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ABSTRACT

Welding is a key technology in the manufacture of engineering components and is of
particular importance in the context of steels. The complexity of welding alloys has in
the past prevented the development of generalised models capable of giving quantitative
estimates of anything other than the most simple mechanical properties. It has been
possible in the present work, using a neural network technique within a Bayesian framework
in combination with physical properties, to develop a set of models dealing with the yield
strength, ultimate tensile strength, the ductility and impact toughness of weld metals as a
function of the chemical composition and heat treatment. The models are based on a vast
quantity of published experimental data which were all digitised and assessed for model
development.

Neural networks are used in circumstances where the complexity is difficult to deal
with using only scientific principles. For this same reason, the trained networks cannot
ever be fully tested since it is hard to imagine how multi—fold interactions between the
inputs can affect the outcome. Nevertheless, an attempt was made to assess whether the
networks reproduce the known physical metallurgy. For example, the effect of carbon and
manganese on the yield strength of low—-alloy weld deposits. In almost all cases consid-
ered, the networks could be shown to recognise known trends, taking into account the
error estimates. Where possible, the network predictions were compared against physical
models. For example, the yield strength of carbon—-manganese welds can be estimated
using deformation theory; this was shown to compare well against predictions using the
neural network models. However, in some cases, such as when considering the effect of
tungsten on the strength of low—alloy steel welds, it was evident that the models lacked
knowledge to such an extent as to make the predictions unphysical. The situation was
corrected by adapting steel data to represent welds, and the resulting model was demon-
strated to behave properly. This example illustrates that the networks should not be used
blindly but rather as an aid to design.

The combined set of models, together with experience from physical metallurgy, were
then used to propose a new tungsten—containing welding alloy for use in circumstances
where post—weld heat treatments are not practical. This proved to be successful at the
first attempt; subsequently, the models have been used successfully by others in a similar

way, to invent welding alloys without doing experiments.

v



The tempering resistance of the tungsten—containing weld has been studied experimen-
tally and compared against a number of alloys. This work indicates that the replacement
of molybdenum by tungsten in creep—resistant alloys leads to a lower as—deposited hard-
ness which can be exploited to eliminate post—weld heat treatments. The creep strength

can nevertheless (probably) be maintained by the use of vanadium.
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Chapter 1

INTRODUCTION

Steels are used in the construction and fabrication of engineering structures, with service tem-
peratures ranging from subzero to about 600 °C over long periods of time. The vast majority of
iron alloys are ferritic because they are cheap and it is easy to modify their microstructures to
obtain an impressive range of desirable properties.

The fabrication of steels unavoidably involves welding, a complex process incorporating nu-
merous metallurgical phenomena. It is not surprising therefore, that the final microstructure
both inside the weld metal and in all adjacent regions affected by the welding heat, is remarkably
varied. Many of the important features of weld microstructure can now be calculated using a
combination of thermodynamics and kinetic theory [1]. Such calculations are now being per-
formed routinely in industry during the course of alloy design or when investigating customer
queries.

Naturally, it is the mechanical properties of the weld which enter the final design procedures.
There has been some progress in estimating the yield strength from the microstructure using
combinations of solution strengthening, grain size effects, precipitation hardening and dislocation
strengthening [1]. The ultimate tensile strength can in a limited number of cases be calculated
empirically from the yield strength [2]. However, there has been no progress at all in creating
models for vital properties such as ductility, toughness, creep and fatigue strength [3].

The failure of previous work [4, 5, 2] to create models with wide applicability comes largely
from constraints due to the linear or pseudo-linear regression methods used, with poor error
assessments and most importantly from the very limited variables and data considered in the
analysis.

The purpose of the work presented in this thesis was to create quantitative models for the
yield and ultimate tensile strength, ductility and toughness, using the special method of neural
networks within a Bayesian framework [6]. This is non-linear regression analysis with many
advantages which will be described later in the thesis. It was at the same time the intention

to exploit the thousands of data in the published literature so that the models created are of



the widest possible applicability. Model validation is a key feature of the work; this involves

the design and experimental assessment of novel alloys which have never before been conceived,

validation of a large variety of published data and testing against the known principles of physical

metallurgy. The flow of the research is illustrated in Fig. 1.1.
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Figure 1.1: Flow diagram illustrating the research.



1.1 Welding Processes

Welding is one of the most popular joining methods for steels. The joining of two alloys can be
done by melting the two surfaces to be joined by heat, with or without the help of a filler wire.
The method by which heat is generated in order to fuse the base metal and filler wire defines
the nature of the welding process: electric arc welding, electron beam welding, friction welding.
The work presented in this thesis focuses on arc welds which are now described in some more

detail.

1.1.1 Arc Welding

An electric arc is the source of heat to melt and join metals. As shown in Fig 1.2, an electric
arc is struck between the work piece and the electrode which is manually or mechanically moved
along the joint or electrode remains stationary while the work piece can be moved. The electrode
may or may not be consumed during the process. The molten weld pool is protected by an inert

or active gas shroud generated using flux or via an external supply of gases.

Manual Metal Arc Welding

This is also called the shielded metal arc welding (SMAW) process. Its simplicity and versatility
makes it popular. A consumable electrode coated with flux (silicates, minerals and metals) is
used as shown in Fig 1.3. The coating provides elements which act as arc stabilizers, generate
gases and a slag cover to protect the weld pool from the environment and add alloying elements
to the weld deposit. The electrode and workpiece are connected to a power source; usually
the electrode is connected to the positive terminal of the power source. The arc is initiated by
touching the electrode tip to the base metal and then forming an air gap. The heat generated

as a consequence melts the base metal, the electrode core and its covering.

Gas Tungsten Arc (TIG) Welding

A non-consumable tungsten electrode is used together with an inert shroud. The key advantage
of this process over manual metal arc welding is that higher quality welds can be produced.
The equipment used in this process is portable and usable with all metals, for a wide range of

thicknesses and in all welding positions.

Gas Metal Arc Welding

Gas metal arc welding (GMAW) uses a continuous wire which is consumed to form the weld
metal together with an inert gas shield. The mode of liquid metal transfer from electrode to

the base metal can be varied by choosing different types of gases. All metals can be welded by



using argon or carbon dioxide. This process gives high weld metal deposition rates and can be

automated.

Submerged Arc Welding

As the name indicates, the electric arc and molten weld metal are submerged under a layer of
molten flux and unfused granular flux. The tip of a continuously fed consumable wire is the
electrode. Because the arc is submerged under molten flux the radiation losses are minimised
giving maximum energy efficiency. This is an automated process which can be used with the

base metal in the horizontal position.

1.2  Variables Associated with Welding

The most important variables are the process, chemical composition of the weld deposit, heat
input, the initial temperature of the base metal at the region to be welded (pre-heating), temper-
ature of the weld deposit during multirun welding (interpass temperature) and heat treatment
given to the weld metal after welding (post—weld heat treatment). The type of joint (Fig 1.4)
and the material thickness have to be considered in selecting a weld process. The primary func-
tion of the heat source is to generate heat to melt the base metal and consumable electrode.

The rate of melting is controlled by amount of heat input, defined as:

IV
-8

where [is the electric current in amperes, V is the voltage applied between power source terminal

Net heat input(J mm™1)

and electrode expressed in volts, S is the travel speed of the heat source in mm s~! and fis
the arc transfer efficiency. In most of the arc welding processes the efficiency is between 0.8 and
0.99. The weld metal composition plays a vital role in determining the mechanical properties of
the weld joint and the microstructure of weld metal. A post—weld heat treatment is often given

to the as—deposited weld to lower the hardness and restore the toughness.

1.3 'Weld Microstructure

When a molten metal solidifies in the gap between components to be joined, this welds the
components together. The basic metallurgy of the welded joint can be divided into two major
regions: the fusion zone and heat affected zone (HAZ). The fusion zone experiences temperatures
above the melting point of the material and represents both the deposited metal and the parts
of the base metal melted during welding. The heat affected zone, (Fig. 1.5) on the other hand,
represents the close proximity to the weld, where the temperatures experienced are below the

melting point and there is a change in the microstructure of the base metal.



1.3.1 Weld Metal Solidification

In steels weld metal solidification starts at edge of the fusion zone into the weld metal with
d—ferrite as the initial phase (Fig 1.10). As it cools, d—ferrite transforms into austenite and with
further lowering of the weld metal temperature austenite decomposes to ferrite. Most steels
contain small quantities of alloying elements and hence show similar crystal structure changes
as pure iron. Therefore in weld metal solidification, weld deposits begin solidification with the
epitaxial growth of columnar §—ferrite from the hot grains of the base metal at fusion surface.
The grains grow rapidly in the direction of highest temperature gradient and hence show an
anisotropic morphology. Those grains with <100 > directions parallel to the heat flow direction
dominate the final microstructure. On further cooling, austenite nucleates and grows along prior
d—ferrite grain boundaries, thus adopting the columnar shape of the d—ferrite grains.

Fine austenite grains provide more grain boundary nucleating sites; on the other hand coarse
grains increase the hardenability of the weld metal. The columnar shape of the austenite re-
sults in few grain boundary junctions when compared with an equi—axed structure. This also
contributes to an increase in hardenability.

The cooling rates in the weld metal depend on the distance from the heat source, heat input,
interpass temperature and the geometry of the joint. Because the cooling rates are in practice
quite high, weld solidification is a non-equilibrium phenomenon and thus solidification—-induced
segregation promotes an inhomogeneous microstructure in the weld metal. The amplitude of
these concentration and microstructure variations become larger as the alloy concentration in-
creases.

Another important feature, in flux based welding processes, is non—metallic inclusions. Dur-
ing welding, the flux reacts with atmospheric oxygen and cleans and protects the weld metal by
forming oxides and rejecting them into slag. However, the process is not ideal due to convection
and rapid solidification, so oxide particles are entrapped in the fusion zone during solidification.
These are called slag inclusions, which can serve as nucleation sites within the weld pool. A small
volume fraction of inclusions is desirable in welding, as they serve as heterogeneous nucleation
sites for acicular ferrite. Large fractions are detrimental to the mechanical properties of weld

metal.

1.3.2 As—deposited Weld Microstructure

The as—deposited microstructure is that which forms when the liquid weld pool cools to room
temperature. This structure contains allotrimorphic ferrite, Widmanstatten ferrite and acicular
ferrite, Fig. 1.6. In a few cases, microstructures containing martensite, bainite and traces of

pearlite can be found. High—carbon martensite is a hard microstructure with low toughness and



ductility.

Allotriomorphic Ferrite

Allotriomorphic ferrite («) usually forms between 1000 and 650 °C during cooling of steel weld
deposits. Nucleation occurs heterogeneously at the columnar austenite grain boundaries. As the
austenite grain boundaries are easy diffusion paths, austenite grain boundaries are decorated
with thin layers of allotriomorphic ferrite and the thickness of which is controlled by the diffusion
rate of carbon in austenite. In weld deposits, allotriomorphic ferrite appears to grow without
the redistribution of substitutional alloying elements during transformation [8]. This mechanism
of growth is termed “paraequilibrium”, and occurs as a consequence of the fast cooling rates
experienced by welds. In welds, allotriomorphic ferrite is detrimental to the toughness because
the continuous network along grain boundaries offers less resistance to crack propagation than

acicular ferrite [9].

Widmanstatten Ferrite

This microstructure results from further cooling below the temperature at which allotriomorphic
ferrite forms. Primary Widmanstatten ferrite nucleates directly from the regions of austenite
grain boundaries not covered by allotriomorphic ferrite. Secondary Widmanstitten ferrite nu-
cleates at austenite/ferrite boundaries and grows as sets of parallel plates separated by thin
regions of austenite. The austenite remains as retained austenite, or transforms to martensite
or pearlite. These latter transformation products are collectively known as microphases in weld
metal terminology, because they are generally present in small fractions. Widmanstatten ferrite

i1s not desirable in weld metals.

Acicular Ferrite

Oxides and non-metallic inclusions serve as nucleation sites for acicular ferrite. Acicular ferrite
forms within the columnar austenite grains in competition with Widmanstatten ferrite. It
appears as a fine grained interlocking array of non—parallel laths. The microstructure is highly
desirable in welds. The large number of non—parallel grains improve the weld metal toughness

by increasing the resistance to crack propagation [10].

Microphases

These are last constituents to form in weld metal. Microphases correspond to the small carbon-
rich regions in the weld metal where the last remaining volumes of austenite transform, and

consist of mixtures of martensite, carbides, degenerated pearlite, bainite and retained austenite.



1.3.3 Secondary Microstructure

In many circumstances it is difficult to fill the gap at the joint by a single weld pass. Therefore
thick sections are welded using many layers of deposited metal, Fig. 1.7. The deposition of
each successive layer heat treats the underlying microstructure formed during cooling of the
previous run. Some regions of the underlying layers are reheated above the austenitisation
temperature, whereas others become tempered. All of the reheated regions contribute to the

secondary microstructure.

The Heat Affected Zone

The heat affected zone is the portion of the metal which has not experienced melting, but
whose microstructure is altered due to welding heat. There are well-defined microstructures
in the heat affected zone as illustrated in Fig. 1.8. The region immediately adjacent to the
fusion boundary is heated to very high temperatures (just below melting temperature) and
forms coarse austenite. The austenite grain size decreases sharply with distance from the fusion
line and the fine grained zone will have superior mechanical properties than the coarse grained
zone. Moving further away, the peak temperature decreases and will result in partial austenite
formation and tempered ferrite in that region; this is called the “partially austenitised zone”.

The region adjacent to this zone, which is not transformed to austenite will be tempered.

1.4 Ferritic Steels

Pure iron at room temperature has a body—centered cubic crystal structure, with the common
designation a—ferrite, Fig 1.9. Between 910 and 1410°C, face—centered cubic austenite ()
becomes the stable phase, to be replaced again by d—ferrite at higher temperatures, Fig. 1.10.
The § and a forms of ferrite have identical crystal structures. Steels usually contain alloying
elements such as carbon, manganese, silicon, etc. Some are added deliberately, whereas others
are present as impurities. Carbon is the main alloying element in steels, frequently present in
the form of cementite. Cementite has the chemical formula FesC. Some alloying elements such
as carbon, manganese and nickel stabilise austenite, whereas tungsten, chromium, vanadium
and niobium stabilise ferrite [11]. The latter also tend to form alloy carbides. The alloying of

steels is a very large subject which has been reviewed [12].

1.4.1 Heat Resistant Steels

A power station converts fuel into electrical energy; in the case of fossil fuels, this is via steam.
A power generation loop is shown schematically in Fig 1.11. Water is converted into steam in

an evaporater before entering into the steam drum, where it is collected in headers. It is then

10



superheated before passing into the high pressure (HP) turbine, after which it is reheated before
enters into the intermediate pressure (IP) turbine. After leaving the IP turbine it enters the low
pressure (LP) turbine. The exhaust steam is finally condensed and returned to boiler.

Steels are used widely in the construction of power plant. They have to resist creep defor-
mation, oxidation and corrosion. The superheater pipes carrying steam from boilers to high
pressure (HP) turbines typically experience steam at 565°C under 15.8 MPa pressure and are
made of low—-alloy steels. In HP turbines the rotor is fabricated as a single forging of 1Cr-
MoV steel. Tempering at 700 °C leads to the formation of stable carbides which are distributed
uniformly in the ferrite matrix. These carbides improve the creep resistance at the service tem-
perature [13]. Turbine blades experience both erosion and high tensile forces. High strength
and corrosion resistant 12CrMoV steel is used in fabrication of turbine blades [14]. The 33Ni-
Cr—Mo—-V alloy has good hardenability combined with high strength of about 1100 MPa and
good toughness. These steels are air cooled from 870°C and tempered at 650°C. Due to their
high strength and toughness these materials are used to fabricate the low pressure turbine rotor,

which is nearer to the generator. The generator rotor is also fabricated with this material [15].

Steel C Si | Mn | Mo | Cr A%
22Cr-1IMo | 0.15 | 0.50 | 045 | 1.0 | 2.25 | -
12Cr-1Mo 0.15|040| 06 | 1.0 | 12 | -

34Ni-Cr-Mo-V | 0.15 | 0.30 | 0.70 | 0.19 | 1.5 | 0.11

Table 1.1: Chemical composition of some steels have been used in power plant [16], all units are
in wt%.

Cr-Mo Steels

These materials are resistant to corrosion by sulphur products and hence were used first in the
petroleum industry. Once their oxidation resistance and high temperature strength were appre-
ciated, they began to be applied in the steam power generating industry. More recently, these
steels have been used in fabricating thick pressure vessels. The oxidation resistance and high
temperature strength depends on the amount of chromium and molybdenum present in that
alloy. Excellent high-temperature (565 °C) strength is obtained in 2%CrflMo steels (Table 1.1),
which are generally used in the bainitic condition. A tempering heat-treatment gives the re-
quired alloy carbides; the most important are MoC, M7;C3 and My3Cg, where M represents a

metallic element.

11



1.4.2 Structural Steels

Steels for structural applications are used at ambient temperatures and the main property
requirements are strength, ductility and toughness. The vast majority of these steels have a
yield strength in the range 350-550 MPa with a mixed microstructure of ferrite and pearlite.
These are used in critical applications, such as bridges, buildings or ship construction and may
undergo sophisticated thermomechanical processing to refine the microstructure and greatly
improve the toughness. Such alloys may contain quantities of fine bainite or even martensite
when the overall carbon concentration is small.

All structural steels have to be welded. For this reason and to minimise the cost, the total
alloy concentration is generally less than 5 wt%. The weld metals used for joining structural
steels also range in yield strength between 350 and 550 MPa, but can be much stronger (900 MPa)
for special steels used in the construction of submarines. The preferred weld microstructures
contain large quantities of acicular ferrite which, because of its scale and chaotic arrangement,
gives good toughness. However, quantities of allotriomorphic ferrite, Widmanstatten ferrite,

martensite and retained austenite may also be present.
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Figure 1.2: Schematic view of arc welding process.
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Figure 1.3: Schematic view of manual metal arc welding (MMAW).
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Figure 1.4: Different types of joint preparations.
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Figure 1.5: Schematic view of the various zones in a single pass weld metal.
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Figure 1.6: a) Schematic diagram showing different constituents of the primary microstructure
in the columnar austenite grains of a steel weld [3], b) scanning electron micrograph of the
primary microstructure of a steel weld [7]. a—allotrimorphic ferrite, o,,—Widmanstitten ferrite
and «ag4—acicular ferrite.
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Chapter 2

Mechanical Properties of Weld
Deposits

Many engineering components are fabricated using welding. The integrity of the fabrication is
usually asserted on the basis of mechanical properties. Strength, ductility and toughness are
considered as the essential mechanical properties. Previous work on the modelling of weld metal

mechanical properties is reviewed in this Chapter.

2.1 Strength

The capacity of a material to withstand static load can be determined using a tensile test, in
which a standard specimen is subjected to a continually increasing uniaxial load until it fractures,
Fig. 2.1. The load—elongation curve is plotted and the results are usually restated in terms of
stress and strain, which within reasonable limits are independent of the geometry of specimen,
Fig. 2.2a:

P
Engineering stress, op = T (2.1)
0

Eneineer: : _ Ly— L
gineering strain, eg = I (2.2)
0

where P is the load, Ay is initial cross—sectional area and Lo and L are initial and final lengths
of the sample respectively.

The material at first extends elastically; if the load is released the sample returns to its
original length. After exceeding the elastic limit the deformation is said to be plastic, so the
sample does not regain its original length if the load is released. With continued loading the
engineering stress reaches a maximum beyond which the sample develops a neck. This local

decrease in cross-sectional area focuses deformation until the sample fractures.
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length
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Figure 2.1: Schematic diagram of tensile test specimen, a) before testing b) after testing. A L
is the total extension of the specimen during the tensile test.

The yield stress is defined as the stress at which plastic deformation just starts as the
stress—strain curve deviates from linearity. Because of the difficulty in precisely measuring this
deviation, a ‘0.2% proof stress’ is used which is the stress at 0.002 plastic strain, Fig. 2.2b.
The proof stress is sometimes referred as the ‘yield stress’. The maximum engineering stress is
called the ‘ultimate tensile stress’, whereas the stress at which the sample fractures is called the
‘fracture stress’.

Engineering stresses and strains do not account for the change in the load bearing cross—
sectional area of the sample during deformation. The true stress and strain do so and are defined

as follows:

o = ogleg + 1) (2.3)
e = In(eg + 1) (2.4)

This leads to a change in the form of the stress—strain plot as illustrated in Fig. 2.3.
The engineering strain and true strain are comparable at small strains. The flow curve of

many metals as expressed in terms of the true stress ¢ and true strain e can be represented as:

o=Ke" (2.5)

where ‘K’ is value of flow stress at e=1.0 and ‘n’ is the strain hardening exponent. Both these
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Figure 2.3: True stress - true strain curve (flow curve).

parameters can be estimated from a logarithmic plot of true stress and true strain. In practice,
the strain hardening exponent may vary with strain but equation 2.5 is nevertheless a useful

representation of plastic deformation.

2.2 Ductility

Ductility is important because an engineering component should show considerable plasticity
before fracture. Ductility, as measured in a tensile test, is usually expressed as elongation or

reduction in area:

Ly — L
Elongation = fT (2.6)

Afp— A
Reduction in area = —L 0 (2.7)
Ag
where, L; is the length of sample at fracture, L is initial length, Ag is the initial area of cross-

section and Ay is the area of cross-section at fracture. Both elongation and reduction in area
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are frequently expressed as percentages.
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Figure 2.4: The stress-elongation curve. The elastic elongation is exaggerated for clarity.

Plastic strain can be subdivided into two components, an initial uniform strain where the
cross—section of the sample is identical along the entire gauge length, and a non—uniform com-
ponent beginning with the onset of necking. Assuming that equation 2.5 is a true representation

of deformation, the stress at the point where necking begins is given by o = Kn" [17].

2.3 Charpy Impact Toughness

Toughness is the ability of the material to absorb energy during the process of fracture. The
ability to withstand occasional stresses above yield stress without fracturing is particularly de-
sirable in engineering components. The welded joints should resist brittle fracture; therefore,
the weld metal should be tough, with a great deal of energy being absorbed during the process

of fracture. One of the popular test methods to characterise toughness is the Charpy impact
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toughness test in which a square sectioned, notched sample (Fig. 2.5a) is fractured under spec-
ified conditions [18]. The absorbed energy during fracture is taken as a measure of toughness.
However, Charpy impact test values are empirical since these results cannot be used directly in
engineering design and can be used only to rank samples in research and development experi-
ments. The test is usually conducted on a material over a range of temperatures to reveal any

ductile-brittle transition, Fig. 2.5b.

Charpy impact test sample Notch dimensions
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Figure 2.5: The Charpy impact test sample and impact toughness versus test temperature curve.

2.4 Strengthening Mechanisms

Iron in its pure form is weak and can have a yield strength as low as 50 MPa [19]. The strength of

pure body—centered cubic iron in a fully annealed condition decreases rapidly as the temperature
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is increased, Fig. 2.6. The strength is particularly sensitive to temperatures below -25°C. In
fact, it is this sensitivity to temperature which gives rise to the ductile-brittle transition. The
cleavage strength of iron, is insensitive to temperature; at sufficiently low temperature it becomes

less than the flow stress, making iron brittle.

800

600 -

400 -

200 -

Yield strength / MPa

0 ——
-250 0 250 500 750

Temperature/ °c

Figure 2.6: Temperature dependence of the yield strength of iron (gettered with titanium) at a
plastic strain of 0.002 [12]. The strain rate is 2.5x107% s~1.

2.4.1 Grain Refinement

The refinement of grain size leads not only to an increase in the strength but also toughness [20].
Grain boundaries are formidable obstacles to the movement of dislocations. The dependence of

the yield strength on grain size is given by the Hall-Petch relationship [21]:

oy = 0; + kyd_1/2 (2.8)

where ‘d’ grain diameter, oy is the yield stress, o; is the friction stress opposing the movement
of dislocation in the grains and k, is a constant.

The derivation of the Hall-Petch equation relies on the formation of a dislocation pile-up at
a grain boundary, one which is large enough to trigger dislocation activity in an adjacent grain.

Yield in a polycrystalline material is in this context defined as the transfer of slip across grains.
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A larger grain is able to accommodate more dislocations in a pile-up, enabling a larger stress
concentration at the boundary, thereby making it easier to promote slip in the nearby grain [22].

It is harder to propose a general mechanism by which grain refinement improves toughness.
The argument for steels is that grain boundary cementite particles are finer when the grain size
is small [22]. Fine particles are more difficult to crack and any resulting small cracks are difficult

to propagate, thus leading to an improvement in toughness.

2.4.2 Solid Solution Hardening

The most common method of increasing the hardness and strength of steels is by solid solution
strengthening. The degree of hardening or softening due to dissolved elements depends crudely
on the relative difference in atomic size relative to an iron atom [12]. Large atoms induce
compressive stress fields whereas smaller atoms are associated with tensile fields in the matrix.
These distortion interact with dislocation motion. Solid solution strengthening also depends on
disturbances to the electronic structure, expressed in terms of the difference of the solute and
host atom [20].

In steels the smaller atoms carbon and nitrogen occupy interstitial sites whereas elements
like silicon, manganese are substitutional. The interstitial solute atoms cause an asymmetrical
distortion of the ferrite lattice whereas the substitutional solute produce symmetrical distortions.
Therefore the increase in strength of a—iron by interstitial carbon or nitrogen is much greater
than that of any substitutional alloying element Fig. 2.7. Isotropic distortion can only interact
with the hydrostatic stress fields of dislocations. Much greater interactions are possible with the
tetragonal strains associated with the interstitial atoms in ferrite.

Fig. 2.8 shows that the strengthening due to substitutional solutes often goes through max-
imum as a function of temperature. In a few cases there is some softening in body centered
cubic a—iron at low temperatures because the presence of foreign solute atom locally assists

dislocations to overcome the large Peierls barrier to dislocation motion [1].

2.4.3 Precipitation Hardening

Small and uniformly distributed precipitates can be effective barriers to dislocation movement.
Precipitation hardened steels strengthening are usually first heat treated in the austenite phase
field in order to dissolve solutes and then cooled rapidly to ambient temperatures to produce a
supersaturated ferrite or martensitic transformation. Tempering then allows the excess solute to
precipitate as carbides or nitrides, thereby strengthening the microstructure. In steels the strong
carbide—forming elements titanium, vanadium, niobium, molybdenum, etc. are commonly used
as the main precipitation strengthening elements. This mechanism is applied widely to increase

the creep strength of power plant steels.
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2.5 Tempering

During welding, there are regions created which are austenitised and then cooled rapidly, pro-
ducing brittle microstructures such as martensite. Tempering is frequently used to restore the
toughness, by heat treating in a temperature regime where austenite cannot form.

Thus, any excess carbon in solution is rejected to form carbides. In some cases the purpose of
tempering is to induce the precipitation of alloy carbides. Power plant steels containing carbide
forming elements such Cr, Mo, V, Nb, Ti, and W form stable carbides such as M X, M3 X, M2 X,
M7X3, Ma3 X and MgX (where M represents metal atoms, X represents interstitial atoms) on
tempering at temperatures where there is sufficient mobility for the diffusion of substitutional
atoms. This generally means temperatures above 500°C. The precipitation of alloy carbides
and the associated strengthening is often referred to as ‘secondary hardening’ [23]. Fig. 2.9
shows the variety of carbides formed during tempering of water quenched 2%Cr71Mo steel from

its austenitisation temperature.

2.6 Previous Weld Mechanical Property Models

Weld metal models can in general be categorised into two classes, those which are empirical
and others founded on physical metallurgy. The latter are more meaningful, but as will be seen
later, they are generally over—simplified and deal only with simple properties rather than the

range of properties important in engineering design.

2.6.1 Regression Models

There have been numerous attempts to model weld metal mechanical properties by using linear
regression analysis (e.g. Table 2.1). The strength of weld metal is frequently modelled as a
function of chemical composition of weld metal, for cases where all the remaining variables
associated with welding approximately constant. Equations like these are useful within the
context of the experiments they represent. Naturally, the form of the relationships used may

not necessarily be justified in detail.

2.6.2 The Sugden—Bhadeshia Model

Sugden and Bhadeshia tried to predict the strength of the as—deposited weld as a function of the
chemical composition and microstructure [25]. The model is based on the assumption that the
strength can be factorised into components; strength of pure iron, solid solution strengthening
and strength due to microstructure, equation 2.9. The chosen microstructural constituents
are allotriomorphic ferrite (), Widmanstétten ferrite (a,,) and acicular ferrite (a,) with the

following assumptions:
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Carbon-Manganese YS =335 + 439 C 4+ 60 Mn + 361 (C.Mn)
UTS = 379 + 754 C + 63 Mn + 337 (C.Mn)
Silicon-Manganese YS = 293 + 91 Mn + 228 Si - 122 Si?

UTS = 365 + 89 Mn + 169 Si - 44 Si?
Chromium-Manganese | YS = 320 + 113 Mn + 64 Cr + 42 (Mn.Cr)
UTS = 395 + 107 Mn + 63 Cr + 36 (Mn.Cr)
Nickel-Manganese YS =332 + 99 Mn + 9 Ni + 21 (Mn.Ni)
UTS = 401 + 102 Mn + 16 Cr + 15 (Mn.Ni)

Table 2.1: Yield and ultimate tensile strength (MPa) models developed using regression anal-
ysis for as—welded carbon—manganese weld metals [2]. The alloying element concentrations are
expressed in wt%.

1) The total strength of as—welded deposit is assumed to be a linear combination of individual

components:

n
Oy = OFe + Z 058,i + OMicro (29)
=1

where ope is the strength of fully annealed pure iron as a function of temperature and

strain rate, ogs; is the solid solution strengthening due to alloying element i and oicro is

strengthening due to weld metal microstructure.

2) The weld microstructure consists of allotriomorphic ferrite («), Widmanstatten ferrite
() and acicular ferrite («). The variation in the grain sizes of «, «,, and «, are not

taken into account:

OMicro = Oa Vo + 04 Vo + 0y Vi (2'10)

where o, 0., and o, denote the contributions from 100% allotriomorphic ferrite, Widmanstatten
ferrite and acicular ferrite respectively, and V,,, V,, and V, are their corresponding volume

fractions.

3) Nitrogen is assumed to be in solid solution and any strain ageing effects in the as-welded

microstructure are assumed to be negligible.

4) The solid solution strengthening (ogg) is expressed as the sum of the contributions from

each solute:

oss =a Mn wt% + b Si wt% + ... (2.11)
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where the coefficients a, b, ..  are functions of temperature, defining the role of the
respective alloying elements. The values for these coefficients are taken from the published
experimental data which are based on studies in which solid solution strengthening is

studied in isolation.

An alloying element naturally influences more than just solid solution effects. However,
the other consequences are included in the analysis via incorporation of microstructure.
The authors were able to estimate the strength of individual microstructures (o4, o, and
ow) by studying three welds which are made with identical welding conditions [25]. The
chemical compositions were adjusted to give different fractions of microstructure in order
to deduce the strengthening due to each microstructure (o, o, and ). The final form of

developed equation is;

Oy = OFe 055 + 27V, + 402V, + 486V, (MP&) (2.12)
where ope and ogg can be obtained from referred published literature [25].

Although the Sugden—-Bhadeshia model has more physical meaning when compared with the
empirical equations presented in Table 2.1, the model still has linear approximations which are
not justified in detail. It is restricted to structural steel welds which have simple, untempered
microstructures; bainite and martensite are excluded from the analysis, as is precipitation hard-
ening. Young and Bhadeshia have developed the work for microstructures which are mixtures
of bainite and martensite but this model has yet to be applied to weld metal microstructures.

The model is nevertheless discussed below because it is interesting.

2.6.3 The Young—Bhadeshia Model

The Young-Bhadeshia strength model for high-strength steels [4] considered microstructures

which are mixtures of martensite and bainite;

UZUFe+ZUSS,i+UC+KL(Z)_1+KDP%5+K;DA_1 (2.13)

3
where K, Kp and K, are constants, o¢ is the solid solution strengthening due to carbon, Lis
a measure of the ferrite plate width, pp is the dislocation density and A is the distance between

any carbide particles. The other terms have their usual meanings.

Carbon

The carbon concentration in bainitic ferrite is assumed as 0.03 wt%, unlike the martensite which

is supersaturated. Thus, the strengthening effect of carbon at the low concentrations typical in
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bainite takes the form;

055, = 17225 x z'/2  (MPa) (2.14)

where z is the concentration of carbon in wt%. For martensite when the carbon concentration

can be large, there is evidence [26] to show that;

055, = 1171.3 x z/3  (MPa) (2.15)

Dislocations

The bainite and martensite transformations are associated with a shape deformation which may
be accommodated by plastic relaxation. This leads to accumulation of dislocations. The amount
of plastic deformation and dynamic recovery depends on the transformation temperature, there-

fore the dislocation density pp is taken as a function of temperature, equation 2.16.

6880.73 1780360
T T?

where T is the temperature in Kelvin and pp is in m~2. Equation 2.16 is taken from data over

log o{pp} = 9.2840 +

(2.16)

570-920 K and should not be extrapolated. For transformation temperatures below 570 K the
dislocation density is considered to be that at 570 K. The strengthening due to dislocations is

estimated as;

o, = 0.38 pb(pp)*?®
7.34 x 107%(pp)®®  (MPa) (2.17)

IR

where p is the shear modulus and b is the magnitude of the Burgers vector.

Lath Size

Bainite and martensite in low alloy steels occur in the form of fine plates or laths. Here the
dislocation sources are found at grain boundaries which is different from the classical Hall-Petch
effect which considers the dislocations sources within individual grains. The increase in strength

due to plate size is given by;

og = 115(L) ! (2.18)

where o is in MPa and L is the mean linear intercept taken on random sections and at random

angles to the length of any plate section.
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Carbide Particles

The strengthening oy due to a uniform dispersion of spherical carbides particles is considered

to be;

o9 = 0.52VpA7 (MPa) (2.19)

where A is the particle spacing and Vj is the volume fraction of cementite. Bainite that occurs
in high-strength low—alloy steels has most of its carbon partitioned into the residual austenite
where it remains in solid solution. Young and Bhadeshia considered that cementite precipitation
does not make significant contribution to the strength, but the carbon rejected into the austenite
is important via its effects on the solid solution strengthening of martensite which forms during
the cooling of austenite to ambient temperature.

The Young and Bhadeshia model can be applied to estimate the strength of bainitic and
martensitic welds by using rule of mixtures. Even though the model had considered the mi-
crostructural influence the model still built on the some of the assumptions made in Sugden and

Bhadeshia model like linear summation effect of solid solution strengthening.

2.6.4 Neural Network Models

Neural networks are parameterised non—linear regression models which are discussed in detail in
Chapter 3. Cool et al. had developed neural network models to predict the yield strength, ulti-
mate tensile strength of weld metals as a function of chemical composition, welding parameters

and heat treatment [27]. Around 1652 individual experimental data were used in the analysis.

2.7 Conclusions

The basic strengthening mechanisms in steels related to weld metal mechanical properties have
been reviewed and discussed. There has been substantial progress in understanding the origins of
the yield strength of sample weld metal microstructure of allotriomorphic ferrite, Widmanstatten
ferrite and acicular ferrite. Similar progress seems unlikely for those mechanical properties such
as the ultimate tensile strength, ductility and toughness, all of which involve gross plasticity. An-
other difficulty is that the effects of heat treatments are not included explicitly in any mechanical

property models.
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Chapter 3

Neural Network Modelling

Regression analysis is familiar to scientists as a tool to fit experimental data empirically . The
linear relationship is chosen before the best—fit coefficients are derived. The general form of the
equation developed using linear regression is a sum of the inputs x; multiplied by a corresponding
coefficient or weight w; and added with a constant (#). The developed linear equation may
contain non-linear terms, forming a pseudo-linear equation. In linear regression models the
relationship between a input and output tends to be linear and applies across the entire span of
the input space, which may not be reasonable. Neural networks is a general method of non—linear
regression which avoids the difficulties occurs in linear regression technique. In this Chapter the

fundamentals of neural networks and procedure followed to develop models are discussed.

3.1 Neural Networks

A neural network is a general method of regression analysis in which a very flexible non-linear
function is fitted to experimental data. When compared with linear regression analysis, neural
networks is a non-linear regression by introducing an another node which is hidden in between
input and output as shown Fig 3.1. Similar to linear regression method the input variable z;
is multiplied by weight w;, but the sum of all these products forms the argument of a another
transfer function, in this present work it is hyperbolic tangent as in equation 3.2. The final
output is defined as linear function of hidden nodes and a constant, equation 3.1. Thus, the

dependent variable y is defined as;

y=> w?h;+6?, (3.1)
i
where h; defined as;

h; = tanh Z wz(;)avj + 92(1) (3.2)
J
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where z; are the j variables on which the output y depends, w; are the weights (coefficients) and
0; are the biases (equivalent to the constants in linear regression analysis). The combination of
equation 3.2 with a set of weights, biases, value of 7 and the minimum and maximum values of the
input variables defines the network completely, Fig. 3.1. The availability of a sufficiently complex
and flexible function means that the analysis is not as restricted as in linear regression where
the form of the equation has to be specified before the analysis. The strength of the hyperbolic
tangent transfer function is determined by the weight w;, the exact shape can be varied by
altering the weights. The shape of the hyperbolic transfer function will be varied according to
the availability of data in the input space. A model with one hidden unit (Fig. 3.2a) may not
sufficiently flexible to capture the information from the database, however non-linearity can be
increased by combining several of the hyperbolic tangents as shown in Fig. 3.2b.

The neural network can capture interactions between the inputs because the hidden units
are nonlinear. The nature of these interactions is implicit in the values of the weights, but
the weights may not always be easy to interpret. For example, there may exist more than
just pairwise interactions, in which case the problem becomes difficult to visualise from an
examination of the weights. A better method is to actually use the network to make predictions

and to see how these depend on various combinations of inputs.

Input nodes
O Hidden nodes

O Output node
O

O :

O

Figure 3.1: Schematic illustration of input, hidden and output layers of neural network model
used in the present work.
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Figure 3.2: Hyperbolic tangent relation between inputs z and output y, a) single flexible hyper-
bolic tangent with varying weights b) combination of two tangents.

3.2 Error Estimation

The input parameters are generally assumed in the analysis to be precise and it is normal to
calculate an overall error by comparing the predicted values (y;) of the output against those

measured (t;), for example,

Ep o Y (t; —y5)? (33)
i

FEp is expected to increase if important input variables have been excluded from the analysis.
Whereas Ep gives an overall perceived level of noise in the output parameter, it is, on its own,
an unsatisfying description of the uncertainties of prediction.

MacKay has developed a particularly useful treatment of neural networks in a Bayesian
framework [6], which allows the calculation of error bars representing the uncertainty in the
fitting parameters. The method recognises that there are many functions which can be fitted or
extrapolated into uncertain regions of the input space, without unduly compromising the fit in
adjacent regions which are rich in accurate data. Instead of calculating a unique set of weights,
a probability distribution of sets of weights is used to define the fitting uncertainty. The error
bars therefore become large when data are sparse or locally noisy.

In this context, a very useful measure is the log predictive error because the penalty for
making a wild prediction is reduced if that wild prediction is accompanied by appropriately

large error bars [6]:
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where o(™) is the error bar calculated using Bayesian statistics [6]. A larger value of the log

predictive error implies a better model, Fig 3.4b.

3.3 Overfitting

A potential difficulty with the use of powerful non-linear regression methods is the possibility
of overfitting data. To avoid this, the experimental data can be divided into two sets, a training
dataset and a test dataset. The Fig. 3.3 illustrates different degrees of complexity in fitting
the training dataset and the test data. A linear model is simple and does not capture the real
information form the data. An overcomplex model fits all the data in the training dataset, but
badly generalised. The optimum model which is a generalised model captures real complexity
in the database, Fig. 3.3.

The model is produced using only the training data. The test data are then used to check
that the model behaves itself when presented with previously unseen data. The training error
tends to decrease continuously as the model complexity increases, Fig 3.4a. It is the highest
log predictive error (Fig 3.4b) which enables that model to be chosen which generalises best on
unseen data [6].

The analysis uses normalised values of the variables in the range +0.5 as follows:

T — Tmin

oy = L Fmin g5 (3.5)

Tmaz — Tmin
where z is the original value from the database, =4, and z,,;, are the respective maximum and
minimum of each variable in the original data and xx is the normalised value. This step is not
essential to the running of the neural network but is a convenient way of comparing the effect of
different variables on the output. Fig. 3.1 shows the general structure of the simple three layer

neural network.

3.4 Model Development Procedure

The experimental data collected are stored in a particular format. These data are normalised
using equation 3.5. The normalisation of experimental data is not necessary for the development
of models, but it helps in comparing the relative influence of different input variables. Around 80
different neural network models are selected for training over chosen functions (Equ 3.1 and 3.2).
These models will differ in number of hidden units and seed to generate random starting weights.

Before ‘training’ of the model, the experimental database is randomised in order to divide the

38



(b)  Generalised model

A (@ Simple model A
O
5 5
g =
= =
O O
e Training data e Training data
o Test data o o Test data o
I nput I nput

o © Overfitting

(@]

Output

e Training data
o Test data

I nput

Figure 3.3: Different degrees of complexity of fitting a input and output in a model.

information into test and training datasets in a fair manner. The first half of the randomised

dataset is used for training and the remaining is for testing how the trained models behave with
unseen data.

For a trained model with database ‘D’, the overall error ‘Ep’ is the sum of squared error

between the desired output (target) ‘¢’ and calculated output ‘y, equation 3.6.

= —Z y)? (3.6)
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Then to have predictions with error bars, the trained models are ranked with decreasing
magnitude of log predictive error. It is possible that a committee of models can make a more
reliable predictions than an individual model [6]. Starting from the best model, the committee
models are selected until the minimum validation or test error is obtained. The committee
prediction is the average value of individual model predictions. During predictions using the

committee model containing ‘L’ individual models, average output (7) and the committee error
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bar (o) are calculated using following equations;

_ 1 l
j = le:y() (3.7)

1 1
0'2 = Z Z 051)2 + f Z (y(l) — §)2 (38)
l l

Without changing the complexity of individual models, the committee is retrained on whole
database. During the retraining the weights are adjusted to better fit whole database.

The committee model predictions are the average of calculated values of each individual
model in the committee. The architecture (hidden units, seed, etc.) of committee model is
complex. This complexity is considered by the neural networks during the training and testing
of each individual model. The committee model does not contain any information about any
perceived significance of each individual input variable over the output variable like individual
model, but the only way to know the effect of each input variable on output is by doing predic-
tions for a given set of input variables and varying the single input variable over a range. Note

that error bars have to be taken into consideration during the predictions.

3.5 Interpretation

The neural network can capture interactions between the inputs because the hidden units are
non-linear. The nature of these interactions is implicit in values of weights, which difficult to
interpret. Interpretation is best done by making predictions and examining the trends taking
error bars into consideration.

These error bars, which are calculated using Bayesian inference [6] have special meaning when
compared with regression analysis error calculations. As shown in Fig. 3.5, the error bar is a
measure of uncertainty in fitting parameters in the noisy data region (A) or the warning message
generated when it is making calculations in the region of input space where the data (with
which it was trained) are sparse (B). Thus error bars calculated using Bayesian neural network
represents both experimental noise and the uncertainty in prediction due lack of information in

that data range. The models developed using neural networks are discussed in next chapter.
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Figure 3.5: Schematic illustration of the uncertainty in defining a fitting function in regions
where data are sparse (B) or where there is scatter (A). The dashed lines represent error bounds

due to uncertainties in determining the weights.
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Chapter 4

Yield and Ultimate Tensile Strength
Models

The conventional method for developing a new weld metal with desired mechanical properties
involves the design of a series of weld metals, varying chemical compositions and welding pa-
rameters. These welds are then manufactured and tested. A choice is then made of a particular
combination of variables which best meets the requirements. Cost and time savings might be
achieved with the help of appropriate models which reduce the number of steps needed.

The physical models discussed in Chapter 2, based on strengthening mechanisms, are not
sufficiently sophisticated to enable a proper treatment of the problem. At the same time linear
regression methods are not capable of representing the real behaviour which is far from linear
when all the factors are taken into account.

On the other hand, the neural network method described in Chapter 3 is ideally suited to
complex phenomena with many variables. In the present work, neural networks are used to
model the yield strength and ultimate tensile strength of weld metal as a function of weld metal
chemical composition, welding parameters and heat treatment conditions. Previous research
along these lines by Cool et al. [27] was based on a rather limited database. The models are

then used to design new alloys of use in the fabrication of power plant components.

4.1 Database

All of the data collected are from multirun weld deposits in which the joint is designed to
minimise dilution from the base metal, to enable specifically the measurement of all-weld metal
properties. Furthermore, they all represent electric arc welds made using one of the following
processes: manual metal arc (MMAW), submerged arc welding (SAW) and tungsten inert gas
(TIG). The welding process itself was represented only by the level of heat input. This is because
a large number of published papers did not specify welding parameters in sufficient detail to

enable the creation of a dataset without missing values. Missing values cannot be tolerated
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in the method used here. If the effect of a welding process is not properly represented by the
heat input and chemical composition, then neglect of any important parameters will make the
predictions more ‘noisy’. As discussed below, the noise in the output was found to be acceptable;
a greater uncertainty arises from the lack of a uniform coverage of the input space. The data
were collected from a large number of sources [28] to [88].

The aim of the neural network analysis was to predict the yield and tensile strength as a
function of a large number of variables, including the chemical composition, the welding heat
input and any heat treatment. The databases for the yield and ultimate tensile strength (UTS)
are different because the UTS database also included the oxygen concentration since tensile
failure should depend on inclusions which nucleate voids. As a consequence, the yield strength
database consists of 2002 separate experiments whereas the UTS database is slightly smaller
at 1972 experiments since the oxygen concentration was not always reported. Neural network
method used in this work cannot cope with missing values of any of the variables. In 14 cases
the sulphur and phosphorus concentrations were not available. Since these impurities might
be important, it would not be satisfactory to set them to zero. Missing values of sulphur and

phosphorus were therefore set at the average of the database.

4.1.1 Yield Strength Database

Table 4.1 shows the range, mean and standard deviation of each variable including the output
(yield strength). The purpose here is simply to list the variables and provide an idea of the
range covered. It is emphasised however, that unlike linear regression analysis, the information
in Table 4.1 cannot be used to define the range of applicability of the neural network model. This
is because the inputs are in general expected to interact. We shall see later that it is the Bayesian
framework of our neural network analysis which allows the calculation of error bars which define
the range of useful applicability of the trained network. A visual impression of the spread of
data is shown in Fig. 4.1. It can be concluded from Fig. 4.1 that the effect on yield strength
of carbon, manganese, silicon, nickel, molybdenum and heat input have been systematically
studied. Hence, future experiments could focus on examining the effect of chromium in the
range 3-8 wt%, vanadium (0.1-0.2 wt%), cobalt at all concentrations but in greater variety of
alloy systems, tungsten at low and high concentrations, titanium and boron in high strength

weld. The effect of tempering temperature in the range 250-500 °C also needs to be studied.

4.1.2 Ultimate Tensile Strength Database

Table 4.2 shows the range, mean and standard deviation of each variable including the output

(ultimate tensile strength). The corresponding visual impression of the UTS database is similar
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Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.01 0.22 0.072 0.025
Silicon (wt%) 0.01 1.63 0.344 0.138
Manganese (wt%) 0.27 2.31 1.192 0.41
Sulphur (wt%) 0.001 0.14 0.009 0.006
Phosphorus (wt%) 0.001 0.25 0.012 0.009
Nickel (wt%) 0.0 4.79 0.43 0.888
Chromium (wt%) 0.0 12.1 0.808 1.952
Molybdenum (wt%) 0.0 2.4 0.221 0.368
Vanadium (wt%) 0.0 0.32 0.026 0.06
Copper (wt%) 0.0 2.18 0.063 0.185
Cobalt (wt%) 0.0 2.8 0.007 0.115
Tungsten (wt%) 0.0 3.86 0.091 0.427
Titanium (p.p.m.) 0.0 900 64.9 112.14
Boron (p.p.m.) 0.0 195 5.8 19.08
Niobium (p.p.m.) 0.0 1770 69.6 168.13
Heat input (kJ mm™1) 0.55 7.9 1.6 1.234
Interpass temperature (°C) 20 375 207.8 52.67
Tempering temperature (°C) 20 780 358.3 249.29
Tempering time (h) 0.0 50 6.5 6.45
Yield strength (MPa) 288 1003 533.9 113.64

Table 4.1: The input variables for yield strength model. ‘p.p.m.” corresponds to parts per
million by weight.

to that of the yield strength. The UTS contains an extra input variable oxygen Fig. 4.2, the

effect of which at higher concentrations (above 900 p.p.m.) needs to be studied.

4.2 Yield Strength Model

Some eighty yield strength neural network models were trained on a training dataset which
consisted of a random selection of half the data (1001) from the yield strength dataset. The
remaining 1001 data formed the test dataset which was used to see how the model generalises on
unseen data. Fach model contained the 19 inputs listed in Table 1 but with different numbers of
hidden units or the random seeds used to initiate the values of the weights. Fig. 4.3 shows the
results. As expected, the perceived level of noise (¢,,) in the normalised yield strength decreases
as the number of hidden units increases, Fig. 4.3a. This is not the case for the test error, which
goes through a minimum at three hidden units, Fig. 4.3b, and for the log predictive error which
reaches a maximum at six hidden units, Fig. 4.3c.

The error bars presented throughout this work represent a combination of the perceived level

of noise ¢, in the output and the fitting uncertainty estimated from the Bayesian framework. It
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Figure 4.1: Database distribution used for yield strength model. ‘p.p.m.” corresponds to parts
per million by weight.

is evident that there are a few outliers in the plot of the predicted versus measured yield strength

for the test dataset, Fig. 4.3f. Each of these outliers has been investigated and found to represent
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Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.01 0.22 0.072 0.024
Silicon (wt%) 0.01 1.63 0.345 0.142
Manganese (wt%) 0.27 2.31 1.191 0.410
Sulphur (wt%) 0.001 0.14 0.009 0.006
Phosphorus (wt%) 0.001 0.25 0.012 0.009
Nickel (wt%) 0.0 4.79 0.426 0.900
Chromium (wt%) 0.0 12.1 0.748 1.810
Molybdenum (wt%) 0.0 2.4 0.219 0.370
Vanadium (wt%) 0.0 0.32 0.0252 0.060
Copper (wt%) 0.0 2.18 0.053 0.160
Cobalt (wt%) 0.0 2.8 0.008 0.110
Tungsten (wt%) 0.0 3.86 0.093 0.500
Oxygen (p.p.m.) 0.0 1650 362 200.8
Titanium (p.p.m.) 0.0 900 67 116.5
Boron (p.p.m.) 0.0 195 6 19.3
Niobium (p.p.m.) 0.0 1770 66 163.6
Heat input (kJ mm™1!) 0.55 7.9 1.56 1.17
Interpass temperature (°C) 20 375 209 51.8
Tempering temperature (°C) 20 770 368 241.8
Tempering time (h) 0.0 50 6.9 6.5
Ultimate tensile strength (MPa) 440 1151 624 117.5

Table 4.2: The input variables for ultimate tensile strength model. ‘p.p.m.” corresponds to parts
per million by weight.

unique data which are not represented in the training dataset, Fig. 4.3e. For example, there is
a weld with a sulphur concentration of 0.15 wt.% and another with a phosphorus concentration
of 0.25 wt.%, both extremely high and unusual level of impurities in weld metals.

It is possible that a committee of models can make a more reliable prediction than an
individual model (Chapter 3). The best models are ranked using the values of the log predictive
errors Fig. 4.3c. Committees are then formed by combining the predictions of the best L models,
where L = 1,2, .. .; the size of the committee is therefore given by the value of L. A plot of the
test error of the committee versus its size gives a minimum which defines the optimum size of
the committee, as shown in Fig. 4.3d.

The test error associated with the best single model is clearly greater than that of any of the
committees Fig. 4.3d. The committee with twenty eight models was found to have an optimum
membership with the smallest test error. The committee was therefore retrained on the entire
data set without changing the complexity of any of its member models. The final comparison
between the predicted and measured values of the yield strength for the committee of twenty

eight is shown in Fig. 4.4.
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Figure 4.2: Database distribution used for ultimate tensile strength model. ‘p.p.m.” corresponds
to parts per million by weight.

Fig. 4.5 indicates the significance (o,,) of each of the input variables, as perceived by first

five neural network models in the committee. The o, value represents the extent to which a
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particular input explains the variation in the output, rather like a partial correlation coefficient
in linear regression analysis. The post-weld heat treatment temperature on the whole explains
a large proportion of the variation in the yield strength Fig. 4.5. All of the variables considered

are found to have a significant effect on the output indicating a good choice of inputs.
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Figure 4.5: The perceived significance o,, values of best five yield strength models for each of
the inputs.
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4.3 Ultimate Tensile Strength Model

The models were trained on 1972 individual experimental measurements, of which a random half
of the data formed the training dataset and the other half the test dataset. The procedures are
otherwise identical to those described for the yield strength model, resulting in the characteristics
illustrated in Fig. 4.6 and the performance of the optimum committee of best models is illustrated
in Fig. 4.7. The perceived significance values of the first five models are shown in Fig. 4.8. Here
the additional input variable oxygen shows more significance along with post-weld heat treatment

variables.

4.4 Application to C—Mn Weld Metals

Carbon—manganese weld metals refer to a popular class of ferritic steels in which the substitu-
tional solutes other than silicon and manganese are generally kept to low concentration levels.
They are interesting because there is a great deal already known about them, making it easy
to interpret the physical significance of the neural network model. Furthermore, there exists an
alternative semi—empirical model for the estimation of the yield and tensile strengths of such
multirun welds [89] enabling a further comparison. The semi-empirical model is henceforth
referred to as the “physical model” or PM for short. The basic values of the variables used
in applying the model to carbon-manganese welds are listed in Table 4.3. The specified low—
temperature heat treatment is simply a standard hydrogen removal treatment (250 °C for 14 h)
applied to most welds before mechanical testing.

The results as a function of the carbon and manganese concentrations are illustrated in
Fig. 4.9 for a variety of interesting cases. The calculated yield strength is in all cases found
to be consistent with that expected from the physical model, although there are systematic
differences at high yield strength values for all cases other than at the highest manganese con-
centration. However, the deviations are all within the error bounds of the neural network model
for yield strength. The major discrepancies arise with the UTS especially at high UTS values.
It is believed that the physical model is poorly constructed since the UTS is essentially taken
arbitrarily to be linearly related to a single variable, the yield strength, Fig. 4.10 shows the
comparison between the measured and strength estimation by the physical model. The physical
model at higher strength values behaved very poorly; it estimated the strength higher than the
measured.

An interesting feature of strengthening due to substitutional solutes is the synergistic effect
with carbon. Fig. 4.11a and b shows that the dependence of the strengthening effect of molybde-
num on the carbon concentration is particularly large; the effect of molybdenum in strengthening

the weld is greater than that of Cr or Mn. This is consistent with published literature [90]. El-
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each of the inputs.

ements such as molybdenum and vanadium are associated with strong secondary hardening
effects which frequently trigger a reduction in toughness. In ordinary carbon—manganese mul-
tirun welds, the secondary microstructure, i.e. regions of weld metal which are tempered by
subsequent weld runs, lose most of their microstructural strength. This is not necessarily the

case in weld metal containing strong carbide formers. For example, it is well-established that
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Input variable
C (wt%) 0.06
Si (wt%) 0.5
Mn (wt%) 1.5
S (wt%) 0.006
P (wt%) 0.008
Ni (wt%) 0.0
Cr (wt%) 0.0
Mo (wt%) 0.0
V (wt%) 0.0
Cu (wt%) 0.0
Co (wt%) 0.0
W (wt%) 0.0
Ti (wt%) 0.0
O (p.p-m.) 300
B (p.p.m.) 0.0
Nb (p.p.m.) 0.0
Heat input (kJ mm ') 1.14
Interpass temperature (°C) 175
Tempering temperature (°C) | 250
Tempering time (h) 14

Table 4.3: The input variables of carbon—manganese steel weld metal used in the analysis.

the yield strength calculated using the Young-Bhadeshia model (Chapter 2) is always underes-
timated with molybdenum—containing welds, the degree of underestimation increasing with the
molybdenum concentration [1]. The behaviour observed in Fig. 4.11a is not therefore surprising.

The sensitivity of strength to carbon concentration and the net magnitude of the strength-
ening effect decreases for the ultimate tensile strength, Fig. 4.11. This is expected since the
UTS is measured at large plastic strains whereas the yield strength is much more sensitive to
the initial microstructure.

The predicted dependence of the strengthening effect of niobium on the carbon concentration
is shown in Fig. 4.11 . The strength increment plotted on the vertical axis is based on the average
effect of niobium in the concentration range 0-1500 parts per million by weight for any given
carbon concentrations. The strength increment per weight percent of niobium is obviously very
large and this may be reason why niobium is generally not suggested [89].

Fig. 4.12 shows other predictions; although there are no surprises, it is worth noting the

error bars. These error bars can be used to identify regions of the input space where further
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experiments would be useful. For example, the prediction uncertainties associated with niobium,
or with large heat inputs, are much larger than, for instance with changes in the manganese

concentration. This is where future experiments could be focussed.

4.5 Application to ZiCr—lMo Weld Metals

The 2£Cr1Mo weld metal system is designed primarily for applications where the components
will serve at elevated temperatures (450-565°C) for long periods of time (~30 years). This is
in contrast to carbon—manganese weld metals which are used in structural applications such as
buildings and bridges which are essentially at ambient temperature. Consequently, the post—
weld heat treatment is of vital importance to Q%CI1MO weld metals, not only to relieve residual
stresses but also to generate a stable microstructure in which the carbides hinder creep defor-
mation. The basic values of the variables used in applying the models to 2%Cr1Mo welds are
listed in Table 4.4. The specified high—temperature heat treatment is a typical post—weld heat
treatment (PWHT).

Input variable
C (wt%) 0.11
Si (wt%) 0.20
Mn (wt%) 0.80
S (wt%) 0.002
P (wt%) 0.005
Ni (wt%) 0.20
Cr (wt%) 2.25
Mo (wt%) 1.0
V (wt%) 0.0
Cu (wt%) 0.0
Co (wt%) 0.0
W (wt%) 0.0
Ti (wt%) 0.0
O (p.p-m.) 300
B (p.p.m.) 0.0
Nb (p.p.m.) 0.0
Heat input (kJ mm™!) 1.5
Interpass temperature (°C) 200
Tempering temperature (°C) | 690
Tempering time (h) 8

Table 4.4: The input variables of 2.25Cr—1Mo wt% steel weld metal used in the analysis.
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It is notable from the predictions illustrated in Fig. 4.13 that there are greater uncertainties
(larger error bars) associated with the estimation of mechanical properties for the ZiCrlMo
system when compared with the carbon—manganese welds. This is largely because there are
fewer data available for ZiCrlMo welds.

Another striking feature is that the sensitivity of the strength to alloying elements, in the
PWHT condition, is far smaller than in the as—welded condition. This is not surprising given
the severe nature of the post-weld heat treatment at 690°C for 8 hours. It is emphasised
that although the yield and tensile strengths are not particularly sensitive to composition in
the PWHT condition, this will not be the case for creep properties where the tempering heat
treatment is essential for the generation of alloy carbides and to provide a microstructure which

has long term stability.

4.6 Conclusions

The yield strength and ultimate tensile strength of ferritic steel weld metal have been analysed

using a neural network method within a Bayesian framework. The data used were mostly
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Figure 4.11: Change in strength and the YS/UTS ratio as a function of a wt% of substitutional
solute content in carbon-manganese steel welds. The error bars are not included for clarity, but
the maximum values are 60.

obtained from the published literature and represent a wide cross—section of alloy compositions
and arc—welding processes.

Trends predicted by the models appear to be consistent with those expected metallurgically,
although it must be emphasised that only the simplest of trends have been examined since
the number of variables involved is very large. The models can be applied widely because the
calculation of error bars whose magnitude depends on the local position in the input space is
an inherent feature of the neural network used. The error bar is not simply an estimate of the
perceived level of noise in the output but also includes an uncertainty associated with fitting
the function in the local region of input space. This means that the method is less dangerous
in extrapolation or interpolation since it effectively warns when experimental data are lacking

or are exceptionally noisy. The work has clearly identified regions of the input space where
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further experiments should be encouraged. These models are applied to design new structural,
heat resistant and high strength steel welds without any experimental trials are discussed in
Chapter 6.
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Figure 4.12: Variations in the yield and ultimate tensile strengths of carbon-manganese weld
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Chapter 5

Elongation and Toughness Models

The most common experiments done on weld metals include the testing of a sample in tension
to measure the strength and ductility, and the measurement of the Charpy impact toughness.
Although these tests are quite simple to conduct, the principles governing the properties that are
measured are understood only on a qualitative basis. In the previous chapter, neural network
models which allow the estimation of the yield and ultimate tensile strengths of ferritic steel weld
metals using a vast quantity of data collected from the published literature and from commercial
sources were developed. The predictions that can be made using these models are associated
with error bars which consist of the perceived level of noise in the output and a component
representing the uncertainty of fitting. The predictions are reliable when the error bars are
small, but have to be used with caution when they are not; large error bars can indicate a
need for further experiments to fill gaps in knowledge. In this sense, all predictions are useful
irrespective of the magnitudes of the error bars.

The purpose of the work presented here was to develop similar models for the elongation and
Charpy properties. There has been little practical progress in modelling the tensile ductility of
weld metals [91]. The ductility can to a good approximation be divided into two components
whose magnitudes are assumed to be controlled by different physical processes. These com-
ponents are the uniform plastic strain, as recorded prior to the onset of necking in the tensile
specimen, and the non—uniform component which is the remainder of the plastic strain.

By factorising the ductility in this way, it is possible to express the nonuniform component
in terms of the inclusion content of the weld deposit, after taking into account variations in
specimen cross—sectional area Ap and gauge length Lo [92]:

0.5
nonuniform elongation, % = 100 x 3 LLL (5.1)

where (3 is Barba’s constant, but now expressed as a function of the inclusion content [93]:

B ~1.239 — 9.372 x (wt.%0) + (wt.%S) (5.2)
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There is as yet no reliable model for estimating the uniform component of strain, but such
a model would require a detailed knowledge of the strain hardening behaviour of the individual
phases of the microstructure, together with some theory for multiphase deformation. As far as
the nonuniform component is concerned, equation 5.1 emphasises the role of particles in reducing
ductility. There are only two inputs to equation 5.2, whereas a vast number of other variables
are known to influence the elongation that is measured in a tensile test. Hence the need for a
different approach which encompasses a wider set of variables.

The concept of toughness as a measure of the energy absorbed during fracture is well-
developed [18, 94]. It is often measured using notched—bar impact tests of which the most
common is the Charpy test. A square section notched bar is fractured under specified conditions
and the energy absorbed during fracture is taken as a measure of toughness. The Charpy test is
empirical in that the data cannot be used directly in engineering design. It does not provide the
most searching mechanical conditions. The sample has a notch, but this is less sharp than an
atomically sharp brittle crack. Although the test involves impact loading, there is a requirement
to start a brittle crack from rest at the tip of the notch, suggesting that the test is optimistic
in its comparison against a propagating brittle crack [94]. Most materials can be assumed to
contain sub—critical defects so that the initiation of a crack seems seldom to be an issue.

The Charpy test is nevertheless a vital quality control measure which is specified widely in
international standards, and in the ranking of samples in research and development exercises.
It is the most common first assessment of toughness and in this sense has a proven record of
reliability. The test is usually carried out at a variety of temperatures in order to characterise
the ductile-brittle transition intrinsic to body—centered cubic metals with their large Peierls
barriers to dislocation motion.

It would therefore be useful to be able to quantitatively model the Charpy toughness as a
function of metallurgical variables that are believed to influence the cleavage and ductile fracture
modes of commercial steels. Some of these variables have in the past been studied quantitatively
(for example, the flow stress as a function of temperature [25]) whereas others (such as the degree
of organization in the microstructure [5]) have been expressed using language alone.

Complex problems such as those described above, can usefully be modelled empirically using

an artificial neural network. The method has been discussed thoroughly in Chapter 3.

5.1 Elongation Model

This model consists of the 20 input variables listed in Table 5.1, which are considered to in-
fluence ductility. The detailed chemical composition, the heat treatment and the welding heat
input and interpass temperature essentially determine the microstructure and properties. It

is easy to imagine other variables which might be important, such as the size distribution of
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oxide particles. However, the compilation of a dataset for neural network analysis is always a
compromise between two factors. Firstly, a larger dataset is of value in creating a model based
on a greater span of knowledge. However, the probability of finding appropriate data diminishes
as the number of variables is increased, because incomplete sets of inputs can not be used in the
analysis. The database reflects multipass welds made using the submerged arc, gas tungsten arc
and manual metal arc welding processes. The welding parameters are represented by the heat
input and the interpass temperature; the post—weld heat treatment conditions are represented
by temperature and time. The sources of the data are listed in references [29] to [105]. The
elongation values are those measured on standard, cylindrical tensile test specimens, where the

gauge length is generally specified to be 5.65x1v/A, where A is the cross-sectional area.

Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.01 0.16 0.07 0.0184
Silicon (wt%) 0.01 1.14 0.35 0.124
Manganese (wt%) 0.24 2.31 1.23 0.386
Sulphur (wt%) 0.002 0.14 0.008 0.005
Phosphorus (wt%) 0.001 0.25 0.01 0.007
Nickel (wt%) 0.0 5.48 0.322 0.88
Chromium (wt%) 0.0 9.4 0.45 1.19
Molybdenum (wt%) 0.0 2.4 0.17 0.358
Vanadium (wt%) 0.0 0.32 0.015 0.044
Copper (wt%) 0.0 2.04 0.063 0.204
Cobalt (wt%) 0.0 2.8 0.005 0.097
Tungsten (wt%) 0.0 3.86 0.024 0.207
Oxygen (p.p.m.) 63.0 1650 414 118
Titanium (p.p.m.) 0.0 1000 86 127
Boron (p.p.m.) 0.0 200 11 30
Niobium (p.p.m.) 0.0 1770 48 141
Heat input (kJ mm™1) 0.55 4.8 1.23 0.71
Interpass temperature (°C) 20 350 204 35
Tempering temperature (°C) 20 750 321 191
Tempering time (h) 0.0 32 10 6.2
Elongation (%) 7.4 41.1 26 5

Table 5.1: The variables used in developing the elongation model. ‘p.p.m.” corresponds to parts
per million by weight.

A total of 1972 individual experimental data were gathered. In 19 cases, the sulphur and
phosphorus concentrations were not reported, in which case they were set to the average values
of the other data in the database. This is a better procedure than setting the concentrations
to zero because all welds inevitably contain impurities. On the other hand, alloying additions

such as molybdenum can be set to zero when they are not added deliberately, without affecting
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the overall microstructure or mechanical property outcomes. A visual impression of the whole
elongation database is shown in Fig. 5.1. The mean and standard deviation of the percentage
elongation are 26 and 5 respectively, showing that most of the data lie in the range 21-31%,
Fig. 5.2.

The training, test and log predictive errors [6] associated with each of the eighty models
created are shown in Fig. 5.3. The behaviour of the single best model is illustrated in Fig. 5.3d,e.
From the set of 80 models, a committee of 58 of the best models was found to give the lowest
test error, Fig. 5.3¢; each member of the committee was then retrained on the entire dataset to
create the final committee model Fig. 5.3f). The details of all these procedures are described in
Chapter 3. Fig. 5.4 shows the significance g, of each of the input variables. The behaviour of
the committee model in making predictions for specific cases is now illustrated for C—Mn weld

metals.

5.1.1 Application to C—-Mn Weld Metals

The set of variables used for analysis is listed in Table 5.2; any variations illustrated in subsequent
diagrams are about these values. An increase in the strength is expected to lead to a decrease
in elongation [106]. It is not surprising, therefore, that the elongation decreases when the
manganese and carbon concentrations are increased, Fig. 5.5. Notice also that the effect is more
pronounced at higher manganese concentrations, consistent with the corresponding effect on
strength (Chapter 4).

Ductile fracture can be described in terms of the nucleation, growth and coalescence of voids.
Macroscopic fracture occurs when the voids link on a large enough scale. If the number density
of voids is large, then their mean separation is reduced and coalescence occurs rapidly, giving
a minimal amount of plastic deformation before fracture, and reducing the overall ductility
(Fig. 5.6).

It has generally been assumed that in weld metals both sulphur and oxygen contribute to
the inclusion content and hence must be detrimental to the toughness. Whereas it is found
that an increase in the oxygen concentration definitely reduces the elongation (Fig. 5.7a), the
picture for sulphur is not clear. The data in fact show a slight increase in elongation with
the sulphur concentration but the trend is not meaningful when the error bars are taken into
account (Fig. 5.7b). Oxides are the main inclusions in weld metals [90] whereas sulphur tends
to be deposited in the form of very thin layers on top of the oxide particles [107]. The observed
trends may not therefore be unreasonable in weld metals as opposed to wrought steels which
tend to have a very low oxygen concentration with a predominance of sulphide inclusions.

Another interesting feature of the difference between weld metals and C—Mn type hot—rolled

steels is revealed by comparing the dataset used in a previous analysis for wrought alloys [108]

65



Elongation / %

Elongation / %

Elongation / %

020 Carbon 20 Slicon o Manganese 015 B Sulphur
15 £
o 015 o 15 ) o
£ E E £ o010
5 0.10 < 104 5 5
a 8 S 1 £
8 @ os g 3 %] -
0.5 1 - = 0% o
°© 9 ©, G °
0.00 +———"—"——— 009 = & O 0 ————— o004y e
0 10 20 30 40 50 0 10 20 30 40 0 10 20 30 40 50 0 10 20 30 40 50
Elongation / % Elongation / % Elongation / % Elongation / %
03 T o 6 Nickel 124 Chromium o Molybdenum
o 86> © 2
3 ° o Ba™° © S 24
S < © o gPE° s
£ 021 S 4 .. £ g = e
2 2 ety E : i
5 2 o Slpnces = 14
£ 011 3 2 o RERTS 5 4l b
3 b= ° o0 = &, %‘
- e oose B (8} ° W@m =
o . © comvagggmOe ° cpoo og
0.0 4 o'm“ 0 o ¢ ek o o OOM 04
0O 10 20 30 40 50 0O 10 20 30 40 50 0O 10 20 30 40 50 0 50
Elongation / MPa Elongation / % Elongation / % Elongation / %
03 Vanadlum% <% 5] e Copper 3 S Cobalt Tungsen  ©
< Neee o
2 o T 0 < o . 2 34 o
Zo2{ ..k E o d £°2 - %
5 g 11 o °®o0 = 5 2 e e
B 01 soe g S R oo g o e,
8 o %8 o w g% o o ERg .o
> T 500 48593 "
00l o o e . 0 © ekattiis . 01 o= oo °
’ T T T T T T T T T T T T 04 = T T T ‘o
0O 10 20 30 4 50 0O 10 20 30 40 50 0O 10 20 30 40 50 0 10 20 30 40 50
Elongation / % Elongation / % Elongation / % Elongation / %
Titanium 200 - %0 Boron Niobium "o 8 Heat Tnput
800 1 °
. ° o gy . 1500 o
€ . N £ £
S 600 £ oo = Ee
< g ) £ 1000 2
£ £ 1001 ., c N ° ¥
5 400 | c o g = 4
g 2 o ooy 3 a haa— %
2 500 3 P £ s00 = ey
. Qﬁgg% g 2 o 84 wdibo
Oo! % ° T R .oo ° o
o4 o 04 ce 00 0 N com@ e o oo
T T T T T T T T 0 T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Elongation / % Elongation / % Elongation / % Elongation / %
400 PWHT Temp. 0;
é?j e C(:) 800 | emp. PWHT Time ol - : xygen
[} = .
= d commmenmo  com = B £
5 300 - E 3 40 £
g [ eions, 5 SN 5 E o memo £ 1000
£ 207 o2 g 4001 C . g
2 Y 2 T 204 <
8 100 6B gboce o — 2004 °° pper— § 00 co———— & 5004
o e o I S o Commmmmooomo o
T ° o %
0 10 20 30 40 0O 10 20 30 40 50 0 10 20 30 40 50 0O 10 20 30 40 50

Elongation / %

Figure 5.1: The database values of each variable versus the elongation. ‘p.p.m.’ refers to parts
per million by weight.

with the present work which is on weld metals (Fig. 5.8). The difference between the yield

strength (oyg) and ultimate tensile strength (oprg) for welds is approximately constant at
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Figure 5.2: The elongation data frequency distribution.

100 MPa whereas for plates, the difference becomes smaller as the strength increases. The stress

can be described as a function of plastic strain € using a power law of the form

o= Ke" (5.3)

where K and n are constants, the latter being the strain hardening coefficient. Since the yield

strength is measured at a plastic strain of 0.02, and the UTS is given by Kn", it follows that

oyrs — oys = K[n" — 0.02"] (5.4)

Since for the welds, oyrs — oys ~ 100 MPa, it follows that the strain hardening coefficient
must be approximately constant for all the welds considered. This in turn means that the
uniform strain component of the measured elongation of most ferritic steel welds must be about
constant, the total elongation being a function mostly of the non—uniform component which
occurs beyond necking during a tension test. Of course, the non—uniform component of the
elongation depends largely on void nucleation, growth and coalescence so it is not surprising
that the total elongation depends strongly on inclusions.

We note that this interpretation does not explain why the strain hardening coefficient for

67



0.10 30
(a) (b) :
' +
+ +
0084 +#, « 20 -
$ o .
> oy o
b
% ¥ m * ., o+
0.06 i 10 Cotee L
' % E: i ] i t oy * : 1 +
% ] + + . N +
trig crpptgs TEeILEL
004 T T T T T 0 T T T T
0 4 8 12 16 0 4 8 12 16
Hidden units Hidden units
4.0 c
S 06
© 2 | @
354 =
X $ 03-
s ]
£ 304, [
; T 00-
3 A £
. 257 ::*ﬁ 8 -03 -
t;wﬂ# g
2.0 A %@W 3 § Training dataset
T T T T T T — '06 T T T T T T
0 20 40 60 80 & 06 03 00 03 06
Modelsin committee M easur ed nor malised elongation
c 50
ke 0.6 < (f)
§ "~ 40-
S 03 5 |
B % 30 -
T 0.0 o 1
e T 20
5 g%
[&]
B 03 1 5 10
B g
Test d
B o6l L EE= o
o 06 03 00 03 06 0 10 20 30 40 50

M easur ed nor malised elongation Measured elongation /%

Figure 5.3: Characteristics of the elongation model. o, is the model perceived level of noise in

the elongation. (d) and (e) represent the behaviour of the best single model, whereas (f) shows
the performance of the optimum committee model on the entire dataset.

68



w

Significance
N

=

il

i

°o =

o
|

li

=
4

Heat Input

Interpass Temp.

PWHT Temp.
PWHT Time Tt |

Figure 5.4: The perceived significance o, of each of the input variables, as perceived by first
best five neural network models in committee, in influencing the elongation.

welds is approximately constant whereas that of plates is not. This remains an issue for further
work.

A further consequence of these observations is that the ratio of the yield to ultimate tensile
strength will increase more rapidly for welds than for plates, which may in turn have conse-
quences on the fatigue properties. The fatigue resistance is generally higher for materials where
there is a large difference between the yield and ultimate tensile strength. Indeed, Fig. 5.9 shows
that unlike plate steels, there is not much that can be done to control the ratio oyg/oyrs by

alloying.

5.2 Charpy Toughness Model

This model was developed with 22 input variables, Table 5.3, the nitrogen concentration and
the test temperature being the additional variables when compared with the elongation model
(Fig. 5.10). The test temperature is expected to be an important variable because of the ductile—
brittle transition in ferritic iron, and the nitrogen concentration is known to have an influence
via strain hardening effects. Unfortunately, the Charpy data that are available are not uniformly
distributed (Fig. 5.11) because the tests are frequently reported in literature at specified Charpy

toughness values.
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Input variable
Carbon (wt%) 0.06
Silicon (wt%) 0.50
Manganese (wt%) 1.50
Sulphur (wt%) 0.006
Phosphorus (wt%) 0.008
Nickel (wt%) 0.0
Chromium (wt%) 0.0
Molybdenum (wt%) 0.0
Vanadium (wt%) 0.0
Copper (wt%) 0.0
Cobalt (wt%) 0.0
Tungsten (wt%) 0.0
Oxygen (p.p.m.) 300
Titanium (p.p.m.) 0.0
Boron (p.p.m.) 0.0
Niobium (p.p.m.) 0.0
Heat input (kJ mm!) 1.00
Interpass temperature (°C) 175
Tempering temperature (°C) | 250
Tempering time (h) 14.0

Table 5.2: The input variables of carbon—manganese steel weld metal used in the analysis.

The models were created from a dataset containing 3142 individual experiments and the
results are shown in Fig. 5.12. An optimum committee consisting of around 62 of the best

models was used in all subsequent analyses.

5.2.1 Application to C—Mn Welds

The reference values of the variables used in making predictions are listed in Table 5.4. Fig. 5.13
shows the calculated variation in Charpy values for 0°C as a function of the manganese and

carbon concentrations. There are two competing effects:

(i) At first an increase in hardenability leads to a replacement of deleterious phases such as
allotriomorphic and Widmanstétten ferrite with the desirable acicular ferrite [90], leading
to an increase in toughness. It is for this reason that the peak in toughness occurs at
a higher carbon concentration when the manganese concentration is low. For equivalent

hardenability, the carbon concentration must be larger when that of manganese is small.
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Figure 5.5: (a, b) Predicted elongation as a function of carbon and manganese in carbon-
manganese weld metal. (c, d) Contour plots showing the variation in elongation and yield
strength as a function of the carbon and manganese concentrations. The error bars have been
omitted for clarity but range from +2-6% in elongation and £10-30 MPa in the strength plots.

(ii) The strength increases with the Mn and C concentration. In general, an increase in
strength leads to a deterioration in toughness because plastic flow becomes more difficult,
making cleavage cracking more probable. This increase in strength may also be accom-
panied by the formation of undesirable phases such as martensite. It follows that the
toughness should eventually begin to decrease as the carbon or manganese concentrations

are increased.

Both of these effects are well illustrated by the computed data shown in Fig. 5.13. The mi-
crostructures for the welds described in Fig. 5.13 were calculated using a published physical
model [90]. Fig. 5.14 shows that the above interpretations are correct in that the initial in-

crease in toughness corresponds to an improvement in the microstructure, with the subsequent
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Figure 5.7: Change in elongation in carbon-manganese weld metal as a function of (a) the

oxygen concentration and (b) the sulphur concentration. It is evident that sulphur does not
have a significant effect on the ductility of welds of the type considered in the present work.

decrease in toughness explained by the increase in strength. The Fig. 5.15 shows clearly that
in the context of Charpy impact toughness tests, there is always an optimum combination of

manganese and carbon.
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Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.022 0.19 0.07 0.0192
Silicon (wt%) 0.01 1.63 0.36 0.126
Manganese (wt%) 0.23 2.31 1.25 0.403
Sulphur (wt%) 0.002 0.14 0.008 0.008
Phosphorus (wt%) 0.003 0.25 0.01 0.0134
Nickel (wt%) 0.0 5.58 0.366 1.012
Chromium (wt%) 0.0 11.8 0.453 1.387
Molybdenum (wt%) 0.0 1.54 0.153 0.336
Vanadium (wt%) 0.0 0.53 0.0136 0.0424
Copper (wt%) 0.0 2.18 0.0658 0.222
Cobalt (wt%) 0.0 0.016 0.0005 0.0023
Tungsten (wt%) 0.0 3.86 0.0076 0.1555
Oxygen (p.p.m.) 63.0 1535 409 112
Titanium (p.p.m.) 0.0 770 102 138
Nitrogen (p.p.m.) 21.0 1000 96.5 63
Boron (p.p.m.) 0.0 200 14.3 35
Niobium (p.p.m.) 0.0 1770 40.55 139.6
Heat input (kJ mm™1) 0.6 6.6 1.194 0.69
Interpass temperature (°C) 20 350 199.7 30
Tempering temperature (°C) 20 760 182.5 261
Tempering time (h) 0.0 100 2.2 5.66
Testing temperature (°C) -151 136 -43.9 34.4
Charpy toughness (J) 2.6 300 74 43

Table 5.3: The input variables for the Charpy impact toughness model. ‘p.p.m’. corresponds to
parts per million by weight.

Nickel is known to have an intrinsic beneficial effect on toughness by increasing the work
necessary to create cleavage cracks [110]. Thus, the toughness at low temperatures is found
to increase with the nickel concentration (Fig. 5.16a); however, the optimum concentration of
nickel is found to depend significantly on that of manganese. Higher concentrations of nickel are
beneficial only at low concentrations of manganese (Fig. 5.16b) because both elements enhance
the hardenability and strength of the weld deposit.

As might be expected, Fig. 5.17a shows that the toughness at 0 °C decreases with an increase
in the oxygen concentration; oxides are sites for the nucleation of cracks and voids. The tough-
ness can nevertheless be optimised by selecting the right manganese concentration, 0.7 wt% in
the case illustrated. This is because low manganese concentrations lead to bad microstructures
whereas too high a concentration raises the weld strength. Fig. 5.17b shows that the toughness
is maximised when the manganese to silicon ratio is about 2:1. This may have something to do

with deoxidation practice but the details are not understood.
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5.2.2 Further Improvements

The analysis presented here is very useful and is the first quantitative model covering a vast range
of variables. At the same time the model captures many non-linear dependencies. However, as
Fig 5.16 shows the analysis is far from ideal in term of the spread of impact toughness.

To rectify this a more comprehensive set of Charpy results was complied from Evans [54], but

these were restricted to carbon—manganese and low—alloy weld metals. The detailed analysis
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Input variable
Carbon (wt%) 0.07
Silicon (wt%) 0.50
Manganese (wt%) 1.50
Sulphur (wt%) 0.006
Phosphorus (wt%) 0.008
Nickel (wt%) 0.0
Chromium (wt%) 0.0
Molybdenum (wt%) 0.0
Vanadium (wt%) 0.0
Copper (wt%) 0.0
Cobalt (wt%) 0.0
Tungsten (wt%) 0.0
Oxygen (p.p.m.) 300
Titanium (p.p.m.) 0.0
Nitrogen (p.p.m.) 80
Boron (p.p.m.) 0.0
Niobium (p.p.m.) 0.0
Heat input (kJ mm™!) 1.00
Interpass temperature (°C) 175
Tempering temperature (°C) | 20
Tempering time (h) 0.0
Testing temperature (°C) 0.0

Table 5.4: The input variables of carbon—manganese steel weld metal used in the analysis.

of these data is presented in Appendix A. One of the major aims in doing this additional
work was to confirm the exciting trend noted in Fig. 5.16. It seems that the widespread belief
in industry that nickel additions unconditionally improve low temperature toughness is not
entirely justified. Fig. 5.16 confirms that nickel does indeed improve the toughness, but only at
low manganese concentrations. Bearing in mind that the importance of this result and the fact
that the model from which Fig. 5.16 was generated has a highly non-uniform distribution of
data, it is heartening to see that the more comprehensive analysis (Appendix A) confirms the

trend, as illustrated in Fig. A.19.

5.3 Impact Energy Transition Temperature Model

As emphasied earlier, the Charpy toughness of a steel weld is one of the important quality control

parameters, widely specified in industry and used as a ranking parameter in consumable research
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and development programmes. Body—centered cubic iron undergoes a ductile-brittle transition
as the test temperature is reduced. Consistent with international norms, the toughness is there-
fore frequently characterised by a transition temperature corresponding to a particular value of
the absorbed impact energy. In a recent paper, French [111] conducted a careful series of experi-
ments in which the temperature Ty75 corresponding to a measured Charpy impact energy of 27 J
was characterised as a function of the yield strength, oxygen content and the microstructure.
The latter included the fraction of acicular ferrite in the as—deposited microstructure, but since
the work was done on multipass welds, an overall percentage of reheated microstructure was
also measured. Three different welding processes were used: flux—cored arc welding (FCAW),
gas metal arc welding (GMAW) and manual metal arc welding (MMAW).

The resulting data were analysed using linear regression as follows:

Tyr; = 0.007(Y'S) + 550(0) + 0.034(R) — 0.31(AF) — 74  °C (5.5)

where Y S is the yield strength in MPa, O is the concentration of oxygen in wt%, and the reheated
microstructure R and acicular ferrite AF are area percentages. The range of applicability

of the equation can be gauged from Table 5.5, which contains information from 59 separate

measurements.
Input element Minimum | Maximum | Mean | Standard Deviation
Yield Strength (MPa) 360 630 516 55
Oxygen (wt%) 0.03 0.12 0.06 0.02
Reheated Material (%) 20 79 41 13
Acicular Ferrite (%) 5 86 54 15
Temperature at 27J (°C) -88.0 -13 -54 18

Table 5.5: Characteristics of the measured parameters in the experiments conducted by
French [111].

The analysis indicated a standard error of £12°C, with a correlation coefficient of 0.78. It
is possible that a better interpretation of the data and associated uncertainties can be obtained
using a non-linear regression method, which does not have an a priori assumption of the rela-
tionship between the variables, which accounts for the interactions between the variables, and
which comments not only in the perceived level of noise in the output, but also on how the un-
certainty of fitting depends on the particular region of input space where the prediction is being

made. The introduction to the method of neural network analysis is presented in Chapter 3.
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5.3.1 The Analysis

The aim was to be able to estimate T97; as a function of the variables shown in Table 5.5. All
the input variables and the output were normalised within the range +0.5 (Chapter 3). This
step is not essential to the running of the neural network but later allows a convenient way to
compare the results of the output.

For several runs of the neural network, Fig. 5.18 shows the model perceived noise ¢, in Ta7;.
It is very interesting that the level of noise in the normalised output parameter To7;, as perceived
by the network, is ~ 0.15 — 0.18. This amounts to 11 — 14 °C, which compares favorably with
the £12°C deduced by French using linear regression analysis. It is also worth noting that
the error, irrespective of the model, is quite large when considering the physical meaning of
Ty7;. Furthermore, one standard error corresponds to a 68% confidence limit whereas two
standard errors give the more acceptable 95% error bound. The important conclusion is that
the noise level is not reduced by using a non-linear analysis, giving evidence that the problem
is not well specified; there are missing variables which clearly affect the toughness. It cannot be
speculated what these missing variables could be, but factors such as the hydrogen and nitrogen
concentrations, the scale of the microstructure etc. come to mind. Note also that the nature of
the welding process is not explicitly taken into account.

A second outcome is that this particular problem illustrates the soundness of the neural
network technique used here, where the proper use of the training and test dataset prevents the
accidental modelling of true noise in the output.

Fig. 5.19 shows the predictions for the training and test data for the best model, identified
as the one with the highest log predictive error [6]. It is clear that the model is reasonably well
behaved in the sense that the test data are predicted to a similar level of accuracy as the training
data. It is important to note that the error bars plotted in Fig. 5.19a,b do not include o, but
only the fitting error, which depends on the position in the input space. Fig. 5.19c shows the
corresponding plot for the test data where the error bars contain both the ¢, and the fitting
error. All subsequent plots also include both components since it is logical to consider both the
perceived level of noise in the output and the fitting error. As will be seen subsequently, the
latter is particularly important when extrapolating or interpolating, since large fitting errors are
calculated in regions where the experimental knowledge is sparse or noisy.

A plot of the test error of the committee versus its size gives a minimum which defines the
optimum size of the committee, as shown in Fig. 5.20. The test error associated with the best
single model is clearly greater than that of any of the other committees. It was determined in
this case that a committee of thirteen models would be the best choice, being the committee of
the lowest test error. The committee was then retrained on the entire data set without changing

the complexity of any of its members.
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The predictions of the committee trained on the entire data set can be compared with the
original dataset as shown in Fig. 5.21.

Another parameter, o,,, indicates the importance of an input in terms of its variation having
an effect on the output of the model. Fig. 5.22 compares the values of ¢, for each of the inputs
for the thirteen models in committee. A high value of o, for a specific input can be caused
by the corresponding variable inducing a large variation in the output, but it can be seen from
Fig. 5.22 that different models can assign varying significance to the same input. This is one of
the reasons why a committee of models can be more reliable than the single model judged to be

best on the basis of a parameter such as o,,.

5.3.2 Use of the Model

It is worth illustrating a few predictions, to emphasis the point that the error bars will not
be constant as in [111]. Tt is important to note that as in equation 5.5, the predictions are
for the case where just one input variable is altered, keeping all other fixed. This may not be
possible when conducting experiments. The variables used for analysis are shown in Table 5.6.
Fig. 5.23a shows that To7; increases with the oxygen concentration; this is expected since the
oxygen is inevitably present in the form of oxide inclusions which, for a constant microstructure,

are detrimental to toughness.

Input variable
Yield Strength (MPa) | 515
Oxygen (wt%) 0.05
Reheated Material (%) | 41
Acicular Ferrite (%) 54

Table 5.6: The input variables of carbon—manganese steel weld metal used in the analysis.

It is not surprising that Fig. 5.23b shows that acicular ferrite improves the toughness. How-
ever, the neural network model shows that the results are not certain at large fractions of acicular
ferrite when all the other variables are kept constant.

Fig. 5.24 shows contour plots of T97; as a function of the acicular ferrite and oxygen con-
centrations. A simple interpretation of the linear regression model (Fig. 5.24b) indicates that
for optimum toughness, the acicular ferrite must be maximised at a zero oxygen concentration.
However, there are no welds in the dataset with zero oxygen concentration and such a suggestion
is probably not justified since oxides are needed to nucleate acicular ferrite. The neural network
analysis, on the other hand, correctly indicates an optimum combination of acicular ferrite and

oxygen concentration.
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5.4 Embrittlement Model

Welding alloys designed for creep—resistant steels frequently have to be tempered in a tempera-
ture range where they are susceptible to embrittlement by impurity elements such as antimony
or phosphorus. The segregation of these deleterious elements to the prior austenite grain bound-
aries leads to intergranular failure and consequently, a reduction in toughness. Whereas this
mechanism of embrittlement is well-understood from a vast amount of research published over
the last five decades, there are no quantitative methods capable of estimating the degree of
embrittlement as a function of the chemical composition and heat treatment.

It was in this context that Bruscato [112] reported a large number of experiments, based on
the classical 2%CI'1MO composition, but with variations in the phosphorus, antimony, tin and
arsenic concentrations. There were also some variations in the concentrations of the major alloy-
ing additions including C, Mn, Si, Cr and Mo. The tendency to embrittlement was monitored
by comparing the impact toughness of both post—weld heat treated (PWHT) and step—aged
samples. The latter heat treatment exaggerates the extent of embrittlement. Bruscato used an

embrittlement factor X to interpret his data:

X — 10P + 5Sb + 4Sn + As
N 100

where the concentrations of the elements are in parts per million by weight. A large value

(5.6)

of X implies a greater tendency to temper embrittlement. This led him to conclude that the
embrittlement of QiCrlMo welds is directly related to the manganese, silicon, phosphorus, tin,
arsenic and antimony concentrations, with the first four being of greatest significance. The
derivation of the equation for X was not presented in the original paper, although it is stated
that it is based on data from chromium-steels. In the present work Bruscato’s original data was

analysed using neural network analysis, and his conclusions were examined in more detail.

5.4.1 The Data

Bruscato published results on thirty separate weld deposits; the range of parameters is listed in
Table 5.7. The Charpy toughness of the step—aged samples represents the output to be modelled
as a function of all the other variables listed in Table 5.7. All of the thirty welds had been given
an identical heat treatment. For the purposes of the analysis, the data were all normalised in
the range £0.5 in order to compare the significance of each of the input variables.

The data were divided at random into two parts, a training and a test dataset. The neural
network models were then created using just the training data (Chapter 3). The resulting
models were assessed on their ability to generalise on the unseen test data. From the models

created, a committee of three models was found to give the best generalisation on unseen data.
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Input element Minimum | Maximum | Mean | Standard Deviation
Silicon (wt%) 0.32 1.19 0.636 0.195
Manganese (wt%) 0.54 0.79 0.691 0.0609
Phosphorus (wt%) 0.004 0.018 0.009 0.003
Molybdenum (wt%) 0.9 1.27 1.102 0.095

Tin (p.p.m.) 70 300 108.7 38.8
Antimony (p.p.m.) 0.9 22 5.2 3.73

Arsenic (p.p.m.) 0.0 130 59.8 27.7

Charpy toughness after step aging (J) 6.78 136.96 60.4 29.2

Table 5.7: The range of values reported by Bruscato, and used in the present work. ‘p.p.m.’
corresponds to parts per million by weight.

These three models had 13, 11 and 11 hidden units with o, values of 0.083293, 0.083149 and
0.083118 respectively; o, is the perceived level of noise in the normalised output. An increase
in the number of hidden units enables the network to recognise more complex relationships.
The committee members were finally optimised on the entire dataset. The performance of the
committee is illustrated in Fig. 5.25.

Fig. 5.26 shows the significance g,, of each of the input variables. The value of o, for a
particular input variable indicates the ability of that input to explain variations in the output
(Charpy toughness). Three o,, values are presented for each input, corresponding to each of the
three members of the committee of models. A consistent value of o,,, for a given input, indicates
that there exists a well-defined relationship between that input and the output. Fig. 5.26 shows
that tin, antimony and arsenic have very little effect on the embrittlement of the 2iCr1Mo welds
studied, whereas phosphorus has a very large effect.

These observations can be illustrated further by making predictions. Calculations were done

using the base set of input values listed in Table 5.8, while varying each input individually.

Input variable

Silicon (wt%) 0.58
Manganese (wt%) 0.78
Phosphorus (wt%) | 0.008
Molybdenum (wt%) | 1.05
Tin (p.p.m.) 120

Antimony (p.p.m.) 1.6

Arsenic (p.p.m.) 36

Table 5.8: Base input values used in the application of the embrittlement model. The values
correspond to weld Q in [112]. ‘p.p.m.” corresponds to parts per million.
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Fig. 5.27 shows the effects of molybdenum, silicon, manganese and phosphorus concentra-
tions. As expected, phosphorus has a strong and very significant tendency to embrittle the
weld metal; as stated earlier, the mechanism of phosphorus embrittlement is well-understood,
involving its segregation to prior austenite grain boundaries. On the other hand, molybdenum
actually improves the resistance to embrittlement. This is also expected, because molybdenum
and phosphorus atoms tend to associate so that the latter are prevented from segregating to the
prior austenite grain surfaces [113].

It is exciting that significant trends are recognised also for manganese and silicon. The
manganese effect is consistent with work which suggests that it reduces the intergranular fracture
strength [114]. Silicon is known to promote the segregation of phosphorus to the austenite grain
boundaries [115].

By contrast, there are no significant trends notable for arsenic, tin or antimony (Fig. 5.28).
Based on these observations, we do not find that As, Sn and Sb are important contributors to
embrittlement in the particular alloy system studied here. It is possible that this result is a
consequence of the fact that the welds all contain phosphorus in concentrations large enough to
swamp the much smaller effects of As, Sn and Sb. Thus, the mean phosphorus concentration is

90 p.p.m, with a standard deviation of 30 p.p.m.

5.5 Summary

Tensile elongation and Charpy toughness models have been developed taking into account chemi-
cal composition, heat treatment and welding parameters. These models were successfully applied
to analyse carbon—-manganese weld metals and exciting results were obtained. Theoretically un-
explained results were found in few cases of carbon—manganese welds.

It was shown that neural networks does not reduce the large perceived level of noise in the
Charpy impact toughness transition temperature (T973) model. As there are many more vari-
ables which control the impact toughness when compared with the restricted set studied in the
transition temperature model. The standard error quoted for the linear regression models must
be regarded as an underestimate of the real uncertainty, since there will be regions of the input
space where the fitting function itself has great uncertainty. This is relevant in both extrapola-
tion and interpolation, which is taken into account by using Bayesian neural networks over other
standard regression methods. The transition temperature model, unlike the regression model
correctly predicts that there is a combination of acicular ferrite and oxygen which optimises
toughness.

With the embrittlement model (Section 5.4) it was found that phosphorus, silicon and man-
ganese all make 2}ICI1M0 welds susceptible to temper embrittlement, with the embrittling

potency decreasing in that order. Molybdenum decreases the tendency to impurity induced
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embrittlement. These observations are all expected from published work. By contrast, As, Sb
and Sn have no perceptible effect on the welding alloys studied, probably because of the over-
whelming influence of phosphorus. It follows that any attempt to reduce the effects of temper

embrittlement should focus primarily on reduction in the phosphorus.
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Figure 5.13: Effect of carbon at 1.5 and 0.5 wt% manganese, 0°C, on the Charpy impact energy.
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the toughness at low temperatures. (b) The optimum concentration of nickel depends on the
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Chapter 6

Design of Weld Metal Avoiding
Post—Weld Heat Treatment

Low—carbon creep—resisting steels used in the construction of power plant or in the petrochemi-
cal industry generally contain chromium, molybdenum, niobium or vanadium as the significant
alloying additions. These elements either provide oxidation and corrosion protection (for ex-
ample, chromium) or on tempering they form stable carbides which impede creep deformation.
The steels have major applications in the fabrication of pressure vessels, boiler steam pipes,
steam generating and handling equipment, high pressure tubes with thick walls, turbine ro-
tors, superheater tubes, coal to methane conversion plants and petrochemical reactors for the
treatment of heavy oils and tar sands bitumen [116]. The steels might typically be used within
the temperature range 480-600 °C, the service stresses being of the order of 15-40 MPa. The
required microstructure is produced by austenitisation followed by tempering at a temperature
which is above that encountered during service. A typical tempering heat treatment may there-
fore involve temperatures in the range 650-750°C, for some 4-20 h, depending on the detailed
chemical composition and also the section size.

Further heat treatments are required following welding operations. The heat introduced
during welding has a significant influence on the solid metal in the close proximity of the weld.
Microstructures may be created in this heat—affected zone, which are hard (martensitic) and
untempered. Furthermore, residual stresses arise from the shrinkage of the weld as it cools from
the liquid state. Omne purpose of a post—weld heat treatment is to ameliorate both of these
changes due to welding.

There are many components of a power plant where it is incredibly difficult to introduce post—
weld heat treatments, primarily because of the large scale of the plant involved, but also due to
the tight packing of components. One such case is the boiler which contains a myriad of pipes,
as illustrated in Fig. 6.1. To reduce the costs of implementing post—weld heat treatments in

such circumstances, Mitsubishi Heavy Industries in Japan has developed a new steel, designated

97



HCM2S, which replaces the classical 2%CrflMo alloy [117]. The latter requires post—weld heat
treatment whereas the former, due to its lower hardness in all microstructural conditions, does
not. The development of the new steel does not entirely resolve the difficulties since the weld
metal used to fill the gaps between plates to be joined also requires heat—treatment. The purpose
of the work presented in this Chapter was therefore to design, using the methodologies described

in earlier Chapters, a welding alloy which itself does not require post—weld heat treatment.

Figure 6.1: Complex shapes of boiler tubes used in power plant. The arrow shows two boiler
tubes joined together with a supporting plate.

6.1 Novel Cr—-W-V-Nb Steel (HCM2S)

This material was developed in 1993 [118] for the construction of boilers, with the aim of avoid-
ing post—weld heat treatments. This essentially requires a relatively low hardness following an
austenitisation treatment of the kind which might occur in the heat—affected zone of a weld, with-
out compromising the creep properties. Conventional 2%Cr71Mo wt% steel contains a carbon
concentration of 0.1 wt% or more; it needs post—weld heat treatment to restore the ductility and
decrease the hardness in the heat—affected zone. The hardness of QiCr—lMo steel is attributed
mainly to its carbon and molybdenum concentrations, whereas the chromium serves primarily
to provide limited oxidation and corrosion resistance. Molybdenum serves to form a carbide

which enhances creep strength.
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Therefore, the idea behind the new steel HCM2S was to reduce the carbon concentration,
to replace molybdenum with tungsten (which remains in solid solution) and to enhance creep
strength using small concentrations of niobium and vanadium, both of which are strong carbide
formers [119], Table 6.1. The gross microstructure following heat treatment is essentially the

same as that of QiCrflMo, consisting of tempered bainite Fig. 6.2.

v
% 20 um

Figure 6.2: Tempered microstructure of as—received HCM2S steel tube. The tube is tempered
at 770°C for 1 hour after air cooling from 1050°C (1 h). The sample is etched using 2% nital.

The flow chart illustrating the development of HCM2S steel is shown in Fig. 6.3. Due to
the lower carbon concentration in HCM2S, the maximum hardness obtained for typical cooling
rates is reduced to about 300 HV which is some 50 HV lower than 2%CrflMo steel, Fig. 6.4.
Insensitivity to cooling rate at higher cooling rates is desirable in welding. The excellent creep
strength of HCM2S is due to the substitution of tungsten for molybdenum, with slight additions
of boron together with the precipitation of vanadium and niobium carbide. Here the solid
solution strengthening is due to tungsten and the precipitation strengthening due to vanadium
and niobium. The addition of boron has the effect of stabilising M23Cgs and My3(C, B)g on grain
boundaries, thereby retarding the recrystallisation of grains during service [120]. A comparison
of the creep resistance of HCM2S against conventional 2%Cr71Mo steels is shown in Fig. 6.5.
HCM2S has the composition 1.6W-0.1Mo-0.25V-0.06Nb wt% with 0.06 wt% average carbon

content.
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Figure 6.3: Development philosophy of HCM2S steel [117]. PWHT corresponds to post—weld
heat treatment.

C Si Mn P S Ni Cr | Mo w v Nb B Al N
0.06 | 0.20 | 0.47 | 0.006 | 0.002 | 0.10 | 2.27 | 0.09 | 1.50 | 0.23 | 0.05 | 0.004 | 0.009 | 0.008

Table 6.1: Chemical composition (in wt%) of HCM2S base metal [119, 117].

6.1.1 Welding of HCM2S Steel

Some research has already been done at Sumitomo Metal Industries in Japan to attempt the
welding of HCM2S steel. Their weld metal chemical compositions are shown in Table 6.2. The
heat input used in the gas tungsten arc welding (GTAW) process is 1.85 kJ mm~! and in shielded
metal arc welding (SMAW) 1.5 kJ mm !, with an interpass temperature of 225 °C in each case.
The maximum as—welded yield strength (YS) of the weld metal is reported to be 877 MPa
(Table 6.3) and the Vickers hardness is stated to be in the range 300 to 350. The weld metals
clearly have good mechanical properties and the creep rupture strength of the weld joint falls
within the scatter band of the base metal at 500 °C, 600°C and 650°C [119].

One weld joint made using the Sumitomo welding electrode and the manual metal arc weld-
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Figure 6.4: Hardness variation in QiCrflMo and low CfZ}ICr—l.56W—V—Nb steel cooled from
the austenitisation temperature. The average cooling rate is that measured in the temperature
range 800°C and 300 °C. The 2iCrflMo steel is austenitised at 950 °C for 0.5 h and low C—
24Cr-1.56W-V-Nb is at 1050°C for 0.5 h [121].
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Figure 6.5: The allowable stresses in ZiCrflMo and HCM2S steels at different service temper-
atures [122].

ing process was provided by National Power, UK. The base plates joined in the process are

both 2%Cr71Mo plates, as shown in Fig. 6.6. The microstructures are as expected, a banded
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Process C Si Mn P S Ni Cr Mo A%% A" Nb B Al
GTAW 0.04 | 0.50 | 0.49 | 0.002 | 0.005 | 0.49 | 2.19 | 0.10 | 1.59 | 0.24 | 0.033 | 0.001 | 0.008
SMAW 0.06 | 0.41 | 0.80 | 0.004 | 0.002 | 0.99 | 2.25 | 0.10 | 1.58 | 0.32 | 0.040 | 0.001 —

Table 6.2: Chemical composition (in wt%) of as-deposited weld metal [119].

Process PWHT 0.2% YS (MPa) | UTS(MPa) | Elongation (%) | Reduction in area (%)
GTAW As-welded 775 856 20.8 82.2
SMAW As-welded 877 978 19.8 50.2
SMAW 715°C x 1h 623 755 21.0 72.0

Table 6.3: Mechanical properties of as—deposited metal [119].

structure in the base plates and a columnar prior austenite grain structure in the weld metal.
There is also a clear heat—affected zone. The much more important point is that tests revealed
a mean weld metal hardness of 338 HV, with values in the range 306-368 HV. This was con-
sidered unacceptable in the context of welding without post—weld heat treatment. Note that
the hardness is less than that obtained in the as—welded condition for a QiCrflMo weld metal
(410 HV) but is not low enough to avoid post-weld heat treatment. The task therefore was to
design a heat-resistant weld metal having an as—welded hardness less than 300 HV (preferably
less than 250 HV).

6.2 Adaptation of Neural Network Weld—Database

A significant difficulty arose during the first attempts at designing the new tungsten—containing
weld metal to meet the engineering requirements described above. The problem is illustrated
in Fig. 6.7a which was calculated using the input variables described in Table 6.5, and an early
version of the neural network model due to Cool et al. [27]. The figure shows that the addition
of tungsten causes a decrease in the yield strength of the as—deposited weld. This is surprising,
since the only role of tungsten in the as—deposited condition is to contribute to solid solution
strengthening.

The difficulty arises because the original work [27] was based on a limited weld metal database
which included alloys with tungsten, but only for the 9Cr-1Mo type metal. In that system,
tungsten promotes the formation of é—ferrite which weakens the microstructure [123]. The
network has learnt this trend and in the absence of knowledge about the influence of tungsten
on low—alloy steels, the network simply extrapolates the tungsten influence from the 9Cr-1Mo
type alloys to the low—alloy weld metals.

There is, of course, no possibility of d—ferrite in the final microstructure for the lean alloys

considered here. This was verified here using phase diagram calculations [124]. The calculations
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Figure 6.6: 2%Cr-1Mo wt% steel welded using matching HCM2S electrode with manual metal
arc welding process. The sample is etched using 2% nital.

show that é—ferrite does not form in any of the compositions studied. It clearly is necessary to
provide the network with knowledge about the role of tungsten in low—alloy steel weld metals.
Unfortunately, there are no such data apart from the two welds made by Sumitomo Metal
Industries. A procedure was therefore implemented to increase the necessary information in the
database, as follows.

In research on fusion reactors, there is an intense effort to develop steels which are resistant to
large fluxes of neutrons, particularly in the context of transmutations which lead to radioactive
isotopes with large half-lives. There is a search for specific alloys whose radioactivity decays most
rapidly once they are removed from the radioactive environment. These are the so—called reduced
activation alloys which have minimal concentrations of Mo, Ni, Nb, Cu and nitrogen, all of which
have long-lived radioactive isotopes [65, 125]. Some of these elements are key constituents of
creep-resistant steels, but can be eliminated by using tungsten instead of molybdenum and by
substituting vanadium and tantalum for niobium. Some examples of steels which have been
studied specifically for their reduced activation are listed in Table 6.4.

There is, therefore, a considerable amount of data on low—alloy tungsten—containing steels

in the literature. It was decided to adapt these data and integrate them into the weld metal
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Steel C Si Mn Cr Vv w Ta B

2iCr-v 0.1 2.25 | 0.25

27Cr-1WV 0.1 2.25 | 025 | 1

21 Cr-2W 0.1 2.25 2

21 Cr-2WV 0.1 225 | 025 | 2

5Cr-2WV 0.1 5 025 | 2

9Cr-2Wv 0.1 9 025 | 2

9Cr-2WVTa 0.1 9 o025 | 2 |o0.07
12Cr-2WV 0.1 12 025 | 2

21 Cr-2WVTa 0.1 | 0.12 | 0.40 | 2.41 | 0.24 | 2.03 | 0.05
23Cr2WVB 0.090 | 0.12 | 0.38 | 2.37 | 0.24 | 2.04 0.005

2%Cr72WVTaB 0.093 | 0.12 | 0.38 | 2.36 | 0.24 | 2.04 | 0.05 | 0.005
2.6Cr-2WVTa 0.11 0.11 | 0.39 | 2.59 | 0.25 | 2.02 | 0.05
2.6Cr-2WVTaB 0.11 0.11 | 0.39 | 2.60 | 0.25 | 2.07 | 0.05 | 0.004

2i0r72W 0.11 0.15 | 0.39 | 2.48 1.99
2%Cr72WV 0.11 0.20 | 0.42 | 2.41 | 0.24 | 1.98
9Cr-2WVTa 0.10 0.23 | 0.43 | 8.72 | 0.23 | 2.09 | 0.07

Table 6.4: Chemical compositions (wt%) of reduced—activation steels, Klueh et al. [65]. All of
these steels are bainitic with the exception of the 9Cr and 12Cr steels which are martensitic.
The chemical compositions of the first group of steels are nominal.

database, by artificially adding a concentration of 300 p.p.m. of oxygen, assuming an interpass
temperature of 150 °C, and a heat input of 1.0 kJ mm !. These modifications all approximately
represent average values for the manual metal arc welds. In this way, it was possible to supple-
ment the weld metal database with 34 sets of data on 2%CI'—W—V wrought steels [126, 127, 64].
The new neural network model created using this supplemented database gave trends in the
strength of HCM2S which are far more realistic in terms of the trend as a function of the

tungsten concentration, Fig. 6.7b.

6.3 Experimental Welds

The wrought Q%Cr—W—V steel data collected from the literature are a minor contribution to
the total data set (34 out of 2000). The data add value in the regime of low chromium steels
containing tungsten. Nevertheless, the use of plate data to represent welds in the supplemented
database left a sense of uncertainty. For this reason, it was decided that it would be useful to
measure the mechanical properties of six experimental welds, designed using the neural network
based on the supplemented database. The purpose was to see whether the modified network
made useful predictions in the regime of interest. In any case, the new experimental data thus
generated could be used to create the next generation of neural network models. Using the

modified model, six welds were designed with systematic variations in the carbon and tungsten
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Input variable
C (wt%) 0.06
Si (wt%) 0.41
Mn (wt%) 0.87
S (wt%) 0.002
P (wt%) 0.004
Ni (wt%) 0.99
Cr (wt%) 2.01
Mo (wt%) 0.1
V (wt%) 0.27
Cu (wt%) 0.0
Co (wt%) 0.0
W (wt%) 1.52
Ti (wt%) 0.0
B (p.p.m.) 10
Nb (p.p.m.) 400
Heat input (kJ mm™') 1.14
Interpass temperature( °C) 225
Tempering temperature (°C) | 715
Tempering time(h) 1

Table 6.5: The input variables of 2.25Cr-1.56W-0.1Mo wt% (HCM2S) steel weld metal used in
the analysis of previously developed model.

concentrations, in order to cover a wide range in the 2%Cr7W class of compositions. The
variations were around the HCM2S weld metal (Table 6.6).

The set of six experimental manual metal arc welds were made on our behalf and tested by
Babcock Welding Products Ltd., UK using a heat input of 1.38 kJ mm™!; the actual chemical
compositions are listed in Table 6.7. The results are presented in Table 6.8 and in Fig. 6.8; the
experimental data have been predicted to a remarkable degree of accuracy in all three aspects of
the tensile test, justifying the use of the plate data within the large weld—database. Given this
validation, the new experimental data were themselves incorporated into the plate-supplemented
database and a final neural network model was created; this is the one described in detail in
Chapter 4, and used in the design of a novel weld deposit for use in industry, as described in

the next section.
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Figure 6.7: The variation in strength in 2;Cr-1.56W-0.1Mo wt% (HCM2S) weld metal in the
as—deposited condition, a) using published model [27] b) using the model developed including
wrought plate data.

6.4 Theoretical Design of New Weld Metal

The main task was to design a heat-resistant weld metal with hardness consistently lower than
300 HV. Since the neural network model predicts strength rather than hardness, it is necessary

to convert between these two variables. The hardness can be estimated as a function of the yield
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Variable Weld 1 Weld 2 Weld 3 Weld 4 Weld 5 Weld 6
C (wt%) 0.06 0.06 0.06 0.10 0.10 0.10

Si (wt%) 0.3-0.4 0.3-0.4 0.3-0.4 0.3-0.4 0.3-0.4 0.3-0.4
Mn (wt%) 0.6 0.6 0.6 0.6 0.6 0.6

S (wt%) 0.005-0.01 | 0.005-0.01 | 0.005-0.01 | 0.005-0.01 | 0.005-0.01 | 0.005-0.01
P (wt%) 0.005-0.01 | 0.005-0.01 | 0.005-0.01 | 0.005-0.01 | 0.005-0.01 | 0.005-0.01
Cr (wt%) 2.1-24 2.1-2.4 2.1-24 2.1-24 2.1-2.4 2.1-2.4
Mo(wt%) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Ni (wt%) 1.0 1.0 1.0 1.0 1.0 1.0

B (p.p.m.) 10 10 10 10 10 10

O (p.p.m.) 300 300 300 300 300 300

N (p.p-m.) 80 80 80 80 80 80

Nb (p.p.m.) 400 400 400 400 400 400

V (wt%) 0.25 0.25 0.25 0.25 0.25 0.25

W (wt%) 0.5 1.0 1.5 0.5 1.0 1.5

Table 6.6: The designed weld metals with variations in carbon and tungsten.

Variable Weld 1 | Weld 2 | Weld 3 | Weld 4 | Weld 5 | Weld 6
C (wt%) 0.053 0.059 0.059 0.11 0.10 0.10
Si (wt%) 0.27 0.32 0.34 0.40 0.39 0.4
Mn (wt%) 0.6 0.68 0.7 0.72 0.72 0.76
S (wt%) 0.007 0.007 0.006 0.006 0.006 0.007
P (wt%) 0.010 0.012 0.012 0.012 0.012 0.012
Cr (wt%) 2.22 2.22 2.29 2.26 2.31 2.35
Mo (wt%) 0.04 0.04 0.04 0.04 0.04 0.04
Ni (wt%) 0.99 0.97 1.03 0.98 0.99 0.99
B (p.p.m.) <10 <10 <10 <10 <10 <10
O (p.p.m.) 550 550 550 550 550 550
N (p.p-m.) 180 160 130 130 130 140
Nb (p.p.m.) 300 400 400 500 500 500
V(wt%) 0.20 0.22 0.23 0.23 0.23 0.24
W (wt%) 0.5 1.01 1.48 0.5 1.02 1.54

Table 6.7: Experimental weld metals made with heat input 1.38 kJ mm !
perature of 300-350°C.

and interpass tem-

strength as follows [128]:

Vickers Hardness
3

The base composition for the new weld metal is similar to that of HCM2S steel but with cer-

Yield strength = x 9.81

(MPa) (6.1)

tain key modifications, Table 6.2. To avoid excessive hardness in the as—welded condition, the

carbon concentration has been restricted to a maximum of 0.05 wt%. HCM2S steel contains
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Property Predicted | Measured || Predicted | Measured
Weld 1 Weld 1 Weld 2 Weld 2
YS (MPa) 796 + 88 705 838+ 77 842
UTS (MPa) 851+ 79 844 905 + 76 899
Elongation (%) 20 + 8 19 21 + 8 21
Weld 3 Weld 3 Weld 4 Weld 4
YS(MPa) 853 £+ 57 804 891 + 105 893
UTS (MPa) 930 +64 924 1001 + 148 1048
Elongation (%) 30 £ 11 30 22+ 9 22
Weld 5 Weld 5 Weld 6 Weld 6
YS (MPa) 895 £+ 95 828 913 £ 72 922
UTS (MPa) 1006 + 136 1085 1031 + 135 1155
Elongation(%) 21+ 9 21 21 £11 21

Table 6.8: The predicted and measured values for the experimental as-welded metals.
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Figure 6.8: Comparison between predicted and measured strengths of designed experimental
welds. The error bars represent the predicted range.

400 p.p.m. of niobium, but the literature [129, 29] suggests that niobium is harmful in the
context of low-alloy steel welds because it leads to a deterioration in the toughness. A number
of mechanisms have been proposed for the effect of niobium; for example, it may cause precip-
itation hardening, increase the yield strength and hence reduce the toughness. However, there
are quite contradictory reports on its influence on microstructure, particularly in altering the
balance between acicular ferrite and bainite. None of these effects are well-established, but the
experimental evidence regarding toughness is clear. Therefore, it was decided to avoid niobium

altogether. It will be seen later that MX type precipitates probably contribute to the creep
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strength of HCM2S, but the steel also contains a larger fraction of vanadium carbonitrides. The
omission of niobium was therefore judged not to be of critical importance in the design of the
weld metal. It turned out in practice that it was not possible to completely avoid niobium
because of the commercial purity raw materials used for the welding consumable manufactured
as a consequence of the work presented in this Chapter.

Vanadium in steels forms stable V4C3 carbides which are beneficial in the context of creep;
vanadium is therefore a key element in the proposed weld metal.

Recent work has suggested that a reduction in the manganese concentration can lead to an
improvement in creep strength [120]. A reduction in the manganese concentration in HCM2S
slows down MgC precipitation, which contains tungsten as the major metallic element. Thus, a
lower manganese concentration allows tungsten to remain dissolved in ferrite and strengthen the
solid solution. However, in shielded metal arc welding, around 0.6 wt% manganese is essential as
a deoxidising element and to ensure good weldability. In manual metal arc welding, manganese
and silicon assist the formation of a fluid slag at low melting temperature, thus preventing slag
inclusions in the weld metal. Boron is beneficial in increasing the creep life [120]. It stabilises
My3(C, B)g precipitates along grain boundaries, thereby preventing the recrystallisation of grains
during service at high temperatures. However, it is also a difficult element to control during its
transfer across the welding arc; the weld metal design therefore does not rely on boron which
is set at a trace concentration of 10 p.p.m. The ideal composition that emerged after careful
analysis of the role of each of the chemical constituents using the final neural network models
described in detail in Chapter 3, and in the light of experience from physical metallurgy, is given
in Table 6.9. The table also includes a set of tolerances which were arrived at by discussion with
manufacturing industry.

The error bars presented in Table 6.9, however, refer to the mean composition only. It must
be emphasised that the error bars consist of two components (Chapter 3), one describing the
perceived level of experimental noise (o, ~ 30.048), and the other reflecting the uncertainty
in fitting a function within a local region of the input space. This latter error will necessarily
be large when dealing with novel alloys not available at the time of the creation of the neural
network model. The magnitude of this fitting error gives a warning that the model is being used
in extrapolation or in a region where there is a lack of knowledge, but the mean prediction may
nevertheless be reliable if the proper functional form has been recognised in the region covered

by data. The hardness values were calculated using equation 6.1.

6.4.1 Creep Rupture Strength

Cole et al. [130] have developed a comprehensive neural network model which permits the es-

timation of the creep rupture strength of ferritic steels as a function of the detailed chemical
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Input variable
C (wt%) 0.05 + 0.02
Si (wt%) 0.30 £ 0.15
Mn (wt%) 0.70 £0.15
S (wt%) 0.007
P (wt%) 0.010
Ni (wt%) < 0.05
Cr (wt%) 2.22 + 0.2
Mo (wt%) 0.20 + 0.1
V (wt%) 0.20 £ 0.005
Cu (wt%) 0.03
Co (wt%) 0.0
W (wt%) 0.6+ 0.1
O (p.p-m.) 300
Ti (wt%) 250 + 50
B (p.p.m.) 10£5
Nb (p.p.m.) 50 £ 10
Heat input (kJ mm ') 1.38
Interpass temperature (°C) 300
Tempering temperature (°C) 20
Tempering time (h) 0
Estimated YS (MPa) 714 + 216
Estimated UTS (MPa) 851 + 112
Estimated elongation (%) 19 + 15
Estimated Vickers hardness 225

Table 6.9: The designed input variables of 2.25Cr-0.56W-0.2Mo wt% (HCM2S) as-welded
metal.

composition and a set of up to three separate heat treatments. Furthermore, it has been demon-
strated that by assuming a selected austenitisation heat treatment, the model can be used to
estimate the creep rupture life of weld deposits even though the neural network has no prior
knowledge of welds.

It would obviously be useful to be able to estimate the creep rupture life of the new weld
described in Table 6.9. However, Cole’s model suffers from the same problem as encountered
here, that there are virtually no data on the creep of low chromium, tungsten—containing steels.
There are plenty of data on 9Cr—1Mo type alloys with tungsten, but the metallurgy of tungsten
in those alloys is different for the reasons described previously. In view of the lack of low—Cr data,

it would be useful to study the behaviour of the Cole model with respect to four experimental
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data that exist for the Sumitomo Metal Industries welding alloys described in [119]. Fig. 6.9a
shows that the actual creep rupture stress is greatly overestimated; that this is due to the lack
of appropriate knowledge in the Cole model can be proved by repeating the calculation whilst
setting the tungsten concentration to zero, as illustrated in Fig. 6.9b, which shows that the
experimental data are well-predicted. The importance of the latter result is that it should be
possible to estimate the creep rupture life of the proposed new weld (Table 6.9), simply by
ignoring the fact that it contains a small concentration of tungsten. The results are illustrated
in Fig. 6.10, which shows that the long—term creep rupture strength of the new welding alloy
should be comparable to that of HCM2S tube.

6.5 New Welding Alloy: Experimental Results

The new welding alloy was manufactured by Mitsui Babcock Welding Products Ltd., UK and
Table 6.10 shows a comparison between what was proposed and what was achieved in practice.
The table also shows that the theoretical design procedure has been very successful in predict-
ing the mechanical properties; the electrode is now marketed with the commercial designation
BWPL (Babcock Welding Products Ltd.) J-type electrode. It is intended to market this both
for power plant boiler components and for other applications where welding can be conducted
without the need for post—weld heat treatment. Microstructural studies of the new alloy will be
described in Chapter 7.

6.6 Conclusions

The series of neural network models created in this work have been used, along with metallurgical
experience, to create a new welding alloy which is now available on a commercial scale. The
entire design process, including the creation of the models, took less than two years and was
successful at the first attempt. The models can now be used to develop new electrodes over much
shorter time scales. There are also some lessons learnt about the neural network method, in
particular how the database can be “manipulated” for specific purposes. The models themselves
can be manipulated to reduce uncertainties, as illustrated with the estimation of creep rupture
life for the new alloy. The design example presented here is but one of the success stories of the

present work — some other examples are listed in Appendix B.
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Figure 6.9: Effect of tungsten on the calculated creep strength of 0.062C-0.1Mn-2.27Cr-0.026V—-
0.05Nb wt% weld metal, using a published model [130]. The measured points are for 1.63 wt%
tungsten from literature [120].
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Figure 6.10: Calculated creep strength of designed weld metal (with 0.1 wt% manganese) using
a published neural network model [130]. The points are for HCM2S steel tube creep data are
extracted from published literature [131].
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Input variable Proposed Actual
C (wt%) 0.05 +0.02 | 0.057
Si (wt%) 0.30 £ 0.15 0.32
Mn (wt%) 0.70 £ 0.15 0.67
S (wt%) 0.007 0.005
P (wt%) 0.010 0.009
Ni (wt%) < 0.05 0.07
Cr (Wt%) 2.22 + 0.2 2.10
Mo (wt%) 0.20 £ 0.1 0.20
V (wt%) 0.20 %+ 0.005 0.20
Cu (wt%) 0.03 < 0.02
Co (wt%) 0.0 0.0
W (wt%) 0.6 + 0.1 0.63
O (p.p-m.) 300 < 0.02
Ti (wt%) 250 + 50 < 200
B (p.p.m.) 10+ 5 <20
Nb (p.p.m.) 50 =+ 10 < 200
Heat input(kJ mm™!) 1.38 1.35
Interpass temperature (°C) 300 350 (max.)
Tempering temperature (°C) 20 as—welded
Tempering time (h) 0 -
YS (MPa) 714 + 216 678
UTS(MPa) 851 + 112 774
Elongation(%) 19+ 15 19.5
Vickers hardness 225 228
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Chapter 7

Tempering Resistance

7.1 Introduction

It was demonstrated in the last chapter that the weld metal designed using the neural network
models and the general principles of physical metallurgy achieved the properties demanded by
industry. The material is intended primarily for use in the welding of boiler components in large
power plant. As such, the service temperature is likely to be in the range 500-600°C. The weld
metal is therefore likely to temper during service. It would be interesting therefore to examine
experimentally the tempering resistance of the new weld metal and to compare it with HCM2S
tube steel.

At the same time, two further experimental welds were made for this work, using the manual
metal arc welding process at ESAB AB (Sweden). Neither both of these contained vanadium
or niobium as deliberate additions, but were conceived to reveal the effect of substituting tung-
sten for molybdenum in a classical ZiCrflMo weld metal. They also contained a low carbon
concentration consistent with the HCM2S philosophy.

The compositions of the three alloys and the new weld metal discussed in Chapter 6 are
listed in Table 7.1. It is worth noting that the atomic concentration of tungsten in the Cr-W
alloy is almost identical to the atomic concentration of molybdenum in the Cr-Mo alloy, the
atomic weight of tungsten is much higher than that of molybdenum.

Phase diagram calculations were carried out using MTDATA [124] with the SGTE Steels
database to reveal the equilibrium precipitates to be expected at 500 and 600°C. MTDATA
works by accessing thermodynamic data from the SGTE database in order to use solution
models and minimise the free energy of the system to find the equilibrium states. In all cases,
the calculations allowed for the existence of Laves phase, chromium carbides, vanadium carbides,
a-ferrite, M3C, M7Cs, MgC, M23Cs, MC phases and the following components: Fe, C, Mn, Si,
Cr, Mn, Mo, Ni, N, Nb, V, W and Ti.

The results are listed in Table 7.2, but more details will be presented during the discussion of
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the experimental data. It is evident at this stage that there are significant differences between the
equilibrium states of the four alloys and when the two tempering temperatures are compared.
These results will be compared against actual tempering experiments later in this Chapter.
Because of the time taken in designing the new weld metal, it was not possible to study its

tempering behaviour for 500 °C.

C Si Mn P S Ni Cr | Mo A\ Vv Nb B N
HCM2S 0.060 | 0.20 | 0.47 | 0.006 | 0.002 | 0.10 | 2.27 | 0.09 | 1.50 | 0.23 0.05 0.004 0.008
Cr—-W 0.073 | 0.38 | 0.74 | 0.011 | 0.011 | 0.04 | 2.11 | 0.01 | 1.99 | 0.016 - - 0.02
Cr—Mo 0.068 | 0.38 | 0.74 | 0.010 | 0.011 | 0.06 | 2.11 | 0.93 | 0.01 | 0.021 - - 0.02
New WM | 0.057 | 0.32 | 0.67 | 0.010 | 0.007 | 0.10 | 2.10 | 0.2 | 0.63 | 0.20 < 0.02 | <0.002 | 0.015

Table 7.1: Chemical composition (in wt%) of HCM2S steel [119, 117] and low—alloy Cr-Mo,
Cr—W weld metals and designed new weld metal (New WM).

500°C 600°C
Cr—Mo Weld metal | My3Cq4, VN, CraN Ms53Cg, CraN
Cr—W Weld metal M33Cq, MgC, CraN M;C3, MgC, CraN
HCM2S Steel MgC, VN, (Nb,V)C MgC, CrNbC, V4Cs
New weld metal M33Cq, MgC, V(C,N), CtNbC | M;C3, M23Cs, MgC, CrVTIN

Table 7.2: Calculated equilibrium precipitates, calculated using MTDATA [124].

7.2 Experimental Procedure

Various experimental techniques were employed to understand and evaluate the tempering re-

sistance of these alloys.

7.2.1 Heat Treatment

The HCM2S was received in the form of tubes which had been heat treated at 1050°C for
1 h followed by air cooling to generate a bainitic microstructure, which was in turn tempered
at 770°C for 1 h. This is the standard commercial heat—treatment prior to service. The weld
metals were all produced using the manual metal arc welding process with 4 mm diameter
electrodes, as “bead—on—plate” deposits on mild steel plate. Each deposit was 4 cm thick and
consisted of seven layers so that dilution effects essentially disappeared after the first layer. All
samples were machined avoiding the first layer. For heat—-treatment purposes, the samples were
machined as 8 x 8 x 10 mm square—sectioned rods, which were then sealed in quartz tubes filled

with a partial pressure of argon. To ensure a consistent starting microstructure, each sample,
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irrespective of alloy type, was heated to 1100 °C for 10 min; the sealed sample was then quenched
in water whilst breaking the quartz tubes. The samples were then sealed again in quartz tubes
for prolonged tempering at either 500 or 600 °C. The heat-treatment procedure is illustrated in
Fig. 7.1.

Not to scale
10 min
L 1100
©
é 3,500 h
g 600 :
o
5 500 | e \
— 10,000 h '

Y

Time ——

Figure 7.1: The heat treatment cycle followed in the present work.

7.2.2 Hardness Measurements

A Vickers hardness testing machine with 10 kg load and %" objective was used to measure
the macrohardness of the steel samples. The load was applied for 15 seconds during testing.
Ten measurements were taken diagonally covering the whole sample surface. The samples were

mounted on conductive Bakelite, then ground to 600 grit paper before testing.

7.2.3 Optical Microscopy

All samples were prepared for microstructural examination by hot mounting in conductive Bake-
lite powder, followed by grinding upto 1200 grit, then diamond polished to 1 ym. A 2% nital

etchant(2% concentrated nitric acid in methanol solution) was used to etch the samples.
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7.2.4 Scanning Electron Microscopy

A JEOL JSM 820 scanning electron microscope (SEM) was used to view the etched samples

prepared as described in Section 7.2.3.

7.2.5 Transmission Electron Microscopy

For transmission electron microscopy (TEM) examination, thin foil and extraction carbon repli-

cas were used.

Camera Constant

A TEM consists of electromagnetic lenses which amongst other things control the magnification
of the diffraction patterns. The magnification of diffraction patterns in a TEM is expressed as
a camera length, as shown in Fig. 7.2.

The camera constant is expressed as;

Rdp; = L)\ = Camera constant (7.1)

where R is the real distance between the transmitted spot and the diffracted spot, L is the
camera length, dp; is the spacing of the {hkl} crystallographic planes and X is calculated using

the following equation:

h

)=
\/2meV(1 + 52%5)

(A) (7.2)

2me?
where h is Plank’s constant, m and e are the electron mass and charge respectively, V is the
accelerating voltage of the electrons and c is the speed of light in vacuum.

The camera constant was measured by examination of the diffraction pattern from sputtered
gold on a copper grid at 200 kV on JEOL 200CX TEM. For a given electron beam direction
a number of particles are oriented so as to satisfy the Bragg equation [132] hence each plane
gives a number of reflections lying in a cone of angle 40. The final diffraction pattern contains
a number of concentric rings corresponding to the {hkl} planes which are diffracting, Fig 7.3.

To calculate the camera constant the diameters of the rings in the diffraction pattern were
measured, then the ratio of the squares of the radii of the outer rings to those of the first or
second low—-index ring were calculated. This enables the N values corresponding to each of the

rings to be found using equation 7.3.

N2=h? + K> + 17 (7.3)
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Figure 7.2: Schematic diagram showing the magnification of a diffraction pattern by electron
microscopic lenses.

Figure 7.3: Diffraction pattern from the sputtered gold film used to determine the camera
constant at 137 cm camera length (L) and 200 kV.

where h, k and [ are the plane indices. Then d-spacings were calculated using equation 7.4 for
cubic systems.
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d= "= (7.4)

The accurate lattice parameter (a) of gold is 4.0780 A [133] and the calculated d-spacings
are shown in Table 7.3. The calculated camera constants at different camera lengths at 200 kV
are shown in Table 7.4.

Precipitates were identified using selected area electron diffraction. Convergent beam elec-

tron diffraction technique was used for very small particles.

Ring | Lattice spacing (d) in A
1 2.355

2.039

1.442

1.230

1.177

1.096

0.935

0.912

0.832

© 0o N O Ot ok W N

Table 7.3: The calculated d-spacing in gold.

Camera length / cm | Calculated camera constant / 107'? m?
82 2.00
137 3.36
205 5.18

Table 7.4: Calculated camera constants for a number of different camera lengths at electron
accelerating voltage of 200 kV.

Thin Foils

Thin samples were sliced using a high—speed SiC cutting wheel and 3 mm diameter discs were
punched from these slices. The discs were ground to 50 pym by hand on 1000 grit paper.
The thinned discs were then electropolished using a twin—jet electropolisher at 45 V. The elec-
tropolishing solution used was 5% perchloric acid, 20% glycerol in alcohol. A JEOL 200CX

transmission electron microscope was used to examine thin foils.
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Carbon Replicas

Carbon replicas can be more useful than thin foils in the identification of precipitates. Carbon
replicas eliminate magnetic effects due to the ferrite matrix and enable a large area to be
examined. The procedure followed to extract the replicas from surfaces prepared using optical
microscopy is shown in Fig. 7.4. Carbon was deposited in a vacuum of 1075 torr on to the etched
sample. Then the deposited carbon layer on the sample surface was cut into 2 mm square pieces
to enable the removal of several small sections covering the whole area of the sample. Then the
film was detached from the sample by electrolytic etching in a solution 5% hydrochloric acid
in methanol at 1.5 volts. Each replica was washed in methanol and then in distilled water.
Finally the floating replicas in distilled water were collected on 400 square mesh copper grids

for examination in the transmission electron microscope.

Precipitates

PRI
Sample Sample

Before etching After etching

Carbon replica

L oa—f
'

Sample

After replica extraction

Figure 7.4: Schematic diagram illustrating the preparation of carbon replicas.

7.2.6 Analysis of Electron Diffraction Patterns

An electron diffraction pattern is essentially a planar section of the reciprocal lattice, each

reciprocal lattice vector lying along the normal to a plane and of magnitude equal to the inverse
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of the interplanar spacing. Thus, the distance of each diffracted spot from the central beam
is inversely proportional to the spacing of the planes that it represents. The angle between a
pair of reciprocal lattice vectors represents the angle between the normals to those planes. The
geometry of the electron diffraction pattern in a transmission electron microscope is illustrated
in Fig. 7.2.

As can be seen from the list of crystal structures presented in Table 7.5, many of the struc-
tures are not cubic and are complicated in detail. This makes it quite difficult to interpret
the patterns, since plane normals and directions with the same indices are then not necessarily
parallel. The problem can be ameliorated by using a computer program [134, 135] which deals
with the analysis of the patterns for any crystal structure. Data from the diffraction pattern
are fed into the program, together with an estimate of measurement accuracy and a trial crystal
structure. The program then searches the reciprocal space to find zone axes which are consistent
with the pattern. However, the number of trial crystal structures is very large in the present
work. Therefore, a new modified program was created, so that it is no longer necessary to input
a trial structure, but instead, a list of possible trial structures is read by the program. The
program then searches through the entire set to find matches with the experimental data. This
proved vital because many of the electron diffraction patterns were found to be ambiguous with
respect to the precipitate phase. In those circumstances, it was found that the intensities of the
diffraction spots could be compared with standard X-ray tables to reduce or eliminate ambigu-
ities. Intensities, take into account the structure factor which the computer program described
above does not (it only has systematic absences, such as those differentiating the primitive cubic
and body-centered cubic lattices). Information about the computer programs is presented in

Section B.3.

7.2.7 X-ray Diffraction

Bulk precipitates were extracted from bulk samples by electrolyticaly dissolving the matrix in 5%
hydrochloric acid in methanol solution at 1.5 V. The specimen was made the anode and platinum
the cathode. After 56 h the anodic sample dissolved in the electrolyte, leaving the precipitates
which were filtered on filter paper containing 1 u pores, washing throughly during filtration with
methanol. X-ray diffraction of the extracted particles was used for the identification of various
precipitates formed during tempering. A Siemens D500 diffractometer (CuK, target) was used
to scan between 20° and 140° 6 at a step size of 0.04° for 10 seconds. The diffraction peak
positions were located using Phillips Analytical software, which was also used to calculate the
associated intensities of the peaks. X—ray diffraction was used as verification of the precipitates

identified using electron diffraction analysis.
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Precipitate | Crystallographic system | Lattice parameter(s) in A | Reference
M;C Orthorhombic a=4.525, b=5.087, ¢=6.743 [116]
M;Cs3 Orthorhombic a=4.526, b=7.01, c=12.142 [116]
M,C Hexagonal a=2.888, c=4.559 31-0403 [136)
MgC Cubic a=11.082 [116]
M,3Cs Cubic a=10.621 [116]
NbC Cubic a=4.4702 10-181 [136]
NbyNj Tetragonal a=4.382, c=8.632 20-0803 [136]
VN Cubic a=4.09 25-1252 [136]
VC Cubic a=4.3 74-1220 [136]
V4Cs Cubic a=4.16 1-1159 [136]
wC Hexagonal 4=2.9062, c=2.83 25-1047 [136]
W>C Hexagonal a=2.99, c=4.72 2-1134 [136]
CrNbN Tetragonal a=3.037, c=7.391 25-0591 [136]

Table 7.5: The crystallographic data used to identify the selected precipitates in electron diffrac-
tion pattern. Numbers in reference column indicate X-ray data card number.

7.3 Comparison of Cr—W and Cr—Mo Weld Deposits

The hardness data from tempering experiments at 500 °C, for time periods up to 11,000 h, are
presented in Fig. 7.5, along with hardness curves obtained using neural network models fitted
with the experimental data in Fig. 7.6 and 7.7. Both alloys show a significant resistance to
tempering when compared with a plain carbon steel of the same carbon concentration, Fig. 7.5.
This must be due to secondary hardening. Secondary hardening is associated with the formation
of carbides during tempering of water quenched material containing strong carbide forming
elements such as Cr,V, Mo, Nb, etc.

The initial and final hardnesses are not very different in these materials, but the peak hard-
ness attained is important. Transmission electron microscopy and electron diffraction revealed
that a key difference between the alloys is the presence of MsX in the Cr—Mo alloy, Fig. 7.13.
Some electron diffraction patterns and TEM micrographs are provided in Figs 7.8 to 7.16. In
molybdenum—containing steels, Mo, C is an important precipitation strengthening carbide [23].
It commonly precipitates as fine needles (Fig. 7.13) parallel to the < 110 >, direction in ferrite.
The orientation relationship is that of Pitsch-Schrader [137]:

(011)q || (0001)m,c, [100]q || [1120]n,c

This Moy C is a key strengthening phase in Cr—-Mo weld metal, and indeed, is responsible for the

secondary hardening peak as illustrated in Fig 7.5. In multirun welding secondary hardening
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causes an increase in the hardness in the reheated regions, which is not desirable in keeping
the as—welded hardness low. Tungsten is beneficial in this respect because it does not harden
the microstructure during reheating in multirun welding [138, 139]. Figs 7.6 and 7.7 illustrate
the hardness variation with tempering time as measured and smoothed using neural network
representation. Here the neural networks helped to visualise the trends in hardness.

The hardness of the tungsten—containing alloy begins to drop abruptly beyond about 90 h
at temperature whereas that of the Cr—Mo alloy is maintained to some 256 h. The precipitates
identified are tabulated in Table 7.7. To summarise, the main consequences of the substitution

of tungsten for molybdenum in this class of steels are as follows:

a. MyX precipitation only occurs in the molybdenum—containing alloy; since this is a signif-
icant strengthening precipitate, the tempering resistance of molybdenum—containing steel

is expected and found to be larger.

b. Tungsten has a high solubility in MgC; therefore, MgCis an equilibrium phase in the Cr—W
alloy but not in the Cr-Mo alloy, Table 7.6. Furthermore, the precipitation of Mo3Cgis
accelerated in the Cr-W alloy. Robson and Bhadeshia [140] have demonstrated both
theoretically and experimentally that the large volume fractions of metastable MoX and
M;C3, which form prior to My3Cg, deplete the matrix and therefore suppress Mo3Cg
precipitation [140]. This does not happen in the Cr—W system, where M23Cgis obtained

more rapidly. Ma3Cgis not very effective as a hardening precipitate in low—alloy steels [23].

c. It is interesting to note that precipitation in the Cr—W alloy effectively removes almost all
the tungsten from solid solution, Table 7.6 . The main role of tungsten, in the long term,

is therefore to form MgC.

7.4 Comparison of HCM2S and New Welding Alloy

The new weld metal and HCM2S steel were subjected to austenitisation at 1100 °C, followed
by water quenching and then tempered at 600°C. The results are shown in Fig. 7.17 and TEM
micrographs of HCM2S steel and the new weld metal are provided in Figs 7.19 to 7.27. The
new weld metal is softer than HCM2S steel by around 50 HV. The precipitates found in these
materials are shown in Table 7.8 and corresponding constituents of each equilibrium precipitate
are given in Table 7.9. The softness of the new weld metal can be explained that the HCM2S steel
contains V4Cj as a thermodynamically stable precipitate, whereas it is a metastable precipitate
in the new weld metal. In addition, HCM2S has the CrNb nitride. Furthermore, HCM2S has
a higher tungsten content. Fine precipitates were found in HCM2S steel (Fig. 7.19a) after 4 h

and 3,500 h (Fig. 7.21) of tempering, whereas in the new weld metal coarse precipitates were
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Cr-W weld metal Cr-Mo weld metal HCM2S steel

Total number of moles 1784.0 1801.0 1783.0

CraN | M23Cs | MgC || CraN M23Ce (Nb,V)C | VN MeC
Amount in moles 4.37 12.1 24.72 3.4 27.3 2.65 1.8 20.28
Element (mole fraction)
Fe 0.001 0.15 0.45 0.001 0.169 0.0 0.0 0.38
C 0.11 0.21 0.14 0.003 0.21 0.27 0.015 0.14
Cr 0.58 0.56 0.006 0.60 0.52 0.001 0.085 | 0.006
Mn 0.007 | 0.082 0.0 0.011 0.0 0.0 0.001 0.0
N 0.32 0.0 0.0 0.33 0.0 0.0 0.32 0.0
w 0.015 0.0 0.40 0.0 0.0 0.01 0.001 | 0.35
Mo 0.0 0.0 0.0 0.04 0.10 0.0 0.0 0.05
A% - - - - - 0.36 0.58 | 0.075
Nb - - - - - 0.15 0.0 0.0

Table 7.6: Equilibrium mole fraction of elements in equilibrium precipitates in Cr—W, Cr-Mo
weld metals and HCM2S steel at 500 °C, calculated using MTDATA [124]. In Cr-W weld metal
and HCM2S steel at equilibrium, the major phase MgC contains tungsten as a main constituent.

66 h 128 h | 10,000 h
Cr—W weld metal M3C, M7C3 - M7C3, M23Cﬁ, M3C
Cr—Mo weld metal - M3C, M7C3, MQC M7C3, M3C, MQC

Table 7.7: The precipitates identified in Cr—W and Cr-Mo weld metals during tempering at
500 °C upto 10,000 h.

found (Fig. 7.25) after 3,500 h of tempering. However, in practice the HCM2S steel is heavily
tempered (780 °C for 1 h) prior to service, so that its as—received hardness is about 200 HV and
its yield strength is 400 MPa. The designed weld metal self tempers during service and matches
the hardness of HCM2S steel base plate. The new weld metal hardness is comparable with that
of normalised and tempered HCM2S steel, Fig. 7.18. Moreover the service temperature of this

designed new weld metal is much lower than 600 °C.

7.5 Comparison of HCM2S and Cr—W Weld

HCM2S is much more resistant to tempering than the straight Cr—W alloy purely because of
vanadium and niobium carbonitrides. This was found during the comparative study of HCM2S
steel and Cr-W weld metal. In HCM2S steel after 960 h of tempering, the precipitates CrNbN,
M3C, V4C3 and M7C3 were found. The presence of CrNbN (Fig. 7.32) was verified with X-ray
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Figure 7.5: The change in hardness in Cr—Mo and Cr—W weld metals tempered at 500 °C. Data
for a plain carbon steel [20] are shown for comparison.

diffraction on extracted bulk precipitates. The electron diffraction patterns and TEM micro-
graphs are presented in Fig. 7.31 to 7.34. HCM2S steel is more stable than Cr—W weld metal
(Fig. 7.28) the hardness remaining constant (Fig. 7.29). In Cr-W weld metal the major equi-
librium phase is MgC which is a coarse carbide which decreases the amount of tungsten in solid
solution thus reducing the solid solution strengthening. The coarse precipitate MgC is an ineffec-

tive precipitation strengthener. In the case of HCM2S steel coarse grain boundary precipitates
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2h 4h 3,500 h
HCM2S steel - M;C, M7Cs, CtNbN | M;C3, W»C, V4C3, VC, M5C
New weld metal | M3C, M7Cs ] M;C3, W»C, V4C3, VC, WC

Table 7.8: Precipitates identified in HCM2S steel and new weld metal during tempering at
600 °C upto 3,500 h.

HCM2S steel New weld metal

Total number of moles 1783.0 1796.0

V4C3 | CrNbC | MeC || CrVTIN | M7C3 | M23Cg¢ | MeC
Amount in moles 3.95 1.552 16.61 4.286 2.75 15.6 4.73
Element (mole fraction)
Fe 0.0012 | 0.001 0.41 0.005 0.096 0.26 0.42
C 0.321 0.33 0.143 0.0001 0.3 0.2 0.014
Cr 0.002 0.21 0.01 0.11 0.525 0.45 0.011
Mn 0.007 0.00 0.0 0.002 0.016 0.0 0.0
N 0.144 0.0 0.0 0.33 0.0 0.0 0.0
W 0.002 0.075 0.35 0.002 0.0025 0.02 0.34
Mo 0.0 0.036 | 0.037 0.0 0.0 0.064 | 0.038
A% 0.53 0.085 | 0.055 0.45 0.06 0.00 0.05
Nb 0.0 0.26 0.0 - - - -
Ti - - - 0.1 0.0 0.0 0.0

Table 7.9: Equilibrium mole fraction of elements in equilibrium precipitates in HCM2S steel and
new weld metal at 600 °C, calculated using MTDATA [124].

and fine precipitates with the grains were found (Fig. 7.30); the fine precipitates are vanadium

and niobium carbonitrides which are major contributors to the strength of HCM2S steel.

7.6 Hardness of HCM2S in different conditions

Welding will induce a heat—affected zone in the HCM2S steel in the vicinity of the fusion bound-
ary. The microstructures expected in the HAZ are essentially mixtures of bainite and martensite
in different proportions. These will then temper during service. The purpose of the work pre-
sented here was to see if there are any significant differences in the tempering behaviour. Samples
austenitised and water—quenched (i.e. martensitic) were therefore compared against an austeni-
tised and air—cooled bainitic microstructure. Fig. 7.35 shows that, as expected, the samples
start off with different hardness values, the martensitic sample being some 100 HV harder be-

cause the carbon is in solid solution. The difference in hardness decreases as the tempering
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time is increased until it vanishes at about 3500 h of tempering at 600 °C. Therefore, the HAZ
should become mechanically homogeneous during service. It is worth noting that the difference
in hardness persists to long tempering times, much longer than expected simply from the re-
moval of carbon from solid solution. Unfortunately, the reason for this could not be investigated
due to time limitations, but it is likely that the precipitation of alloy carbides may have been
altered as a function of starting microstructure. For example, it is expected that precipita-
tion from supersaturated martensite must be finer with greater number densities of particles,
whereas with a bainitic starting microstructure the cementite particles generated during the

bainite transformation are known to be coarser [116].

7.7 Theoretical Analysis of Coarsening Resistance

Particle coarsening is the process of dissolution of small precipitates and the simultaneous growth
of larger precipitates at a fixed volume fraction. Finally, the system should tend towards one
large particle. The driving force for the process is a decrease in interfacial energy (o) between
the matrix («) and precipitate (6). The theory of precipitate coarsening includes the size and
shape of the precipitates, the relationship between size and solubility and the mode of reaction,
whether diffusion—controlled or interface—controlled [141]. A precipitate 6 in a ferrite matrix o
is in equilibrium when the interface is flat. When the interface becomes curved, as in spherical
precipitates (Fig. 7.36) the equilibrium concentration becomes a function of the radius of cur-
vature, given by ¢ and c?® where ¢2? is the solute concentration in the ferrite matrix and /¢
solute concentration in the precipitate 0, r is the radius of curvature of precipitate.

When the radius of curvature tends to zero, means when the curved interface becomes flat,
then cffa = ¢®. The solute concentration in ferrite near small particles will be greater than that
near to larger particle, and it is this concentration gradient which helps the coarsening of larger
precipitate at the expense of small precipitate, Fig. 7.36.

0

The concentration difference ¢ — ¢®?, which drives the diffusion flux, is given by:

b b oV? x ca@(l — Caﬁ)
— C —
" KT r = (> — cof)

where k is the Boltzmann constant, T is the absolute temperature and V¢ is the molar volume

c (7.5)

of ferrite matrix. Thus interfacial velocity v is proportional to the diffusion flux which in turn

depends on the diffusion coefficient of solute atom in the matrix and is expressed as [142];

oV ca0(1 _ ca@)
X

KT r = (> — cof)2

Steels contain many solutes; each solute will influence the diffusion flux in matrix. Venu-

v x D (7.6)

gopalan et al. [143] suggested as effective diffusion coefficient D,y by treating the fluxes as a

combination of parallel electrical conductances. The interfacial velocity;
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where D,p (cm? s71) is the effective diffusion coefficient, D; is the diffusion coefficient of in-

dividual solute ‘7’ in a—ferrite, cgo‘ is the solute concentration in a—ferrite and cg"a is the solute
concentration of element ‘7’ in the precipitate (6).

From equation 7.7; the lower the value of D, s slower the growth of the precipitate. Using the
above theory, Ds; of each precipitate for the tempered materials were calculated, Table 7.10.
Here the mole faction of elements in a precipitate were calculated using MTDATA [124]. Ta-
ble 7.10 shows that in the long term, well outside the scope of the experiments reported here
but within the design life, it is the vanadium and niobium compounds that are the most stable

and hence these will form the backbone of the creep resistance.

Deyy Deyy

at 500 °C at 600 °C
Cr—Mo weld metal
M,3Cg 3.15 x10~18 | 4.2 x10~16
CryN 2.22 x10~18 | 2.74 x10~"7
Cr—W weld metal
M;Cs - 2.9 x10~16
M23Cs 3.93 x10~18 -
MgC 2.08 x1071? | 2.92 x10~17
CryN 3.01 x1071° | 5.27 x10~17
HCM2S steel
MgC 3.4 x107%% | 4.63 x10~'7
V4Cs - 2.86 x10~17
VN 2.43 x10~1° -
(Nb, V)C 3.8 x10~22 -
CrNbC - 3.0 x1071?
New weld metal
M;Cs - 2.79 x10716
Ms3Cg 1.59 x10~18 | 2.38 x10~!6
MgC 2.85 x10719 | 3.18 x10717
V(C, N) 3.71 x1071? -
CrVTiN - 2.76 x10717
CrNbC 1.0 x10~2! -

Table 7.10: Calculated effective diffusion coefficients (cm? s~
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7.8 Conclusions

The tempering resistance of the new welding alloy, and the changes in its hardness over a long
period of time at 600 °C, have been found to be satisfactory with respect to the original design
concepts. Thus, the hardness drops to about 200 HV, which is comparable to that of HCM2S
when it enters service in a severely tempered state. Vanadium and niobium carbonitrides are
probably vital in ensuring the long—term creep strength of both HCM2S and the new welding
alloy. They form precipitates which should be more resistant to coarsening than any other
precipitates found in the alloys considered. The HAZ of HCM2S should be well-behaved with
respect to long periods in service in spite of the variations in major microstructural components
as induced by welding. The substitution of tungsten for molybdenum keeps as-welded hardness

low during multirun welding.
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Figure 7.6: Hardness variation in Cr—Mo weld metal tempered at 500 °C, a) measured hardness,
the line shows the variation in average hardness b) neural network representation of hardness

data.
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Figure 7.7: Hardness variation in Cr-W weld metal tempered at 500 °C, a) measured hardness,
the line shows the variation in average hardness b) neural network representation of hardness

data.
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Zone axis_[3_3 2]
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Figure 7.8: Mj3C precipitate found in Cr-W weld metal tempered at 500 °C for 66 h, a) carbon
replica b) electron diffraction from Mj3C.
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Figure 7.9: M7Cj precipitate found in Cr-W weld metal tempered at 500 °C for 66 h, a) carbon
replica b) electron diffraction from M7Cs.

134



Zone axis [100]
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Figure 7.10: Mj3C precipitate found in Cr—W weld metal tempered at 500°C for 10,000 h, a)
carbon replica b) electron diffraction from M3C.
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Figure 7.11: M;Cj3 precipitate found in Cr—W weld metal tempered at 500°C for 10,000 h, a)
carbon replica b) electron diffraction from M7Cs.
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Figure 7.12: M3C precipitate found in Cr-Mo weld metal tempered at 500°C for 128 h, a)
carbon replica b) electron diffraction from M3C.
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Figure 7.13: M»C precipitate found in Cr—-Mo weld metal tempered at 500 °C for 128 h, carbon
replica.
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Figure 7.14: M7Cj3 precipitate found in Cr-Mo weld metal tempered at 500 °C for 10,000 h, a)
carbon replica b) electron diffraction from M7Cjs.
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Figure 7.15: MsC precipitate found in Cr-Mo weld metal tempered at 500 °C for 10,000 h, a)
carbon replica b) electron diffraction from MsC.
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Figure 7.16: Electron diffraction pattern from the M;C3 precipitate found in the Cr—Mo sample,
tempered at 500 °C for 10,000 h.
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Figure 7.17: Comparison between HCM2S steel and new weld metal tempered at 600 °C.
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Figure 7.18: Variation in hardness of HCM2S at different cooling rates [121]. The tempering
was carried at 770°C for 1 h.
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(b)

Figure 7.19: HCM2S steel tempered at 600 °C for 4 h, a) fine precipitates, carbon replica b) M7Cs
precipitate.
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Figure 7.20: Cementite in HCM2S steel tempered at 600 °C for 4 h, a) carbon replica b) electron
diffraction pattern from M3C.
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Figure 7.21: Precipitate V4C3 in HCM2S steel tempered at 600 °C for 3500 h, a) carbon replica
b) electron diffraction from V4Cs.
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Figure 7.22: W5C found in HCM2S steel tempered at 600°C for 3500 h, a) electron carbon
replica b) electron diffraction from W,C.
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Figure 7.23: Precipitate M7C3 found in HCM2S steel tempered at 600 °C for 3500 h, a) carbon
replica b) electron diffraction pattern from M7Cs.

148



Figure 7.24: Cementite found in new weld metal tempered at 600 °C for 2 h.
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Figure 7.25: Tungsten carbide (W5C) found in new weld metal tempered at 600 °C for 3500 h,
a) carbon replica b) electron diffraction from WyC
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Figure 7.26: Precipitate V4C3 found in new weld metal tempered at 600 °C for 3500 h, a) carbon
replica b) electron diffraction pattern from V,Cs
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Figure 7.27: New weld metal tempered at 600°C for 3500 h, a) electron diffraction pattern
from M7Cj3 b) electron diffraction pattern from VC.
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Figure 7.28: Hardness variation in HCM2S steel and Cr-W weld metal tempered at 500 °C.
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Figure 7.29: Hardness variation in HCM2S steel tempered at 500 °C, a) measured hardness b)
neural network representation of hardness data.
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Figure 7.30: Scanning electron microscopy of HCM2S steel tempered at 500°C for 10,000 h,
a) arrows pointing to precipitates at grain boundary and within the grain b) fine precipitates
within grains and coarse precipitates at grain boundaries.
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Figure 7.31: a) Various precipitates found in HCM2S steel tempered at 500 °C for 960 h, a) car-
bon replica b) electron diffraction pattern from V,4Cs.
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Figure 7.32: Precipitate CrNbN found in HCM2S steel after tempering at 500°C for 960 h,
a) carbon replica b) electron diffraction pattern from CrNbN.
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Figure 7.33: Precipitate M;Cs found in HCM2S steel tempered at 500°C for 960 h, a) carbon
replica b) electron diffraction pattern from M7Cs.
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Figure 7.34: Precipitate M7C3 found in HCM2S steel tempered at 500 °C for 10,000 h, a) carbon
replica b) electron diffraction pattern from M7Cs.
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Figure 7.35: Hardness variation in HCM2S steel water quenched and air cooled from 1100°C
and tempered at 600°C upto 3,500 h.
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Chapter 8

Summary and Suggestions for
Further Work

The complexity of welding alloys has in the past prevented the development of generalised models
capable of giving quantitative estimates of anything other than the most simple mechanical
properties. It has been possible, using a neural network technique within a Bayesian framework,
to develop a set of models dealing with the yield strength, ultimate tensile strength, ductility and
impact toughness of weld metals as a function of the chemical composition and heat treatment.
The models are based on a vast quantity of published experimental data which were all digitised
and assessed for model development.

Neural networks are used in circumstances where the complexity is difficult to deal with
using scientific principles. For this same reason, the trained networks cannot ever be fully
tested since it is hard to imagine how multi—fold interactions between the inputs can affect
the outcome. Nevertheless, an attempt was made to assess whether the networks reproduced
the known physical metallurgy. For example, the effect of carbon and manganese on the yield
strength of low—-alloy weld deposits. In almost all cases considered, the networks could be shown
to recognise known trends, taking into account the error estimates.

However, in some cases, such as when considering the effect of tungsten on the strength of
low—alloy steel welds, it was evident that the models lacked knowledge to such an extent as to
make the predictions unphysical. The situation was corrected by adapting steel data to represent
welds, and the resulting model was demonstrated to behave properly. This example illustrates
that the networks should not be used blindly but rather as an aid to design.

The combined set of models, together with experience from physical metallurgy, were then
used to propose a new tungsten—containing welding alloy which can be used in circumstances
where post-weld heat treatments are not practical. This proved to be successful at the first
attempt; subsequently, the models have been used successfully by others in a similar way, to

invent welding alloys without doing experiments.
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The tempering resistance of the tungsten—containing weld has been studied experimentally
and compared with that of a number of alloys. This work indicates that the replacement of
molybdenum by tungsten in creep-resistant alloys leads to a lower as—deposited hardness which
can be exploited to eliminate post—weld heat treatments. The creep strength can nevertheless
(probably) be maintained by the use of vanadium.

The models developed here contain the chemical composition, welding heat input and heat
treatment as inputs. These inputs effectively contain information about the microstructure.
However, it would be useful to include microstructure directly. There are insufficient exper-
imental data available to create a large enough dataset for analysis. Nevertheless, there are
now physical models which can provide estimates of microstructure, at least for the so—called
carbon—manganese alloys. In future work it would be useful to include calculated microstructural
parameters, as well as chemical composition etc. as inputs in the neural network models in order
to find relationships which are more physically meaningful.

Future work could focus on the development of a quantitative tempering theory since it is
not yet possible to predict, using physical models, the tensile properties as a function of heat
treatment following the deposition of the weld. This really is surprising given the enormous

amount of published research on welds.
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Appendix A

Estimation of Mechanical Properties
of C—Mn Weld Metals, Avoiding
Systematic Errors

In Chapters 4 and 5 essential mechanical properties of ferritic steel welds were modelled using
neural network technique within a Bayesian framework. The data were collected from the
published literature. As such the data originated from many different laboratories and possibly
contained a variety of sources of experimental errors. By contrast, the data exploited here
were on carbon-manganese and low—alloy steel welds from a single source (Evans [54]). It
should therefore be possible to avoid unspecified systematic errors of the kind associated with a

particular laboratory.

A.1 The Electrode Production

To study the effect of an element on the mechanical properties of weld metal requires high purity
electrodes with accurate compositional control. It is very difficult to reproducibly maintain the
transfer of alloying elements with conventional electrodes. The data used in the present work
came from electrodes are specially manufactured with great care to detail. Rimmed steel with an
average chemical composition shown in Table A.1 was selected as the core wire of an electrode.
The flux contains 25% iron powder is selected and systematically mixed with other minerals to
add microalloying elements which are to be studied and to keep some alloying elements such as
Al, B, Nb, V and Ti below 0.0005 wt% in the final weld metal [2]. The multirun weld metal

was made with three passes per layer, keeping dilution with the base metal to a minimum.

A.2 The Database

Around 720 individual experimental data of carbon—manganese multipass steel welds were

compiled. The process used was shielded (manual) metal arc welding. The heat input was
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Element

Carbon (wt%) 0.07
Manganese (wt%) 0.50
Silicon (wt%) 0.008
Sulphur (wt%) 0.006
Phosphorus (wt%) | 0.008
Titanium (p.p.m.) 4
Boron (p.p.m.) 2
Aluminum (p.p.m.) 15
Nitrogen (p.p.m.) 25
Oxygen (p.p.m.) 200
Chromium (wt%) 0.02
Nickel (wt%) 0.03

Molybdenum (wt%) | 0.003
Vanadium (p.p.m.) 5
Copper (wt%) 0.02
Niobium (p.p.m.) 5

Table A.1: The average chemical composition of the core wire used to manufacture the electrode
used in the present study. ‘p.p.m.” corresponds to parts per million.

1.0 kJ mm~! and the interpass temperature was 200°C. With the exception of the Charpy
impact toughness test samples, all of the other weld samples were given hydrogen removal heat
treatments (200°C for 14 h). All these experiments were done under identical conditions and
data were measured by Evans [54]. The chosen input variables are tabulated in Table A.2; other
variables such as heat input did not vary and hence were not included in the analysis. The
input set was identical for all six models yield strength (YS), ultimate tensile strength (UTS),
elongation, reduction in area and the Charpy impact toughness transition temperature at 100 J
(T1003) and 28 J (Togy). Table A.2 shows the range, mean and standard deviation of all variables
involved in model development.

The data distribution of each individual element with respect to yield strength are graphically
represented in Figs A.1 and A.2. The output parameters UTS, elongation, reduction in area,
T1p03 and Togy were plotted against YS in Fig. A.2. As discussed in Section 5.1.1, it was found
that the difference in UTS and YS is constant. The higher strength welds will have a lower
ductility. This can be found in elongation and reduction in area plots (Fig. A.2); it can be seen

that the increase in yield strength leads to reduction in ductility.

165



Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.035 0.152 0.071 0.012
Manganese (wt%) 0.23 2.10 1.27 0.40
Silicon (wt%) 0.01 1.11 0.348 0.112
Sulphur (wt%) 0.003 0.046 0.0065 0.003
Phosphorus (wt%) 0.003 0.040 0.008 0.0027
Titanium (p.p.m.) 2.0 1000 105.7 142.62
Boron (p.p.m.) 1.0 200.0 16.5 39.4
Aluminum (p.p.m.) 1.0 680.0 38.7 108.0
Nitrogen (p.p.m.) 35.0 270.0 92.9 474
Oxygen (p.p.m.) 217.0 1180.0 398.1 90.1
Chromium (wt%) 0.03 3.5 0.166 0.50
Nickel (wt%) 0.03 5.48 0.34 1.05
Molybdenum (wt%) 0.005 1.16 0.068 0.228
Vanadium (p.p.m.) 3.0 2873.0 60.93 270.3
Copper (wt%) 0.02 2.04 0.076 0.251
Niobium (p.p.m.) 3.0 980.0 23.8 98.2
Yield strength (MPa) 350 1026 517.0 89.8
Ultimate tensile strength (MPa) 404 1123 588.9 90.0
Elongation (%) 10.5 35.8 25.6 3.9
Reduction in area (%) 21 87.8 75.3 5.3
Temperature (T1005) at 100 J (°C) -89 45 -42.0 23.3
Temperature (T2s5) at 28 J (°C) -114 53 -67.3 20.9

Table A.2: The weld metal chemical composition used as input parameters and output variables
to develop models. ‘p.p.m.’ corresponds to parts per million.

A.3 The Models

Six individual committee models for YS, UTS, elongation, reduction in area, Tigg; and Tagjy
were developed. The committee model development procedure is similar for all these mechanical
properties (Chapter 3). As the number of hidden units increases, the perceived level of noise
o, reduces, Fig A.3. Tt is interesting to note that the noise level is much lower than that of
the levels found in the previously developed models (Chapter 4 and 5). This is because of the
database comes from a single source. The other characteristics (log predictive error and test
error) are shown in Fig. A.3. The details of the development of the neural network models are

excluded for clarity, the procedure used is explained in Chapter 3.

A.4 The Analysis

The relevant input variables used to study the trends are shown in Table A.3. When the carbon

concentration in weld metal is increased from 0.01 wt% to 0.07 wt%, there is an improvement
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Input variable

Carbon (wt%) 0.07
Manganese (wt%) 1.50
Silicon (wt%) 0.50
Sulphur (wt%) 0.006

Phosphorus (wt%) | 0.008
Titanium (p.p.m.) 2.0
Boron (p.p.m.) 1.0
Aluminum (p.p.m.) | 1.0
Nitrogen (p.p.m.) 80.0
Oxygen (p.p.m.) 300.0
Chromium (wt%) 0.03
Nickel (wt%) 0.03
Molybdenum (wt%) | 0.005
Vanadium (p.p.m.) 3.0
Copper (wt%) 0.02
Niobium (p.p.m.) 3.0

Table A.3: Relevant inputs used to analyse mechanical properties of carbon—manganese weld
metal. ‘p.p.m.” corresponds to parts per million.

in mechanical properties, this is due to an initial improvement in microstructure [144]. In
this range carbon promotes desirable acicular ferrite microstructure content at the expense of
allotriomorphic ferrite and Widmanstatten ferrite. At higher carbon levels there is a decrease
in toughness due to an increase in strength without improvement in microstructure. The effect
of increasing carbon content is shown in Fig. A.13, as expected, carbon increases the strength
and decreases the ductility of the weld metal. The amount of increase depends on other acicular
ferrite promoting alloying elements such as manganese, molybdenum, nickel and chromium.
Fig. A.14 shows that manganese improves toughness in the initial stages by decreasing the
transition temperature, as well as increasing strength. The combined effects of carbon and
manganese are shown in Fig. A.15. It is interesting to note that there is a gradual decrease
in toughness and then an increase with increasing in carbon and manganese content. This is
because, that at higher carbon and manganese levels, the acicular ferrite fraction increases, this
is shown in Table A.4. These calculations were done using a published semi—empirical model [90],
which enables us to calculate microstructural fractions in multirun welds. Here it can be noticed
that the acicular ferrite and bainite microstructural fractions increased from 0.31 to 0.72 as the
carbon content changed from 0.04 wt% to 0.14 wt% in 2.0 wt% manganese weld metal, even

though there was an increase in strength. On the other hand, in 0.5 wt% manganese the amount
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of acicular ferrite and bainitic microstructure is less than in 2.0 wt% manganese.

Carbon | Manganese | Allotriomorphic | Widmanstatten | Acicular ferrite | Yield strength
(wt%) (wt%) ferrite ferrite and Bainite (MPa)
0.04 0.5 0.73 0.19 0.08 397
0.14 0.5 0.30 0.11 0.52 440
0.04 2.0 0.41 0.27 0.31 523
0.14 2.0 0.14 0.03 0.72 587

Table A.4: The microstructural fractions in carbon-manganese weld metal calculated using
physical model [90].

It is well known fact that nickel improves low temperature toughness by increasing the stack-
ing fault energy and making flow of dislocations easier, thereby discouraging cleavage fracture.
In Section 5.2 it was found that nickel improves low-temperature toughness at lower manganese
concentrations only. This was predicted by this model, Fig. A.16 shows that at lower manganese
levels both the strength and toughness are increasing. When comparing the effect of nickel in
0.5 wt% and 1.5 wt% manganese welds (Fig. A.17) at the same strength, an increase in nickel
concentration causes deterioration in toughness at higher manganese contents, whereas at lower
manganese content it improves toughness.

A comparative analysis was done between the predictions made by a previously Charpy
impact toughness model (Section 5.2) and the present carbon-manganese models. Figs A.18
and A.19 show that at lower manganese contents nickel is effective in improving the low-
temperature toughness. Here the error bars cannot be compared as their units are different.
This has shown that even though the Charpy impact toughness model was developed on a wide
variety of weld metals, it is able to fit a non-linear function for a particular system of weld
metals without affecting predictions over other classes of weld metals.

In weld metal, titanium forms oxides and protects boron (if added) from atmospheric oxy-
gen [145, 95]. These oxides act as nucleation sites for the formation of acicular ferrite. Titanium
being a strong carbide former, increases the strength by precipitation hardening. Fig. A.20
shows the expected trends, toughness was improved with initial small additions of titanium.

Oxygen forms oxide inclusions in weld metal, at low levels of oxygen in weld metal these
inclusions are beneficial in promoting acicular ferrite in the presence of oxide forming elements
such as titanium. At higher levels of oxygen, the increased density of oxides assists fast propaga-
tion of cracks, thereby reducing the overall ductility. Acicular ferrite microstructure offers more
resistance to crack propagation, therefore the crack has to travel a greater distance before it
reaches the critical length which leads to fracture. The effect of titanium in presence of varying

amounts of oxygen is shown in Fig. A.21. Initial small additions of titanium promote acicular
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ferrite, thus increasing toughness.

169



0.2 2.5 1.5
<) ?\i 2
> 0.15 % 3 N .
2 o s 1 -
~ »n 15 =z 8o
§ 01 2 c
— (@)] o —
© c =05
O 0.05 < n
=05
I
0
400 600 800 1000 400 600 800 1000 400 600 800 1000
Yield strength / MPa Yield strength / MPa Yield strength / MPa
5 5
0.05 : i 0.05 1000l -
) :
o 0.04 . 20.04 ° € 800 .
E > g .
: 0.03 3 E 0.03 ° E— 600 é i
> (@) G
= e ° e o 9% o
2_0.02 0 0.02 3 400 . odibow  ° .
> o 3 c 5,
0 = g8 e Ly A
0.01 a 0.01 E 200 o
0 0 ol— -
400 600 800 1000 400 600 800 1000 400 600 800 1000
Yield strength / MPa Yield strength / MPa Yield strength / MPa
200 o o %
NG %
- £ £ 600 "o o
E150 L, & S oo
Q_— o %8 o o“’on
o P ~ 400 *eo o o
~ 100} "°%, S 80°
c 0 > oo °
o o 2 c o5 .
o) e 'E 200 2, 0 .
m 50 B‘%@% ° =i uﬁgg:gs
o og’ % < A o
Y $‘:§E§°
0 SOOME 0 0 @ e R0 Reom 8 o
400 600 800 1000 400 600 800 1000 400 600 800 1000
Yield strength / MPa Yield strength / MPa Yield strength / MPa
1200 s 6
° ° 2 ®®
o o
£ 1000 s 3 . o U5 &
: = ° o a x
D_- ° ~ °© % 4 o + 4
o 8oof = 5, S oo o . 0
— R 2 o8 o ~ vo 08B0 o
° -] ° — 3
c o =t &° ® ° o [45) o
© 600 € ° X 0oo & o
= oo o ° 22 %
? o o000 % c1 u,:c CI] Dﬂc . zZ
O 4001 ¢ L e O can o o 1} o8
& ® 26 o 0 000
° B$%o ° o °
200 e o mo_a
400 600 800 1000 400 600 800 1000 400 600 800 1000

Yield strength / MPa

Yield strength / MPa

Yield strength / MPa

Figure A.1: The data distribution plotted against yield strength. ‘p.p.m.” corresponds to parts
per million by weight.
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Figure A.5: Characteristics of the ultimate tensile strength, elongation and reduction in area

models.

Test error

Test error

Test error

0.120

0.115

0.110

0.105

0.100

Predicted UTS/ MPa

5 10 15
M odelsin committee

1.075
1.050 |
1.025 |
1.000 |
0.975 |
0.950 |

0.925

0.1500

0.1475 ~
0.1450 ~
0.1425 ~

0.1400 ~

0.1375

5 10 15
M odelsin committee

20

174

1200

1000 -

800 -

600 -

400

400

600 800 1000 1200
Measured UTS/ MPa

40

30

Predicted elongation / %

20 30
M easur ed elongation / %

40

0]
o
L

[e2]
o
L

S
1

20 £

Predicted reductionin area/ %

20

40 60 80

Measured reduction in area/ %



2.5 60

+ ¢
0
(@)
2.0
_ 8 o
o -
o 15
B
|3 8 g0 -
l— — -
104 ° B
.U . L byttt Q‘__
-120 : \ ‘ \ ‘
05 — T
0 5 10 15 20 -120 -60 0 ] 60
M odels in committee Measured T,/ C
054 60 ;
o #
0.52 % ;
o 3 0 -
° -
T 050 U, 3
B ' ' . B
R - ) £ 60
0484 . &
-120 : \ ‘ \ ‘
0.46 — T
0 5 10 15 20 -120 -60 0 ] 60
Modelsin committee Measured T,g,/ "C

Figure A.6: Characteristics of toughness models, transition temperatures at 100J and 28J of
Charpy toughness.

175



il

il

14
12
0

0.2 1

duedYIUSIS

wniqoN

Jddo)

wnpeue A

WNUIPQATOIA

PPIN

wWnuoIy)

uddLxQ

UASONIN

wnunpy

uoJog

wnue)y,

snaoydsoyq

Jnyding

uodIs

Jsoueguey

uoqJre)

e HIOIN

0.6
0.5

duedYIudIS

oH

Jaddo)

wnipeueA

WNUIPYAIOIA

P¥PIN

wWNoIy)

WBAXQ

UAZONIN

wnunpy

uoJog

wnfue)ry,

snaoydsoyq

Jnyding

uodIs

Jsoueguey

uoqre)

Figure A.7: The perceived significance o,, values of yield strength committee models for each of

the inputs.

Figure A.8: The perceived significance o,, values of ultimate tensile strength committee models
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Appendix B

Design of Novel Weld Metals

A variety of commercial and experimental weld metals have been designed using the models
developed in the present work. This appendix shows two examples of alloys developed using the

models described in the thesis.

B.1 New Weld Design in Nippon Steel

The Nippon Steel Welding Company was able to develop novel high strength welding alloys
in response to customer demands, by calculating the effect of molybdenum on the strength of
welds and without doing any prior experiments. Kazutoshi Ichikawa (Nippon Steel, Japan) had
the task to develop weld metal for the manual metal arc welding (MMAW) and submerged arc
welding (SAW) processes for thick plates (upto 80 mm).

He demonstrated first that the models could predict the ultimate tensile strength of existing
alloys already marketed by his company to great accuracy, Fig. B.1. He needed to raise the
UTS to around 750 MPa so he chose to increase the molybdenum to 0.6 wt%. When the
actual weld was made, (Table B.1) and the results matched predictions. Thus Nippon Steel
Welding Products and Engineering Co. Ltd. was then able to commercialise and patent the

new electrode.

B.2 Further Applications

Scientists at ESAB AB (Sweden) have been searching for strong and tough weld metals for
submarine applications. Marimuthu [146] had designed welds for this purpose using the models
described in this thesis. The expected and actual results are tabulated in Table B.2. It is
heartening to find that the models are able to extrapolate to 9 wt% nickel even though the
maximum nickel concentration in the database used to create the models is 4.8 wt% (Table 4.1).

As a result of this work, an interaction has been discovered between manganese and nickel

which leads to a remarkable improvement in toughness. This has been demonstrated experi-
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Input variable MMAW
C (wt%) 0.078
Si (wt%) 0.38
Mn (wt%) 1.37
S (wt%) 0.003
P (wt%) 0.011
Ni (wt%) 0.64
Cr (wt%) 0.03
Mo (wt%) 0.57
V (wt%) 0.004
Cu (wt%) 0.012
Co (wt%) 0.0
W (wt%) 0.0
O (p.p.m.) 247
Ti (wt%) 150
B (p.p-m.) <3
Nb (p.p.m.) 30
Heat input(kJ mm ') 1.85
Interpass temperature (°C) 100
Tempering temperature (°C) 20
Tempering time (h) 0.0
Predicted UTS(MPa) 760
Measured UTS (MPa) 771

Table B.1: Comparison between the designed and experimental results of new weld metal de-
signed for Nippon Steels, Japan.

mentally but the details cannot be described here for commercial reasons.

B.3 Software

All the models and programs developed can be accessed on the world wide web;

YS and UTS models:

http://www.msm.cam.ac.uk/map/neural /programs/weldmetalyu-b.html

Elongation and Charpy impact toughness models:

http://www.msm.cam.ac.uk/map/neural /programs/weldmetalec. html

27 J Charpy toughness transition temperature model:
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Figure B.1: Effect of molybdenum on ultimate tensile strength.

http://www.msm.cam.ac.uk/map /neural /programs/weldmetal T27J. html

Temper embrittlement model:

http://www.msm.cam.ac.uk/map/neural /programs/weldmetal Emb. html

Analysis of electron diffraction patterns program:

http://www.msm.cam.ac.uk/map/crystal /programs/crystal2.html

187



Input variable Proposed | Actual
C (wt%) 0.030 | 0.030
Si (wt%) 0.29 0.35
Mn (wt%) 2.09 2.18
S (wt%) 0.012 | 0.007
P (wt%) 0.005 | 0.010
Ni (wt%) 7 7.2
Cr (wt%) 0.43 0.34
Mo (wt%) 0.59 0.63
V (wt%) 0.019 0.13
Cu (wt%) 0.03 0.03
Co (wt%) 0.0 0.009
W (wt%) 0.0 0.004
O (p.p-m.) 267 370
Ti (wt%) 0.014 | 0.013
B (p.p.m.) 0.0005 | 0.0006
Nb (p.p.m.) 0.0 10
Heat input(kJ mm ') 1.0 1.14
Interpass temperature (°C) 200 200
Tempering temperature (°C) 250 250
Tempering time (h) 14 14
YS (MPa) 814 £ 179 | 789

Table B.2: Comparison between the proposed and actual properties of C—Mn—Ni weld metal.
‘p.p.m.” corresponds to parts per million by weight.
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