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Industrial legacy codes usually have had long pedigrees within companies, and are deeply embedded into
design processes. As the affordability and availability of computing power has increased, these codes
have found themselves pushed into service as large eddy simulation solvers. The approximate
Riemann solver of Roe, which is frequently used as the core method in such legacy codes, is shown to
need much user care when adopted as the discretisation scheme for large eddy simulation. A kinetic
energy preserving (KEP) scheme—which retains the same advantageous stencil and communications halo
as the original Roe scheme—is instead implemented and tested. The adaptations of code required to
switch between the two schemes were found to be extremely straightforward. As the KEP scheme intrin-
sically bounds the growth of the kinetic energy, it is significantly more stable than the classical
non-dissipative schemes. This means that the expensive smoothing terms of the Roe scheme are not
always necessary. Instead, an explicit subgrid scale turbulence model can be sensibly applied. As such,
a range of mixed linear–non-linear turbulence models are tested. The performance of the KEP scheme
is then tested against that of the Roe for canonical flows and engine-realistic turbine blade cutback
trailing edge cases. The new KEP scheme is found to perform better than the original in all cases. A range
of mesh topologies: hexahedral; prismatic; and tetrahedral; are also tested with both schemes, and the
KEP scheme is again found to perform significantly better on all mesh types for these flows.

� 2015 Published by Elsevier Ltd.
1. Introduction

In many industrial codes, the emphasis is placed on the ability
to conform to complex geometries. This necessitates the use of
unstructured formulations, and frequently results in second order
algorithms being employed. Many of these industrial codes have
long pedigrees stretching back many years, and were originally
designed to perform Reynolds-Averaged Navier–Stokes (RANS)
calculations. The extreme advances in computational power and
corresponding decrease in hardware costs have brought the signif-
icantly more computationally intensive—but higher fidelity—Large
Eddy Simulation (LES) and hybrid RANS/LES methods in from the
realm of academic and intellectual investigation into the purview
of industrial design calculations.

From the point of view of both the end-user and the support
team, it is attractive to reuse as much of the RANS code as possible
in constructing an LES solver, as much of the structural framework
already exists, requiring little or no adaptation to file formats,
boundary conditions, parallelisation libraries, and substantial code
optimisation has already been conducted. To take advantage of
this, an industrial legacy RANS code is here applied to LES simula-
tions, its performance assessed, and any adaptations or improve-
ments which are found to be necessary are made.

The code used in this exercise is HYDRA, a staple of the
Rolls-Royce design process for many years. Variants of the scheme
used in HYDRA have, in the past, been used to successfully perform
a range of large eddy simulation calculations. Typically, these have
either involved relatively high Mach number—very compressible—
flows, or codes which have been heavily, and often on a
problem-by-problem basis, modified. Ciardi et al. [1] developed a
low dissipation version of the Roe scheme based on suppressing
the appearance of dispersive ‘‘wiggles’’ in the local flow solution.
A set of user-supplied constants were used to control the
trade-off between minimising excessive dissipation and ensuring
solution stability.

Other attempts to reduce any inherent dissipation have been
made over the years. Page and McGuirk [19] and Li et al. [11] chose
to calculate and use a Ducros et al. switch [3] on the smoothing
terms to try and keep the diffusion under control—the subgrid
effects themselves were then separately modelled with more
explicitly added terms. O’Mahoney et al. [18] were also compelled
to reduce the strength of the stabilising terms to avoid the
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Nomenclature

BC continuous Burgers’ operator
C� constant
D transport discretisation operator
DK KEP transport discretisation operator
DR Roe’s transport discretisation operator
F flux vector
Ek total kinetic energy
k kinetic energy
k wavenumber
M blowing ratio
Ma Mach number
p static pressure
Q conserved variable vector
Re Reynolds number
t time
u velocity

x streamwise direction
D filter width
Dx one dimensional filter width
Dxþ; Dyþ; Dzþ non-dimensional wall distance
e2 smoothing constant
e3 smoothing constant
g film cooling effectiveness
/ convected variable
q density
sij stress tensor
�/ local mean value
/ time averaged value
/I inviscid value
/S smoothed value
/V viscous value
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suppression of turbulence when modelling ingestion by rim seals.
The dangers of excessive smoothing have been extensively
discussed by Tristanto et al. [23].

Examples of some successful simulations in more specific appli-
cations include the transonic Mach number jets flows of Eastwood
et al. [5], and the chevroned nozzles of Xia and Tucker [25]. In both
of these cases, the smoothing constant was geometrically sculpted
a priori, to act as a numerical turbulence model in areas of interest,
and to provide stability in the far field. This has proved a successful
approach, as long as the general nature of the flow is understood
before the sculpting is carried out.

Despite these successes and advances, the results from the use
of the Roe scheme as a discretisation for an LES solver for wider
problems—or problems involving a range of flow conditions—have
been disappointing at times, particularly when flows have been
dominated by regions with low Mach number. In this paper, it is
hoped that the problems HYDRA encounters as a legacy RANS
solver applied to LES calculations can be explained, quantified,
and mitigated as painlessly as possible.

The Euler equations are given by:

@Q
@t
þ @F

IðQÞ
@x

¼ 0 ð1Þ

This equation can be discretised in many ways, but for these
purposes, discretisations are restricted to two-point edge based
schemes, for ease of development, efficiency of parallelisation,
and simplicity of application to unstructured problems. Here, the
established Roe scheme is compared to a kinetic energy preserving
(KEP) ‘‘Jameson’’ formulation. To solve the full Navier–Stokes equa-
tions, Eq. (1) must be augmented with a viscous flux term, F V .
When these equations have been filtered onto a grid, residual
stress tensors emerge, necessitating a model for the subgrid scale
effects of turbulence.

This paper first discusses the two different numerical
approaches, after which the various test cases are introduced,
before the numerical results are presented, before finally
discussing what these findings suggest for industrial large eddy
simulation.
2. Numerical methods

The solver used in this work, in its original RANS formulation, is
built around the approximate Riemann solver of Roe [21]. In
smooth regions of the flow, away from sharp gradients such as
shocks, the inviscid flux calculation takes on the form of a central
difference of the end points of each node, smoothed by some func-
tion of the Laplacian of the conserved variable vector.

F I;S
��!

ij ¼
1
2
FðQLÞ þ FðQRÞð Þ � 1

2
Aij

�� ��e2 LðQÞR � LðQÞL
� �

ð2Þ

Near to sharp gradients, the inviscid flux calculation decom-
poses to first order, and takes the form of a central difference
smoothed by some function of the conserved variable vector itself.

F I;S
��!

ij ¼
1
2
FðQLÞ þ FðQRÞð Þ � 1

2
Aij

�� ��e3 QR �QLð Þ ð3Þ

The weighting of these two functions is given by a local pres-
sure switch, intended to ensure the full second order accuracy of
the former in areas of smooth flow, and to allow this accuracy to
degrade for stability in the region of strong gradients. The matrix
Aij is the inviscid flux Jacobian, Aij ¼ @FI=@Q . The variables e2 and
e3 represent user supplied constants which control the smoothing
levels. These variables, which are constants in the classical Roe
scheme, were modified by Eastwood [4] and Ciardi et al. [1] to vary
in space, and to vary in both time and space, respectively. An expli-
cit 5-stage Runge–Kutta (RK) method is used to integrate the Roe
scheme in time.

The unsmoothed fluxes themselves are given by the average of
the flux each side of the control volume face.

F I
ij ¼

1
2

qLuL/L þ qRuR/Rf g ð4Þ

This scheme brings a number of advantages to the RANS solu-
tion process. It offers considerable stability, whilst retaining sec-
ond order accuracy in smooth regions. On industrial grids, a
Courant number of 2.00 is found to be sufficient for stability (but
not, for LES, for accuracy in time), even with the smoothing and
viscous flux calculations updated only every other RK sub-step.
This leads to a considerable acceleration in steady convergence,
whilst maintaining second order accuracy away from shocks.

2.1. Conservation of kinetic energy

It is understood that as a bounding quantity of incompressible
flow, the global growth rate of kinetic energy will dictate the sta-
bility of the scheme—with a global kinetic energy growth rate of
zero, the scheme will be stable. For compressible flows, conserva-
tion of kinetic energy does not formally guarantee the stability of a
solution, but evidence suggests that it does impart some resilience
to schemes. Global kinetic energy is given by:
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Ek;tot ¼
ZZZ

1
2
qu2

� �
t

dV ¼
ZZZ

k½ �tdV ð5Þ

A transport equation can then be written for the kinetic energy, k.

@k
@t
¼ u

@ðquÞ
@t
� u2

2
@ðqÞ
@t
¼ � @

@x
u pþ q

u2

2

� 	
 �
þ p

@u
@x

ð6Þ

Following Jameson’s one dimensional analysis through, a crite-
rion is found for preserving kinetic energy [7]. Assuming boundary
conditions are set appropriately, the integral in Eq. (5) can be
written in discretised form as:

Xn�1

j¼1

1
2
ðquÞjþ1=2ðu2

jþ1 � u2
j Þ � ðqu2Þjþ1=2ðujþ1 � ujÞ


 �
¼ 0 ð7Þ

This is satisfied if:

ðqu2Þjþ1=2 ¼ ðquÞjþ1=2
ðujþ1 þ ujÞ

2
ð8Þ

As Jameson suggests, for a second order scheme, this can be
satisfied if, as specified, we set:

ðquÞjþ1=2 ¼ �q�u ð9Þ
ðqu2Þjþ1=2 ¼ �q�u�u ð10Þ

To implement this change within a Roe solver, it is simply nec-
essary to change the order of the averaging of the inviscid flux
terms. Instead of multiplying the primitive variables at each end
of the edge to give the fluxes and then averaging them, the primi-
tive variables are averaged at each end first, and then multiplied.
This gives:

F I
ij ¼

1
2

qL þ qRð Þ � 1
2

uL þ uRð Þ � 1
2

/L þ /Rð Þ

 �

ð11Þ

The stability increase that the enforcing of the conservation of
kinetic energy supplies means no artificial dissipation terms are
required, so these can be removed:

ð12Þ
2.2. Operator skew self-symmetry

By considering the one dimensional Burgers’ equation, it is pos-
sible to explore the relevance of skew-symmetric operators to
kinetic energy preserving schemes [20]. The full, viscous, Burgers’
equation is:

@u
@t
þ u

@u
@x
¼ m

@2u
@x2 ð13Þ

Global kinetic energy is conserved under the action of convec-
tion, but it is dissipated by viscous action in both the viscous
Burgers’ and the Navier–Stokes equations. Therefore, here the con-
servation criterion is applied to solely the inviscid parts. For clarity,
this leads to considering the inviscid Burgers’ equation, which can
be written in both convection (Eq. (15)) and divergence (Eq. (14))
form:

@u
@t
þ @

@x
u2

2

� 	
¼ 0 ð14Þ

@u
@t
þ u

@u
@x
¼ 0 ð15Þ

Combining these two forms can give the skew-symmetric form
of the Burgers’ equation:
@u
@t
þ BC � u ¼ @u

@t
þ 1

3
@u
@x
� þu

@

@x
�

� 	
u ¼ 0 ð16Þ

where BC � u denotes a continuous ‘‘Burgers’ operator’’, acting on u.
Discretising, and making use of matrix–vector notation, where u
represents the solution vector, and D the transport discretisation
operator, gives:

@u
@t
þDu ¼ 0 ð17Þ

The global kinetic energy is then given by:

Ek;tot ¼
1
2

u�u ð18Þ

Differentiating, the rate of change of global kinetic energy is:

@u�u
@t
¼ @u

@t

� 	�
uþ u�

@u
@t

ð19Þ

¼ �ðDuÞ�u� u�Du ð20Þ
¼ �u� D� þ Dð Þu ð21Þ

So, for non-trivial cases, the discrete global kinetic energy is con-
served if and only if D ¼ �D�, i.e., if the transport discretisation
operator is skew self-symmetric. This symmetry is a property of
the continuous equations, so should be reflected in the discretisa-
tion scheme. Denoting the central difference and the KEP scheme
flux transport operators by DR and DK respectively, the form of
the two can be compared:

DR ¼ 1
2Dx

� � � � �
�ui�2 0 ui 0 0

0 �ui�1 0 uiþ1 0
0 0 �ui 0 uiþ2

� � � � �

2
6666664

3
7777775

ui�2

ui�1

ui

uiþ1

uiþ2

2
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3
7777775 ð22Þ
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2Dx
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0 0 �ui � uiþ1 uiþ2 � ui uiþ1 þ uiþ2

� � � � �

2
6666664

3
7777775

�

ui�2

ui�1

ui

uiþ1

uiþ2

2
6666664

3
7777775 ð23Þ

It can be seen that the transport discretisation operator for the
central difference scheme, DR, does not form a skew-symmetric
operator. In contrast, the KEP scheme transport discretisation oper-
ator, DK , is skew self-symmetric. This failure of global conservation
on behalf of the CD scheme requires the introduction of the
smoothing terms which make up the full Roe scheme. This devia-
tion of the Roe scheme from the physical continuous equations
means that Roe transport terms a-physically influence the quantity
of global kinetic energy. The KEP scheme, on the other hand, is cap-
able of correctly capturing the skew-symmetric property of the
continuous equations.

2.3. Subgrid scale modelling

The Roe scheme, when it is applied to LES calculations, is often
run without an explicit turbulence model. The artificial diffusion
terms are, in these cases, considered to provide sufficient dissipa-
tion to act as a numerical subgrid scale (SGS) model. The
dissipation-free KEP scheme, however, requires the use of explicit
SGS terms to account for the effects of the flow below the grid
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scale. A number of these SGS models have therefore been tested. By
making use of the formulations of Liu et al. [12], a set of mixed
linear–non-linear turbulence models have been introduced. These
mixed models are somewhat more advanced than the simple static
Smagorinksy, being able to capture some of the effects of the
reverse energy cascade, but without being as expensive as the
dual-filtering operation required for dynamic turbulence models,
such as the Germano et al. [6]. Again, introducing these models
when developing from a Roe solver is extremely straightfor-
ward—all the gradient terms required by the turbulence models
are already available in the relevant subroutines, having been pre-
viously evaluated for the smoothing. The mixed models them-
selves are formed by the division of the turbulence terms into a
purely dissipative linear eddy-viscosity term—here captured by a
Smagorinsky model—and a non-linear term. The subgrid stress
tensor, sR

ij , can thus be written:

sR
ij ¼ sL

ij þ sN
ij ð24Þ

The models which were used in this study are listed by their
constituent terms in Table 1.
3. Test cases

3.1. Isotropic decaying turbulence

The classic LES test case is that of isotropic decaying turbulence.
Here, the experiments of Comte-Bellot and Corrsin [2] were used to
provide both the initial conditions and the data for final compari-
son. Two fully orthogonal hexahedral meshes were prepared with
triply-periodic spatial boundary conditions, one of 32 nodes along
each side, the second with 64 nodes along each.

Secondly, a set of meshes were generated with different topolo-
gies—each being constructed from different volume elements, hex-
ahedrals, triangular prisms, and tetrahedrals. Each of these meshes
was designed to have approximately the same edge count (rough
computational cost) as the 643 node simulation.

The simulation was initialised at time t0 ¼ 0, which corre-
sponded to the experimental data at non-dimensional measure-
ment location tUo

M ¼ 42, from the 5.08 cm grid experiment. The
calculation could then be advanced through time to correspond
with the experimental data at measurement location tUo

M ¼ 171, at
which time the resulting three-dimensional energy spectrum,
EðkÞ, was extracted for comparison. The cost to carry out a simula-
tion on the 323 case was around 5 core minutes on a single core of
an AMD Phenom II 2.8 GHz processor. For the 643, this cost was
around 40 core minutes on the same architecture.

3.2. Imperial College case

The Imperial College case was taken from a series of experi-
ments carried out at Imperial College in the late 1960s and early
Table 1
Subgrid scale turbulence models.

SGS model sL
ij sN

ij

Alpha �2q CSDð Þ2 bS��� ���bSij CaqD2ð@kui@juk þ @kui@kuj þ @iuk@jukÞ

Clark �2q CSDð Þ2 bS��� ���bSij CCqD2ð@kui@kujÞ

Kosović �2q CSDð Þ2 bS��� ���bSij CKqD2ð@kui@juk þ 6@kui@kuj � @iuk@jukÞ

Leray �2q CSDð Þ2 bS��� ���bSij CLqD2ð@kui@juk þ @iuk@jukÞ

Mansour �2q CMDð Þ2 bX��� ���bSij
0

Smagorinsky �2q CSDð Þ2 bS��� ���bSij
0

1970s. The full geometry description is given in Kacker and
Whitelaw [10], although a large series of experiments were carried
out [8–10]. This represents a more challenging and industrially rel-
evant case than the isotropic decaying turbulence. It comprises a
pair of co-flowing jets, one of which is bound by a wall. The two
jets are separated by a narrow lip. As the shear layer grows, it even-
tually impinges on the wall, resulting in a wall-jet type of flow.

This case was simulated at a high velocity ratio of 2.32. Although
the mean profiles at inlet were supplied to the flow, the inflow was
set as laminar—a deviation from the experimentally measured tur-
bulence values of around 0.5%. This was not considered to be an
important difference in this case, as some turbulent inflows had
previously been tested on this wall-jet with a structured high order
LES solver [17], including a Lund recycled inflow [13], and box tur-
bulence imposed onto a mean profile. These imposed turbulent
boundary conditions were found to have little influence on the pre-
diction of either the mean flow or the turbulent statistics.

A triangular prismatic mesh was generated to represent this
geometry, consisting of around 20 million nodes. The prisms were
aligned to run in the spanwise direction. The mesh was generated
to conform to the near wall distances in Table 2. Close to the lip,
there were 35 nodes across the shear layer.

The large size of the domain (one metre long), and the relatively
high element count necessitated very long run times to both
mature and to average the flow. This took around 80,000 core
hours on AMD Interlagos Opteron 2.3 GHz processors. The averag-
ing time was set as the time required for the mainstream flow to
travel two hundred slot heights downstream.

3.3. Karlsruhe case

The Karlsruhe case was taken from a set of work carried out in
Karlsruhe University on engine-realistic geometries for cutback
trailing edge film cooling [15,14,16]. This case represents an indus-
trially relevant, and geometrically and aerodynamically complex,
problem. The case consists of a basic geometry, with a coolant
injection angle of 10�. The geometry specifications are shown
below in Fig. 1, and given fully in [16].

These experiments varied both the turbulator layout within the
coolant cavity, and the blowing ratio of the coolant and main-
stream flow. The domain was again meshed using prismatic ele-
ments aligned in the spanwise direction, with a node count of
19 million. The mesh was generated to conform to the near wall
distances in Table 2. Near the lip, there were 55 nodes across the
lip thickness. The boundary conditions used in this solution were
simple planar laminar conditions, as it was assumed that the
turbulators would overwhelm inflow turbulence conditions.

To run a single simulation of the Karlsruhe geometry took
around 20,000 core hours on AMD Interlagos Opteron 2.3 GHz pro-
cessors. The averaging time once initialisation transients had been
convected through was set as the time taken for the mainstream to
travel one hundred slot heights downstream.

4. Results

4.1. Isotropic decaying turbulence

To assess the difficulties faced by the Roe scheme when applied
to LES calculations, it was initially tested upon the isotropic
Table 2
Wall resolved LES near wall mesh statistics.

Direction ND wall distance

Mxþ , streamwise � 1
Myþ , wall normal � 1
Mzþ , spanwise � 35



Fig. 1. Karlsruhe case basic geometries [16].

Fig. 2. 323 and 643 Roe scheme IDT Three-Dimensional Energy Spectra.

Fig. 3. Topology, Roe scheme, Three-Dimensional Energy Spectra.
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decaying turbulence case. The performance was first tested by the
simulation of the Comte-Bellot and Corrsin [2] experiments on tri-
ply periodic regular hexahedral grids. These were carried out with-
out explicit SGS turbulence models, to determine the ability of the
Roe solver to act as a numerical LES algorithm. The results of these
simulations are shown in Fig. 2. It is apparent that the scheme
tends to suppress excessive amounts of resolvable kinetic energy
at higher wavenumbers. This fundamentally influences the nature
of the turbulent cascade, with energy ‘‘piling up’’ at low to moder-
ate wavenumbers. This remains true even with the quite fine 643

node grid, although as more of the energy is resolved, the
wavelength of the first over-damped wavenumber is shortened.

To more fully test the scheme, its ability to cope with more
skewed grids was considered. As one of the reasons for making
use of unstructured codes like HYDRA is their ability to cope with
complex geometries, there is little point if their performance on
non-perfectly orthogonal hexahedral meshes is poor. To this end,
the simulations were repeated on the hexahedral, triangular pris-
matic, and tetrahedral meshes. The ability of the code to capture
the evolution of the turbulent energy spectrum as a function of
grid topology could then be determined. These results can be seen
in Fig. 3. The hexahedral meshes, although some way from the
experimentally determined values, capture the spectra most accu-
rately. As the orthogonality of the topology deteriorated, the per-
formance of the solver fell. The prismatic mesh is capable of
performing only slightly more poorly than the hexahedral.
However, the tetrahedral grid—despite its isotropy and near-regu
larity—performed remarkably poorly, suppressing the resolution
of turbulence at even moderate frequencies. This is worrying, as
tetrahedral meshes are by far the easiest to rapidly fit around
complex geometries. It is theorised that this dissipation factor is
a function of the orthogonality of the mesh and its median control
volume dual. The hexahedral mesh and its dual are perfectly
orthogonal, while the prism mesh and its are very nearly so.
However, it is geometrically impossible for tetrahedrals to behave
in the same way: they are very in-orthogonal with their duals,
hence the extremely high levels of dissipation experienced with
the tetrahedral mesh. This may go some way to explaining the
received wisdom within the CFD community that tetrahedral
meshes are generally inappropriate for simulations, despite the
ease of their generation.

We turn now to the KEP scheme. Although it is now stable with-
out smoothing terms being included, it no longer has artificial
dissipation to act as a numerical turbulence model. Initially, the
Smagorinsky dissipative terms [22] are explicitly included within
the viscous flux calculations. Again, the performance of the new
scheme on the 323 and 643 orthogonal hexahedral meshes is com-
pared to the Comte-Bellot and Corrsin experimental data. The
results of the new scheme are more encouraging than those of
the original solver, with both grids performing well—highlighting
the ability of the new scheme and turbulence model to capture
the behaviour of the turbulent cascade well, even on coarse
meshes. These new HDT spectra are shown in Fig. 4. The moderate
wavenumber excess and high wavenumber deficit have been
mostly eliminated.



Fig. 4. 323 and 643 KEP scheme IDT Three-Dimensional Energy Spectra.
Fig. 6. Competing schemes and topologies.

Fig. 7. Comparison of subgrid scale models for sR
ij .
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To assess the relative performance of the new scheme against
the original on the more industrially relevant meshes, the different
topology grids were again used. Once again, a considerable advan-
tage was found when using the new method. The relevant spectra
for the three topologies are shown in Fig. 5. Much the same trends
are shown with the new scheme as with the original—tetrahedral
meshes are found to be significantly more dissipative than their
hexahedral counterparts, with the prism elements somewhere in
between. It is, however, worth noting that the worst performing
(tetrahedral) grid—when using the KEP scheme—was in fact less
dissipative than the Roe scheme on the hexahedral grid. This com-
parison is shown in Fig. 6. It is possible that making use of this
scheme could allow the more widespread use of tetrahedral grids,
which are more easily automatically mapped to highly compli-
cated geometries. This discussion, however, is left to a later date.

These basic studies make it apparent that the KEP scheme, with
an appropriate turbulence model, is capable of significantly out-
performing the original Roe scheme.

More advanced SGS models were then applied to the isotropic
decaying turbulence test case. Their relative performance on the
643 node grid is shown in Fig. 7. As expected, the inclusion of the
non-linear terms does not significantly influence the performance
of the basic Smagorinsky model in this case. Indeed, these models
are—by design—intended to have little influence here, as the
Fig. 5. Topology, KEP scheme, Three-Dimensional Energy Spectra.
Smagorinsky model is specifically calibrated for this basic test case.
These models are intended to introduce more realism as the nature
of the physical turbulence moves away from the simple HDT case,
improving the prediction of subgrid turbulent behaviour in more
complex situations, such as free shear flow, wall bound flows,
and the like. To perform the more complex industrial-type calcula-
tions, the LANS-a mixed model was selected.
4.2. Imperial College case

The ability of the new code to predict the turbulent behaviour of
somewhat more challenging flows was then tested by the simula-
tion of some flows from the Imperial College experiments. These
flows are characterised by a shear layer developing between two
co-flowing jets. One jet is bounded by a wall, onto which the shear
layer eventually grows to impinge. The resulting flow could be con-
sidered as something of a cross between a boundary layer and a
free shear flow. A snapshot of the developing turbulent shear layer
between the co-flowing jets is shown in Fig. 8.

Even simple wall-jets, such as these, have, in the intervening
years since the experiments were conducted, proved remarkably
intractable to RANS simulation. Liu showed a very large degree of
scatter in results when varying the RANS turbulence model. Both
the original scheme and the new KEP scheme are tested and



Fig. 8. Wall-jet shear layer development.
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compared to the experimental data, to assess the performance gain
on a more challenging LES flow than the simple isotropic decaying
turbulence. Comparing the predictions of the time averaged
x-direction velocity components at 10 slot-heights downstream
of the ejection plane, the mean flow fields are not substantially dif-
ferent. It appears from this as though the Roe scheme has more
thoroughly mixed the jets together. This was the effect of the
smoothing—at this point in the flow, the smearing effect of the arti-
ficial viscosity terms of the Roe scheme was significantly greater
than the turbulent mixing of the shear layer predicted by the
KEP. That this is the case is borne out by an examination of the tur-
bulent statistics at this point, Fig. 9. Significantly less u0u0 turbu-
lence is found to have been generated by the Roe scheme than
by the KEP scheme. The statistics for the v 0v 0 turbulence terms
are even more striking—practically none is captured by the Roe
scheme compared to that by the KEP. The discrepancies between
the experimentally collected turbulent statistics and the KEP pre-
dictions are believed to be related to the laminar inflow conditions,
which delay the development of a fully turbulent shear layer. In all
cases, however, the KEP scheme dramatically outperforms the Roe.
A qualitative examination of the flow predictions shows almost no
turbulent mixing between the two layers when using a Roe dis-
cretisation, with the coolant wall-jet remaining very much intact
without the development of large scale turbulent motions to break
it up.
4.3. Karlsruhe University case

To assess the ability of the codes to perform fully industrially
relevant simulations, calculations on the engine-realistic film
Fig. 9. Imperial College case tur
cooling experiments of Martini and Schulz et al. were carried out.
RANS calculations on these geometries are known to be potentially
both unrealistic and heavily model-dependent. The main driving
mechanism of these trailing edge film cooling flows is the shedding
of vortices from the lip of the cutback—RANS methods are unable
to comprehend this fundamentally unsteady and large-scale coher-
ent phenomenon. This family of flows, then, is an area of active
research, being difficult to simulate computationally, and having
industrial relevance to engine design.

Initially, the original Roe discretisation scheme was used to per-
form an LES calculation on the 19 million node prism grid. The
unsteady interactions between the coolant flow through the turbu-
lators and the mainstream flow were visibly weak, and appeared
qualitatively non-physical, even on such a relatively fine mesh—
Fig. 10. In some of the more benign cases, it was sometimes diffi-
cult to get any turbulence to form in the shear layer at all. By low-
ering the smoothing constants, it was possible to allow some
turbulence to form within the shear layer, but significantly lower-
ing the value of e2 caused increasing problems with stability—
which could prove very expensive, wasting thousands of core
hours of computational effort.

It is likely that continued refinement of the mesh would even-
tually produce appropriate solutions, as the truncation error terms
approach zero. Unfortunately, in an industrial context, a 19 million
node LES calculation is already an expensive undertaking. If, by a
small change to the discretisation scheme, acceptable results can
be derived without resorting to quasi-DNS meshes, this will repre-
sent a significant step forward with the use of LES as a potential
design tool.

In the Roe-scheme based simulations which failed to generate
any shear layer turbulence at all, the situation is problematic—
although these simulations were LES-cost, they produced
RANS-accuracy; a poor return for what represents a significant com-
putational investment. The LES equations collapse onto the RANS
equations in the absence of any time-dependency, with a mixing
length model with an non-physical length scale coming from the
artificial diffusion terms—effectively a mixing length model based
on grid spacing. This leads to extreme grid-dependence of solution,
and the likelihood of obtaining any useful results is slim. In some
cases, these LES calculations offered worse performance than that
of some RANS turbulence models, at hugely more expense—Fig. 11.

In contrast, the KEP scheme’s performance was much more pos-
itive. Qualitatively, turbulent fluctuations and the expected large
scale coherent von Karman vortex street can be clearly seen—
Fig. 12. Much more turbulent mixing is observed between the
bulence profiles, x=yc ¼ 10.



Fig. 10. Unconvincing Q-criterion from Roe scheme.

Fig. 12. Lip shedding captured by the KEP scheme.

Fig. 13. Roe scheme LES and KEP scheme film cooling (Karlsruhe G2B, M = 0.80)
[16].
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two streams when using the KEP scheme than in the original for-
mulation. Comparing the turbulent statistics of the flow, it is clear
that the Roe scheme is, as in the isotropic decaying turbulence test
case, suppressing the development of turbulence considerably.

The Roe scheme did not capture any of the experimental beha-
viour of the film cooling distribution, as the flow behaviour is not
physically represented by the solution. However, the new KEP
scheme, on the same grid, at the same running conditions, per-
formed significantly better—providing some predictions which
better agree with the experimental results. A comparison of the
experimental and the two contrasting schemes can be seen in
Fig. 13.

A full set of simulations were then carried out on the Karlsruhe
problems, to assess the relative ability of the KEP code to predict
effects on the adiabatic wall film cooling effectiveness of both
blowing ratio and planform geometry. The results for the planform
variation are shown in Fig. 14, and those for the blowing ratio vari-
ation in Fig. 15. The new KEP scheme performs remarkably well—
far superior to anything RANS has been shown to achieve.
Noticeable, however, is the common offset—mixing was systemat-
ically predicted to be very slightly greater than is seen in the exper-
imental data. However, the trends were captured remarkably
accurately.

5. Discussion

It is clear that for these two co-flowing jet cases, as well as for
the more general isotropic decaying turbulence test case, the KEP
scheme seems to perform much better than the Roe when being
run in ‘‘LES-mode’’. However, it should be pointed out that these
cases were chosen specifically for study because the Roe scheme
was found to capture them particularly poorly.
Fig. 11. Roe scheme LES and RANS film cooling data (Karlsruhe G2B, M = 0.80) [16].

Fig. 14. KEP scheme—varying turbulator planforms (M = 0.80).
The promise that this scheme has shown is high—potentially
even opening up some more rapid mesh generation techniques
that have previously been considered inappropriate—particularly
the use of tetrahedral elements to allow more efficient use of grid
nodes, and more complex geometries to be quickly discretised,
although this needs substantially more thorough studies.

The ease of implementation of the new scheme is also consid-
ered to be attractive. In terms of coding, at least, most legacy
URANS codes would require very little adaptation to make use of



Fig. 15. KEP scheme—varying blowing ratios (G2A).
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this discretisation scheme rather than the common Roe solver. In
terms of both effectiveness and efficiency when applied to more
realistic cases, the new scheme appears to offer considerable
advantages. It has already been noted that it is likely that the orig-
inal scheme could predict the flow behaviour for these cutback
trailing edges with a significantly finer grid. Without carrying out
extensive and expensive studies, it is difficult to know how much
grid refinement would be required for this. Based on the results
for the isotropic decaying turbulence, however, it is likely that
the minimum number of nodes to produce a valid Roe scheme
solution would be very considerably more than the minimum
number required for a valid KEP solution. It appears that this
saving could be of an order of magnitude, or more.

Within the current coding framework, there is a small perfor-
mance benefit to running the new scheme. The very expensive cal-
culations for the pressure switch need not be calculated, and the
smoothing matrix A ¼ LKL�1 is not used. This also means that
the Laplacian terms do not have to be determined and carried
around. On the other hand, the KEP scheme requires calculation
of the residual stress tensor, sR

ij. Although the new code has not
been through the extensive streamlining of the original, there is
an approximately 20% speed benefit to the new scheme (architec-
ture and problem dependent).

One of the real benefits of the KEP scheme is that the behaviours
of the dissipation terms are now known: the solution quality is no
longer reliant on a user-specified smoothing constant that can also
influence stability. Instead, explicit subgrid scale turbulence mod-
els can be used, without having other dissipative terms acting in
concert and potentially compromising the ability of the code to
accurately capture the influence of the subgrid scale fluctuations.

We have focussed here on flows with relatively low Mach num-
ber. As a note of caution, one of the strengths of the Roe scheme is
its ability to handle high Mach flows, and, with an appropriate
pressure switch, to be able to capture shock waves without exces-
sive dispersion error. It is unlikely that the kinetic energy preserv-
ing scheme—which has been shown here to outperform Roe at low
Mach—will be able sustain its improved stability at high Mach
numbers unaided. As a result, a blend of the two schemes, based
on local Mach number, is suggested, to favour the KEP discretisa-
tion at low Mach, and the Roe in trans- and super-sonic regions.

Schemes such as the one tested here have been criticised for use
in solving the full viscous Navier–Stokes equations [24]. The high
gradients which are induced near viscous wall boundaries can gen-
erate substantial numerical dispersion in these unsmoothed equa-
tions. In the problems tested here, we have not found this to
adversely affect the stability, or the accuracy of the solutions. It
is believed that the latter is due to the tested flows being funda-
mentally dominated by large scale geometrically generated
unsteadiness coming from upstream wakes and Kelvin–
Helmholtz rollers, hence the near wall performance of the scheme
is not paramount. It can be seen from Fig. 9 that in this context, the
scheme is adequate for the uses shown here.

Furthermore, from an industrial perspective, the types of high
Reynolds number flows where this may be a problem for accuracy
and stability are highly unlikely to be directly simulated using wall
resolved LES. Instead, it is likely a hybrid RANS-LES scheme would
be employed, in which the inviscid flux calculation could also be
changed in the near wall regions to, say, Roe, which is more suited
to RANS calculations.

6. Conclusions

Jameson’s KEP scheme has been shown to offer a number of sig-
nificant advantages over the common Roe approximate Riemann
solver scheme for use with large eddy simulations, particularly at
low Mach number.

These advantages have been demonstrated for both test cases
and industrially relevant cases. The reduced dissipation of the
KEP scheme does not excessively suppress the development of tur-
bulence in the same way as the Roe scheme on equal grids. This
allows the use of much coarser grids than would be required to
achieve the same level of accuracy with the Roe solver. Equally,
the elimination of inherent dissipation in the solution means that
an advanced turbulence model can be applied, likely to be better
able to model the effects of subgrid scale fluctuations than that
of the artificial dissipation terms originally designed for stability.

Importantly, the ease of switching between the two in an indus-
trial unstructured code makes the decision to employ the KEP
scheme inexpensive. The returns in performance—both in terms
of accuracy and speed—for the very small outlay in effort can be
exceptional.

It is hoped that this ease of development will go some way
towards ameliorating the discomfort of the continuing and increas-
ing adoption of LES as a design tool, which is to some degree based
around the perceived complexity of developing, maintaining, and
supporting a new LES code. This has been shown to be unneces-
sary, as existing legacy codes can perform well as LES simulators
with only minimal modification to their existing structures.

The issue of cost still hampers the acceptance of LES as an
industrial tool; at the moment it is still important to pick and
choose where to employ it industrially for maximal returns in flow
understanding and performance. This is likely to remain the case
for the immediate future.
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