.23 (0.40) 0.602 (11.27) 0.287 (0.547)

CUST 0.214 (5.90) 1.52 (4.01) 0.202 (7.79) 1.02 (2.15)

NETW 0.180 (1.99) -1.1 (-1.95) 0.274 (4.80) -0.718 (-1.56)

(UNIT)2 - 0.17 (1.54) - 0.176 (1.32)

(CUST)2 - 6.14 (2.8) - 6.06 (3.27)

(NETW)2 - 0.251 (2.02) - 0.456 (0.708)

UNIT*CUST - -2.95 (-0.42) - 5.4 (1.2)

UNIT*NETW - -0.277 (-1.3) - -0.318 (-1.35)

CUST*NETW - -0.168 (-1.88) - -0.192 (-2.46)

R2 0.97 0.98 - -

Log likelihood -18.8 1.03 -14.78 4.24

σ2 - - 0.208 (2.86) 0.134 (4.73)

γ - - 0.999 (98869) 0.999 (1139.7)


