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Abstract

We use electrostatic lithography to fabricate a graphene p-n-p junction and exploit the coher-

ence of weakly-confined Dirac quasiparticles to image the underlying scattering potential using

low temperature scanning gate microscopy. The tip-induced perturbation to the junction potential

modifies the condition for resonant scattering, enabling us to detect localized Fabry-Pérot sub-

cavities from the focal point of halos in scanning gate images. In addition to halos over the bulk

we also observe ones spatially registered to the physical edge of the graphene. Guided by quan-

tum transport simulations we attribute these to modified resonant scattering at the edges within

elongated cavities that form due to focusing of the electrostatic field.
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I. INTRODUCTION

Developing methods to characterize and preserve the coherence of interacting quantum

systems is essential for exploring fundamental problems in quantum mechanics and for real-

izing novel technologies which operate using entanglement and superposition. In quantum

devices based on semiconducting two-dimensional electron gases, spatial coherence of the

electron field can be visualized directly by scanning a sharp metallic tip over the surface

while measuring the conductance, in a technique known as scanning gate microscopy (SGM).

SGM images of interfering electron waves provide exquisite real-space information that can

be used to diagnose scattering and decoherence mechanisms stemming from the underlying

material1–4. In the new breed of quasi-two-dimensional Dirac materials such as graphene

and the surface states of topological insulators, where low-energy quasiparticle excitations

mimic a two-dimensional gas of relativistic chiral charged neutrinos5, signatures of coher-

ence in bulk transport measurements have unravelled the complex interplay between this

bandstructure and elastic scattering rates6. However, while in graphene SGM has been

used to image mesoscopic doping inhomogeneities7,8, edge effects9, localized states10,11, and

quantum interference12,13, coherent scattering within a tailored scattering potential has not

been characterized or exploited using local probes. Graphene devices are now ripe for such

probing techniques, especially with the opportunity to image novel physical effects such as

Veselago lensing14, cloaking15, and superlattice collimation16.

In this study we investigate how the spatial coherence of Dirac quasiparticles within a p-

n-p junction can be exploited to resolve the scattering potential in a graphene monolayer by

SGM. Our solution is paradigmatically similar to experiments where narrow nanofabricated

gates enable the effects of coherence and Klein tunnelling to be explored, even in low-mobility

samples17. Due to interference between electron waves scattered from its p-n interfaces, the

conductance of a p-n-p junction exhibits periodic oscillations as a function of the local

Fermi wavelength17–21. While imaging these resonances in real-space by SGM would provide

information about the potential landscape, the presence of metallic top gates has so far

prohibited this. Here we employ an in-situ electrostatic patterning technique22,23 to fabricate

the junction and spatially resolve cavities in the scattering potential through the presence

of halos - spatially distinct ring structures - where the resistance of the junction is higher

relative to the background. In addition to identifying a sequence of Fabry-Pérot (FP) halos
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FIG. 1: (a) Schematic setup of charge writing on a graphene device. (b) Kelvin probe image (left)

and line profile (right, where blue points: experimental data, red line: Lorentzian fit) captured at

a lift height of 100 nm after charge writing. White dashed lines indicate the edge of the flake.

that stem from multiple disorder-induced cavities in the bulk of the well, we image narrow

and highly periodic resonances that are registered to the physical edges of the graphene

flake. We attribute these resonances to the enhanced electrostatic coupling at the edges,

that results from focusing of the electric field24.

II. EXPERIMENTAL METHOD

Our graphene flakes are made by mechanically exfoliating natural graphite onto degener-

ately doped Si substrate with an oxide thickess of ≈300 nm. We identified monolayer flakes

by their optical contrast and confirmed the thickness by measuring quantum Hall plateaus

in a two-terminal configuration. Two- and three-terminal differential conductance measure-

ments were taken using standard low frequency AC lock-in techniques, and a voltage VBG

applied to the doped Si substrate controlled the carrier density. To enable charge writing

we spin coated a 100 nm thick layer of polymethyl methacrylate (PMMA) over the device.

Fig. 1(a) shows a schematic of the configuration used for our combined SGM/electrostatic

lithography experiments22. We fabricate a graphene junction at low temperature (T≈4.2

K) by depositing a line of charge into the PMMA using triboelectrification25. An image

of the surface potential measured using Kelvin probe microscopy (KPM) is shown in Fig.

1(b). The KPM line profile is well fitted, at VBG=0 V, by a Lorentzian with full-width half

maximum of ≈200 nm [right panel, Fig. 1(b)].

The device exhibited a Dirac point at VBG ≈ 20 V [red curve, Fig. 2(a)] and a carrier

mobility of ∼3000 cm2(Vs)−1 at 2 × 1011 cm−2. Using the Einstein relation σ = νe2D, where
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ν = 8πεF/(h
2ν2F ) is the density of states at the Fermi level, εF ≈ 31meV

√
VBG, D ≈0.03

m2s−1 is the diffusion constant, we find an electron mean-free path le = 2D/vF≈ 80 nm.

The effect of the written charge is similar to a conventional top gate and is revealed in

transport by an increase in the resistance at VBG≈0 V, corresponding to the local neutrality

point under the deposited charge, and a decrease around the original neutrality point [black

curve, Fig. 2(a)]. Superimposed on this broad background modulation of the resistance

are reproducible oscillations that develop for back-gate voltages greater than ≈-10 V. To

reveal their microscopic origin we fix the back-gate deep within the p-n-p regime (VBG=0 V)

and monitor the resistance while the static tip is scanned at a lift height of ≈130 nm over

the dielectric. A typical scanned gate image [Fig. 2(b)] shows a nest of circular features

with different focal points centred over the junction with little contrast outside this region.

Such circular halos are frequently observed in SGM images and their spatial registration to a

specific area within a nanodevice is typically attributed to tip-induced resonant tunnelling of

individual charges through quantum dots26, to interference of electron waves at that point27,

or to Fabry-Pérot resonance between the tip and a scattering potential2. By identifying a

correlation between the resistance oscillations in Fig. 2(a) and the halos in Fig. 2(b), we

show they are entirely consistent with a tip-induced perturbation to the quantum interference

of electron waves scattered within the p-n-p cavity created by the deposited charge.

III. QUANTUM TRANSPORT AND HALO FORMATION

The change in resistance ∆R(VBG) = RCW − R0, where R0 and RCW are the resistance

before and after charge writing, respectively, is plotted as a function of back-gate voltage

in Fig. 3(a). To gain some insight into the overall shape of this curve we calculate the ex-

pected dependence using a simple model based on the Drude approximation. In this model

the resistance at each back-gate voltage is calculated using the local carrier-dependent con-

ductivity σ(n) and an estimate for the position-dependent carrier density n(x, y) under the

junction. Following Ref.20 we use the R(VBG) curve before charge writing to calibrate σ(n)

and a Poisson-Dirac solver to estimate n. The green curve in Fig. 3(a) shows the result of

the calculation and the discrepancy ∆RM with the measured data is shown in Fig. 3(b).

The fact that ∆RM assumes a roughly constant value of ≈170 Ω is consistent with previous

studies and suggests that the p-n interfaces themselves are diffusive and add a roughly con-
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FIG. 2: (a) Resistance as a function of back-gate voltage before (R0) and after (RCW ) charge

writing. Cartoon insets illustrate the relation between the schematic potential landscape after

charge writing, and the Fermi level at different back-gate voltages. (b) Scanned gate micrograph

over the region shown in Fig. 1(b). The black dashed outline indicates the region used for higher

resolution scans.

stant series resistance that is not included in the simple Drude model. More exact fitting

and minimisation of ∆RM is possible but is complicated by the unknown distribution of

charge in the dielectric. In addition to the roughly constant contribution from the pn inter-

faces, quantum corrections to the diffusive resistance manifest as resistance oscillations in

Fig. 3(b). To emphasise the resistance oscillations we subtract a smoothed background and

obtain the ∆R(VBG) shown in Fig. 3(c). A clear sequence of roughly 10 resonances emerge,

with amplitudes of ≈50 Ω and periodicity ∆VBG ≈1-4 V over the range of back-gate voltage

from -10 V to 5 V, beyond which they become indistinguishable from the aperiodic conduc-

tance fluctuations. To estimate the back-gate voltage of the resistance maxima we apply

successively more aggresive adjacent-averaging to the raw data [blue curve, Fig. 3(c)]. Once

the oscillatory pattern is stable we identify a regular sequence of dominant peaks and troughs

indicated by the circles and triangles in Fig. 3(c). Such periodic resistance resonances are

consistent with previous studies and point to interference effects between electron waves

scattered at the p-n junctions that define the cavity 17. Within this framework the troughs

(peaks) in resistance occur when the electrons bouncing between the first and second p-n

interfaces interfere constructively (destructively) [Fig. 3(d)]. Within the Landauer-Büttiker

formalism the modulation in transmission probability across the cavity causes a correspond-
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FIG. 3: (a) Difference between the resistance before and after charge writing, measured (black

curve) and modelled (green curve). (b) Difference between measured and modelled resistance

change. (c) Change in resistance measured as a function of back-gate voltage, with a smoothed

background subtracted in order to emphasise the peaks (circles) and troughs (triangles). Blue curve

shows the smoothed curve used to determine the position of the peaks and troughs. (d) Cartoon

showing the quasiparticle trajectories corresponding to resonant forward (triangle) and backward

(circle) scattering. (e) Back-gate voltage of the peak positions in (c) as a function of peak index.

Solid line is a fit to the data and crosses are the result of the quantum transport simulations.

ing change in conductance. We can estimate the expected period in the linear regime by

assuming the p-n interfaces are separated by a distance L and that the phase accumulated

by an electron ballistically traversing the cavity is φ = 2kxL, where kx is the wavevector

normal to the junction. In graphene this leads to the relationship ∆n = 2
√
πn/L, where n

is the carrier density within the cavity and is conventionally controlled by a top gate17. Note

that there is some uncertainty in the local Dirac point of the cavity and our data is likely to

depart from this ∆n ∝
√
n dependence because the back gate also modifies the global carrier

density. Nonetheless, based on the assumption the local Dirac point is between VBG =-10

and -5 V, and at VBG=4 V we have n ≈0.5 - 1×1012 cm−2, we derive a periodicity of the

FP oscillations of ∆VBG=2 V for a cavity L≈200 nm.
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FIG. 4: (a) SGM micrograph captured over the junction at a lift height of 130 nm. (b) Derivative

of the detrended resistance with respect to the back-gate voltage, plotted as a function of back-

gate voltage and tip position along α → β and γ → δ in part (a). Colored circles correspond to

the peaks indicated in Fig. 3(b). (c) Higher resolution of the range highlighted by boxes in (b).

The blacked dashed lines border the resonance highlighted by the green circle. The right panel

shows the corresponding simulation for a laterally partitioned junction with the tip stepped over

the middle of the junction.

In order to correlate the SGM halos with the putative FP resonances identified in Fig.

3(b), we choose y-positions over the edge (α) and middle (γ) of the flake, and sweep the

back-gate voltage with the tip parked at x-positions along the lines α→ β and γ → δ [Fig.

4(a)]. The resulting line spectroscopy data are shown in Fig. 4(b), where the numerical

derivative d∆R/dVBG has been plotted to add emphasis to the location of the peaks. As

the tip approaches the junction at the edge of the flake (αβ), the back-gate voltage of the

FP resonances, indicated by their corresponding colored circles in Fig. 4(b), shows little

dependence on tip position. By contrast, moving the tip over the middle of the junction

(γδ) causes the FP resonances to undergo a shift to higher back-gate voltage. The trajectory

of the shift is well-fitted by a Lorentzian with half-width half-maximum of ≈0.5 µm and

peaks when the tip is directly over the cavity. The origin of this is quite clear and stems from
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the shape of the additional potential contributed by the tip: a horizontal plane intersecting

the spherical 1/r potential from the tip can be described by a Lorentzian function of the

in-plane position, where r is the distance from the tip. Due to the cylindrical symmetry of

the potential in the plane, resonances which exhibit such shifts with tip position give rise

to halos in images10, so from these data we deduce that the FP resonances identified in

Fig. 3(a) correlate with halos centred over the middle of the flake (γδ). We provide clear

evidence for this in the case of a particular resonance marked by a green circle (VBG ≈-3.5

V) in Fig. 4(c), which shows a smaller range of VBG. Along the line αβ this resonance is

only weakly affected by the tip, while along γδ it is fully perturbed and gives rise to halos

similar to the one visible in Fig. 4(a). We note that despite the diffusive nature of transport

and the relatively high temperature, our interpretation is consistent with phase coherent

effects as both the thermal length LT = π1/2h̄2kF/4m
∗kBT ≈ 1.1 µm, where kF is the Fermi

wavevector and m∗ is the graphene effective mass31, and the dephasing length Lφ ≈300 nm,

measured via weak localisation, exceed the length of the cavity.

IV. DISCUSSION

While this pattern of behaviour can be confirmed by inspection for the majority of peaks

in Fig. 4(b), the non-uniform shift in the FP fringes and the presence of smaller fluctuations

betrays the influence of additional structure in the scattering potential. Disordered potential

fluctuations from absorbates and the underlying Si/SiO2 substrates are well-established in

exfoliated graphene and around charge neutrality are likely to partition the junction into

subcavities. It is important to note, however, that in our system the longitudinal sizes of

the subcavities must remain sufficiently correlated to define a length for FP resonances and

thereby preserve the energy spectrum observed in Fig. 3. To understand the interplay

between coherence and this type of potential disorder we performed quantum transport

simulations based on a numerical solution of the Dirac equation (see Appendix A). Due to the

relatively large size of the graphene flake we employ a code28 based on a continuum envelope

function formulation29. In order to easily examine many possible potential landscapes and

the outcome of scanning probe experiments, we also adopt, under the hypothesis of a slow-

varying potential, a simplified procedure for the approximate evaluation of the potential

profile as a function of the bias voltages30. The numerical results for a single FP cavity
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FIG. 5: (a) Comparison between experimental and simulated back-gate sweeps for a single cavity

with length 200 nm, partitioned laterally into multiple subcavities, and with charge-induced edge

cavities. (b) Potential profile U(x, y) representing a laterally partitioned junction, with p-type (n-

type) regions in red (blue). (c) Schematic showing how a change in tip position by ∆y causes a shift

in the potential of a subcavity ∆U , taking it through a peak in resistance. (d) SGM micrograph

captured over the junction at a lift height of 30 nm, together with a line profile showing individual

resonances. (Right) Spatially resolved simulation showing the appearance of halos around each

cavity of the potential shown in (a).

are shown alongside the experimental results in Fig. 5(a). The amplitude of the resistance

modulation is ≈50 Ω and the extracted peak spacing is linear at high energy [blue crosses,

Fig. 3(d)], both in good agreement with the experimental spectrum. We introduce disorder

by partitioning the Lorentzian-shaped cavity laterally into several subcavities in parallel by

narrow longitudinal walls with a height corresponding to about 10% of the cavity depth [Fig.

5(b)]. Owing to the different doping and local Fermi wavelength, each cavity resonates at a

slightly different back-gate voltage. However, as shown in the simulated back-gate sweeps

in Fig. 5(a), the dispersion in doping only leads to a broadening and amplitude-suppression

of the peaks, as was also predicted in Ref.18. The influence of the tip on transport as it
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FIG. 6: (a) Second numerical derivative (d2R) of the resistance as a function of back-gate voltage

and tip position along the direction ε→ χ in Fig. 5(d). Solid black lines indicate the uniform shift

in position of the fringes. (b) Plot showing the relationship between the raw back-gate trace and the

numerical derivative. Peaks in d2R correspond to dips in the raw data. (Right) Plot showing the

back-gate voltage of each peak in d2R. The solid line is a linear fit to the data. (c) Difference image

constructed by subtracting two raw SGM images captured at two different back-gate voltages.

approaches a partitioned junction is more complicated as the perturbation depends on the

lateral distance from the tip to each subcavity. This is illustrated schematically in Fig. 5(c)

which shows how moving the tip by a small distance ∆y brings adjacent subcavities into and

out of resonance. In the theoretical line spectroscopy plot over the middle of the junction in

Fig. 4(c) this manifests as a coexistence between shifted (black dashed) and unshifted (white

dashed) components of the main FP resonances. We find support for this picture in SGM

images obtained 100 nm closer to the surface. A typical SGM micrograph in Fig. 5(d) shows

a denser set of halos each with different focal points. Since at this height the tip-induced

potential is sharper, inducing the same potential perturbation requires a smaller change in

position, ∆U = (dU/dr)∆r, the halos both narrow and increase in number, allowing us to

resolve the subcavities directly. We also confirmed this theoretically in the right panel of

Fig. 5(d) which shows the resistance computed as a function of tip position over the centre

of the simulated cavity, showing the appearance of halos around each subcavity.

Another feature of our data not described within the simple picture of a single FP cavity

can be seen by close inspection of data in Fig. 4(a), which shows a striking sequence of

resonances that are strongly perturbed when the tip is over the graphene edges [see white-
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FIG. 7: (a) Schematic depiction of the inhomogeneous carrier density distribution induced by the

electric field focusing at the edges of the flake. For clarity the field lines associated with the charge

in the dielectric coating and with the back-gate have been drawn separately. (b) Electric-field

focusing enhances the charge induced at the edges of the flake, leading to a greater change in local

Fermi wavelength for a given back-gate voltage. (c) Higher-resolution image for the dashed box

shown in Fig. 6(c), along with a simulated SGM image showing a halo over the edge of the flake.

dashed lines in Fig. 4(c)]. To make them more pronounced we stepped the tip parallel to

the junction, along the line ε → χ in Fig. 5(d), and display a section of the spectroscopy

data captured close to the top edge in Fig. 6(a). The resonances are made more visible by

taking the numerical second derivative (d2R) of the raw data. The succession of peaks and

troughs is highly reproducible, periodic over the full range of back-gate voltage, and shifts

uniformly as a function of tip position. Note that in the raw data the peaks in d2R actually

correspond to small dips and have an average period of ≈0.33 V in back-gate voltage [Fig.

6(b)], a factor of three smaller than the main cavity resonances. In order to locate the focal

point of the finer resonances in SGM images, we examine ‘difference’ images constructed by

subtracting two images captured at two values of VBG. Since the halos associated with the

main FP peaks do not change appreciably they are effectively eliminated from the image.

Fig. 6(c) shows clearly that the remaining image contrast shows finer halos centred over the

edges of the flake.

Our observations are consistent with the presence of coherent transmission through cavi-

ties at the edges of the flake. One possible mechanism for their formation involves the extra

charge that accumulates at the edge in order to maintain equilibrium in the presence of elec-
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tric field focusing from the back gate [Fig. 7(a) and Ref.24]. Following Ref. [32], this effect

can be quantified by supposing that the capacitance per unit area between the graphene

and the back gate, normally assumed uniform and given by αbulk = ε/d, where d=300 nm is

the oxide thickness and ε the dielectric constant of the SiO2, can vary with lateral position

and assume a value αedge = n/VBG at the edge of the flake. Owing to the finite density of

states in graphene, the enhanced capacitance also accelerates the movement of the Fermi

energy through the quasi-bound energy levels. The resulting period in back-gate voltage of

a cavity with length L is consequently expected to be shorter by a factor αedge/αbulk, which

our data implies is ≈3. This is in excellent agreement with our electrostatic simulations as

well as capacitance measurements in the quantum Hall regime32. We also confirmed that

the accumulated charge leads to additional resonances in the back-gate sweeps [black arrow,

Fig. 5(a)], and that spatial simulations of the lower edge of the flake exhibit halos centered

on the charge accumulation-induced edge cavity [Fig. 7(c)].

In summary, we have directly imaged resonant quasiparticle scattering in graphene. We

have described how coherent scattering in disordered junctions can be understood at a

microscopic level by inspecting different halo structures in scanning gate images. We have

identified an important type of edge cavity effect induced by focusing of the electrostatic

field. Our work both shows the power of scanning probes at revealing the detailed behaviour

of graphene quantum devices and also paves the way towards imaging of novel effects of

quantum coherence in ultra-high mobility and more sophisticated heterostructure devices

based on two-dimensional atomic crystals.
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publication is available at the University of Cambridge data repository.
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Appendix A: Quantum Transport Model

In order to numerically study the properties of the device for a large range of potential

landscapes, gate voltages and probe positions, we have adopted a simplified simulation

approach, replacing a more exact, but time-consuming, self-consistent calculation with an

approximate calculation of the potential profile within the device30, which is then passed on

to an envelope-function based code for transport simulation28,34.

We start from the knowledge of the potential profile U0 in the graphene layer for a

particular set of voltages Vi0 applied to the gates30. When the gate voltages are changed
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by ∆Vi, a variation ∆U results in the potential profile (with respect to U0), as well as a

variation ∆ρ in the charge density (with respect to the charge density ρ0 corresponding to

the profile U0). If the electrostatic coupling is modeled through the capacitances Ci (per

unit area) between the gates and the flake, such variations are related by

∆ρ =
∑
i

Ci

(
∆U

−e
−∆Vi

)
(A1)

(where e is the modulus of the electron charge). On the other hand, the charge density ρ

is directly related to the number of occupied states, and thus to the local density of states.

While the exact local density of states depends on the wave function in the device and

thus on the solution of the transport problem, in the hypothesis of slow-varying potential

it can be approximated by shifting the argument of the density of states by the local value

of the potential energy. Under the further hypotheses of low temperature (Fermi-Dirac

distribution approaching a step function), of quasi equilibrium (Fermi energy of the contacts

nearly identical, equal to EF ), and of a sufficiently large graphene flake (density of states

approaching that of unconfined graphene), the charge density can be expressed as

ρ = e
∫ U

EF

DOS(E − U) dE = sign(U − EF )
e

π(h̄vF )2
(U − EF )2 , (A2)

with U = U0 + ∆U and ρ = ρ0 + ∆ρ. Substituting Eq. (A1) into Eq. (A2), a second-order

equation is obtained, which can be analytically solved in order to find the quantity ∆U and

thus the profile U = U0 + ∆U . Since in general the quantities U , U0, ∆U , ρ, ρ0, ∆ρ, and

Ci are spatially-varying, the calculation has to be repeated for each point of the graphene

flake.

Then, the resulting approximate potential profile is passed on to the code for transport

simulation28,34. The structure is partitioned into a series of thin cascaded sections, in such

a way that within each section the potential can be assumed as approximately constant

along the transport direction. As a consequence, in each of these regions the envelope

functions of graphene can be written as a confined transverse component multiplied by a

longitudinally propagating plane wave. After some analytical manipulations, the resulting

Dirac equation with Dirichlet boundary conditions is recast into a differential equation with

periodic boundary conditions, that can be efficiently solved in the reciprocal space35,36.

Then we enforce the continuity of the wave function at each interface between adjacent

sections, on each of the two graphene sublattices and for all the possible modes impinging
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on the interface. Projecting these continuity equations on a basis of transverse functions,

and solving the resulting linear system, the scattering matrix connecting the modes at the

two sides of the interface is obtained. Recursively composing all the scattering matrices and

applying the Landauer-Büttiker formula, we obtain the conductance of the overall structure.

With this approach, we have first simulated the transport behavior of the graphene flake

considering the effect of the back-gate, coupled to the sample through a 0.1151 mF/(m2)

capacitance, and assuming a smooth cavity-shaped potential U0 with different profiles and

widths. Comparing the resistance behavior, and in particular the VBG values for which

the Fabry-Pérot resonances appear in the numerical simulations and in the experimental

measurements, we have found a good agreement assuming a Lorentzian profile U0 with a

210 meV depth and a 180 nm width at half maximum for VBG = 0 V [see Figs. 3(e) and

4(c)].

Simulations have been performed also including the effect of potential disorder and other

irregularities. In particular, we have considered several longitudinal potential walls with a

height corresponding to about 10% of the total depth of the cavity, that partition it into

subcavities in parallel with average width of 400 nm (see the potential profile shown in

Fig.5(b)). A finite dispersion is introduced in the values of the potential at the bottom and

of the width of the subcavities, as well as in the height of the walls separating the cavities.

The resulting behavior of the resistance as a function of the back-gate voltage is reported

with a curve in Fig. 5(c), for a small range of VBG values. Even though the disorder in

the potential landscape introduces irregularities in the resistance behavior, the Fabry-Pérot

oscillations typical of the original profile are still clearly visible.

We have then included the effect of electric field focusing at the edges, obtained by solv-

ing Eq. (A2) with the complete Poisson equation for a set of reference configurations and

parametrizing the results as a function of the back-gate voltage. For the resulting potential

profile, we have first repeated the calculation of the resistance as a function of the back-gate

voltage. The results are shown with a black curve in Fig. 5(a), and are characterized by

smaller and more rapid oscillations (similar to those observed in the experiments), super-

imposed to the Fabry-Pérot resonances already observed when the electric field focusing at

the edges is neglected.

Then, for this profile, we have performed a simulation of the resistance variation as the

probe (located at a distance of 130 nm from the 100 nm thick dielectric coating and biased
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with a voltage VT =-10 V) is scanned over the whole device. To this end, we have included

into Eq. (A1) a capacitance CT between the probe and each point ~r of the graphene flake,

with a Lorentzian dependence on the distance d between ~r and the graphene point right

underneath the probe: CT = CTM/(1 + (d/d0)
2), with CTM = 34 µF/(m2) and d0 = 230 nm.

The resistance values we have obtained are shown, as a function of the probe position, in

Fig. 5(d): multiple halos appear, analogous to those observed in the experimental data.

These halos in the bulk of the flake originate from the formation of the subcavities and,

indeed, disappear if the scanning probe simulation is performed on a single cavity (without

the separation into several subcavities in parallel).

We have then repeated the scanning probe simulation neglecting charge accumulation

at the edges of the flake. The difference between the resistance values obtained with and

without the effect of charge accumulation at the edges is shown, for a small subset of probe

positions near the edge, in the lower panel of Fig. 7(c). From these results, it is apparent

that electric field focusing leads to halos centered on the edges.
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