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Abstract

We endogenize the threshold points in Granovetter’s threshold model
of collective behavior (Granovetter 1978). We do this in a simple model
that combines strategic complementarity and private information in a
dynamic setup with endogenous order of moves. Looking at Granovetter’s
model in the strategic context allows us to highlight the sensitivity of
collective outcomes to the timing of the games and the reversibility of the
actions, and to emphasize an extra incentive for people to follow other
people: to encourage more people to follow them.
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1 Introduction

In the spring of 1989, as part of their demonstration in the democracy move-
ment, thousands of university students in Beijing went on a hunger strike at
the Tian’anmen square. At the beginning the spirit was high. Most students
believed that what they were doing was worth it. Weeks later, and days before
the June 4th military crackdown, frustrated by the government’s silence, and by
hunger itself, the morale became much lower. It is not unreasonable to speculate
that most students would prefer to leave the square and go back to school. At
this moment the student leaders convened all the students and asked them to
simultaneously announce "to leave" or "to stay". Most people announced "to
stay". They stayed. Had they left, June 4th would have been a different day.

In the first draft of his novel The Mysterious Stranger, Mark Twain described
how a mob of villagers stoned a witch to death, although almost none of the
villagers really wanted her to die. Mark Twain goes on and likens the human race
as sheep, governed by minorities who make the most noise in various institutions
such as monarchies, aristocracies, religions, and of course, wars.

The similarities between the two examples are obvious. In both cases a group
of individuals has two actions to choose, A and B. In the first example A is to
leave, B is to stay. In the second example A is not to stone, and B is to stone.
The payoffs attached to each action depend on the number of people who choose
that action. The majority in both cases prefer A, but a handful of extremists
who prefer B take over the entire group and everybody ends up choosing B.
The reason why the extremists take over the group, however, is very different
in the two examples. In the first example, had the student leaders asked the
students to make their decisions sequentially, rather than simultaneously, most
students would have chosen to leave, sooner or later, because to leave (action
A) is an irreversible action, and to stay (action B) is a reversible action, so
that people who leave do not worry too much about peer pressure because they
anticipate that those who stay might follow them later. In the second example,
the villagers make their decisions sequentially. But sequential moves do not help
because unlike in the first example, A (not to stone) is reversible, while B (to
stone) is irreversible, so that it is more likely for people who have not stoned
the witch to follow people who have. Hence the extremists take control over the
group in both examples, but for different reasons. Simultaneity is responsible
for the first example, while reversibility is responsible for the second.

Granovetter (1978) considers a "riot" model where a group of individuals
decides whether and when to participate in a riot. He assumes that each indi-
vidual’s preference is summarized by a threshold number. An individual chooses
to riot if and only if the number of rioters exceeds his threshold. Different
people may have different thresholds. Granovetter (1978) argues that even if
everybody’s preference is known, there is still a great deal to be worked out to
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compute the aggregate outcome. Granovetter’s insight is even if there is just a
small difference between two distributions of preference profiles, the aggregate
outcome could still be very different.

As we see from the strike example and the witch example, collective outcomes
are sensitive not only to distributions of preferences, but also to the timing of
the game and the nature of the actions. Moreover, the players in Granovetter’s
model only look backward: the only thing that matters is how many people
have moved so far. The players in a strategic context, however, look backward
and forward, to choose the best timing of their moves, by calculating the effect
such moves trigger. Thus herding might occur not because players are afraid
of being stranded (Choi 1997), or because they suppress their own information
and free ride on the predecessors’ information (Banerjee 1992; Bikhchandani,
Hirshleifer, and Welch 1992; Zhang 1997), or because doing so gives them a
reputational advantage (Scharfstein and Stein 1990), but simply because they
rationally expect that they are to be followed themselves.

In this paper we endow Granovetter’s players with a strategic context, in
order to highlight the sensitivity of collective outcomes to the timing of the
games and the reversibility of the actions, and to emphasize an extra incentive
for people to follow other people: to encourage more people to follow them. For
the purpose of illustration, we consider the following model of "hunger strike".
A group of students on a hunger strike in a square must decide whether to stay
or to leave. To leave is regarded as shameful, so anyone who leaves incur certain
cost, which is assumed to be private information. On the other hand, whoever
leaves receives comfort depending on the number of other people who also leave.
Each student must decide whether and when to leave. To leave is a one time
and irreversible decision so that once a student chooses to leave, her cost is sunk
irrespective of how many people leave. Time is discrete, and each student in
each period observes accurately how many people have left. An extremist is
someone for whom it is a dominant strategy to stay, and we assume that the
probability for someone to be an extremist is small.

The way we model a small fraction of extremists follows the spirit of the
global games literature (Carlsson and van Damme 1993; Morris and Shin 2004).
The idea of global games is that if we perturb a complete information game
by adding a small amount of noise, then we create dominant strategy types of
players who always choose one action in the perturbed game. These extreme
(remote) types exert an influence on other types’ reasoning, so that a process
of iterated elimination of strictly dominated strategies will generate a unique
Bayesian Nash Equilibrium. In our "hunger strike" model, if the students must
make their decisions simultaneously, then under some conditions this line of
reasoning will lead to a unique equilibrium in which all students choose to stay,
which is close to what actually happened. If the students are allowed to move
sequentially, then uniqueness is not guaranteed, but in any equilibrium, there
is always a positive probability for all students to leave. As the probability of
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being an extremist vanishes, such probability tends to 1. The dynamic game
result is in spirit close to Dasgupta (2003). The major difference is that there is
a continuum of players in Dasgupta’s model, hence the incentive to encourage
other people to follow suit is negligible, while we have a finite number of players,
so that we can highlight such incentives.

We address the issue of irreversibility via an arms race game, studied in
Baliga and Sjöstrom (2004). Although there are only two countries in this
game, it still makes sense to analyze the role of a small fraction of extremists,
which can be interpreted as a small probability for each country to have a dom-
inant strategy to build weapons. Baliga and Sjöstrom (2004) show that such
small probabilities suffice to induce both countries to build arms in the simul-
taneous move game, and they propose a cheap talk mechanism to resolve the
inefficiency. We show that the inefficiency result still holds in any equilibrium
of the sequential version of the game, if we assume that not to build arms is
reversible, and to build arms is not.

In the hunger strike model we abstract away any common fundamental vari-
able, which the students might observe with idiosyncratic noise. We examine
the effect of common shocks on the difference between simultaneous move and
sequential move games. Our model is based on an investment game in Morris
and Shin (2000). Morris and Shin (2000) find that in the simultaneous move
game, inefficiency does not disappear even if the players observe the fundamen-
tals with more and more accuracy. We show that inefficiency will go away as
the amount of noise vanishes, if the game is played sequentially.

The rest of the paper is organized as follows. Section 2 presents the model
and shows how Granovetter’s threshold points are determined in equilibrium,
assuming that there is no discounting. The more technical case of discounting
is discussed in Section 3. Section 4 compares the sequential move game with
the simultaneous move game. The issue of irreversibility and common shocks
are addressed in Sections 5 and 6, respectively. Section 7 concludes. Most of
the proofs are collected in the Appendix.

2 The Model and Endogenous Thresholds

We present the formal model in this section, and show how Granovetter’s thresh-
old points are recursively determined in equilibrium.

There are n students on a hunger strike who must decide whether to stay or
to leave. To leave incurs a cost of ci to student i. At the same time, whoever
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leaves receives a benefit of u (m), where m is the number of people who choose
to leave. For analytic tractability, we assume that

u (m) =

{
0 if m < n
1 if m = n.

That is, to leave is not "profitable" unless all students choose to leave. The
cost of leaving is private information, and it follows i.i.d. with c.d.f. F over
[0, 1 + ε], where ε > 0 and F is continuous. Hence there is a small probability
for a student to be an "extremist" who always chooses to stay.

Time is discrete. The game lasts for T periods, where n ≤ T <∞. Students
choose whether and when to leave. To leave is a one time, irreversible decision.
To stay is reversible. In each period, each student observes accurately how many
students have left so far. Players discount both cost and benefit by the same
discount factor δ, 0 < δ ≤ 1. At the end of the T th period, a player’s payoff is
determined by the final decisions of everybody, adjusted by discounting. Let hT

denote a terminal history. Let πj
(
hT , cj

)
denote type cj of player j’s discounted

payoff attached to hT . Then

π
(
hT , cj

)
=





0 if j never leaves,

δt−1 (−cj) if j leaves in period t, and at least one player never leaves,

δt−1 (−cj) + δ
t′−1 · 1 if j leaves in period t, and all players leave by period t′.

Our solution concept is perfect Bayesian equilibrium (PBE). For the case
where δ = 1, we restrict attention to the set of PBE that satisfies the following
property.

(P1) : Whenever a player is indifferent between to stay and to leave, she
always chooses to leave.

Lemma 1 In any PBE, if either δ < 1, or δ = 1 and (P1) holds, then the
following holds. After any history, if a player has not left so far, and if he is
willing to leave when his cost is c, then he is also willing to leave when his cost
is below c, i.e., any PBE has the cutoff property.

Proof: Fix a PBE, a player i, and a history h. If after h, there is only one
period left, then Lemma 1 is obviously true. Suppose that after h, there are
at least two periods left. Let c1 and c2 be two types of player i. Let c1 < c2.
Let L (cj |h) denote the expected equilibrium payoff of type cj , j = 1, 2, if type
cj chooses to leave, conditional on history h; let S (cj |h) denote the expected
equilibrium payoff of type cj , j = 1, 2, if type cj chooses to stay, conditional on
h.

Case 1. After choosing to stay at history h, type c1 and type c2’s equilibrium
decisions in the continuation game are identical. In this case, we can write

S (cj |h) = δ[α (h) (−cj) +D (h)],
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for j = 1, 2, where α (h) and D (h) only depend on other players’ equilibrium
strategies, and α (h) ≤ 1. At the same time, we can write

L (cj |h) = −cj +E (h) ,

where E (h) only depend on other players’ equilibrium strategies. Hence if
L (c2|h) ≥ S (c2|h), then L (c1|h) ≥ S (c1|h).

Case 2. After choosing to wait at history h, type c1 and type c2’s equilibrium
decisions in the continuation game are different. In this case, let c2 mimic c1’s
decision in each and every contingency in the continuation game. Let S̃ (c2|h)

denote the resulting expected payoff of c2. Then it must be that S̃ (c2|h) ≤
S (c2|h), by the incentive compatibility of perfect Bayesian equilibrium. Hence

if L (c2|h) ≥ S (c2|h), then L (c2|h) ≥ S̃ (c2|h), which in turn, implies that
L (c1|h) ≥ S (c1|h), by the argument in Case 1. �

Since every PBE has the cutoff property, the belief system of the equilibrium
can be easily determined from the equilibrium strategy, using Bayes’ rule. In
particular, after any history, the belief about any remaining player’s types must
be some truncated distribution above some cutoff value. The belief about the
players who have already moved is irrelevant. Having said this, from now on
we identify a PBE with a PBE strategy, omitting the supporting belief system,
which can be derived from the strategy straightforwardly.

In this section we assume that δ = 1. The technical case of δ < 1 is discussed
in Appendix B. If the players do not discount future payoffs, then we are able to
construct a symmetric equilibrium that satisfies (P1), as well as the following
property.

(P2) If a player does not leave when she is more optimistic about other
players’ types, then she does not leave when she is less optimistic.1

We do this in two steps. First we claim that any symmetric equilibrium in the
infinite horizon game that satisfies (P1) and (P2) corresponds to a symmetric
equilibrium in the finite horizon game that also satisfies (P1) and (P2). Then
we show that there exists a unique symmetric equilibrium in the infinite horizon
game that satisfies (P1) and (P2). Let Γ and ΓT denote the infinite horizon
game and the T period game, respectively.

Claim 1 Let E be a symmetric equilibrium of Γ that satisfies (P1) and
(P2). Then the restriction of the equilibrium path of E to the first T periods
can also be supported as an equilibrium path in ΓT .

Proof: See Appendix. �

1 Being "more optimistic" means putting a smaller lower bound on other players’ types.
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Proposition 1 Fix ε > 0. In Γ, if δ = 1, then there exists a unique PBE that
satisfies (P1) and (P2), which is characterized by a sequence of cutoff values

0 < g (n) < ... < g (2) < g (1) = 1,

where g (k) is such that in a continuation game with k players, any type c ≤ g (k)
leaves, and any type c > g (k) stays. Moreover, g (n) −→ 0, as n −→∞.

Proof: See Appendix. �

Remark Notice that the cutoffs only depend on the number of people
remaining in the square. They do not depend on the lower bound on these
people’s costs. This, unfortunately, depends on the no discounting assumption.

Remark Our thresholds are expressed in terms of cost, instead of number
of people. It is easy to derive thresholds in terms of people from thresholds in
terms of cost. For example, in a 100 player game, if someone’s cost is between
g (81) and g (80), then he leaves if at least 20 people have left, so his threshold
in terms of people is 20.

Let p (k, x) denote the probability that at least one player stays in a k-player
game, where 1 ≤ k ≤ n, and x is the lower bound on the k players’ types. There
is a simple recursive algorithm to calculate the threshold points, as illustrated
in Figure 1.

PUT FIGURE 1 HERE.

In Figure 1, since g (1) = 1, we can first plot p (1, x) as a function of x. Then
we take the intersection between p (1, x) and 1− x to calculate g (2). Once we
have g (2), we plot p (2, x) as a function of x. Then we take the intersection
between p (2, x) and 1 − x to calculate g (3). Then we plot p (3, x), and so
on. The threshold values and the conditional probabilities feed on each other
recursively.

We illustrate Proposition 1 using the simplest possible special case where
n = 2, T = 2, and F is the uniform distribution over [0, 1 + ε]. According to
the algorithm in Proposition 1, g (2) is the solution to

p (1, x) = 1− x.

Since p (1, x) = ε
1+ε−x , we have g (2) = 2+ε−

√
ε2+4ε
2 . Notice that for small ε, it

is very likely for both students to leave in period 1. This result is generalized
in Proposition 6 of Section 4.

For any realization of the players’ types, we can use Proposition 1 to predict
whether all the players leave in the end. Granovetter’s point comes back in
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this setting: it is conceivable that small changes in the realization may lead to
very different outcomes. More importantly, however, early movers strategically
encourage other people to follow suit. Proposition 1 offers a systematic way to
carry out such calculations, so that leaders can afford to gamble that tiny sparks
can lead to a prairie fire.

3 The Discounting Case

In this section we focus on the case where players discount both cost and benefit
at the same rate δ < 1. In this case, each player prefers the benefit to be realized
as early as possible, but also prefers the cost to be incurred as late as possible.

We keep the two properties (P1) and (P2). If we can construct a symmetric
equilibrium in the infinite horizon game that satisfies (P1) and (P2), then by
Claim 1 (which holds for any δ > 0), we are done. Hence in the following
discussion, up to but not including the existence proposition, we consider the
infinite horizon game. As we see next, the two properties can be satisfied in the
two player game. Once there are more than two players, there may not exist
any symmetric equilibrium that satisfies these properties.

Let c = g (n,x) denote the first period cutoff in an n-player game with lower
bound on cost being x. Let pk m (c|x) denote the probability that k players out
of m players have types no higher than c, conditional on that the lower bound
on everybody’s cost is x, where 0 ≤ k ≤m ≤ n. Let w (k, c) denote the expected
gross benefit to the cutoff player when there are k players left in the game (the
cutoff player has already moved) whose types are above c, k = 1, ..., n− 1. Let
v (k, c) denote the expected net benefit to the cutoff player when there are k
players left, including the cutoff player himself, whose type is c, and the other
k − 1 players costs are above c. Note that g (n, x) cound be empty-valued or
multi-valued, but it must satisfy the following indifference equation.

−c+ pn−1 n−1 (c|x) · 1

+pn−2 n−1(c|x)δw(1, c)

+...

+p0 n−1(c|x)δw(n− 1, c)

= δ[pn−1 n−1(c|x)(1− c) (1)

+pn−2 n−1(c|x)v(2, c)

+...

+p0 n−1(c|x)v(n, c)].
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The value fuctions in (1) need to be specified to make sure that it is a well
defined equation. Let us first solve the two player game.

The two-player equation can be written as

−c+ p1 1(c|x) · 1 + p0 1(c|x)δw(1, c)

= δ[p1 1(c|x)(1− c) + p0 1(c|x)v(2, c)], (2)

where w(1, c) = p1 1(1|c), and v(2, c) = max{0,−c+ δw(1, c)}.

We can write out v (2, c) in this way because (i) in this situation, type c is
the lower bound, so if equilibrium does not allow type c to leave, then by the
cutoff property and symmetry of PBE, nobody else is allowed to leave; (ii) if
the opponent does not leave when he is more optimistic, then he does not leave
when he is less optimistic, by (P2).

Let c∗2 solve
−c+ δw(1, c) = 0.

Since w(1, c) is non-increasing in c, c∗2 is unique. Moreover, c∗2 (δ) is increasing
in δ, and c∗2 (δ) −→ g (2) as δ −→ 1.

Lemma 2 For any x ∈ [0, c∗2], there exists g (2, x) ∈ [x, 1], such that g (2, x)
solves (2).

Proof: See Appendix. �

Remark If x > c∗2, define g(2, x) = 0, i.e., if both players are above
c∗2, then neither leaves in the current period. It is equilibrium behavior since
−c+ δw(1, x) < 0 for c ≥ x and x > c∗2.

Let g (2, x) denote the smallest solution to (2) for x ∈ [0, c∗2]. By Lemma 2
and continuity of both sides of (2), g (2, x) is well defined.

Lemma 3 g (2, x) is strictly decreasing on [0, c∗2], and g (2, c
∗
2) = c

∗
2.

Proof: See Appendix. �

Lemma 4 There exists δ < 1, such that for any δ > δ, (2) has a unique
solution for each x ∈ [0, c∗2 (δ)].

Proof: See Appendix. �

Lemma 5 If δ is large enough, g (2, x) is continuous in x on [0, c∗2].

Proof: See Appendix. �

We summarize the above results in the following proposition.
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Proposition 2 In the 2-player game with discounting, if δ is sufficiently large,
then there exists a unique symmetric PBE that satisfies (P1) and (P2). More-
over, the equilibrium can be characterized by a continuous and strictly decreasing
function g (2, x), such that g (2, x) is the cutoff type in the 2 player game with
lower bound x.

Now consider the 3-player equation. When we write down the 3-player equa-
tion below, we take g (2, x) to be the continuation policy function in the two
player continuation game.

Let

w(1, c) = p1 1(1|c),

w(2, c) =

{
p2 2(g(2, c)|c) · 1 + p1 2(g(2, c)|c)δw(1, g(2, c)) if c ≤ c∗2
0 if c > c∗2

,

v̂(2, c) =

{
−c+ p1 1(g(2, c)|c) · 1 + p0 1(g(2, c)|c)δw(1, g(2, c)) if c ≤ c∗2
0 if c > c∗2

,

and

v(3, c) = max {0,−c+ δw(2, c)} .

The 3-player indifference equation can thus be written as

−c+ p2 2(c|x) · 1 + p1 2(c|x)δw(1, c) + p0 2(c|x)δw(2, c)

= δ
[
p2 2(c|x)(1− c) + p1 2(c|x)v̂(2, c) + p0 2(c|x)v(3, c)

]
. (3)

Next we show that the solution to (3) may not satisfy (P2). Hence a sym-
metric equilibrium that satisfies (P1) and (P2) in the 3-player game may not
exist. Why is it possible that some player is willing to leave in period 2 when
she is more pessimistic about other players, but she is not willing to leave in
period 1 when she is more optimistic? There are three effects going on here:
delay effect, if you anticipate that others are going to leave early, you want to
leave early, too; leading effect, if you anticipate that others are going to leave
late, you want to leave early to encourage them to follow you; synchronization
effect, if you anticipate that someone is going to leave early, and someone else is
going to leave late, then you want to leave late to synchronize your action with
the "bottleneck" player. It is the third effect that might frustrate (P2). Before
we construct a counter-example, we make the following preparations.

Lemma 6 w (2, c) < w (1, c), for any c ∈ [0, c∗2].
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Proof: See Appendix. �

Lemma 7 w (2, c) is strictly decreasing in c over [0, c∗2].

Proof: See Appendix. �

Let c∗3 solve
−c+ δw(2, c) = 0.

Then c∗3 is unique, and c∗3 < c
∗
2, by Lemma 6 and Lemma 7. Moreover, c∗3 (δ)

is increasing in δ, and c∗3 (δ) −→ g (3) as δ −→ 1.

Let g (3, x) denote a solution to (3). If we can find ε > 0, δ < 1 and a distribu-
tion function F , such that g (3, x) is the unique solution to (3) and g (3, x) < c∗3,
then we have a counter-example. To see why, for type c ∈ (g (3, x) , c∗3), this type
does not leave in period 1 when she is more optimistic about other players’ types.
In any equilibrium that satisfies (P2), she should not leave in the second period
upon seeing inaction in the first period, and nobody should for the same reason.
Hence her continuation payoff in equilibrium after seeing inaction in period 1 is
0. But if she deviates, her expected payoff is −c+δw(2, c) > −c∗3+δw(2, c

∗
3) = 0.

Synchronization effect is likely to make a difference if the distribution func-
tion F is not skewed, so that the probability that the other two players are
located on two sides of the cutoff is relatively high. At the same time, for large
δ, c∗3 is close to g (3), and for small ε > 0, g (3) is close to 1. So for small ε
and large δ, c∗3 is large, hence makes it easier for g (3, x) to fall below it. It is
therefore no surprise that a counter-example occurs at a combination of small
ε, large δ and the least skewed distribution, uniform distribution. Numerical
computation shows that at the combination where ε = 0.0001, δ = .999, x = 0,
and F =uniform distribution, g (3, 0) ≈ 0.52, but c∗3 ≈ 0.96.

This example shows that in general, it is difficult to explicitly construct an
equilibrium in the discounting case. Nevertheless, existence of equilibrium is still
established by the following proposition. Let −→x denote an n dimensional vector
of lower bounds on the n players’ types. The upper bound on each player’s cost
is 1 + ε. Let Γ(n, ε, δ,−→x , T ) denote the n player, T period game in which the
discount factor is δ, the lower bounds on the players’ cost types are −→x , and the
distribution over j’s costs is given by F , truncated to the interval [xj , 1 + ε],
where xj is the jth coordinate of −→x .

Proposition 3 For any ε ≥ 0, for any δ < 1, for any 1 ≤ n < ∞, for any
−→x ∈ [0, 1 + ε]n,for any 1 ≤ T <∞, there exists a PBE in Γ(n, ε, δ,−→x , T ).

Proof: See Appendix. �
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4 Comparison with the Static Game

The students on Tian’anmen square were asked to make their decisions simul-
taneously. What would have happened had they been asked to decide sequen-
tially? We show in this section that in the simultaneous move situation, a small
fraction of extremists (represented by a small ε) suffices to keep everybody from
leaving. However, the extremists lose their power once people are allowed to
move sequentially.

Consider the simultaneous move version of the "hunger strike" model. Ev-
erything in the model remains the same except T = 1.

The following proposition is essentially Theorem 1 in Baliga and Sjöström
(2004).

Proposition 4 In the static game, there always exists a Bayesian Nash Equilib-
rium (BNE) in which nobody leaves. If ε > 0, and F (c) < c, for any c ∈ (0, 1+ε],
then the no leaving equilibrium is unique.

Proof: It is clear that nobody leaving is always a Nash equilibrium of the
Bayesian game. It is also clear that any BNE has the cutoff property: if no
leaving is a best response for type ci of player i, then it is also a best response
for type c′i > ci.

Now fix any BNE. Let ĉi denote player i’s cutoff type. If no leaving is
not the unique equilibrium, then there must exist another equilibrium in which
1 > ĉk > 0, for any k. Without loss of generality assume ĉi = maxk{ĉk}, then
we have

ĉi =
∏

k �=i
F (ĉk) <

∏

k �=i
ĉk ≤ ĉ

n−1
i ,

which is a contradiction, where the first equality is the indifference condition
for the cutoff type ĉi. �

Notice that Proposition 4 holds for any ε > 0, so long as the condition on
the distribution function holds. Hence in the limit when ε = 0, as long as
the condition on the distribution function still holds, the equilibrium in which
nobody leaves can be selected as the unique prediction of the extremist-free (ε =
0) game. As we see next, this is completely a consequence of the simultaneity
of the moves.

If there are no dominant strategy types and no discounting, then the results
of Proposition 4 are completely reversed in the dynamic game.
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Proposition 5 If ε = 0 and δ = 1, then in any PBE that satisifies (P1) every-
body leaves with probability 1.

Proof: See Appendix. �

Next we show that Proposition 5 is robust to introducing a small amount
of dominant strategy types and discounting. That is, for small ε > 0 and
large δ < 1, the probability that everybody leaves in any PBE is close to 1.
In the next proposition, as we let ε go to 0, we assume that the distribution
function corresponding to a smaller ε is the truncated distribution function
corresponding to a larger ε. Let −→x denote an n dimensional vector of lower
bounds on the n players’ types. The upper bound on each player’s cost is
1 + ε. Let Γ(n, ε, δ,−→x , T ) denote the n player, T period game in which the
discount factor is δ, the lower bounds on the players’ cost types are −→x , and the
distribution over j’s costs is given by F , truncated to the interval [xj , 1 + ε],
where xj is the jth coordinate of −→x .

Proposition 6 For all sequences (εk, δk)k such that (εk, δk)k → (0, 1), for all

sequences (Ek)k such that Ek is a PBE of Γ
(
n, εk, δk,

−→
0 , T

)
that satisfies (P1),

pk → 1, where pk is the probability that everybody leaves in Ek.

Proof: See Appendix. �

Even if there is significant discounting and the proportion of dominant strat-
egy types is high, complete coordination failure is impossible in the dynamic
game, as shown in the following proposition.

Proposition 7 If ε > 0 and δ < 1, or δ = 1 and (P1) holds, then in any PBE
with positive probability everybody leaves.

Proof: See Appendix. �

In the strike model, whether the extremists take over the whole group de-
pends crucially on whether the decisions are made simultaneously or sequen-
tially. At the same time, the action preferred by extremists, namely to stay, is a
reversible action, and the action preferred by non-extremists, namely to leave, is
irreversible. This is not a coincidence. As we show in the next section, once we
have the reversibility/irreversibility flipped, sequentiality may no longer make
any difference.
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5 Irreversibility

In this section we address the issue of irreversibility via an arms race game in
Baliga and Sjöström (2004).

Two countries must decide whether and when to build new weapons. Build-
ing weapons is a one time and irreversible decision. Not building weapons is
a reversible decision. The cost to build weapons is a one time expense, and it
is players’ private information. For simplicity, assume there are only two peri-
ods, and there is no discounting. Each country’s payoff is determined from the
simultaneous move game according to the final decisions of the two countries.
The payoffs of the one period simultaneous move game are given in the following
matrix.

B N
B −c1,−c2 µ− c1,−d
N −d, µ− c2 0, 0

where ci is player i’s cost to build weapons. The ci’s follow i.i.d. F over [0, c].
µ > 0 is the advantage of a better armed country over a less armed country;
d > c is the disadvantage of a less armed country over a better armed country.
Baliga and Sjöström show that if F (c) · d ≥ c, for any c ∈ [0, c], then the only
Bayesian Nash Equilibrium is (B,B) for all types. The question is, under the
same conditions of the distribution function (the multiplier conditions in Baliga
and Sjöström (2004)), is there an equilibrium where (N,N) occurs with positive
probability, if the two countries play the game sequentially with endogenous
timing?

Proposition 8 In the two-period arms race game with endogenous timing, if
the multiplier condition holds, then in any PBE, there is probability 0 that
(N,N) is the final outcome.

Proof: Suppose by way of contradiction that there exists a PBE in which
(N,N) is the final outcome with positive probability. Let P1 denote the proba-
bility that country 1 will build in period 1. Let π1 denote the probability that
country 1 will build in period 2, conditional on that (N,N) is the outcome in
period 1. By the contradiction hypothesis, P1 < 1, π1 < 1. Now we show that
for any country i, for any type ci of country i, ci does not build in period 1 in
this equilibrium. Suppose otherwise that, say, type c2 of country 2 prefers to
build in period 1. Then it must be that

−c2 ≥ P1 (−c2) + (1− P1)max {−c2 + (1− π1)µ, − π1d} .

Hence −c2 ≥ max {−c2 + (1− π1)µ, − π1d}, which is impossible since
π1 < 1 and µ > 0.

Now if (N,N) is the outcome for sure in period 1, it does not reveal any
information. We essentially go back to the one shot game in which, under the
multiplier condition, (B,B) is the unique outcome, which is a contradiction. �
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In the arms race game, the probability that each country has a dominant
strategy to build arms is small, but both countries end up building arms. In
Mark Twain’s story, almost no villager really hates the witch, but all of them
stone the witch to death. Sequential moves make little difference in these exam-
ples, because the action preferred by the extremists, to build arms or to stone
the witch, is irreversible, while the action preferred by the majority, not to build
arms or not to stone the witch, is reversible.

6 Common Shocks

In this section we study the investment game in Morris and Shin (2000), and
show that the asymptotic results in Section 4 applies to common shocks models
to some extent. The model is as follows.

Invest Refrain
Invest θ, θ θ − z, 0
Refrain 0, θ− z 0, 0

Two players must decide whether to invest or refrain from investing. If
both invest, the payoff to each is θ, which follows standard normal distribution
N (0, 1). If only one player invests, the investor receives θ − z, where z is a
positive constant. Player i observes θ with some noise εi that follows N (0, 1/β).
That is, player i’s signal xi = θ + εi. Assume that ε1 and ε2 are independent,
and they are independent from θ. Morris and Shin (2000) show that if β is
large enough, namely if the players’ signals are precise enough, then there is
a unique Bayesian Nash Equilibrium of the game, which is characterized by
a switching point x̂ (β), such that player i invests if and only if xi ≥ x̂ (β).
Interestingly enough, x̂ (β) → z/2 > 0 as β goes to infinity, hence positive
amount of inefficiency remains as precision of observation goes to infinity.

What we show next is that if we think of the game as being played sequen-
tially, with "invest" being an irreversible action, and "refrain" being a reversible
action, then efficiency can be asymptotically restored. For the ease of exposi-
tion, assume that there are only two periods, and there is no discounting. We
focus on equilibria that has the cutoff property in which after any history, if a
player is willing to invest at some signal, then she is also willing to invest at any
higher signals.

Proposition 9 For any (βn)n → ∞, for any sequence of cutoff equilibria
(En)n, P (both invest in En|θ > 0)→ 1.

Proof: See the Appendix. �
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7 Conclusion

We build a simple model that combines strategic complementarity and private
information in a dynamic setup with endogenous timing. We use the model
to emphasize the sensitivity of collective behavior to the simultaneity of the
games, and the reversibility of the actions. The equilibrium analysis of the
model reveals a recursive structure of the threshold points: people who move
early increase the thresholds (in terms of cost) of people remaining in the game,
hence make it easier for them to follow up. In this respect, our paper can be
viewed as an extension of Granovetter’s threshold model of collective behavior.

An important difference between Granovetter (1978) and our paper is that
in Granovetter’s model players only look backward: they ignore the influence
they might have on the rest of the players. In our paper, players keep such
influence in mind, although they do not separate their own influence from their
predecessors’ influence over the remaining players. In our model each individual
player is necessary for leaving to be profitable, but we do not have a measure of
how sufficient each individual is. This is to be studied in future works. We be-
lieve this question is key to understanding many otherwise puzzling phenomena,
such as recycling, voting, and boycotting, etc, where a rational but insignificant
individual should not participate in something costly, while his individual con-
tribution is negligible. If we take into account his influence over people in the
future, or people around him, and the influence of those people over more people
and so on, then the individual’s costly participation may be better justified.

8 Appendix

Proof of Claim 1: Let ET be the strategy such that whenever the number of
players remaining on the square is less than or equal to the number of periods
left, play according to E, otherwise always choose to stay. Notice that ET
trivially satisfies (P1) and (P2). We show that ET is a PBE in ΓT . We prove
this in steps. Let ht be an arbitrary history in ΓT . Let n (ht) be the number of
players remaining after ht, and T (ht) the number of periods left after ht.

Step 1. If n (ht) > T (ht), then obviously it is optimal to stay given that
everyone else does.

Now we focus on the case where n (ht) ≤ T (ht). If T (ht) = 1, then Claim 1
obviously holds. Suppose that T (ht) > 1. We show in the next two steps that
a one stage deviation after ht from ET is not profitable.

Step 2. Let πT (ht, cj) be the expected payoff to type cj of player j in ΓT

after history ht, if j follows ET . Let π (ht, cj) be the expected payoff to type cj
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of player j in Γ after history ht, if j follows E . Then πT (ht, cj) = π (ht, cj),
for any cj , for any j.

Proof of Step 2:

Suppose after ht, ET prescibes "to leave" for type cj of player j. Need to
show πT (ht, cj) = π (ht, cj). Let v (n, x, T ) denote the expected discounted
value of leaving in ΓT when everybody follows ET ,2 where x is the lower bound
on the n players’ cost. Let v (n, x) denote the expected discounted value of
leaving in Γ when everybody follows E. First we prove that for any x < 1, for
any n, for any T ≥ n, v (n, x, T ) = v (n, x).

Proof by induction on the number of players. First it is obvious that
v (1, x, T ) = v (1, x). The induction hypothesis is that for any k ≤ n, for any
x, for any T ≥ k, v (k, x, T ) = v (k, x). We need to show for any T ≥ n + 1,
v (n+ 1, x, T ) = v (n+ 1, x).

For i = 0, .., n + 1, let pi denote the probability that in the first period i
players leave in ΓT where everybody plays ET . Let x′ denote the first period
cutoff prescribed by ET . If everybody’s type is above x′, then nobody leaves in
period 1. By (P2), nobody leaves thereafter, the expected discounted value of
leaving must be 0. Therefore,

v (n+ 1, x, T ) = p0 · 0 + p1 · δ · v (n, x
′, T − 1) + ..+ pn+1 · 1,

and
v (n+ 1, x) = p0 · 0 + p1 · δ · v (n, x

′) + ..+ pn+1 · 1.

Hence by the induction hypothesis, v (n+ 1, x, T ) = v (n+ 1, x). Now if
after ht, ET prescribes "to leave" for type cj of j, then

πT
(
ht, cj

)

= −cj + p0 · δ · v
(
n
(
ht
)
− 1, x′, T

(
ht
)
− 1
)
+ p1 · δ · v

(
n
(
ht
)
− 2, x′, T

(
ht
)
− 1
)

+..+ pn(ht)−1 · 1

= −cj + p0 · δ · v
(
n
(
ht
)
− 1, x′

)
+ p1 · δ · v

(
n
(
ht
)
− 2, x′

)
+ ..+ pn(ht)−1 · 1

= π
(
ht, cj

)
,

where x′ is the current period cutoff prescribed by ET , and pk, k = 0, .., n (ht)−
1, is the probability that k out of n (ht)− 1 players leave in the current period.

Suppose after ht, ET prescribes "to stay" for type cj of player j. In this case
proof by induction on n (ht). The proof is trivial if n (ht) = 1. Now suppose

2 Suppose there is an "outside" player whose cost is 0, whose participation is not essential,
and whose payoff function is the same as the rest of the players. Then v (n, x, T ) is this player’s
payoff in ΓT , if everybody else follows ET .
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Step 2 is true for n (ht) ≤ n. We need to show that Step 2 is also true for
n (ht) = n + 1. Let pk, k = 0, .., n (ht) − 1, be the probability that k out of
n (ht)− 1 players leave in the current period. Let ht+1i , i = 0, 1, .., n (ht)− 1, be
the history in which right after ht, i players leave in period t. Then,

πT
(
ht, cj

)

= p0 · δ · π
T
(
ht+10 , cj

)
+ p1 · δ · π

T
(
ht+11 , cj

)
+ ..+ pn(ht)−1 · δ · π

T
(
ht+1
n(ht)−1, cj

)

= p0 · δ · π
(
ht+10 , cj

)
+ p1 · δ · π

(
ht+11 , cj

)
+ ..+ pn(ht)−1 · δ · π

(
ht+1
n(ht)−1, cj

)

= π
(
ht, cj

)
,

where the second equality is because of the induction hypothesis and the fact
that πT

(
ht+10 , cj

)
= π

(
ht+10 , cj

)
= 0, due to (P2).

Step 3. The payoff a player gets by deviating after a given history ht,
however, can be no higher than the payoff she gets by deviating in the infinite
horizon game. To see this, notice that there are two types of deviations, (1)
A player should leave but stays. If n (ht) < T (ht), then the payoff from such
deviation is the same as the payoff from the same deviation in the infinite horizon
game, because by Step 2, the payoff from such deviation is the same convex
combination of the same expected continuation payoffs as the payoff from such
deviation in the infinite horizon game. If n (ht) = T (ht), then the continuation
payoff after ht+10 of such deviation is 0 in ΓT , and the continuation payoff after
ht+10 of the same deviation is non-negative in Γ. At the same time, by Step
2, the continuation payoff after ht+1i of the deviation in ΓT is the same as the
continuation payoff after ht+1i of the deviation in Γ, for any i = 1, .., n (ht)− 1.
Therefore, the expected payoff of the deviation in ΓT can be no higher than the
expected payoff of the deviation in Γ. (2) A player should stay but leaves. The
payoff from such deviation is the same as the payoff from the same deviation in
the infinite horizon game, because by Step 2, the payoff from such deviation is
the same convex combination of the same expected continuation payoffs as the
payoff from such deviation in the infinite horizon game. �

Proof of Proposition 1: Properties (P1) and (P2) allow us to write out
the indifference conditions that the cutoffs must satisfy. Once we have an ex-
plicit expression of the indifference conditions, we can prove the existence and
uniqueness of the solutions. Then it is easy to check that Properties (P1) and
(P2) are indeed satisfied.

We introduce the following notations. Let p (k, x) denote the probability
that at least one player stays in a k-player game, where 1 ≤ k ≤ n, and x is the
lower bound on the k players’ types. Let q (k, x) denote the probability that
given one player leaving for sure in the current period, at least one player in the
rest of the k− 1 players stays in a k-player game, where 2 ≤ k ≤ n, and x is the
lower bound on the k − 1 players’ types. Let pk m (c|x) denote the probability
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that k players out of m players have types no higher than c, conditional on
that the lower bound on everybody’s cost is x, where 0 ≤ k ≤ m ≤ n. Let
pkm ([x, x′] |x) denote the probability that k players out of m players have types
within the interval [x, x′], conditional on that the lower bound on everybody’s
cost is x, where 0 ≤ k ≤m ≤ n. Let v (k, c) denote the equilibrium continuation
payoff to the cutoff type in the k-player game where the opponents’ types are
above c, where 2 ≤ k ≤ n.

We first consider the case where n = 2, and the lower bound on the players’
cost is x ∈ [0, 1]. Let g (2, x) denote the first period cutoff type such that for
any ci ≤ g(2, x), player i leaves in period 1; for any ci > g(2, x), player i stays
in period 1. We show that g (2, x) is unique, and does not depend on x.

We organize the argument into small steps.

Step 1 No discounting implies that in any equilibrium that satisfies (P1)
and (P2), the payoff of leaving today is equal to the payoff of staying today but
leaving tomorrow no matter what happens today.

Step 2 We write down the indifference condition that g(2, x)must satisify:

−g (2, x)+(1− q (2, x)) = p1 1 (g (2, x) |x) (1− g (2, x))+p0 1 (g (2, x) |x) v (2, g (2, x)) .

Step 3 We can decompose q (2, x) as follows

q (2, x) = p1 1 (g (2, x) |x) · 0 + p0 1 (g (2, x) |x) p(1, g (2, x)) = p (1, x) .

Step 4 Step 1, (P1) and (P2) imply that

(i) On the equilibrium path, once nobody leaves in some period, nobody
leaves forever.

(ii) If type g (2, x) does not leave in period 1, then it leaves in period 2 no
matter what.

(iii) v (2, g (2, x)) = −g (2, x) + 1− p (1, g (2, x)) = 0.

It is easy to see that (i) directly follows from (P2).

To see (ii), suppose otherwise that g (2, x) does not leave if he observes
inaction in period 1, then the payoff to staying in the first period is strictly higher
than the payoff to staying in period 1 and leaving in period 2 no matter what.
By Step 1, the latter is equal to the payoff to leaving in period 1. Hence type
g (2, x) is not indifferent between leaving and staying in period 1, contradiction.
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To see (iii), note that (ii) implies

v(2, g (2, x)) = −g (2, x) + 1− q (2, g (2, x)) = −g (2, x) + 1− p (1, g (2, x)) ,

where the second equality comes from Step 3.

The continuation value function v (2, g (2, x)) can not be less than 0, since
otherwise (ii) is violated; it can not be greater than 0, since otherwise some
type slightly above g (2, x) should also leave in period 2, even if nobody leaves
in the first period. But this violates (i). Therefore v (2, g (2, x)) = 0.

Step 5 −g (2, x) + 1 − p (1, g (2, x)) = 0 has a unique solution in (0, 1),
which does not depend on x.

It suffices to show that −x+1−p (1, x) = 0 has a unique solution in (0, 1). To
that end, it suffices to show that p (1, x) is increasing in x over the interval [0, 1].
For any x′ such that x < x′ < 1, We can decompose p (1, x) in the following
way

p (1, x) = p1 1 ([x, x′] |x) · 0 + p0 1([x, x′] |x) · p (1, x′) < p (1, x′) ,

as was to be shown.

Now denote the solution to the equation −x + 1 − p (1, x) = 0 by g (2).
Note that if the lower bound x exceeds g (2), then no leaving ever occurs in
equilibrium because for any y ≥ x,

Payoff of leaving

= −y + 1− p (1, x)

≤ −x+ 1− p (1, x)

< −g (2) + 1− p (1, g (2))

= 0.

Now we consider the case where n = 3, and the lower bound on the players’
cost is x ∈ [0, 1]. Let g (3, x) denote the first period cutoff type such that for
any ci ≤ g(3, x), player i leaves in period 1; for any ci > g(3, x), player i stays
in period 1. We show that g (3, x) is unique, and does not depend on x.

We still have Step 1 as in the two player case.

Step 1 No discounting implies that in any equilibrium that satisfies (P1)
and (P2) , payoff of leaving today is equal to payoff of staying today but leaving
tomorrow no matter what happens today.

Step 2 The indifference condition that g (3, x) must satisfy is

−g (3, x) + (1− q (3, x))

= p2 2 (g (3, x) |x) (1− g (3, x)) + p1 2 (g (3, x) |x) v (2, g (3, x)) + p0 2 (g (3, x) |x) v (3, g (3, x)) .
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Step 3 We can decompose q (3, x) as follows.

q (3, x)

= p2 2 (g (3, x) |x) · 0 + p1 2 (g (3, x) |x) p (1, g (3, x)) + p0 2 (g (3, x) |x) p (2, g (3, x)) .

Step 4 Step 1, (P1) and (P2) imply that

(i) If g (3, x) does not leave in period 1, then g (3, x) always leaves
in period 2 no matter what happens in period 1;

(ii) g (3, x) ≤ g (2), for any x;

(iii) q (3, x) = p (2, x).

To see (i), suppose otherwise that g (3, x) does not leave after some observa-
tion in period 1, then the payoff to staying in the first period is strictly higher
than the payoff of staying in period 1 and leaving in period 2 no matter what. By
Step 1, the latter is equal to the payoff of leaving in period 1, hence type g (3, x)
is not indifferent between leaving and staying in period 1, a contradiction.

It is clear that (ii) follows from (i) since if there exists x,such that g (3, x) >
g (2), then by the two player argument type g (3, x) does not leave in period 2
if only one player leaves in period 1, contradicting (i).

Finally, (iii) follows from (ii) and Step 3.

Step 5 (i) and (iii) imply that

(iv) v (3, g (3, x)) = −g (3, x) + 1− q (3, g (3, x)) = −g (3, x) + 1− p(2, g (3, x)).

Step 6 (P2) implies that

(v) On equilibrium path, if nobody leaves in period 1, then nobody leaves
forever.

Step 7

(i)
(iv)
(v)



 =⇒ (vi) v (3, g (3, x)) = −g (3, x) + 1− p (2, g (3, x)) = 0.

It can not be less than 0 since otherwise (i) is violated; it can not be more
than 0 since otherwise (v) is violated.

Step 8 −g (3, x)+ 1− p (2, g (3, x)) = 0 has a unique solution in (0, 1), that
does not depend on x, and is smaller than g (2).
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It suffices to show that −x+ 1− p (2, x) = 0 has a unique solution in (0, 1).
To that end, it suffices to show that p (2, x) is increasing in x over the interval
[0, g (2)] (p (2, x) = 1 if x > g (2)). For any x′ such that x < x′ < g (2), we can
decompose p (2, x) as

p (2, x) = p2 2 ([x, x′] |x) · 0 + p1 2 ([x, x′] |x) p (1, x′) + p0 2 ([x, x′] |x) p (2, x′) .

To show p (2, x) < p (2, x′), it suffices to show that p (2, x) ≥ p (1, x), for any
x.

Let i be the player in a one player game. Imagine there is another player j,
who is a dummy player in the one player game, but is a normal player in a two
player game. To slightly abuse notation, also let i and j denote i’s type and j’s
type.

Now

p (1, x) = p {(i, j) ≥ (x, x) |i ∈ (1, 1 + ε], j ∈ [x, 1 + ε] }

≤ p[{(i, j) ≥ (x, x) |i ∈ (1, 1 + ε], j ∈ [x, 1 + ε] }

∪{(i, j) ≥ (x, x) |i ∈ [x, g (2)], j ∈ (1, 1 + ε] }]

≤ p (2, x) .

Finally, g (3) < g (2) since −g (2) + 1− p (2, g (2)) = −g (2) < 0.

In general when there are n players, we can follow the same steps as above
to show that

(1) If type g (n, x) does not leave in period 1, then it will leave in period 2
no matter what.

(2)

v (n, g (n, x)) = −g (n, x) + 1− q (n, g (n, x))

= −g (n, x) + 1− p (n− 1, g (n,x))

= 0.

(3) p (n, x) is increasing in n and x.
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The sequence of the cutoffs can be found inductively as follows.

g (1) = 1,

p (1, x) = p0 1 (g (1) |x) ,

1− g (2) = p (1, g (2)) ,

p (2, x) = p0 2 (g (2) |x) · 1 + p1 2 (g (2) |x) p (1, g (2)) ,

1− g (3) = p (2, g (3)) ,

·

·

p (n− 1, x) = p0 n−1 (g (n− 1) |x) · 1 + ..+ pn−2 n−1 (g (n− 1) |x) p (1, g (n− 1)) ,

1− g (n) = p (n− 1, g (n)) .

Note that p (n, x) ≥ p (n, 0) , for any x > 0, and p (n, 0) −→ 1 as n −→ ∞,
hence p (n, x) −→ 1 as n −→∞, uniformly with respect to x. Therefore, taking
the limit of both sides of 1 − g (n) = p (n− 1, g (n)) as n goes to infinity, it
must be that g (n) converges to 0. �

Proof of Lemma 2: Rewrite (2) as LHS2(x, c) = RHS2(x, c).

Since −c + δw(1, c) is decreasing in c, we have LHS2(x, x) > RHS2(x, x)
and LHS2(x, 1) < RHS2(x, 1), for any x ∈ [0, c∗2]. By the Intermediate Value
Theorem, there exists c ∈ [x, 1] that solves (2). �

Proof of Lemma 3: We first prove monotonicity. Let pk m ([x, x′] |x)
denote the probabilty that k players out of m players have types falling into
the interval [x, x′], conditional on that their types being no less than x, where
0 ≤ k ≤ m ≤ 1. Let Ik m denote the event that k players out of m players fall
into the interval [x, x′].

Decompose the conditional probabilities in (2) in the following way:

p(·|x)

= p1 1([x, x′] |x)p(·|I1 1) + p
0 1([x, x′] |x)p(·|I0 1)

= p1 1([x, x′] |x)p(·|I1 1) + p
0 1([x, x′] |x)p(·|x′).

Decompose c into c[p1 1([x, x′] |x) + p0 1 ([x, x′] |x)].

Substitute the decompositions into LHS2 (x, c) and RHS2 (x, c), rearrange,
we have

LHS2 (x, c)−RHS2 (x, c)

= p1 1([x, x′] |x) ((1− c)− δ(1− c)) (4)

+p0 1 ([x, x′] |x) (LHS2 (x
′, c)−RHS2 (x

′, c)) .
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Fix x ∈ [0, c∗2), let c = g (2, x), fix x′ ∈ (x, c), then by (4)

LHS2 (x, c)−RHS2 (x, c)

= p1 1([x, x′] |x) ((1− c)− δ(1− c)) + p0 1 ([x, x′]|x) (LHS2 (x
′, c)−RHS2 (x

′, c))

= 0.

This implies that LHS2 (x
′, c) − RHS2 (x

′, c) < 0. Hence at x′ there is a
solution below c, hence g (2, x′) < c.

Finally g (2, c∗2) = c
∗
2 because LHS2 (c

∗
2, c

∗
2) = RHS2 (c

∗
2, c

∗
2). It’s important

to notice that even if g (2, x) is not left continuous at c∗2, there can not be an
upper jump at c∗2, therefore, g (2, x) ≥ c∗2, for any x ∈ [0, c∗2]. �

Proof of Lemma 4: We rewrite (2) as

LHS2 (x, c, δ) = RHS2 (x, c, δ) .

Let ∆2 (x, c, δ) := LHS2 (x, c, δ) − RHS2 (x, c, δ). Notice that ∆2 (x, c, δ)
kinks at c∗2 (δ).

Recall from the no discounting case that p (1, x) is the probability that in
a one player game, the player stays, with x being the lower bound on the
player’s type, and p (1, x) reaches its minimum at x = 0, and p (1, 0) < 1.
Let c̃ := 1− p (1, 0).

First we show that

LHS2 (x, c, δ) < 0, for any x ∈ [0, c∗2] , for any c > c̃, and for any δ ∈ (0, 1].

This is because

LHS2 (x, c, 1) = −c+ 1− p (1, x) ≤ −c+ 1− p (1, 0)

=⇒ for any c > c̃, LHS2 (x, c, 1) < 0.

But LHS2 (x, c, δ) ≤ LHS2 (x, c, 1), hence LHS2 (x, c, δ) < 0.

By Lemma 3, there is no solution in [0, c∗2 (δ)] to (2) at any x ∈ [0, c∗2 (δ)].
Moreover, there is no solution in (c̃, 1], either, because we show above that on
that range LHS2 (x, c, δ) < 0, and RHS2 (x, c, δ) is always nonnegative. Hence
to prove uniqueness, it suffices to show that ∆2 (x, c, δ) is strictly decreasing
over c ∈ [c∗2 (δ) , c̃], for sufficiently large δ, that is independent of x.

Notice that over this range of c, (2) becomes

−c+ p1 1(c|x) · 1 + p0 1(c|x)δw(1, c)

= δp1 1(c|x)(1− c).

24



Pick c and c′ in this range such that c < c′. It suffices to show that
∆2 (x, c, δ)−∆2 (x, c′, δ) > 0.

We can write w (1, c) = p1 1 ([c, c′] |c)·1+p0 1 ([c, c′] |c)w (1, c′). Substituting
the decomposition into ∆2 (x, c, δ), we find that

∆2 (x, c, δ)−∆2 (x, c
′, δ)

= (c′ − c)
(
1− δp1 1 (c′|x)

)
+ p1 1 ([c, c′] |x) (2δ − δc− 1) .

Hence there exists δ < 1, such that for any δ > δ, ∆2 (x, c, δ)−∆2 (x, c
′, δ) >

0, regardless of x, c, and c′. �

Proof of Lemma 5: By Lemma 4, for sufficiently large δ, g (2, x) =
g (2, x) = g (2, x), where g (2, x) is the largest solution to (2). We show that
g (2, x) is u.s.c. and g (2, x) is l.s.c..

It suffices to prove the following general result.

Let F (x, y) be continuous in (x, y). Suppose for any x ∈ [a, b], there exists
y ∈ [0, 1], such that F (x, y) = 0. Let f (x) := max {y ∈ [0, 1] |F (x, y) = 0},
then f is u.s.c. in [a, b].

Proof by way of contradiction. Suppose there exists x0 ∈ [a, b], such that f
is not u.s.c. at x0. Then there exists ε0 > 0, such that for any δ > 0, there exists
x ∈ B (x0, δ), such that f (x) ≥ f (x0) + ε0. Then we can construct a sequence
{xn}, such that xn −→ x0, and f (xn) ≥ f (x0) + ε0, for any n. Choosing a
subsequence if necessary, let f (xn) −→ y0. By continuity of F , F (x0, y0) = 0,
contradicting to f (x0) being the largest solution.

That g (2, x) is l.s.c. is proved analogously. �

Proof of Lemma 6: Let i be the player in a one player game. Imagine
there is another player j, who is a dummy player in the one player game, but
is a normal player in a two player game. To slightly abuse notation, also let i
and j denote i’s type and j’s type. Then the set of i’s types for which i leaves
in the one player game with lower bound c can be written as

{(i, j) ≥ (c, c) |i ∈ [c, g (2, c)], j ∈ [c, 1 + ε]}
∪{(i, j) ≥ (c, c) |i ∈ (g (2, c) , 1], j ∈ [c, 1 + ε] } ,

which in turn, contains

{(i, j) ≥ (c, c) |i ∈ [c, g (2, c)], j ∈ [c, 1] }
∪{(i, j) ≥ (c, c) |i ∈ (g (2, c) , 1], j ∈ [c, g (2, c)]} ,

which is equal to the set of i and j’s types for which i and j both leave in the
two player game with lower bound c.
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Now there are two reasons w (1, c) must be larger than w (2, c). One is that
two players both leave in the 2-player game only if one player leaves in the
1-player game, the other is two players can never leave earlier in the 2-player
game than one player does in the 1-player game. �

Proof of Lemma 7: Fix any c′ such that c < c′ < c∗2. From Lemma 2 we
know that c′ < g (2, c). We can decompose w (2, c) as follows.

w (2, c) = p2 2 ([c, c′] |c) · 1 + p1 2 ([c, c′] |c)w (1, c′) + p0 2 ([c, c′] |c)w (2, c′) .

Hence to show w (2, c) > w (2, c′), it suffices to show that w (1, c′) ≥ w (2, c′),
which follows from Lemma 6. �

Proof of Proposition 3: For simplicity, we only prove the case where
−→x =

−→
0 . For other −→x ’s, the proof is essentially the same, except that more

notations are needed. The basic idea of the proof is to approximate the original
game by a sequence of games with finite type spaces. Existence of PBE in a
game with finite type space is guaranteed, we then show that as the type space
becomes arbitrarily finer, the limiting strategy profile exists, and it constitutes
a PBE of the continuous type game. We establish this in steps.

Step 1 We first discretize the type space Θ := [0, 1 + ε] in the following way.

Let Θk :=
{
θi =

i(1+ε)
2k , i = 0, .., 2k

}
. Let Pk (θi) := F (θi)− F (θi−1) for i ≥ 1

and Pk (θ0) := 0 be the probability distribution over Θk. Let Fk denote the
c.d.f. induced by Pk. Since F is continuous over the closed interval [0, 1 + ε], F
is uniformly continuous, which implies that Fk converges to F uniformly. Now
let Γk denote the game that is the same as the original game except we replace
Θ and F by Θk and Fk.

Step 2 By Theorem 4.6 in Myerson (1991), there exists a sequential equilib-
rium in Γk, hence there exists a PBE in Γk. We choose an arbitrary equilibrium
of Γk, denote it by Ek.

Step 3 Suppose that there areH non-terminal histories in the original game.
Here by a history we mean public history that is observed by everybody in the
game. Since n < ∞, T < ∞, it must be that H < ∞. Then Ek is simply a
collection of n × H functions, each mapping Θk to a probability distribution
over {0, 1}, where 0 stands for staying, and 1 for leaving. For any k, for any
player j, for any history h, there is at most one type θi ∈ Θk who is indifferent
between 0 and 1, hence there is at most one type who mixes. To see this, notice
that if the length of h is T − 1, then if type θ is indifferent between 0 and 1, it
must be that for any θ′ > θ, θ′ strictly prefers 0, and for any θ′ < θ, θ′ strictly
prefers 1. If the length of h is less than T−1, the above claim also holds because
δ < 1(Refer to the proof of Lemma 1). Therefore, Ek is a collection of n×H
nonincreasing functions. Notice that Ek is undefined over θ /∈ Θk. Before we go
to the next step, define Ekj (h) (θ) := Ekj (h) (θ+1), for any θ /∈ Θk, for any j,
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for any h, where θ+1 is the closest point in Θk to the right of θ, and Ekj (h) (·)
is player j’s action in Ek at h.

Step 4 By Helly’s selection theorem (Kolmogorov and Fomin 1970), there
exists a monotone strategy profile E, such that Ek → E pointwise, meaning
Ekj (h) (·)→ Ej (h) (·) pointwise, for any j, for any h.

Step 5 Fix j and h. The limiting function Ej (h) has at most one point at
which the value of the function is neither 0 nor 1. Consider Figure 2.

PUT FIGURE 2 HERE.

Suppose otherwise that there are two such points, θ1 and θ2. Let p1 =
Ej (h) (θ1), p2 = Ej (h) (θ2), then by the monotonicity of Ej (h) (·) and the con-
tradiction hypothesis, 0 < p2 ≤ p1 < 1. Since the grid can be made arbitrarily
fine, there exist θ−1, θ, θ+1 ∈ Θk for some k such that θ1 < θ−1 < θ < θ+1 < θ2.
By the monotonicity of Ej (h) (·), Ej (h) (θ) ∈ [p2, p1]. By the convergence re-
sult, there exists K > 0, such that for any k > K, Ekj (h) (θ) is sufficiently close
to Ej (h) (θ). By Step 3, for any k > K, Ekj (h) (θ−1) = 1 and Ekj (h) (θ+1) = 0.
But Ej (h) (θ−1) ∈ [p2, p1] and Ej (h) (θ+1) ∈ [p2, p1], a contradiction.

Step 6 Fix j and h. Let θ denote the cutoff point of the limiting function
Ej (h) (·). For any k, let θ+1 denote the right closest grid point in Θk to θ,
similarly for θ−1, θ+2, and θ−2. We claim that there exists K > 0, such that
for any k′ > K, Ek′j (h) (θ) = Ej (h) (θ), for any θ ≥ θ+2, and for any θ ≤ θ−2.
Since k is chosen arbitrarily, this claim implies that the sequence of functions
(Ek′j (h) (·))k′ coincides with Ej (h) (·) over an arbitrarily large set(relative to
the type space). To prove the claim, consider Figure 3 (if θ is an end point, the
proof is analogous).

PUT FIGURE 3 HERE.

By Step 5, Ej (h) (θ−1) = 1, Ej (h) (θ+1) = 0. By an argument similar
to Step 5, there exists K > 0, such that for any k > K, Ekj (h) (θ+2) = 0
and Ekj (h) (θ−2) = 1. The rest of the step is finished by the monotonicity of
Ekj (h) (·) and Ej (h) (·).

Step 7 for any h, for any j, for any θj ∈ Θ such that θj ∈ Θk for some k, type
θj of player j does not want to deviate. To see this, let P (·|h, θj , no dev) denote
the lottery over the terminal histories of the game induced by E, conditional
on history h, player j’s type being θj , and player j following Ej throughout
the continuation game. Let P (·|h, θj , dev) denote the lottery over the ter-
minal histories of the game induced by E, conditional on history h, player j’s
type being θj , and player j deviating right after h but following Ej for the

rest of the continuation game. Let P k
′

(·|h, θj , no dev) and P k
′

(·|h, θj , dev) be
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defined similarly for Γk′ , induced by Ek′ . By Step 6 and the fact that Fk′ con-
verges to F uniformly, we have P k

′

(·|h, θj , no dev) → P (·|h, θj , no dev), and

P k
′

(·|h, θj , dev)→ P (·|h, θj , dev).

Since a player’s payoff is continuous in the lotteries over the terminal histo-
ries, if

P (·|h, θj , dev) �θj P (·|h, θj , no dev) ,

then
P k

′

(·|h, θj , dev) �θj P
k′ (·|h, θj , no dev) ,

for sufficiently large k′, contradiction.

Step 8 for any h, for any j, for any θj ∈ Θ such that θj /∈ Θk for all k, if
type θj wants to deviate, then there exists θ′j ∈ Θk for some k, such that θ′j also
wants to deviate.

There are two possibilities. 1. θj is never a cutoff point in Ej at any history.
In this case, for any r > 0, there exists k, there exists θ′j ∈ Θk, such that

(i)
∣∣θ′j − θj

∣∣ < r and (ii) Ej (h
′) (θj) = Ej (h

′)
(
θ′j
)
, for any h′. Therefore, if

we choose r sufficiently small, then a profitable deviation for type θj implies a
profitable deviation for θ′j , which is impossible by Step 7. 2. At some history
h′, θj is a cutoff point in Ej . First of all, it can not be that θj strictly prefers to
leave at h′, since otherwise we can find a grid point θ′′j close enough to the right

of θj who also strictly prefers to leave at h′, but Ej (h
′)
(
θ′′j
)
= 0, which implies

that θ′′j has a profitable deviation at h′, impossible by Step 7. Hence in this
case if necessary we can always redefine the value of Ej (h

′) (·) at θj to be equal
to 0 without affecting any type of any player’s payoff. But then we go back to
the first possibility, that is for any r > 0, there exists k, there exists θ′j ∈ Θk,

such that (i)
∣∣θ′j − θj

∣∣ < r and (ii) Ej (h
′) (θj) = Ej (h

′)
(
θ′j
)
, for any h′. If two

types are arbitrarily close and they behave the same way at any history, then if
one type has a profitable deviation at some history, so does the other. �

Proof of Proposition 5: We show this by induction on the num-
ber of players. This is obvious if n = 1. Now assume that this is true for
Γ(k, 0, 1,−→x , T ), for any k ≤ n, for any −→x < (1, 1, .., 1), for any T ≥ k. We need
to show that this is true for Γ (n+ 1, 0, 1,−→x , T ), for any −→x < (1, 1, .., 1), for any
T ≥ n+ 1. Suppose otherwise that there exists a PBE of Γ (n+ 1, 0, 1,−→x , T ),
such that with probability less than 1 everybody leaves. Then there exists a
player j, a type cj < 1, such that the equilibrium payoff of cj is less than 1− cj .
However, if cj leaves in period 1, then by the induction hypothesis, cj obtains
a payoff of 1− cj , a contradiction. �

Proof of Proposition 6: Fix a sequence (εk, δk)k → (0, 1). Let −→x k de-
note the n dimensional vector of lower bounds on the n players’ types. Let
S be a subset of the n players, let −→x Sk be the restriction of −→x k to S. Let
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Γ
(
S, εk, δk,

−→x Sk , T
′) denote the game in which players in S play the correspond-

ing game for T ′ periods, where |S| ≤ T ′ ≤ T . Let Ek denote an arbitrary
equilibrium of Γ (n, εk, δk,

−→x k, T ), let ESk denote an arbitrary equilibrium of
Γ
(
S, εk, δk,

−→x Sk , T
′).

We prove the proposition by induction on the number of players. First we
state the induction hypothesis (IH).

(IH): For any x < 1; for any (−→x k)k such that xkj ≤ x, for any k, for any
j = 1, .., n; for any S; for any

(
ESk
)
k
, P

(
everybody in S leaves in ESk

)
→ 1.

The (IH) obviously holds when n = 1. Suppose it holds for n ≥ 1. Now
suppose there are n + 1 players. Let Ek denote an equilibrium of Γk :=
Γ (n+ 1, εk, δk,

−→x k, T ), where T ≥ n+ 1. We need to show that for any x < 1;
for any (−→x k)k such that xkj ≤ x, for any k, for any j = 1, .., n + 1; for any
(Ek)k, P ( everybody leaves in Ek)→ 1.

Proof by way of contradiction. The contradiction hypothesis is

(CH): There exists (εk, δk)k → (0, 1); there exists x < 1; there exists (−→x k)k
such that xkj ≤ x, for any k, for any j = 1, .., n + 1; and there exists (Ek)k,
such that pk := P ( everybody leaves in Ek)→ p < 1.

The first implication of (CH): By Lemma 1, Ek is characterized by a
collection of cutoff points. Let cjk denote the first period cutoff type of player

j in Ek, j = 1, .., n + 1. Let ck := maxj
{
cjk

}
, then ck � 1, since otherwise

pk → 1 by (IH). Taking a subsequence if necessary let ck → c < 1. The first
implication of (CH) is, for any type c′ of any player j, if j leaves in period 1 in
Γk, then her expected payoff is −c′ + αk, where αk → 1, by (IH).

The second implication of (CH): Let Ak denote the event that someone
stays in Ek. Then Ak ⊆ [0, 1 + ε]

n+1. Moreover, by the cutoff property of Ek,

Ak is a finite union of mutually disjoint product sets. That is Ak = ∪
I(k)
i=1A

i
k,

where I (k) ≤ B < ∞, and B only depends on the number of players and the
number of cutoff points, and Aik is the ith product set such that if the players’
types fall into this set, then someone stays in Ek. The set Aik can be written
as Aik = Π

n+1
j=1A

i
kj , where Aikj is the jth component of Aik, j = 1, .., n+ 1. Let

A
i(k)
k denote the event that receives the highest probability among all the Aik’s,

i = 1, .., I (k). By (CH), P
(
A
i(k)
k

)
→ q > 0. But P

(
A
i(k)
k

)
= Πn+1j=1P (A

i(k)
kj ),

hence for any j,
(
P
(
A
i(k)
kj

))
k
→ q′ > 0. Hence for any j, there exists c < 1,

there exists K0 > 0, such that for any k ≥ K0, there exists c (k) ≤ c, and

c (k) ∈ A
i(k)
kj . Notice that once c (k) ∈ A

i(k)
kj , the equilibrium payoff to type c (k)

of player j is bounded away from below 1− c (k), because so long as cl ∈ A
i(k)
kl ,
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for any l �= j, which happens with non-negligible probability Πl�=jP (A
i(k)
kl ),

type c (k) of player j gets at most 0 in equilibrium. More precisely, there exists

z > 0, there exists K1 > 0, such that for any k ≥ K1, Πl�=jP (A
i(k)
kl ) ≥ z.

Therefore, for any k ≥ K := max{K0,K1}, type c (k) of player j gets at most
(1− z) (1− c (k)) in Ek. The second implication of (CH) is, therefore, for any
j, there exists c < 1, there exists z > 0, there exists K > 0, such that for any
k ≥ K, there exists c (k) ≤ c, and type c (k) of player j’s equilibrium payoff is
at most (1− z) (1− c (k)).

By the first implication of (CH), for k sufficiently large, type c (k) of player
j can guarantee herself an expected payoff arbitrarily close to 1− c (k). Hence
if k is large enough, the two implications contradict each other. �

Proof of Proposition 7: We show this by induction on the num-
ber of players. This is obvious if n = 1. Now assume that this is true for

Γ
(
k, ε, δ,

−→
0 , T

)
, for any T ≥ k, for any k ≤ n, where

−→
0 is the k dimensional

vector (0, 0, .., 0). We need to show that this is true for Γ
(
n+ 1, ε, δ,

−→
0 , T

)
, for

any T ≥ n+1, where
−→
0 is the n+1 dimensional vector (0, 0, .., 0). Suppose oth-

erwise that there exists a PBE of Γ
(
n+ 1, ε, δ,

−→
0 , T

)
in which with probability

0 everybody leaves. Then it must be that in the first period, at least one player’s
cutoff type is 0, since otherwise there is a positive probability that everybody
leaves in the first period. Let S denote the set of players whose cutoff types in
period 1 are 0. If |S| < n+1, then there is a positive probability that everybody
in Sc leaves in period 1, but then by the induction hypothesis, there is a positive
probability that everybody in S follows up in the continuation game, which is
a contradiction. If |S| = n+1, then for any player j, if cj is small enough, then
by the induction hypothesis, cj should deviate by leaving in period 1 and obtain
a positive expected payoff. On the other hand, the equilibrium payoff to type
cj is 0, contradiction. �

Proof of Proposition 9: First we construct a symmetric equilibrium for
fixed β < ∞, which can be characterized by a pair of numbers (x∗ (β) , x̃ (β)),
such that a player invests in the first period if and only if x ≥ x∗ (β); in the
second period, if the opponent invests in the first period, follow him if and only
if x ≥ x̃ (β), if the opponent refrains in the first period, refrain in the second
period.

Given x∗ (β), x̃ (β) should satisfy

E (θ|x2 = x̃ (β) , x1 ≥ x
∗ (β)) = 0. (5)

On the other hand, x∗ (β) should make a player (say player 1) indifferent
between investing and refraining in the first period. Notice that the payoff of
investing in the first period is given by
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P (x2 ≥ x
∗ (β) |x1 = x

∗ (β)) ·E (θ|x1 = x
∗ (β) , x2 ≥ x

∗ (β))

+P (x2 < x
∗ (β) |x1 = x

∗ (β)) ·

[E (θ|x1 = x
∗ (β) , x2 < x

∗ (β))− z · P (x2 < x̃ (β) |x1 = x
∗ (β) , x2 < x

∗ (β))],

and the payoff of refraining in the first period is

P (x2 ≥ x
∗ (β) |x1 = x

∗ (β)) ·E (θ|x1 = x
∗ (β) , x2 ≥ x

∗ (β))

+P (x2 < x
∗ (β) |x1 = x

∗ (β)) · 0.

Hence x∗ (β) must satisfy

E[θ|x1 = x
∗ (β) , x2 < x

∗ (β)]
−z · P [x2 < x̃ (β) |x1 = x∗ (β) , x2 < x∗ (β)] = 0.

(6)

Next we show that (a) In the first period, for any x > x∗ (β), type x will
invest, and for any x < x∗ (β), type x will refrain; (b) In the second period,
upon seeing the opponent investing in the first period, type x will follow up if
and only if x > x̃ (β); (c) In the second period, upon seeing the opponent not
investing in the first period, it is optimal not to invest in the second period.

First of all, (b) and (c) immediately follow from equations (5) and (6), re-
spectively. Next we prove that for any x > x∗ (β),

E (θ|x1 = x, x2 < x
∗ (β))− z · P (x2 < x̃ (β) |x1 = x, x2 < x

∗ (β)) > 0.

First we show that P (x2 < x̃ (β) |x1 = x, x2 < x∗ (β)) is decreasing in x.
Notice that

(x2|x1 = x) ∼ N

(
βx

1 + β
,
1

1 + β
+
1

β

)
,

hence

P (x2 < x̃ (β) |x1 = x, x2 < x
∗ (β))

=
P (x2 < x̃ (β) |x1 = x)

P (x2 < x∗ (β) |x1 = x)

=
Φ(a (x̃− bx))

Φ (a (x∗ − bx))
,

where a =
√

β(1+β)
1+2β , b = β

1+β , and x̃, x∗ are shorthands for x̃ (β) and x∗ (β),

respectively.

Differentiating with respect to x, the numerator of the derivative is

ab (Φ (a (x̃− bx))Φ′ (a (x∗ − bx))−Φ(a (x∗ − bx))Φ′ (a (x̃− bx))) .

Since x̃ < x∗, it suffices to show that Φ(z)
Φ′(z) is increasing in z over R. Since

Φ′′ (z) = (−z)Φ′ (z), we have sign
(
d
dz

(
Φ(z)
Φ′(z)

))
= sign (Φ′ (z) + zΦ(z)), and
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d
dz
(Φ′ (z) + zΦ(z)) > 0, and since limz→−∞ (Φ′ (z) + zΦ(z)) = 0, we have

Φ′ (z) + zΦ(z) > 0, as was to be shown.

Now let x < y, let F denote the distribution of (x2|x1 = x) conditional
on x2 < x∗ (β), let G denote the distribution of (x2|x1 = y) conditional on
x2 < x

∗ (β). Then by the above argument, for any z < x∗ (β),

P (x2 < z|x1 = x, x2 < x
∗ (β)) > P (x2 < z|x1 = y, x2 < x

∗ (β)) ,

hence G first order stochastic dominates F . Therefore,

∫ x∗

−∞
x2dG ≥

∫ x∗

−∞
x2dF.

This implies that E (x2|x1 = x, x2 < x∗ (β)) is increasing in x, which in turn,
implies that E (θ|x1 = x, x2 < x

∗ (β)) is increasing in x.

Hence for any x > x∗ (β)

E (θ|x1 = x, x2 < x
∗ (β))− z · P (x2 < x̃ (β) |x1 = x, x2 < x

∗ (β))

> E (θ|x1 = x
∗ (β) , x2 < x

∗ (β))− z · P (x2 < x̃ (β) |x1 = x
∗ (β) , x2 < x

∗ (β))

= 0.

For fixed β <∞, it is easy to see that there is a unique pair (x∗ (β) , x̃ (β))
that solves (5) and (6). Now fix any cutoff equilibrium of the two period game.
Since it has the cutoff property, it can be characterized by six cutoff numbers,
x̂11, x̂12, x̂21, x̂22, x̃12, x̃22, where x̂jt is the cutoff type of player j in period t
when nobody has invested yet, and x̃jt is the cutoff type of player j in period t
when the other player has already invested. We show that in this equilibrium,

P (both invest|x1 ≥ x
∗ (β) , x2 ≥ x

∗ (β)) = 1.

Suppose not. Then it must be that x̂11 > x
∗ (β) , x̂21 > x

∗ (β), and at least
one of x̂12 and x̂22 is also greater than x∗ (β), say it is x̂12. Consider type x1 of
player 1 such that

x∗ (β) < x1 < min {x̂11, x̂12} .

If type x1 follows her equilibrium strategy, her expected payoff is

P (x2 ≥ x̂21|x1) · E (θ|x1, x2 ≥ x̂21) .

If she deviates by investing in the first period, her expected payoff is

P (x2 ≥ x̂21|x1) ·E (θ|x1, x2 ≥ x̂21)

+P (x2 < x̂21|x1) · (E (θ|x1, x2 < x̂21)− z · P (x2 < x̃22|x1, x2 < x̂21)).

Since x1 > x
∗ (β), x̂21 > x

∗(β), and x̃22 < x̃ (β), it must be that
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(E (θ|x1, x2 < x̂21)− z · P (x2 < x̃22|x1, x2 < x̂21))

> E (θ|x1 = x
∗ (β) , x2 < x

∗ (β))− z · P (x2 < x̃ (β) |x1 = x
∗ (β) , x2 < x

∗ (β))

= 0.

Hence type x1 has a profitable deviation, a contradiction.

Now fix β > 0, fix a cutoff equilibrium E. Since

P (both invest in E |x1 ≥ x
∗ (β) , x2 ≥ x

∗ (β)) = 1,

we have

P (both invest in E | θ > 0) ≥ P (x1 ≥ x
∗ (β) , x2 ≥ x

∗ (β) |θ > 0) .

Therefore, it suffices to show that limβ−→∞ x
∗ (β) = 0. Suppose otherwise

that there exist (βk)k −→ ∞, such that limk x
∗ (βk) = b > 0, then by (5) it

must be that limk x̃ (βk) = −b < 0. But this implies that

P (x2 < x̃ (βk) |x1 = x
∗ (βk) , x2 < x

∗ (βk)) −→ 0,

which by (6) implies that x∗ (βk) converges to 0, a contradiction. �
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Figure 2: Step 5 of Propostion 3
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Figure 3: Step 6 of Propsition 3
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