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Abstract—There is much current interest in using multisen-
sor airborne remote sensing to monitor the structure and bio-
diversity of woodlands. This paper addresses the application of
nonparametric (NP) image-registration techniques to precisely
align images obtained from multisensor imaging, which is critical
for the successful identification of individual trees using object
recognition approaches. NP image registration, in particular, the
technique of optimizing an objective function, containing simi-
larity and regularization terms, provides a flexible approach for
image registration. Here, we develop a NP registration approach,
in which a normalized gradient field is used to quantify similarity,
and curvature is used for regularization (NGF-Curv method).
Using a survey of woodlands in southern Spain as an example,
we show that NGF-Curv can be successful at fusing data sets
when there is little prior knowledge about how the data sets are
interrelated (i.e., in the absence of ground control points). The
validity of NGF-Curv in airborne remote sensing is demonstrated
by a series of experiments. We show that NGF-Curv is capable
of aligning images precisely, making it a valuable component
of algorithms designed to identify objects, such as trees, within
multisensor data sets.

Index Terms—Aerial photograph, hyperspectral image, image
registration, light detection and ranging (LiDAR), remote sensing.

I. INTRODUCTION

IRBORNE multisensor imaging is increasingly used to
examine vegetation properties [1], [2]. The advantage of
using multiple types of sensors is that each detects a different
feature of the vegetation, so that collectively they provide a de-
tailed understanding of the ecological processes [3]-[5]. Specif-
ically, light detection and ranging (LiDAR) devices produce
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detailed point clouds of where laser pulses have been backscat-
tered from surfaces, giving information on vegetation structure
[6], [7]; hyperspectral sensors measure reflectances within nar-
row wavebands, providing spectrally detailed information about
the optical properties of targets [3], [8]; whereas aerial pho-
tographs provide high spatial-resolution imagery so that they
can provide more feature details, which cannot be identified
from hyperspectral or LIDAR intensity images [9], [10]. Using
a combination of these sensors, individual trees in tropical
rain forests can be mapped, enabling invasive species to be
monitored [8], [11], carbon storage to be assessed [12], and leaf
physiological processes to be inferred [3], [13]. Accurate align-
ment of images is critical for the success of the aforementioned
applications. However, images taken from different sensors or
angles have relative rotation, translation or scale mismatches,
and rugged terrain can cause complex displacement between
images [14], [15]. As a result, aligning images is challenging.
Image registration involves transforming a template image T’
using a transformation ¢ so that it aligns with a reference image
R. Alignment of remotely sensed images (known as image
registration) is currently conducted with feature-based meth-
ods [1], [15]-[26], intensity-based methods [14], [27]-[34],
or a combination of the two [15], [35], [36]. Feature-based
methods rely on identifying common features in R and 7.
Using these common features, transformation parameters of
feature-based methods are calculated such that the location
of the features in the transformed template image T, are
identical to those in R. Features in common between the
reference and template images (i.e., points, patches or edges
in the images), can be obtained by manual selection [15],
[16], or by a variety of automatic techniques, including edge
detection [1], [17], [18], scale-invariant feature transformation
[19]-[22], [36], speeded-up robust features (SURF) detection
[37], random sample consensus [23], [24], feature segmentation
[21], [25], or phase congruency methods [26]. The performance
of these approaches at detecting common features depends on
image quality, and it can be difficult to locate corresponding
features between images when data sets have different spatial
resolutions or optical properties [27], [28]. Furthermore, in the
case of multisensor imaging, some features in the reference
image may not be present in the template image, or vice versa.
In contrast, intensity-based methods involve maximizing the
similarity in intensity values between the transformed template
image Tre; and IR [14], [27]-[30]. The most often used similar-
ity measures are normalized cross correlation (NCC) [33], [34],
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mutual information (MI) [28]-[30], [38], and normalized gradi-
ent fields (NGF) [31], [32]. In theory, intensity-based methods
are fully automatic, but in practice, they are often mathe-
matically ill-posed, in the sense that the registration solution
might not be unique and a small change within the data might
result in large variation in registration results [39]. In addition,
different types of sensors affect the similarity between images
significantly; therefore, the choice of similarity measure for the
intensity-based methods is very important [2], [28]-[30], [35],
[36], [38], [40], [41].

According to the form of the transformation ¢ used in image-
registration methods, registration methods can also be classified
as parametric or nonparametric (NP). Parametric registration
methods use a set of parameters to construct ¢; these parame-
ters may, for example, be used to explicitly generate translation
and rotation, or an affine transformation (i.e., one that preserves
points, straight lines, and planes) [42]. In contrast, in a NP regis-
tration method the transformation ¢ is no longer parametrized,
cf. Section III for details.

This paper develops a NP registration method, which we
refer to as NGF-Curv, based on variational formulation as an
alternative to the well-established feature-based and intensity-
based approaches [15]. NP registration methods are already
well-established in mathematical analysis, medical imaging
communities, and computer vision [14], [43]-[50] but have yet
to permeate far in the field of remote sensing. NP registration
methods are based on a variational formulation within which a
cost function is minimized. They have been developed to over-
come the ill-posedness of established methods by considering
not only the similarity between images but also the regularity
of the transformation in the calculated cost function. These
methods are not mentioned in recent reviews of registration
methods in remote sensing [15], [51], and to the best of our
knowledge, have never been used in this field. We demonstrate
how NP registration can be used to register three types of
airborne remote sensing data sampled over wooded landscapes
(i.e., LiDAR, hyperspectral, and photographic imagery). The
benefits of the NP registration method are illustrated, focusing
particularly on its strong performance regardless of the number
of different data types or degree of preprocessing. The data sets
used to exemplify the approach are introduced in Section II.
Then, in Section III, the mathematical concepts of the NP
image registration algorithm based on variational formulation
are introduced. The demonstration of the effectiveness of the
approach is given in Sections IV and V. Finally, Section VI
explores the behavior of alternative similarity measures and
gives recommendations for future work.

II. DATA

This section briefly addresses the methodologies and prop-
erties of the data sets used for registration in this paper. Ac-
quisition of remote sensing data sets was conducted in three
areas of the Los Alcornocales Natural Park, Spain (lat 36°19’,
long 5°37") on 10 April 2011, by Airborne Research and Survey
Facility of the U.K.’s Natural Environment Research Council
(NERC-ARSF), and preprocessed by their Data Analysis Node.
The study area is a typical Mediterranean wooded landscape,

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

where grassy fields in the valleys are surrounded by open
woodland on hills, and rocky outcrops at higher altitude. The
estimated tree cover area is 52% of the LiDAR survey area. The
airplane flew at a nominal height above ground of approximate
3000 m and was equipped with LiDAR and hyperspectral
imagers, as well as a digital camera. LiDAR [Leica ALS 50-II]
emits pulses of monochromatic laser light (1064 nm) to scan
topographical and geometrical structures of the surface, creat-
ing 3-D point clouds representing the points at which pulses
are backscattered off surfaces and returned to the aircraft. A
scan angle of 12° was used. Each point has an associated
intensity value, which correlates with the proportion of a pulse’s
energy, which is returned to the sensor. However, the radiomet-
ric properties of LiDAR intensity are not completely known,
LiDAR pulse intensity values are controlled by an automatic
gain control (AGC) system during the acquisition process;
thus, the intensity of the return is a function of unknown
varying pulse energy, as well as the backscattering properties
of the ground surface [52]-[54]. NERC-ARSF preprocessed
these LiDAR data and georeferenced them to the Universal
Transverse Mercator (UTM) projection with WGS-84 datum.
The average LiDAR point density over the study site was 2
points per square meter (m?). In order to compare LiDAR
imagery with other data sets in our experiment, LiDAR point
clouds were projected onto a 2-D image plane by ignoring the
height information for each LiDAR point. LiDAR intensity was
calculated in 1-m pixels as the average of the all-return pulse
intensities, with preprocessing by focal statistics function in
ArcGIS software and image contrast enhancement by MATLAB
build-in histogram equalization function histeq. Using first
returns yielded qualitatively similar results to using all returns.

Hyperspectral imaging spectrometers measure solar energy
reflected off the Earth’s surface within a swath of land. Hyper-
spectral data were gathered using the AISA Eagle and AISA
Hawk sensors (Specim Ltd., Finland), which are pushbroom sen-
sors with 255 and 256 spectral bands covering 400- to 970-nm
and 970- to 2500-nm wavelengths, respectively, across 2300-m
swath width with 3-m spatial resolution. The hyperspectral
sensors record reflected energy in digital numbers, which were
converted to spectral radiance (xWem 2 -sr~!-nm~!) and
then provided to us. Before image registration, hyperspec-
tral imagery was atmospherically corrected using ATCOR-4
(Rese Ltd., Switzerland), which converts radiance values to
reflectances. An accurate navigation system integrated with
boresight calibrated hyperspectral sensors provides geocoordi-
nates of each pixel in the hyperspectral imagery, which meant
that the hyperspectral images could be orthorectified by digital
elevation models (DEMs) from Advanced Spaceborne Thermal
Emission and Reflection Radiometer and LiDAR data and then
georeferenced to the UTM projection with WGS-84 datum.
The estimated georeferencing error of hyperspectral image is
about 5-10 m horizontally. However, it deteriorates at the edge
of the field of view of the hyperspectral sensors. The spectral
bands for a given scan line were all recorded simultaneously.
True color composite of RGB bands (640, 549, and 460 nm)
were converted to gray images by MATLAB build-in function
rgb2gray and the gray image was used for registration
purposes.
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Fig. 1. Aerial coverages of LiDAR (blue line), hyperspectral images (green
line) and aerial photographs (red line) recorded in line 2 of the NERC-ARSF
survey of Spanish woodland. The LiDAR aerial coverage is about 6.4 km?
with 1-m spatial resolution, whereas the hyperspectral imagery and aerial
photographs are 28.4 and 23.4 km?, respectively. The spatial resolutions of
hyperspectral imagery and aerial photographs are 3 and 0.3 m.

Aerial photographs were acquired during the flight using
a Leica RCD-105 Digital Frame Camera. Each photograph
has 7212 x 5408 pixels. Since the spatial resolution of aerial
photographs is much higher than that of hyperspectral images,
aerial photographs can help to identify objects more accurately.
However, aerial photographs were not integrated with the air-
craft navigation system; thus, they were not orthorectified or
georeferenced during preprocessing. Metadata associated with
aerial photographs informs of the time, location, and altitude
of aircraft when each photograph was taken. We assumed that
the location was the center of each image and that the spatial
resolution of each pixel equaled to 0.3 m.

The aerial coverages and resolutions of LiDAR, hyperspec-
tral images, and aerial photographs are given in Fig. 1. We
can see that LiDAR imagery in blue line in Fig. 1 has a
narrower width and smaller aerial coverage than the hyper-
spectral imagery (green) and aerial photographs (red). Our
registration scheme aligns the hyperspectral imagery and aerial
photographs onto the LiDAR image because combining three
different types of sensors is the main purpose of this research.

If the preprocessed data had been georeferenced, then the
images could have been aligned using the georeference coordi-
nates. However, uncertainties from sensor distortions and bore-
sight errors often cause misalignment; thus, image registration
techniques need to be applied in order to precisely align images.
Registration of aerial photographs onto hyperspectral images or
LiDAR imagery is even more challenging because they were
neither orthorectified nor georeferenced when delivered. This
paper provides a robust and accurate approach for registering
all three data sets.

III. METHOD

This section will briefly describe the mathematical concept
of NP image registration, and the particular registration method
NGF-Curv that we use for the registration of images in our
data set (see [55] for further details). Let R and T be the
given reference and template images, respectively, modeled as
functions defined on a finite 2-D grid €2 and mapping a point x
on the grid to a real intensity value R(x) and T'(z), respectively.
The resolutions of R and 7" do not necessarily have to be the
same, which is they can have different sizes in vertical and
horizontal directions. In this case, spline interpolation scheme
was used to rescale them to the same grid §2.

When registering template 1" with the reference image R, we
find a suitable transformation, which maps 7" to R such that

the transformed version of 7' is similar to R. This transfor-
mation maps the grid of T to the grid of R. A generic vari-
ational method for finding this transformation is as a solution
p:Q—=Qof

min {ZD T (p(x)), R(x)] +a5<¢>} (1)

zeQ

where D is a similarity measure that quantifies the difference
between the distorted template 7" and reference image R, S is a
so-called regularization term that imposes appropriate regular-
ity on the transformation ¢ and « is a positive parameter that
balances the importance of the similarity measure against the
regularization term. Solutions of (1) for the registration problem
are given by [43], [50], [56]. In the particular case of NP reg-
istration considered in this paper, the transformation function
o can be expressed as the sum of identity and displacement u,
which is

p:x—x—u(x). (2)

A standard choice for D in (1) is

but this has the disadvantage of not being contrast-invariant
[43]. This can be corrected by other kinds of distance measures,
for example, NCC, MI, and NGF. The NCC distance measure
is defined as

(vec(Treg)Tvec(R))2
(vec(Treg)Tvec(Treg)) (vec(R)Tvec(fg))

DNCC [Tregy R] =1—

where T,., denote the registered template after transformation
to the reference image (i.e., = T'(¢)), and vec(A) generates
a vector by concatenating the columns of the tensor A. This
distance measures the normalized cross correlation between
Tieg and R. The MI distance measure is defined as

DM[Teg, R1= pr () log pr,,, () + > _ pr(y)log pr(y)
e ye

+ Z Z P(Tiee,R) (T, Y) 108 pi1, RY (T, 9)  (4)

zeQ ye

where pr,,, and pp, are the marginal densities, and p(7;,, g is the
joint density (see [43] for more details). In this paper, we use
the NGF similarity measure [31], [43]. Here, the normalized
gradient VI/|VI| of an image I is used to measure similar-
ity between R and T. More precisely, the NGF measure is
defined as

NGF(I,n) = vec ( VI > )

VNI

where 1 > 0 is an edge parameter. The edge parameter models
the level of the noise present in I such that image values below
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this parameter are ignored. Then the NGF distance measure is
defined as

DN (T, R = 1 — ((NGF(Tg. )" NGF(R.1))” (6)

which, if minimized, maximizes the linear dependency (align-
ment) of the NGF of T" and R.

The regularization term .S encodes the regularity that should
be imposed on the transformation ¢ to reduce the ill-posedness
of the registration problem. For an overview of different regu-
larization terms and their effect on the registration (see [43] and
[56]). In what follows, we use a curvature regularization [31],
[50], which is

. 1
Scurv(@) — Scurv(u) — 5 Z ‘AU(I)‘Q ] (7)

zeQ

This regularization results in the registration accuracy being
dependent on the smoothness of the displacement u between
R and T [56]. In particular, curvature regularization penalizes
oscillations in w since it can be regarded as an approxima-
tion of the curvature of u [56]. One advantage of curvature
regularization is that it does not require affine preregistration
steps. Other regularization techniques, such as fluid registration
[57], [58], are sensitive to affine linear displacement such that
preregistration with affine linear transformation is required, see
[50], [55], [56].

The method developed in this paper is based on minimizing
the following function:

J(u)=>"DNF [Tiey(), R(x)] + % Y |Au(@)?, (NGF-Curv)

zeQ) e

where DNOF is the NGF similarity measure defined in (6) and

SV is the curvature regularization term defined in (7). In
what follows, we refer to this method as the NGF-Curv method
(NGF-Curyv for short).

For the numerical minimization of (NGF-Curv) we use
the Image Registration software package (FAIR).! There, the
minimizer of (NGF-Curv) is computed iteratively via a semi-
implicit scheme for the so-called Euler-Lagrange equation for
(NGF-Curv). The latter is the equation that arises as the spa-
tially discrete version of the Gateaux derivative of the continu-
ous functional J, which reads [50]

f(z,u(z)) + aAu(z) =0 forx € Q 8)

where f(z,u(x)) is the discretization of the derivative of the
distance measure D. In order to solve (8) a semi-implicit

IMATLAB version of FAIR http://www.siam.org/books/fa06/.
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iterative scheme is used, which introduces an artificial time step
At and computes the fixed point of

" (z) — AtaA?uF T (2) = WP () + Atf (2,45 (2)) (9)

where u*(x) denotes the kth iterate of the scheme. Further
details regarding discretization and numerical optimization are
provided in [43]. Since remote sensing data sets contain large-
scale surface information, it is computationally expensive to
conduct entire image-registration steps at the original reso-
Iution [43]. FAIR provides a multilevel image registration
scheme, producing a series of images varying in resolution,
such that registration results from a coarser image can be used
to initialize the registration on finer resolutions of the images.
The multilevel scheme reduces the amount of expensive com-
putation and the chance of being trapped in local minima during
the iterative search, as images are much smoother in coarse
resolution [43], [59].

IV. APPLICATION OF THE REGISTRATION APPROACH
TO THE AIRBORNE REMOTE SENSING DATA SET

NGF-Curv requires that images are identical in size; thus,
the first step of the process was to match the geographical
boundaries of all data sets to each other, by reducing the
number of features present in either R or 7. Since both hyper-
spectral and LiDAR intensity images contain geocoordinates,
geographical boundary matching of them is straightforward.
However, the aerial photographs were neither georeferenced
nor orthorectified and matching the boundary between aerial
photographs and other data sets was therefore challenging. For
the latter, we used the geocoordinate at which each photograph
was taken as the center of each aerial photograph. Then, the
geographic boundary of each aerial photograph was roughly
calculated by counting the approximate number of pixels of an
aerial photograph and adding 300 m in x and y directions to
compensate the errors caused by rough approximation. Hence,
the size of each aerial photograph image was assumed to be

L., =0.3L;, +300, L, =0.3L;, + 300

where L;, and L, are the number of pixels of aerial photo-
graphs in 2 and y directions, and the 0.3 multiplier converts pix-
els into meters. Approximately, L;, = 5000 and L; = 7000
for the photographs used in this paper. ‘

Our objective is to coalign LiDAR, hyperspectral imagery,
and aerial photograph. As the LiDAR aerial coverage was much
smaller than other data sets (see Fig. 1), LIDAR was used as the
reference image onto which the hyperspectral template image
was aligned. LiDAR intensity data was used alongside a gray
image converted from a true color composite (640, 549, and
460 nm) of the hyperspectral images using the MATLAB build-
in function rgb2gray. Although it would seem natural to use
the band at 1065 nm wavelength of the hyperspectral imagery,
which corresponds to the LiDAR intensity wavelength, this
band suffers from low signal-to-noise ratio, thus was not used.

NP image registration with a variational formulation finds the
optimized location for each pixel that maximizes similarity be-
tween two images. This is achieved by numerical optimization
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methods. The FAIR toolbox provides three different second-
order optimization schemes: Gauss—Newton, I-BFGS, and Trust
region. The 1-BFGS optimization scheme was adopted in this
paper. The choice of optimizer can influence the performance
of image registration, but evaluating their performances was
beyond the scope of this paper. NP registration yielded opti-
mized spatial coordinates of each pixel, which were used for
the transformation of original hyperspectral images. During
the transformation, the hyperspectral images were resampled
and regridded by nearest a neighbor method. Nearest neigh-
bor estimates were chosen from existing values rather than
averaging neighboring pixels, thus minimizing artifacts. This
is important because hyperspectral imagery should preserve
physically meaningful values.

Choosing optimal parameters in (NGF-Curv) is an important
step of the registration process, but these are difficult to find
automatically (although, see [31] and [60], for examples of
automatic edge parameter 7 selection once noise level and
image volume are known). We used a trial-and-error approach
to find n and smoothness parameter «, which was time con-
suming. Fortunately, tuning of parameters for each registration
of remote sensing images is not normally required, a single
calibration for template and reference images taken by two
different sensors was enough to obtain reasonable results in
most cases. For the registration of a hyperspectral image onto
a LiDAR intensity image the optimal values of o and 1 were
found to be 5000 and 0.1, respectively.

The aerial photograph was aligned with the hyperspectral
image because the swath widths of the hyperspectral images
(2100 m) and aerial photographs (2400 m) were similar,
whereas the LIDAR images were much narrower (800 m) (see
Fig. 1). The narrow swath width of the LIDAR makes it difficult
to find a region of interest in the aerial photograph correspond-
ing to that in the LiDAR as the geographic boundary of the
aerial photograph is roughly approximated, because of the roll,
pitch, yaw of aircraft, and local topographic distortion. The
registration of the aerial photographs onto the hyperspectral
images is challenging because aerial photographs are distorted
by various effects, including topography, lens distortion, and
viewing angle. As we assumed the location where each aerial
photograph was taken as the center of the image, corresponding
hyperspectral images of size L., X L, m? were extracted from
the hyperspectral imagery and used as the reference image.
Curvature registration with NGF distance measure (NGF-Curv)
was employed to register aerial photographs onto hyperspectral
images. Regularization parameter was set to a = 2.5 x 10°
and the edge parameter 7 = 0.03. RGB bands of hyperspectral
images and RGB aerial photographs were both transformed to
gray intensity images before registering them to each other
to increase the processing speed and the robustness of the
registration. After the registration of the aerial photographs onto
the hyperspectral imagery, a mosaic of the aerial photographs
was created, which was then aligned with the LiDAR data by
applying the already computed LiDAR-hyperspectral imagery
transformation.

Numerical experiments were conducted to compare the
NGF-Curv method with well-known parametric registration
methods based on alternative distance measures (i.e., NCC, MI,

TABLE 1
MEAN, STANDARD DEVIATION, MINIMUM, AND MAXIMUM
OF |Trec — R|, CORRELATION BETWEEN Tgrg AND R,
AND CPU TIME IN SECONDS OF EACH METHOD

T NCC MI NGF | SURF | NGF-
Curv
mean || 73.70 | 66.89 | 73.08 | 72.63 | 74.56 65.68
“ std 4266 | 3849 | 41.82 | 41.71 | 44.13 38.19
o min 0 0 0 0 0 0
i | max 255 255 254 255 255 255
corr 0.55 0.68 0.58 0.58 0.53 0.71
time - 4.48 6.63 6.96 5.86 34.85
mean || 52.94 | 48.66 | 4873 | 4892 [ 48.67 47.09
- std 30.88 | 27.90 | 25.21 | 2546 | 25.12 21.39
cfo min 0 0 0 0 0 0
i | max 246 249 255 255 255 255
corr 0.39 0.52 0.52 0.51 0.51 0.62
time - 10.33 | 11.23 | 15.76 | 163.28 | 380.12
mean || 55.61 | 51.37 [ 47.09 | 49.01 | 48.61 45.23
< std 3931 | 3747 | 31.69 | 34.30 | 33.37 26.97
o min 0 0 0 0 0 0
i | max 255 255 255 255 255 255
corr 0.18 0.28 0.35 0.32 0.32 0.55
time - 9.70 | 11.91 | 14.21 | 197.38 | 375.02

and NGF) and the feature-based parametric method SURF [37].
These established methods are computationally efficient and
widely used (see Sections I and III for references); SURF in
particular is recognized as a robust local feature detector that is
effective at feature-based parametric registration. Approaches
were compared in terms of the mean, standard deviation (std),
minimum (min), and maximum (max) of |Ti; — R|, and the
correlation (corr) between T, and R, using MATLAB build-in
commands mean, std, min, max, and corrcoef, respec-
tively. Mean and std reflect the distance between T;., and R;
thus, smaller magnitudes indicate better registration; min and
max give the range of the differences between Ti, and R,
whereas corr represents the linear dependence of T, and R
(larger values indicate better registration). To compare compu-
tation efficiency, CPU time in seconds was given. All analyses
were conducted using Intel Xeon E5-2630 2.30 GHz PC. Nu-
merical experiments were conducted in LiDAR-hyperspectral
registration and two different scenarios of aerial photograph-
hyperspectral imagery registration. The reason why we give
two examples of the aerial photograph-hyperspectral imagery
registration is that topographical distortion of aerial photograph
in rugged terrain may be larger than that in flat terrain.

V. EXPERIMENTAL RESULTS

Comparison of NGF-Curv with established approaches
(Table I) show mean, standard deviation, maximum, minimum,
correlation and computational time. The mean, standard devi-
ation and correlation, in Table I support NGF-Curv performed
better than NCC, MI, NGF, and SUREF in all cases, whereas
minimum and maximum errors show no difference. NGF-Curv
requires more computational time than other methods in all
examples. This is because NGF-Curv computes an optimal
transformation of each pixel, whereas parametric methods find
a set of transformation parameters. Therefore, the degree of
freedom of NGF-Curv is much larger than that of NCC, MI,
NGF, and SURF methods, thus slowing time. We now consider
these results in detail.
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Fig. 2. Image registration of a hyperspectral image onto a LiDAR intensity image of a Spanish woodland, surveyed by aircraft (scale 400 x 400 m2). The first
row shows (al) a LIDAR intensity reference image R; (a2) a hyperspectral template image 7'; (a3) original color image of (a2); (b0) a map showing the difference
between T" and R (i.e., |T' — R|), which would be entirely dark if the match was perfect; (c0) highlights the circled area of (b0). The second row of maps show
|Treg — R)] obtained by using established methods NCC, MI, NGF, SUREF, as well as our NGF-Curv method. The results of registration methods are denoted by
Trljgc, ﬂﬁ’g, TNGF, J}SSERF, and I}I;ISF’C““’, respectively, in these panels; yellow circle highlights areas of the images where differences among registration methods
are seen. The third row zooms in on these highlighted circles. The final row of panels shows the aerial photograph template image after it has been registered using

methods (d1) NCC, (d2) MI, (d3) NGF, (d4) SUREF, and (d5) NGF-Curv.

The first case we consider is image registration of hyper-
spectral imagery onto LiDAR (Fig. 2). As both data sets were
georeferenced by the data provider, only small distortions were
present (up to 10 m) as a result of DEM or navigation incon-
sistencies [2], [35], [36], [40], [41]. From Fig. 2(b1)—(b5), in
particular, the parts inside the circles marked on the figures
[(c1)—(c5)] and the quantitative results in terms of mean, stan-
dard deviation, and correlation in Table I, we see that the results
of NCC and NGF-Curv methods are better than the results of
MI, NGF, and SURF methods at the expense of slow computa-
tional time. In this example, the NCC method performed as well
as the NGF-Curv method, because both the hyperspectral and
LiDAR images were approximately georeferenced before the
registration was applied, finding a local minimum was enough
to get reasonable outcomes [2].

We present two image-registration examples: one for a flat
terrain and one for a rugged terrain (Figs. 3 and 4, respectively).
Where topographical variation is large the correct alignment of
the images becomes more difficult [2], [35], [36], [41]. The

NGF-Curv registration approach (NGF-Curv) worked well in
the case of flat terrain (see Fig. 3), whereas parametric registra-
tion with three different distance measures (NCC, MI and NGF)
and feature-based SURF poorly matched the detailed structures
of a given reference image, see Fig. 3(b1)—(b5) in particu-
lar the parts marked by circles, which are highlighted and
given in Fig. 3(c1)—(c5). NGF-Curv method provides reason-
able outcomes, whereas parametric registration methods (NCC,
MI and NGF) and SURF make serious mistakes and in particu-
lar, could not align detailed features [e.g., see Fig. 4(c1)—(c5)].
In addition, the quantitative analysis in Table I supports NGF-
Curv outperforms other methods in both flat and rugged cases
(Figs. 3 and 4) although computational time of NGF-Curv is
much slower than other methods. Fig. 5 shows the results of
aligning the aerial photographs onto the hyperspectral image
for the cases of flat and rugged terrains in the form of a checker-
board: if the alignment is good then features such as roads and
rivers should join across the checkerboard. We can clearly see
that NGF-Curv method gives very accurate registration results.
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Images before registration

(al) (a2)

®0) (c0)

Aerial photograph registration on a hyperspectral image using five approaches
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(d1) (2)
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£

@5)

)
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Fig. 3. Image registration of an aerial photograph onto a hyperspectral image in a region that has flat terrain (scale 2400 x 1800 m2). The first row shows (al) a
hyperspectral reference image R; (a2) an aerial photograph template image 7'; (b0) a map showing difference between these images (i.e., |7 — R)|); (c0) highlight
the circle region of (b0). The second row shows maps of |Treg — R generated by methods NCC, MI, NGF, SUREF, and our NGF-Curv approach. The third row
highlights the circle areas of the maps in the second row. The last row of panels shows the aerial photograph template image after it has been registered using

methods (d1) NCC, (d2) M1, (d3) NGF, (d4) SUREF, and (d5) NGF-Curv.

As aerial photographs were registered individually onto
hyperspectral imagery there may be mismatches at the edge
of each aerial photograph (visible in Figs. 3 and 4), which
may produce noticeable discontinuity between the photographs.
For example, in Fig. 6(c), the part marked by the red circle
shows discontinuity at the interface of two aerial photographs.
These boundary artifacts are due to a nonoptimal choice of
the regularization parameter for the registration of aerial pho-
tographs to hyperspectral images. We chose to have a fixed
regularization parameter a in (NGF-Curv), which might not
be optimal for every aerial photograph in the data set, and this
caused errors at the boundaries. Tuning the parameters for each

aerial photograph where discontinuity deteriorates the quality
of registration can improve the result significantly. In the case
of the mismatch inside the circle in Fig. 6(c) (see (e3) for the
highlight of its circle region), a tuning of the regularization
parameter o from 1.5 x 10° to 2 x 10° significantly improved
the registration and removed the discontinuity between the two
aerial photographs [Fig. 6(d) and (e4)].

VI. CONCLUSION AND OUTLOOK

The experiments illustrated in Figs. 3-5 indicate that
NGF-Curv image registration techniques can effectively coalign
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(b0) (c0)

Aerial photograph registration on a hyperspectral image using five approaches
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(b2) (®3)
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(d3)
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(b5)

(c4) (c5)

V4

(d4) (d5)

Fig. 4. Tmage registration of an aerial photograph onto a hyperspectral image in the case of rugged terrain (scale 2400 x 1800 m?). The first row shows (al) a
hyperspectral reference image R; (a2) an aerial photograph template image 7T'; the second row shows (b0) a map of difference between these images (i.e., |T' — R|)
for methods NCC, MI, NGF, SURF, and NGF-Curv. The third row (c0) zooms in on the circular regions of (b0). The last row of panels shows the aerial photograph
template image after it has been registered using methods (d1) NCC, (d2) ML, (d3) NGF, (d4) SUREF, and (d5) NGF-Curv.

remote sensing images, working as well as established methods
when registration is straight forward and outperforming those
approaches when dealing with nongeoreferenced photographs.
Remote sensing images are usually preprocessed before being
sent to users, but the orthorectification and georeferencing
procedures are not accurate enough to identify individual trees.
Therefore, high-accuracy registration methods for remote sens-
ing data sets of wooded landscapes are needed.

Techniques based on feature extractions are well established
in the field and are capable of accurate data assimilation in
many applications. However, these approaches are difficult to
apply to multisensor data, because different types of sensors
may show different features, and sensor distortions are com-

plex. Intensity-based parametric methods (such as NCC, MI,
and NGF) can perform fully automatic registration but assume
that data are preprocessed and displacement between template
and reference images is small. Feature-based parametric meth-
ods, for example, SURF, are automatic if the main features are
selected both in reference and template images. However, since
they depend on the features and the parametric transformation,
their performance is reduced if there are many local distortions
in the data.

NGF-Curv image registration provides a flexible approach
allowing image registration with little prior knowledge of de-
gree of distortion within the reference and template images.
Validation of NGF-Curv with a variational formulation was
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Fig. 5. Checkerboard overlay between aerial photograph template images 71" and hyperspectral reference images R and checkerboard overlay of registered
aerial photograph template images (fl“rligGF'C“W) and hyperspectral reference images (R) generated by our NGF-Curv approach. (a) and (b) Flat terrain case.

(c) and (d) Rugged terrain case.

demonstrated by numerical experiment in Section V. This
approach can be applied to nonorthorectified images with rough
geographic boundary approximation. Although most images
can be registered with a fixed regularization parameter, it may
lead to misalignment at the edge of the image (see Fig. 6).
Further research is required to find the regularization parameter
automatically, thus minimizing misalignment at the boundary.
The NGF-Curv method is designed to measure similarity
between images taken by multisensors, and because it com-
pares gradients of two images, it can handle different types of
imagery. Other similarity measures, such as sum of squared
distance and NCC perform poorly when applied to different

types of images. The MI method (derived from information
theory) is widely used as a similarity measure in remote sensing
applications as it can be applied to multisensor imaging. It
measures the joint probability of image intensities and can be
viewed as a generalized similarity measure [43]. However, the
MI method is highly nonconvex; thus, it is difficult to optimize
and increases the nonlinearity of registration [31]. Since MI is
based on joint density of intensity values, it may also suffer
from interpolation induced artifacts [28].

Regularization is key to the success of the NGF-Curv. Al-
though a number of studies have used intensity-based similarity
measures [14], [27]-[30], the ill-posedness of these measures
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(e3)

Fig. 6. Fully registered LiDAR, hyperspectral, and aerial photograph imagery. (a) LiDAR intensity image. (b) RGB bands of hyperspectral imagery. (c) Mosaic
imagery of registered aerial photographs of our NGF-Curv approach with fixed global regularization parameter .. (d) Mosaic imagery of registered aerial
photographs of the NGF-Curv approach with locally tuned regularization parameter cv. (e1)—(e4) highlights of the circle regions in (a)—(d).

prevents their use in flexible applications in remote sensing.
This means that successful image registration is conditional
upon the data being preprocessed and displacement between
images being small. In theory, adding a regularization term
makes the problem close to, or exactly, well-posed such that
the registration problem has a meaningful solution; in reality
though, it is difficult to remove all local minima using this
approach; thus, exact solutions are rarely achieved in reality.

A few regularization methods have been suggested to guar-
antee well-posedness during the registration process [46]. As
aforementioned, most of these regularization techniques are
sensitive to affine linear displacement such that preregistration
with affine linear transformation is required [50], [55], [56].
In contrast, curvature regularization used here does not require
affine preregistration steps. However, affine parametric registra-
tion at coarsest level is recommended in general applications, as
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NGF-Curv still penalizes affine transformation by its boundary
conditions (i.e., it is still influenced by initial position of two
images to some extent, see [43], [61]).

Some aspects of NGF-Curv require further refinement. As is
often the case with image registration, the NGF-Curv method
is dependent on the quality of the reference image. We used
LiDAR intensity images in order to register hyperspectral im-
age. We believe the quality of LiDAR can be further improved
by increasing the understanding of the radiometric properties
of LiDAR intensity: LiDAR pulses do not only backscatter off
the upper canopy leaves but also internal structures through
penetration, and if we could filter for the information from
the upper canopy, then the intensities of the LIDAR would be
more similar to those from the camera or hyperspectral sensor.
However, currently the AGC of Leica systems adjusts the pulse
energy during the LiDAR acquisition (i.e., the pulse energy is
increased when the returned energy is low). An AGC value
within the range [0, 255] is given for each pulse in the LAS file,
and a few studies have attempted to normalize LiDAR intensity
using these numbers [52]-[54]. While none of those methods
are able to successfully correct the LiDAR data sets we used, we
believe that a successful radiometric calibration could indeed
improve the registration accuracy.

Another difficulty is that hyperspectral and aerial pho-
tographs are strongly influenced by shading effects, because
they record backscattered solar energy. If imagery is collected
early or late in the day, then shaded pixels create strong gra-
dients on one side of trees; thus, the registration process is in-
trinsically biased to some extent. Combining image registration
with shade removal [62] could improve the quality of image
registration.

Although further research on finding regularization param-
eter automatically is required, this research have introduced a
fresh insight on image registration of remote sensing.
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