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Abstract

An EGARCH model in which the conditional distribution is heavy-
tailed and skewed is proposed. The properties of the model, including
unconditional moments, autocorrelations and the asymptotic distribu-
tion of the maximum likelihood estimator, are obtained. Evidence for
skewness in conditional t-distribution is found for a range of returns
series and the model is shown to give a better �t than the correspond-
ing skewed-t GARCH model.

Abstract

KEYWORDS: General error distribution; heteroskedasticity; lever-
age; score; Student�s t, two components.
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1 Introduction

An EGARCH model in which the variance, or scale, is driven by an equation
that depends on the conditional score of the last observation was proposed
by Creal, Koopman and Lucas (2008, 2011) and Harvey and Chakravarty
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(2008).1 The model has a number of attractions. In particular, an expo-
nential link function ensures positive scale parameters and enables the con-
ditions for stationarity to be obtained straightforwardly. Furthermore, al-
though deriving a formula for the autocorrelation function (ACF) of squared
observations is less straightforward than it is for a GARCH model, analytic
expressions can be obtained and these expressions are more general. Speci�-
cally, formulae for the ACF of the absolute values of the observations raised
to any power can be obtained. Finally, not only can expressions for multi-
step forecasts of volatility be derived, but their conditional variances can be
also found and the full conditional distribution is easily simulated.
When the conditional score is combined with an exponential link func-

tion, the asymptotic distribution of the maximum likelihood estimator of the
dynamic parameters can be derived; see Harvey (2011). The theory is much
more straightforward than it is for GARCH models. An analytic expression
for the asymptotic covariance matrix can be obtained and the conditions for
the asymptotic theory to be valid are easily checked.
A heavy-tailed conditional distribution can be modeled by a Student t-

distribution, as in the GARCH-t model of Bollerslev (1987). However, the
use of the conditional score in the dynamic volatility equation in what we
call the Beta-t-EGARCH model means that observations that would be con-
sidered outliers for a Gaussian distribution are downweighted. An announce-
ment made by the computer �rm Apple illustrates the robustness of Beta-
t-EGARCH. On Thursday 28 September 2000 a pro�t warning was issued,2

which led the value of the stock to plunge from an end-of-trading value of
$26.75 to $12.88 on the subsequent day. In terms of volatility this fall was
a one-o¤ event, since it apparently had no e¤ect on the variability of the
price changes on the following days. Figure 1, contains a snapshot of the
event and the surrounding period. The �gure plots absolute returns, the
�tted conditional standard deviations of a GARCH(1,1)-t speci�cation with
leverage, and the �tted conditional standard deviations of the comparable
Beta-t-EGARCH model; a full set of estimation results are given later in ta-
ble 5. As is clear from the �gure, the GARCH forecasts of one-step standard
deviations exceed absolute returns for almost two months after the event,
a clear-cut example of forecast failure. By contrast, the Beta-t-EGARCH

1Estimation and inference of the �rst-order Beta-t-EGARCH model is available via the
R package betategarch, see Sucarrat (2012).

2CNN Money, see http://money.cnn.com/2000/09/29/markets/techwrap/. Retrieved
1 November 2011.
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forecasts remain in the same range of variation as the absolute returns.
The main contribution of this paper is to extend conditional score models

to skew distributions. Conditional skewness has important implications for
asset pricing, as discussed in Harvey and Siddique (2000). Here, the empha-
sis is on the skew-t leading to a model that we call Beta-skew-t-EGARCH.
However, the same approach works for the general error distribution and
gives the Gamma-skew-GED-EGARCH model. The preferred speci�cation
is one in which skewness in the conditional distribution of yt is combined
with leverage in the speci�cation of scale. A two-component model gives fur-
ther gains in goodness of �t and is able to mimic the long memory pattern
displayed in the autocorrelations of the absolute values.
The t-distribution is skewed using the method proposed by Fernandez

and Steel (1998). The advantage of the FS approach compared with other
skewing approaches is its computational and analytic tractability, conceptual
simplicity and ease of application across a wide range of densities. The
FS method has been adopted by a number of researchers, recent examples
being Zhu and Zinde-Walsh (2009), Zhu and Galbraith (2010), and Gomez
et al (2007). In the context of changing variance, Giot and Laurent(2003,
2004) show that a skewed-t GARCH model (with leverage) does very well in
predicting Value-at-Risk (VaR). This model is available as an option in the
G@RCH package of Laurent (2009).
The plan of the paper is as follows. Section 2 outlines the foundations of

the Beta-t-EGARCH model, whereas section 3 introduces skewness. Section
4 introduces a martingale di¤erence (MD) modi�cation of the model of sec-
tion 3, which ensures that the innovation is a MD. Section 5 brie�y outlines
how the Gamma-Skew-GED-EGARCH class of models is obtained along the
same lines as the Beta-Skew-t-EGARCH class, when the conditional distri-
bution is GED instead of t. Section 6 contains an extensive set of empirical
applications, while section 7 brie�y notes how a time-varying location can
be accommodated in terms of a dynamic conditional score model. Section 8
concludes and outlines several possible extensions.

2 Beta-t-EGARCH

The Beta-t-EGARCH model is

yt = �+ "t exp(�tpt�1); t = 1; ::::; T; (1)
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Figure 1: Apple returns with Beta-t-EGARCH and GARCH �lters, both
with leverage
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where "t is a serially independent variable that has a t��distribution with
positive degrees of freedom, �; and �tpt�1; the logarithm of the scale, is a
linear combination of past values of the conditional score

ut =
(� + 1)(yt � �)2

� exp(2�tpt�1) + (yt � �)2
� 1; �1 � ut � �; � > 0: (2)

The �rst-order model,

�t+1pt = � + ��tpt�1 + �ut; (3)

is stationary if j�j < 1: Since ut is a martingale di¤erence (MD) and hence
WN, �tpt�1 is weakly stationary with an unconditional mean of ! = �=(1��)
and an unconditional variance of �2u=(1��2):Note that the process is assumed
to have started in the in�nite past, though for practical purposes �1p0 may be
set equal to the unconditional mean. Identi�ability requires � 6= 0: Such a
condition is hardly surprising since if � were zero there would be no dynamics.

2.1 Moments and predictions

The conditional score may be expressed as

ut = (� + 1)bt � 1; t = 1; ::::; T; (4)

where, for �nite degrees of freedom,

bt =
(yt � �)2=� exp(2�tpt�1)

1 + (yt � �)2=� exp(2�tpt�1)
; 0 � bt � 1; 0 < � <1; (5)

is distributed as beta(1=2; �=2) at the true parameter values. Since ut depends
on the same beta distribution in all time periods, it is independently and
identically distributed (IID), not just a MD. It has zero mean and variance,
�2u = 2�=(� + 3):
Harvey and Chakravarty (2008) derive expressions for the moments and

autocorrelations of the observations. The odd moments of yt are zero when
the distribution of "t is symmetric. The even moments of yt in the stationary
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Beta-t-EGARCH model are

E[(yt � �)m] = E("mt )E(exp(m�tpt�1)); (6)

=
�m=2�(m

2
+ 1

2
)�(�m

2
+ �

2
)

�(1
2
)�(�

2
)

em!
1Y
j=1

e� jm��( jm); m < �;

where  j; j = 1; 2; :: are the coe¢ cients in the moving average representation,

�tpt�1 = ! +
1X
j=1

 jut�j;

and ��(a) is Kummer�s (con�uent hypergeometric) function, 1F1(1=2; (� +
1)=2; a(� + 1)); see Slater (1965, p 504).
Expressions for the autocorrelations of

��yt � �y
��c ; c > 0; were also ob-

tained. Note that

E(exp(c�tpt�1) = ec!
1Y
j=1

e� jc��( jc) (7)

is valid for any c > 0:
The optimal predictor of scale in Beta-t-EGARCH is

ET
�
e�T+`pT+`�1

�
= e�T+`pT

`�1Y
j=1

e� j��( j); � > 0; ` = 2; 3; ::; (8)

where �T+`pT is the linear predictor of �T+`pT+`�1: The MSE of the predicted
scale for ` = 2; 3; :::, is

MSE(ET
�
e�T+`pT+`�1

�
) = e2�T+`pT

0@`�1Y
j=1

e�2 j��(2 j)�
 
`�1Y
j=1

e� j��( j)

!21A :

The multi-step predictor of the variance of yT+` is obtained from the
formula above with V ar("t) included, that is

V arT (yT+`) =
�

� � 2
�

2 � 1 + 
�2

�
e2�T+`pT

`�1Y
j=1

e�2 j��(2 j); � > 2: (9)
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2.2 Asymptotic distribution of maximum likelihood es-
timator

The ML estimates are obtained by maximizing the log-likelihood function
with respect to the unknown parameters. Although (3) is the conventional
formulation of a �rst-order dynamic model, the information matrix takes a
simpler form if the paramerization is in terms of ! rather than �: Thus

�tpt�1 = ! + �ytpt�1; �yt+1pt = ��ytpt�1 + �ut; t = 1; :::; T: (10)

Re-writing the above model in a similar way to (3) gives

�t+1pt = !(1� �) + ��tpt�1 + �ut; j�j < 1; t = 1; :::; T: (11)

When � and � are known, the information matrix for a single observation
is time-invariant and given by

I( ) = �2uD( )

where

D( ) = D

0@ e�e�e!
1A =

1

1� b

24 A D E
D B F
E F C

35 (12)

with

A = �2u; B =
�2�2u(1 + a�)

(1� �2)(1� a�)
; C =

(1� �)2(1 + a)

1� a
;

D =
a��2u
1� a�

; E = c(1� �)=(1� a) and F =
ac�(1� �)

(1� a)(1� a�)
;

with

a = �� �
2�

� + 3
(13)

b = �2 � ��
4�

� + 3
+ �2

12�(� + 1)(� + 2)

(� + 7)(� + 5)(� + 3)

c = �
4�(1� �)

(� + 5)(� + 3)
; � > 0:
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Recall that �2u = 2�=(� +3): The key conditions for the limiting distribution
of
p
T (e � ) to be multivariate normal with zero mean vector and covariance

matrix I�1( ) are � 6= 0 and b < 1: The proof is sketched out in the appendix.
The asymptotic distribution of e is not a¤ected when � is estimated.

Estimating � does give a slight change since

V ar( ; �) =

2664 2�
�+3
D( ) 1

(�+3)(�+1)

0@ 0
0
1��
1�a

1A
1

(�+3)(�+1)

�
0 0 1��

1�a
�

h(�)=2

3775
�1

; (14)

where D( ) is the matrix in (12) and

h(�) =
1

2
 0 (�=2)� 1

2
 0 ((� + 1)=2)� � + 5

� (� + 3) (� + 1)
; (15)

with  0 (:) being the trigamma function; see, for example, Taylor and Verblya
(2004).

2.3 Monte Carlo experiments

Table 1 reports Monte Carlo results for the Beta-t-EGARCH model, (1) and
(10) with � known to be zero, but �; �; ! and � unknown. The expression for
the information matrix indicates that the asymptotic distribution of these
parameters does not depend on the value of ! and this is supported by
simulation evidence. For each experiment, which consisted of N = 1000
replications, the tables show the asymptotic standard error (ase) for each
parameter, together with the numerical root mean square error (rmse).
For T = 1000; the ase underestimates the rmse. For � the underesti-

mation is rather small, at most 10%. For ! the bias seems to be in the
other direction for � close to one. Again the di¤erence is rarely more than
10%. For � the ase can be half the rmse when � is 0.95 or 0.99, though the
underestimation is less serious when � is bigger.
The ase for � is not very sensitive to the other parameters and the ratio

of the ase to the rmse is around 0:65:
For T = 10; 000, the ase�s and rmse�s for !; � and � are all very close.

For � the ratio of the ase to the rmse is around to 0:8; so convergence to the
asymptotic distribution is much slower. However, a zero mean static model
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Table 1: Finite sample properties and the asymptotic standard
errors of the Beta-t-EGARCH model: yt = exp(�tjt�1)"t; "t �
t�=6; �tjt�1 = ! + �ytjt�1; �ytjt�1 = �1�

y
t�1jt�2 + �1ut�1

Sample size T =1000:
DGP
(!;�1;�1)

rmse
(!̂)

ase
(!̂)

rmse
(�̂)

ase
(�̂)

rmse
(�̂)

ase
(�̂)

rmse
(�̂)

ase
(�̂)

(0, 0.90,0.05) 0.053 0.049 0.075 0.052 0.016 0.016 1.357 0.844
(0, 0.90,0.10) 0.065 0.069 0.038 0.032 0.018 0.017 1.406 0.845
(0, 0.95,0.05) 0.069 0.069 0.058 0.024 0.014 0.013 1.334 0.844
(0, 0.95,0.10) 0.098 0.109 0.019 0.017 0.016 0.015 1.332 0.846
(0, 0.99,0.05) 0.198 0.226 0.010 0.006 0.010 0.010 1.371 0.845
(0, 0.99,0.10) 0.312 0.428 0.008 0.005 0.013 0.013 1.356 0.846
Sample size T = 10; 000:

DGP
(!;�1;�1)

rmse
(!̂)

ase
(!̂)

rmse
(�̂)

ase
(�̂)

rmse
(�̂)

ase
(�̂)

rmse
(�̂)

ase
(�̂)

(0, 0.90,0.05) 0.017 0.015 0.017 0.016 0.005 0.005 0.354 0.267
(0, 0.90,0.10) 0.022 0.022 0.010 0.010 0.006 0.005 0.336 0.267
(0, 0.95,0.05) 0.021 0.022 0.008 0.008 0.004 0.004 0.345 0.267
(0, 0.95,0.10) 0.032 0.034 0.005 0.005 0.005 0.005 0.325 0.267
(0, 0.99,0.05) 0.065 0.071 0.002 0.002 0.003 0.003 0.343 0.267
(0, 0.99,0.10) 0.118 0.135 0.002 0.002 0.004 0.004 0.317 0.268
Simulations (N = 1000 replications) in R version 2.13.2. rmse, root mean

square error of estimates. ase, asymptotic standard error (computed as

T�1=2 � (i�1jj )1=2, where T is the sample size and (i
�1
jj ) is element jj of the inverse

of the information matrix). Estimation via the nlminb() function with upper

and lower bounds on the parameter space equal to (1; 0:999999999;1;1) and
(�1;�0:999999999;�1; 2:1), respectively. Initial values used: (0.005, 0.96,

0.02, 10).

gives similar results, so the DCS model is not displaying anything unusual.
The empirical distributions of the estimates for T = 10; 000 showed no

substantial deviations from normality.

2.4 Leverage

Leverage e¤ects may be introduced into the model using the sign of the
observations. For the �rst-order model, (3),

�tpt�1 = � + ��t�1pt�2 + �ut�1 + ��sgn(�(yt�1 � �))(ut�1 + 1): (16)
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Taking the sign of minus yt � � means that the parameter �� is normally
non-negative for stock returns. Although the statistical validity of the model
does not require it, the restriction � � �� � 0 may be imposed in order to
ensure that an increase in the absolute values of a standardized observation
does not lead to a decrease in volatility.
The expressions for moments and ACFs can be adapted to deal with

leverage, as can the asymptotic thoery.

2.5 Two components

Alizadeh, Brandt and Diebold (2002, p 1088) argue strongly for two compo-
nent (or two factor) stochastic volatility dynamics, in both equity and foreign
exchange. They model such components using a SV framework while Engle
and Lee (1999) proposed a two component GARCH model. In both papers,
volatility is modeled with a long-run and a short-run component, the main
role of the short-run component being to pick up the temporary increase
in volatility after a large shock. Such a model can display long memory
behaviour; see Andersen et al (2006, p 806-7).
The two-component model is

�tpt�1 = ! + �1;tpt�1 + �2;tpt�1

where

�1;t+1pt = �1�1;tpt�1 + �1ut

�2;t+1pt = �2�2;tpt�1 + �2ut

The model is easier to handle than the two-component GARCH model; see
the discussion on the non-negativity constraints in Engle and Lee (1999, p
480).
In the DCS model, as with the GARCH model, the long-term component,

�1;tpt�1; will usually have �1 close to one, or even set equal to one. The short-
term component, �2;tpt�1; will typically have a higher � combined with the
lower �: The model is not identi�able if �2 = �1: Imposing the constraint
0 < �2 < �1 < 1 ensures identi�ability and stationarity.
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Table 2: Numerical properties of ML estimation of Beta-t-
EGARCH in the case of unit root: T = 10000, � = 6, 1000
replications. Only ! and � estimated (� and � �xed to 1 and
6, respectively)
DGP
(!; �; �) m(!̂) s(!̂) m(�̂) s(�̂) c(!̂; �̂)
(0, 1, 0.05) 0.014 0.309 0.050 0.0027 0.0001
(0, 1, 0.10) 0.011 0.435 0.100 0.0038 0.0000
Simulations in R. m(�), average of estimates. s(�) and c(�; �), sample
standard deviation and sample covariance of estimates (division by N ,

not by N � 1, where N is the number of replications). Estimation via

the nlminb() function with upper and lower bounds on the parameter

space equal to (1;1) and (�1;�1), respectively. Initial values used:
(0.005, 0.02).

2.6 Nonstationarity

The EGARCH model is nonstationary when � = 1 in the �rst-order model as
written in (10). When ! = �1p0 is �xed and known, the result in sub-section
2.2 indicates that the limiting distribution of

p
T (e� � �) is normal with

mean zero and variance (1� b)=�4u (Since ! is given, estimating � does not
a¤ect the asymptotic distribution of e�:) For small �; V ar(e�) ' 2�=�2u: Thus
for a t��distribution the approximate standard error of e� is p�(� + 3)=�T ;
provided that � > 0:
When the parameter ! is estimated, it appears from the simulation evi-

dence in table 2 that the asymptotic distribution of the ML estimator of �
is unchanged. The approximate asymptotic standard errors for � = 0:05 and
0:10 are 0:00274 and 0:00387 respectively and these are almost exactly the
same as the values in table 2.
If � is estimated unrestrictedly, it will have a non-standard distribution3.

The simulations reported in table 3, where !; � and � are all unknown pa-
rameters, indicate that the distribution of e� is unchanged, which is to be
expected since, unlike e�; e� is not superconsistent. (The parameter ! is not
estimated consistently but this should not a¤ect the asymptotic distribution

3A reasonable conjecture is that the limiting distribution of Te� can be expressed in
terms of functionals of Brownian motion, as is the case when a series is a random walk
and observations are regressed on their lagged values.
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Table 3: Numerical properties of ML estimation of Beta-t-EGARCH in
the case of an estimated unit root: T = 10000, � = 6. Thus �, ! and �
estimated (and � �xed to 6)
DGP:
(!; �; �) m(!̂) s(!̂) m(�̂) s(�̂) m(�̂) s(�̂) c(!̂; �̂) c(!̂; �̂)
(0,1,0.05) 0.012 0.313 1.00 0.00033 0.050 0.0027 0.00000 0.00005
(0,1,0.10) 0.020 0.435 1.00 0.00031 0.100 0.0038 0.00000 -0.00006

(!; �; �) c(�̂; �̂) î11 î12 î13 î22 î23 î33
(0,1,0.05) 0.00000 13.41 -1.046 -0.00705 932.7 -0.0141 0.00102
(0,1,0.10) 0.00000 6.90 5.308 0.00219 1059.8 0.0073 0.00053
Simulations in R (1000 replications). m(�), average of estimates. s(�) and c(�; �),
sample standard deviation and sample covariance of estimates (division by N , not

by N � 1, where N is the number of replications). î11, î12 and î22, estimates of

the elements of the information matrix. Extreme observations were excluded from

the computations in the second (23 observations in total) run of simulations, that

is, when � was equal to 0.1. Estimation via the nlminb() function with upper and

lower bounds on the parameter space equal to (1;1;1) and (�1;�1;�1),
respectively. Initial values used: (0.005, 0.96, 0.02).

of e� and e�:)
3 Skew distributions

Skewness may be introduced into the Beta-t-EGARCH model using the
method proposed by Fernandez and Steel (1998). The �rst sub-section
describes the Fernandez and Steel method and the remaining sub-sections
present the details for Beta-t-EGARCH. The same methods can be used for
Gamma-GED-EGARCH, as described in section 5.

3.1 Method of Fernandez and Steel

The skewing method proposed by Fernandez and Steel (1998) uses a con-
tinuous probability density function, f(z); that is unimodal and symmetric
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about zero to construct a skewed probability density function

f("tj
) =
2


 + 
�1

�
f

�
"t



�
I[0;1)("t) + f("t
)I(�1;0)("t)

�
; (17)

where I("t) is an indicator variable, taking the value one when "t � 0 and
zero otherwise, and 
 is a parameter in the range 0 < 
 <1. An equivalent
but more compact formulation is

f("tj
) =
2


 + 
�1
f

�
"t


sgn("t)

�
: (18)

Symmetry is attained when 
 = 1, whereas 
 < 1 and 
 > 1 produce left
and right skewness respectively. In other words the left hand tail is heavier
when 
 < 1:
The uncentered moments of "t, given by Fernandez and Steel (1998), are

E("ct) =Mc

c+1 + (�1)c=
c+1


 + 
�1
(19)

where

Mc = 2

Z 1

0

zcf(z)dz = E(jzjc): (20)

Note that �2z = V ar(zt) =M2: Hence

E("t) = �" =M1(
 � 1=
); (21)

which is not zero unless 
 = 1; and

V ar("t) =M2

�

2 � 1 + 
�2

�
�M2

1 (
 � 1=
)2 (22)

The standard measure of skewness is

E("t � �")
3 = E("3t )� 3�"E("2t ) + 2�3"
= (
 � 
�1)[(M3 + 2M

3
1 � 3M1M2)(


2 + 
�2) + 3M1M2 � 4M3
1 ]

divided by (V ar("t))3=2; see Fernandez and Steel (1998, eq 6).
The introduction of a location parameter, �; and �; the logarithm of scale,

so that
yt = �+ "t exp(�);
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gives

f(ytj
) =
2


 + 
�1

�
f

�
yt � �


 exp(�)

�
I[0;1)(y � �) + f

�
(yt � �)


exp(�)

�
I(�1;0)(yt � �)

�
(23)

As regards moments of the observations,

�y = E(yt) = �+ �" exp(�);

while V ar(yt) = E(yt � �y)
2 = V ar("t) exp(2�):

The median and mean are both less than � when 
 < 1, the former
because Pr(yt � �) = 1=(1 + 
2) > 0:5 and the latter because (
 � 1=
) < 0
in (21).

3.2 Beta-skew-t-EGARCH

When the conditional distribution of a Beta-t-EGARCHmodel, (1), is skewed,
the log-density is

ln ft = ln 2� ln(
 + 
�1) + ln � ((� + 1) =2)� 1
2
ln � � ln � (�=2)� 1

2
ln �

��tpt�1 �
(� + 1)

2
ln

�
1 +

(yt � �)2


2sgn(yt��)�e2�tpt�1

�
: (24)

The score is

ut = u+t I[0;1)(yt � �) + u�t I(�1;0)(yt � �); t = 1; :::; T; (25)

where ut = u+t and ut = u�t are as in (2), but with bt de�ned as

b+t =
(yt � �)2=�
2 exp(2�tjt�1)

1 + (yt � �)2=�
2 exp(2�tjt�1)
or b�t =

(yt � �)2=�
�2 exp(2�tjt�1)

1 + (yt � �)2=�
�2 exp(2�tjt�1)

depending on whether yt�� is non-negative (b+t ) or negative (b�t ). However,
the properties of u+t and u

�
t do not depend on the sign of yt�� since in both

cases they are a linear function of a variable with the same beta distribution.
Hence, as before, ut is IID with zero mean and variance is 2�=(� + 3).
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3.3 Asymptotic distribution of maximum likelihood es-
timator

When 
 is known and there is no leverage, the information matrix is exactly
as in the symmetric case because the distribution of the score and its �rst
derivative depend on IID beta variates with the same distribution.
The asymptotic distribution of the ML estimators of the dynamic pa-

rameters is a¤ected when 
 is also estimated by ML. Zhu and Galbraith
(2010) give an analytic expression for the information matrix, but with a
di¤erent parameterization for the scale and the skewing parameter, which is
� = 1=(1 + 
2): Thus � is in the range 0 to 1 and symmetry is � = 0:5: The
scale measure is

� = (
 + 1=
)�0=2 = (
 + 1=
) exp(�)
p
�=4(� � 2);

where �0 is the standard deviation in the FS model; see Zhu and Galbraith
(2010, eq 4). The same result can be found in Gomez et al (2007, propo-
sition 2.3). Our formulae for the information matrix may be adapted quite
easily by re-de�ning � as ln�: The full information matrix for the dynamic
model is then constructed as in sub-section 2.2. The asymptotic theory still
holds when skewness is combined with leverage, but the information matrix
becomes more complicated.
A set of Monte Carlo experiments were run on the Beta-skew-t-EGARCH

speci�cation. The asymptotic theory indicates that the limiting distributions
of !; � and � are changed by the estimation of 
 but the simulations indi-
cated that any such changes were small. The inclusion of leverage makes no
di¤erence to the foregoing conclusion. The tables are available on request.

3.4 Moments and predictions

When the scale changes over time and the m� th unconditional moment of
yt around � exists, it may be written as in (6), but with E ("mt ) now given
by (19). Thus

�y = Eyt = �+ �"E
�
e�tpt�1

�
= �+M1(
 � 1=
)E

�
e�tpt�1

�
(26)
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and

V ar(yt) = E[
�
yt � �y

�2
] = E[

�
"te

�tpt�1 � �"E
�
e�tpt�1

��2
] (27)

= E
�
"2t
�
E
�
e2�tpt�1

�
� �2"(E

�
e�tpt�1

�
)2:

The expected value of the absolute value of a t�-variate raised to a power
m is

E(jzjm) =
�m=2�(m

2
+ 1

2
)�(�m

2
+ �

2
)

�(1
2
)�(�

2
)

(28)

This expression may be used to evaluate Mc in (20): The unconditional ex-
pectations, E (expm�tpt�1) are given by (7), just as in the symmetric case,
because ut in (25) depends on the same beta distribution. Thus, from (26),
the mean of the observations is

�y = �+
�1=2�((� � 1)=2)
�(�=2)

p
�

(
 � 1=
)E(exp(�tpt�1)); � > 1: (29)

For � > 2; the unconditional variance is obtained as

V ar(yt) =
�

� � 2
�

2 � 1 + 
�2

�
E(e2�tpt�1)�

�
�1=2�((� � 1)=2)
�(�=2)

p
�

(
 � 1=
)
�2
(E
�
e�tpt�1

�
)2:

When the conditional distribution is skewed, the volatility may increase
the skewness in unconditional distributions, just as it increases the kurtosis.
The calculations can be carried out by evaluating

E[
�
yt � �y

�3
] = E("3t )E

�
e3�tpt�1

�
�3�"E("2t )E

�
e�tpt�1

�
E
�
e2�tpt�1

�
+2�3"(E

�
e�tpt�1

�
)2:

The skewness measure is then

S(�; 
) =
E[
�
yt � �y

�3
]h

E[
�
yt � �y

�2
]
i3=2 (30)

and this may be compared with E("t � �")
3=(V ar("t))

3=2:
The ACF of (yt � �y)

2 can be obtained in the same way as for the sym-
metric model.
The multi-step predictor of the variance of yT+` given in (9) needs to be
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modi�ed to

V arT (yT+`) =
�

� � 2
�

2 � 1 + 
�2

�
e2�T+`pT

`�1Y
j=1

e�2 j��(2 j)� (�y � �)2;

for ` = 2; 3; ::: and � > 2. The formula for �y � � is given by (29).

3.5 Leverage

When there is leverage, as in (16), the dynamic equation becomes

�t+1pt = !(1� �) + ��tpt�1 + �ut + ��sgn(�yt + �)(ut + 1):

In contrast to the symmetric model, �t+1pt is no longer driven by a MD since
the expectation of the variable in the last term is

E[sgn(yt � �)(ut + 1)] = (1� 
2)=(1 + 
2) (31)

because E(ut + 1) = 1: The moments are adapted accordingly.

4 Modeling returns with the martingale dif-
ference modi�cation

There is a problem with using the formulation of the previous Section for
modeling returns because the conditional expectation,

Et�1yt = �+ �" exp(�tpt�1);

is not constant. Therefore yt cannot be a MD. The solution is to let � be
time-varying. The model is re-formulated as

yt = �Stpt�1 + "t exp(�tpt�1); t = 1; ::::; T (32)

�Stpt�1 = �y � �" exp(�tpt�1);

where �y is a constant parameter, which is both the conditional and the
unconditional mean. The time-varying parameter �Stpt�1 replaces � in the

17



likelihood function, (24). The score is now

ut =
(� + 1)((yt � �y + �" exp(�tpt�1))(yt � �y)

�
2sgn(yt��y+�" exp(�tpt�1)) exp(2�tpt�1) + (yt � �y + �" exp(�tpt�1))
2
� 1:

(33)
Giot and Laurent (2003) transform their Skew-t GARCH model to make it
a MD. They also standardize to make the variance one, but in our skew-t
model this is not necessary.

4.1 Moments, skewness and volatility

The model in (32) can also be expressed as

yt = �y + ("t � �") exp(�tpt�1): (34)

Since
Et�1[

�
yt � �y

�2
] = Et�1[("t � �")

2 exp(2�tpt�1)];

it follows from the LIE that the unconditional variance of yt is now

V ar(yt) = E[
�
yt � �y

�2
] = V ar("t)E exp(2�tpt�1);

but the fact that (33) does not have the simple beta distribution of (25)
makes analytic evaluation more di¢ cult.
The skewness in the MD model is

S(�; 
) =
E[("t � �")

3]E exp(3�tpt�1)�
E[("t � �")

2]E(exp(2�tpt�1))
�3=2

and so the factor by which skewness changes because of changing volatility
is just

S� =
E exp(3�tpt�1)

[E(exp(2�tpt�1))]
3=2
; � > 3: (35)

It follows from Hölder�s inequality4 that S� is greater than, or equal to, one.

4E jxjr � [E jxjs]r=s : Here x = exp(�) � 0; and r and s can be set to 2 and 3 respec-
tively.
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4.2 Leverage e¤ects

When there is leverage, the dynamic equation becomes

�t+1pt = � + ��tpt�1 + �ut + ��sgn(�yt + �y � �" exp(�tpt�1))(ut + 1): (36)

There is also a case for letting the leverage depend on sgn(�yt+ �y) so that
(36) becomes

�t+1pt = � + ��tpt�1 + �ut � ��sgn(yt � �y)(ut + 1):

The rationale is that leverage should depend on whether the return is above
or below the mean.
Leverage in itself does not induce skewness in the multi-step and uncon-

ditional distributions of Beta-t-EGARCH models. However, as was noted
in the previous sub-section, when the conditional distribution is skewed, the
volatility may increase the skewness in the unconditional distribution. The
question then arises as to whether leverage exacerbates this increase.

4.3 Asymptotic theory

The expectation of ut is zero, as it should be, since it can be written

ut =
(� + 1)(yt � �y + �" exp(�tjt�1))

2 � (� + 1)�" exp(�tjt�1)(yt � �y + �" exp(�tjt�1))

� exp(2�tjt�1)

2sgn(yt��y+�" exp(�tjt�1)) + (yt � �y + �" exp(�tjt�1))

2
� 1

=
(� + 1)"t

2 � (� + 1)�" exp(�tjt�1)"t
� exp(2�tjt�1)
2sgn("t) + "t2

� 1

= (� + 1)bt � 1� (� + 1)�"[(1� bt)"t exp(��tjt�1)��1
�2I[0;1)("t)
+(1� bt)"t exp(��tjt�1)��1
2I(�1;0)("t)]:

Therefore

E(ut) = E[(� + 1)bt � 1]� (� + 1)�"E[(1� bt) j"tj exp(��tjt�1)��1
�1]
�1(
2=(1 + 
2)
�E[(1� bt) j"tj exp(��tjt�1)��1
]
(1=(1 + 
2);

which is zero as the �rst expectation is zero and the second and third expec-
tations cancel.
The distribution of ut does not depend on � and the same is true of the
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distribution of its derivatives. The conditions for the ML estimator to be
consistent and asymptotically normal hold just as they do in the symmetric
case.

4.4 Forecasts

The quantile function of a skew t distribution is given by expression (9)
in Giot and Laurent (2003). If the ��quantile is denoted as skst(� ; �; 
);
the ��quantile of the one-step ahead predictive distribution of yt is � +
e�T+1pT skst(� ; �; 
): Formulae for VaR (the same as the quantile formula)
and expected shortfall in a skew-t are given in Zhu and Galbraith (2010, p.
300). These formulae may be used in one-step ahead prediction.
Formulae generalizing the multi-step ahead predictions of the volatil-

ity and observations, (8) and (9) respectively, for the symmetric Beta-t-
EGARCHmodel are di¢ cult to obtain. (Note that volatility has implications
for skewness of multi-step distributions, just as it does for the unconditional
distribution.) However, the main interest is in quantiles and the multi�step
conditional distributions can be computed by simulation, simply by generat-
ing beta variates and combining them with an observation generated from a
skew-t.

5 Gamma-skew-GED-EGARCH

In the Gamma-GED-EGARCH model, yt = � + "t exp(�tpt�1) and "t has a
general error distribution (GED) with positive shape (tail-thickness) para-
meter � and scale �tpt�1. The log-density function of the t�th observation
is

ln ft(�; �) = �
�
1 + ��1

�
ln 2� ln �(1 + ��1)� �� 1

2
jyt � �j� exp(���);

leading to a model in which �tpt�1 evolves as a linear function of the score,

ut = (�=2)(jyt � �j� = exp(�tpt�1�)� 1; t = 1; :::; T: (37)

Hence �2u = �:When �tpt�1 is stationary, the properties of the Gamma-GED-
EGARCH model and the asymptotic covariance matrix of the ML estimators
can be obtained in much the same way as those of Beta-t-EGARCH. The
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name Gamma-GED-EGARCH is adopted because ut = (�=2)& t � 1; where
& t = jyt � �j� = exp(�tpt�1�) has a gamma(1=2, 1=�) distribution.
The model extends to the skew case in much the same way as does Beta�

t-EGARCH. The asymptotic theory for a static model is set out in Zhu and
Zinde-Walsh (2009).

6 Applications

In this section we �t various Beta-t-EGARCH speci�cations to a range of
demeaned �nancial return series. The �t of these models is compared to that
of the standard GARCH(1,1) model with a leverage term of the form pro-
posed by Glosten, Jagannathan and Runkle (1993), henceforth GJR. Apart
from one series, Apple, which was already studied in the introduction, all
the data are contained in the period 1 January 1999 - 12 October 2011,
which corresponds to a maximum of 3275 observations. But for some of
the series the available number of data points is substantially smaller. Ya-
hoo Finance (http://yahoo.�nance.com/) is the source of the stock market
indices, the stock prices and the gold price, whereas the European Cen-
tral Bank (http://www.ecb.int/) and the US Energy Information Agency
(http://www.eia.gov/) are the sources of the exchange rate data and the
oilprice data, respectively.
Table 4 contains descriptive statistics of the returns series, and con�rms

that they exhibit the usual properties of excess kurtosis compared with the
normal, and ARCH as measured by serial correlation in the squared returns.
All of the stock returns� apart from DAX� and the oil return series exhibit
negative skewness, whereas gold and the exchange rate returns exhibit pos-
itive skewness. (Below we will see that the unconditional positive skewness
in DAX returns is converted into a negative conditional skewness when con-
trolling for ARCH, GARCH and leverage.) For the exchange rate returns
the positive skewness is presumably due to the fact that the more liquid cur-
rencies appear in the denominator of each of the three exchange rates: An
increase in the exchange rate (say, EUR/USD) implies a depreciation in the
less liquid currency (Euro) relative to the more liquid currency (USD). Only
two series do not pass the test of whether returns are a MD at traditional sig-
ni�cance levels, namely SP500 and Statoil. For this reason these two return
series are demeaned by �tting AR(1) speci�cations with a constant, whereas
the rest of the returns are demeaned by a constant only.
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Table 4: Descriptive statistics of return series (January 1999 -
October 2011)

m s Kurt Skew MDH
[p�val]

ARCH20
[p�val]

Apple: 0.072 3.104 53.846 -1.964 0:03
[0:86]

36:18
[0:01]

SP500: -0.001 1.364 10.061 -0.156 7:64
[0:01]

4357:63
[0:00]

Ftse: -0.002 1.310 8.459 -0.121 2:16
[0:14]

3581:03
[0:00]

DAX: 0.006 1.623 6.926 0.023 0:33
[0:56]

2994:33
[0:00]

Nikkei: -0.015 1.587 9.437 -0.377 0:86
[0:35]

3464:52
[0:00]

Boeing: 0.029 2.124 7.869 -0.185 0:06
[0:80]

806:82
[0:00]

Sony: -0.044 2.184 8.524 -0.239 0:43
[0:51]

568:21
[0:00]

McDonald�s: 0.034 1.701 7.754 -0.084 0:40
[0:53]

485:24
[0:00]

Merck: -0.010 1.988 26.914 -1.429 0:11
[0:74]

41:19
[0:00]

Statoil: 0.073 2.414 7.703 -0.496 5:36
[0:02]

3888:85
[0:00]

EUR/USD: 0.005 0.671 5.451 0.067 0:06
[0:81]

583:21
[0:00]

GBP/EUR: 0.006 0.516 6.653 0.398 2:37
[0:12]

2186:80
[0:00]

NOK/EUR: -0.004 0.444 10.801 0.253 2:26
[0:13]

1093:29
[0:00]

Oil: 0.070 2.426 7.712 -0.274 0:34
[0:56]

543:48
[0:00]

Gold: 0.151 3.211 7.218 0.189 0:08
[0:78]

1481:72
[0:00]

Notes: m, sample mean. s, sample standard deviation. Kurt, sample

kurtosis. Skew, sample skewness. MDH, Escanciano and Lobato (2009)

test for the Martingale Di¤erence Hypothesis. ARCH20, Ljung and Box

(1979) test for serial correlation in the squared return.
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Demeaned returns, yt; are modeled as in section 4. The two-component
speci�cation is

yt = exp(�tjt�1)("t � �"); �tjt�1 = ! + �y1;tjt�1 + �y2;tjt�1;

�y1;tjt�1 = �1�
y
1;tjt�1 + �1ut�1; j�1j < 1; �1 6= �2;

�y2;tjt�1 = �2�
y
2;tjt�1 + �2ut�1 + ��sgn(�yt�1)(ut�1 + 1);

with ut as in (33) with �y = 0: Following Engle and Lee (1999, p. 487)
and others, only the short-term component has a leverage e¤ect. A little
experimentation indicated that this was a reasonable assumption to make
here.
When only one component is used in the Beta-skew-t-EGARCH model it

is comparable with the skewed-t-GJR, namely

yt = �tjt�1e"tjt�1; t = 1; :::; T;

�2tjt�1 = ! + �1�
2
t�1jt�2 + �1y

2
t�1 + ��I(yt�1 < 0)y

2
t�1;

where e"t is a skewed t distribution with zero mean and unit variance. The use
of sgn(�yt�1) rather than the indicator I(yt�1 < 0)makes no di¤erence to the
�t. Note that the persistence parameter in the GJR model is �1+�1+�

�=2;
not �1; see Taylor (2005, p 221).
Tables 5 to 8 contain estimation results of the di¤erent �nancial returns.

The results of the Apple data were used in the introduction to illustrate a
drawback with the GARCH framework. The maximized likelihood of the
Beta-skew-t-EGARCH model with leverage is clearly larger than that of the
skewed-t-GJR model. The use of two components5 gives a further improve-
ment (the SC information criterion is lower for the two component model).
Despite the large outlier, there is little evidence of negative skewness in the
�t; the estimates of 
 are greater than one.
All the results suggest that returns are fat-tailed6 and the presence of

either leverage or skewness (or both) is a common feature across a range of

5For some series, for example SP500, the estimate of �2 is less than that of ��; indicating
that the short run e¤ect of a large positive return is to reduce volatility. There may be
plausible explanations, but if not, the constraint �2 = �� may be imposed. When this was
done here, there was usually a statistically signi�cant decrease in the likelihood. However,
the model still �tted well and there are no important implications regarding the overall
merits of using two components.

6The maximum estimated value of the degrees of freedom parameter is 17 (FTSE).
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series. In fact, the only return series in which neither leverage nor skewness
is signi�cant (at 10%) in any of the three �tted models is the EUR/USD ex-
change rate. For gold, whose market characteristics are very particular (the
price is �xed twice a day rather than continuously as in other �nancial mar-
kets), leverage is signi�cant only in the two-component model, and skewness
is not signi�cant in any of the three. Another notable feature is that the un-
conditional positive skewness in DAX returns is converted into negative and
signi�cant conditional skewness, when controlling for ARCH, GARCH and
volatility asymmetry. All in all, the results thus provide broad support in
favour of the Beta-skew-t-EGARCH, since according to the SC information
criterion the GJR beats the �tE speci�cations in only three instances (Sta-
toil, a Norwegian petroleum company, NOK/EUR and gold). Comparing the
one-component and two-component versions of the Beta-skew-t-EGARCH
(excluding the Apple stock where a longer sample is used for estimation),
the two-component performs better according to SC in only two instances
(FTSE and DAX).
Both leverage and negative skewness is particularly pronounced among

the stock market indices. The leverage estimate is always positive, which
yields the usual interpretation of large negative returns being followed by
higher volatility. Similarly, the skewness parameter estimate ranges from
0.86 to 0.91, which means the risk of a large negative (demeaned) return is
higher than a large positive (demeaned) return. Interestingly, but maybe not
surprisingly, most of the large stocks with relatively regular earnings payouts
(Apple, Boeing, Sony, McDonald�s, Merck, Statoil) do not exhibit as much
leverage or negative skewness as the indices, and sometimes the skewness is
positive. A striking exception is Statoil whose negative skewness is 0.87.
As noted above the most liquid currency pair (EUR/USD) exhibits nei-

ther leverage nor skewness. This is in line with what might be expected. How-
ever, medium liquid exchange rates like EUR/GBP exhibit some skewness
but no leverage, whereas relatively minor exchange rates like NOK/EUR ex-
hibit substantial skewness and leverage. A common interpretation of �lever-
age" in an exchange rate context is that a large depreciation (for whatever
reason) can induce higher volatility. This means the leverage parameter can
be negative, since the sign depends on which currency is in the numerator
of the exchange rate. Speci�cally, if the currency of the smaller economy is
in the numerator, then one would expect a negative sign: A positive return
means a depreciation in the smaller currency, which subsequently leads to
an increase in volatility, and vice versa. This accounts for the negative and
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statistically signi�cant leverage estimate of NOK/EUR.
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7 Changing location

Returns sometimes exhibit mild serial correlation. Such e¤ects may be
removed prior to �tting a volatility model as was done in the previous section.
However, rather than simply using a standard procedure for estimating an
ARMA model, a DCS model may be �tted, thereby providing protection
against outliers. Indeed a DCS model with a skew distribution may be �tted
and location and volatility estimated jointly.
Another possibility to consider is that the serial correlation may actually

arise as a consequence of combining serial correlation in scale with conditional
skewness.

7.1 Joint estimation of location and scale

When yt j Yt�1 has a symmetric t�-distribution and the location changes over
time, but the scale is constant, it may be captured by a model in which �tjt�1
is generated by a linear function of

u�t =

 
1 +

(yt � �tjt�1)
2

� exp(�2�)

!�1
vt; t = 1; :::; T; � > 0; (38)

where vt = yt � �tjt�1 is the prediction error. The role of the term in paren-
theses in (38) is to downweight extreme observations. The variable can be
written

u�t = (1� bt)(yt � �tjt�1); (39)

where

bt =
(yt � �tjt�1)

2=� exp(2�)

1 + (yt � �tjt�1)
2=� exp(2�)

; 0 � bt � 1; 0 < � <1; (40)

is distributed as beta(1=2; �=2). Hence the mean of u�t is zero, as it should
be.
The �rst-order model is

yt = �tjt�1 + vt = �tjt�1 + exp(�tpt�1)"t; t = 1; :::; T (41)

�t+1jt = � + ��tjt�1 + �u�t ;

This model might be interpreted as an approximation to an AR(1) process
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plus t-distributed white noise. More generally, a linear dynamic model of
order (p; r) may be de�ned as

�t+1jt = � + �1�tpt�1 + :::+ �p�t�p+1pt�p + �0u
�
t + �1u

�
t�1 + :::+ �ru

�
t�r; (42)

where p � 0 and r � 0 are �nite integers and �; �1; ::; �p; �0; ::; �r are (�xed)
parameters. Stationarity (both strict and covariance) of �tpt�1 requires that
the roots of the autoregressive polynomial lie outside the unit circle, as in an
autoregressive-moving average model.
When the conditional distribution is skew-t,

u�t = u+t I[0;1)(yt � �tjt�1) + u�t I(�1;0)(yt � �tjt�1); t = 1; :::; T; (43)

where ut = u+t and ut = u�t are as in (39), but with bt de�ned as

b+t =
(yt � �tjt�1)

2=� exp(2�)

1 + (yt � �tjt�1)
2=�
2 exp(2�)

or b�t =
(yt � �tjt�1)

2=� exp(2�)

1 + (yt � �tjt�1)
2=�
�2 exp(2�)

;

(44)
depending on whether yt � �tjt�1 is non-negative (b

+
t ) or negative (b

�
t ). The

properties of u+t and u
�
t do not depend on the sign of yt��tjt�1 since in both

cases they are a linear function of the same beta variable, as de�ned in (40).
The asymptotic distribution of the ML estimators may be obtained.
Location and scale may be estimated jointly. The dynamic equations have

the same form as before. Thus u�t is de�ned as in (43) but with � replaced
in (44) by �tpt�1: Similarly �y is replaced by �tpt�1 in the various formulae
for ut. Both ut and u�t are MDs, dependent on beta variables with the
same distribution. However, the unconditional information matrix cannot
be evaluated in the same way as before because the variance of the score
with respect to the location depends on the scale.
The case for adopting the MD modi�cation of section 4 may not be so

strong when there is serial correlation in the level. If the modi�cation is to
be made, then

�Stpt�1 = �tpt�1 � �" exp(�tpt�1);

where �tpt�1 from (41) replaces the constant mean �y in (32). Of course
if the serial correlation is �rst removed by pre-�ltering the MD model is
appropriate.
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8 Conclusions and extensions

This article shows that much of the theory for the basic Beta-t-EGARCH
model generalizes to a skew-t model. Thus expressions may be obtained
for unconditional moments of the observations and for predictions. An an-
alytic expression can be derived for the information matrix of a �rst-order
model and its structure gives insight into the way in which the estimators
of parameters interact for di¤erent parameterizations. For example, if the
dynamic equation is set up in terms of the mean, the asymptotic distribution
is independent of its value. The e¤ect of the skewness parameter may be sim-
ilarly explored. Having said that, the derivation of an analytic expression for
the information matrix of the ML estimators for the preferred speci�cation,
which is one that retains the martingale di¤erence property, is more di¢ cult.
The fact that a comprehensive set of theoretical properties can be de-

rived for Beta-t-EGARCH models is a considerable attraction. Even more
important, from the practical point of view, is that our results provide yet
more evidence on the better �t a¤orded by the Beta-t-EGARCH speci�cation
as compared with the GARCH-t benchmark; see also the results in Harvey
and Chakravarty (2008) and Creal, Koopman and Lucas (2011). The skew-
t model with two components, the short-term one with a leverage e¤ect,
seemed to give the best results overall. We �nd both leverage and negative
skewness to be particularly pronounced among stock market indices, such as
SP 500, FTSE, DAX and Nikkei.

Zhu and Galbraith (2010) consider an asymmetric skew t-distribution in
which the degrees of freedom takes on a di¤erent value according to the sign
of the deviation from the mean. The Beta-skew-t-EGARCH model could in
principle be extended in this way. There is also the possibility of introducing
skewness into the multivariate model of Creal, Koopman and Lucas (2011).
Zhang et al (2011) propose such a multivariate model based on the general-
ized hyperbolic distribution, but, as they note, computing the information
matrix for this distribution is analytically intractable so deriving asymptotic
properties of ML estimators using the methods employed in this paper will
not be possible.
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Appendix: Asymptotic properties of the ML
estimator

This appendix explains how to derive the information matrix of the ML
estimator for the �rst-order model and outlines a proof for consistency and
asymptotic normality; full details can be found in Harvey (2012).
As noted in the text, if the model is to be identi�ed, � must not be zero

or such that the constraint b < 1 is violated. A more formal statement is
that the parameters should be interior points of the compact parameter space
which will be taken to be j�j < 1; j!j < 1 and 0 < � < �u; �L < � < 0
where �u and �L are values determined by the condition b < 1.
The �rst step is to decompose the derivatives of the log density wrt  

into derivatives wrt �tpt�1 and derivatives of �tpt�1 wrt  , that is
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@ ln ft
@ 

=
@ ln ft
@�tpt�1

@�tpt�1
@ 

; i = 1; 2; 3:

Since the scores @ ln ft=@�tpt�1 are IID(0; �2u) and so do not depend on �tpt�1;

Et�1

��
@ ln ft
@�tpt�1

@�tpt�1
@ 

��
@ ln ft
@�tpt�1

@�tpt�1
@ 

�0�
=

"
E

�
@ ln ft
@�

�2#
@�tpt�1
@ 

@�tpt�1
@ 0

= �2u
@�tpt�1
@ 

@�tpt�1
@ 0

:

Thus the unconditional expectation requires evaluating the last term. In
order to do this, the following de�nitions, which specialize to the expressions
in (45), are needed:

a = �+ �E

�
@ut
@�

�
(45)

b = �2 + 2��E

�
@ut
@�

�
+ �2E

�
@ut
@�

�2
� 0

c = �E

�
ut
@ut
@�

�
We also note that the �rst derivative of the conditional score is

@ut
@�tpt�1

=
�2(� + 1)(yt � �)2� exp(2�tpt�1)

(� exp(2�tpt�1) + yt � �)2)2
= �2(� + 1)bt(1� bt);

and since, like ut; this depends only on a beta variable, it is also IID. Hence
the distribution of ut and its �rst derivative are independent of �tpt�1. All
moments of ut and @ut=@� exist for the t-distribution and the expressions
for a; b and c are as in (45).
The derivative of �tpt�1 wrt � is

@�tpt�1
@�

= �
@�t�1pt�2
@�

+ �
@ut�1
@�

+ ut�1; t = 2; :::; T:

However,
@ut
@�

=
@ut

@�tpt�1

@�tpt�1
@�

;
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Therefore
@�tpt�1
@�

= xt�1
@�t�1pt�2
@�

+ ut�1 (46)

where

xt = �+ �
@ut

@�tpt�1
; t = 1; ::::; T: (47)

Taking conditional expectations of xt gives

Et�1(xt) = �+ �Et�1

�
@ut

@�tpt�1

�
= �+ �E

�
@ut
@�

�
;

where the last equality follows because @ut=@�tpt�1 is IID and so unconditional
expectations can replace conditional ones. The unconditional expression de-
�nes the general expression for the quantity �a�in (45).
When the process for �tpt�1 starts in the in�nite past and jaj < 1; tak-

ing conditional expectations of the derivatives at time t � 2; followed by
unconditional expectations gives

E

�
@�tpt�1
@�

�
= E

�
@�tpt�1
@�

�
= 0 and E

�
@�tpt�1
@!

�
=
1� �

1� a
:

The derivatives wrt � and ! are found in a similar way.
To derive the information matrix, square both sides of (46) and take

conditional expectations to give

Et�2

�
@�tpt�1
@�

�2
= Et�2

�
xt�1

@�t�1pt�2
@�

+ ut�1

�2
= b

�
@�t�1pt�2
@�

�2
+ 2c

@�t�1pt�2
@�

+ �2u: (48)

where b and c are as de�ned in (13). Taking unconditional expectations gives

E

�
@�tpt�1
@�

�2
= bE

�
@�t�1pt�2
@�

�2
+ 2cE

�
@�t�1pt�2
@�

�
+ �2u
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and so, provided that b < 1;

E

�
@�tpt�1
@�

�2
=

�2u
1� b

:

Expressions for other elements in the information matrix may be similarly
derived; see Harvey (2012). Ful�llment of the condition b < 1 implies jaj < 1:
That this is the case follows directly from the Cauchy-Schwartz inequality
E(x2t ) � [E(xt)]

2 :
Consistency and asymptotic normality can be proved by showing that the

conditions for Lemma 1 in Jensen and Rahbek (2004, p 1206) hold. The main
point to note is that the �rst three derivatives of �tpt�1 wrt �; � and ! are
stochastic recurrence equations (SREs); see Brandt (1986) and Straumann
and Mikosch (2006, p 2450-1). The condition b < 1 is su¢ cient7 to ensure
that they are strictly stationarity and ergodic at the true parameter value.
Similarly b < 1 is su¢ cient to ensure that the squares of the �rst derivatives
are strictly stationary and ergodic.
Let  0 denote the true value of  . Since the score and its derivatives wrt

� in the static model possess the required moments, it is straightforward to
show that (i) as T !1; (1=

p
T )@ lnL( 0)=@ !N(0; I( 0)); where I( 0)

is p.d. and (ii) as T ! 1; (�1=T )@2 lnL( 0)=@ @ 0
P! I( 0): The �nal

condition in Jensen and Rahbek (2004) is concerned with boundedness of the
third derivative of the log-likelihood function in the neighbourhood of  0:
The derivatives of ut, as well as ut itself, are a¢ ne functions of terms of the
form b�t = bht (1� bt)

k; where h and k are non-negative integers. Since

bt = h(yt; )=(1 + h(yt; )); 0 � h(yt; ) � 1;

where h(yt; ) depends on yt and  ; it is clear that, for any admissible  ,
0 � bt � 1 and so 0 � b�t � 1: Furthermore the derivatives of �tpt�1 must be
bounded at  0 since they are stable SREs which are ultimately dependent on
ut and its derivatives. They must also be bounded in the neighbourhood of
 0 since the condition b < 1 is more than enough to guarantee the stability
condition E(ln jxtj) < 0:
Unknown shape parameters, including degrees of freedom, pose no prob-

7The necessary condition for strict stationarity is E(ln jxtj) < 0: This condition is
satis�ed at the true parameter value when jaj < 1 since, from Jensen�s inequality,
E(ln jxtj) � lnE(jxtj) < 0 and as already noted b < 1 implies jaj < 1:
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lem as the third derivatives (including cross-derivatives) associated with them
are almost invariably non-stochastic.

39


	TitlePage1236
	1236

