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ABSTRACT

Additional, discontinuous functions are added to the displacement field of standard finite
elements in order to capture highly localised zones of intense straining. By embedding dis-
continuities within an element it is possible to effectively model localisation phenomena (such
as fracture in concrete) with a relatively small number of finite elements. The displacement
jump is regularised, producing bounded strains and allowing the application of classical
strain softening constitutive laws. It is then possible to achieve mesh-objective results with
respect to energy dissipation without resorting to higher-order continuum theories.
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INTRODUCTION

Recently, attention has been paid to so-called ‘embedded discontinuity’ models as a means to
overcome the limitations of smeared and discrete crack models. By capturing a crack within
an element, it is effectively possible to model a discrete phenomenon within a continuum
framework. Embedded discontinuities offer a hybrid approach between smeared and discrete
modelling.

The deficiency of discrete crack models is the dependence on mesh alignment, when sepa-
ration can occur only at elements interfaces. To remedy this, special, computer intensive



re-meshing techniques are required. The weakness of smeared crack models is their inherent
dependency on element size and alignment (Rots, 1988). Attempts to overcome element
size dependency through simple fracture energy regularisation are only partly successful, as
this method provides no information over crack direction nor is the necessary length scale
(so-called crack bandwidth) mesh objective. By embedding a discontinuity, direction infor-
mation is taken from stress or strain field and kinematic enhancements make elements more
able to properly reproduce the real deformation modes.

The application of gradient (de Borst et al., 1993) and non-local (Pijaudier-Cabot & Bažant,
1987) continuum theories has proved successful in overcoming the deficiency of the classical
continuum when analysing softening materials. However, the common feature of higher-order
models is the need for a fine mesh within the localisation zone in order to capture the high
strain gradients. This limits the potential of such methods for structural scale problems,
especially in three-dimensions.

Embedded discontinuity models can be placed broadly in two classes, weak and strong dis-
continuities. Weak discontinuities involve the addition of discontinuous modes to the strain
field while maintaining a continuous displacement field (Sluys & Berends, 1998). This ap-
proach avoids the need to deal with unbounded strains as a result of a displacement jump,
but the ability of such models to reproduce full crack separation in mode-I type problems is
questionable (Jirásek, 1998). The model developed here incorporates a strong discontinuity.
The common feature of strong discontinuities is that a jump is added in the displacement
field of a finite element (Oliver & Simo, 1994; Lotfi & Shing, 1995; Larsson & Runesson,
1996). The model developed here uses a specially constructed shape function to represent
the deformations at the discontinuity in conjunction with a specially constructed interpo-
lation function that is used in calculating the internal forces. This method is able to fully
represent the kinematics of the problem as well as neatly satisfy traction continuity across
the discontinuity.

STRONG DISCONTINUITY FORMULATION

Consider a body Ω that is crossed by a material dis-
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Figure 1: Body containing a discon-
tinuity

continuity (Figure 1). The body is composed of two
sub-domains, Ω+ and Ω−, that lie on either side of the
discontinuity Γd. In addition, a discontinuity band

(Ωd), centred on Γd and a sub-domain of Ω, is also
defined.

Discontinuous displacement field

The displacement field of a body containing a discontinuity can be decomposed into two
parts; a continuous (û(x, t)) and a discontinuous (HΓd

[u](x, t)) component. The jump in
displacement is provided via the Heaviside function (HΓd

), centred on the discontinuity,
operating on a continuous function [u](x, t). However, in the context of finite element imple-
mentation, this presents difficulties since both components must be taken into account when
imposing essential boundary conditions. A more suitable approach is to specially develop



the decomposition such that the contribution of the discontinuous component is zero on the
boundaries. Hence, only the regular, continuous part of the displacement field must be taken
into account.

u(x, t) = û(x, t) + (HΓd
− ϕ(x))[ũ](x, t) (1)

In (1), [ũ](x, t) is the magnitude of the discrete displacement jump at the discontinuity and
ϕ(x) is a continuous function that satisfies

ϕ(x) =

{
1 in Ω+\Ωd

0 in Ω−\Ωd (2)

The displacement decomposition is shown in Figure 2. The strain field can be easily found
by calculating the gradient of (1).

ε(x, t) = ∇
s
û + ((δΓd

nd − ∇
sϕ) ⊗ [ũ]) (3)

Note the appearance of the Dirac delta distribution (δΓ) in the strain expression. From the
inclusion of a displacement jump, the strain field at the discontinuity in unbounded.
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Figure 2: Displacement decomposition

Mixed variational formulation

To construct an element that incorporates a displacement discontinuity, it is necessary to
start from the variational formulation. It is useful to begin from a modified form of the
three-field variational statements that includes so-called enhanced strains (Simo & Rifai,
1990). The strain field is decomposed into a compatible (∇su) and incompatible (ε̃) parts,
yielding ∫

Ω
∇

s
η : σ(∇su + ε̃) dΩ− W ext(η) = 0

∫

Ω
τ : ε̃ dΩ = 0

∫

Ω
γ̃ : (−σ + σ(∇su + ε̃)) dΩ = 0

(4)

where (η, γ, τ ) ∈ (V × E × S) are all variations of displacements, strains and stresses
respectively with (V × E × S) the spaces of admissible displacement, strain and stress
variations.

In order to allow for a strong discontinuity, (4) must be further modified by decomposing the
enhanced strains into continuous (ε̃c) and a discontinuous (ε̃d) parts. Taking into account



that the discontinuous part of the enhanced strain field is non-zero only on Γd and using the
divergence theorem, (4) can be re-phrased allowing for a displacement jump

∫

Ω
∇

s
η : σ(∇su + ε̃) dΩ − W ext(η) = 0

∫

Ω
τ : ε̃c dΩ +

∫

Γd
(τνd) · nd dΓ = 0

∫

Ω
γ̃c : (−σ + σ(∇su + ε̃)) dΩ +

∫

Γd
[(−σ + σ(∇su + ε̃))ηd] · nd dΓ = 0

(5)

where νd is discrete displacement at the discontinuity and ηd is a variation of the discrete
displacement at the discontinuity.

From this point, there have been two different approaches. The first is the kinematic ap-
proach, where extra discontinuous shape functions are added to the element (Lotfi & Shing,
1995). This method is kinematically representative of the real deformations and allows
full separation at the interface, but leads to difficulties in imposing the traction continuity
conditions in (5)2, 3. The alternative is to use enhanced assumed strains (EAS), where the
enhanced modes are constructed in the strain space, orthogonal to the stress field, thereby
automatically satisfying (5)2 and eliminating the stresses from the unknown fields. This
approach allows traction continuity across the discontinuity to be easily satisfied, although
it is kinematically lacking with respect to the former approach.

The approach followed here is a hybrid between the kinematic and the EAS methods. The
kinematic approach is used to enhance the kinematic fields, while the EAS approach is used
in calculating the internal forces and hence impose the traction continuity (Oliver, 1996;
Wells, 1999).

Finite element implementation

The discretised form of the displacement and strain fields including a discontinuity, for time-
independent models, can be written as follows

u(x) = Na(x)ae + Nα(x)αe (6)

ε(x) = B(x)ae + G(x)αe (7)

where Na and B are the normal displacement and strain interpolation matrices respectively,
Nα and G (gradient of Nα) collect the interpolation functions for the enhanced displacement
and strain fields respectively, ae are the nodal displacements and αe are the displacements
associated with the enhanced modes at the discontinuity. The matrix G for an element
can be constructed by examining the enhanced part of the kinematic strain field (3). In
two-dimensions this gives

Ge =






δΓd
nx −

∂ϕ(x)
∂x

0

0 δΓd
ny −

∂ϕ(x)
∂y

δΓd
ny −

∂ϕ(x)
∂y

δΓd
nx −

∂ϕ(x)
∂x




 (8)

Next, attention must be paid to the traction continuity condition. The orthogonality condi-
tion (5)2 means that (5)3 can be rephrased as

∫

Ω

γ̃c : σ(∇su + ε̃) dΩ +

∫

Γd

(σ(∇su + ε̃) ηd) · nd dΓ = 0 (9)



Considering that (5)2 must apply for each element gives
∫

Ωe

γ̃ : τ dΩ =

∫

Ωe\Γd

γ̃c : τ dΩ +

∫

Γd,e

(τ ηd) · nd dΓ = 0 (10)

For a straight discontinuity (that is, nd is constant), a piecewise constant strain field and
taking into account that in order to pass the patch test (Taylor et al., 1986), (10) must hold
for an arbitrary constant stress field, (10) can be integrated explicitly.

Aeγ̃c = −le(nd ⊗ ηd) (11)

Rearranging (11), an expression for the strain field outside the discontinuity can be found.

γ̃c = −
le

Ae

nd ⊗ ηd (12)

For the two-dimensional case, le is the length of the discontinuity through the element and Ae

is the area of the element. For the three-dimensional case, le is the area of the discontinuity
plane through the element and Ae is the volume of the element.

Taking the traction continuity condition (9), which must also apply for each element, and
now expressing σ(∇su + ε̃) as σ(ε)

∫

Ωe

γ̃c : σ (ε) dΩ +

∫

Γd

(σ(ε) ηd) · nd dΓ = 0 (13)

Substituting the continuous part of the enhanced strain field (12) into (13)
∫

Ωe\Γd

(−
le

Ae

nd ⊗ ηd) : σ (ε) dΩ +

∫

Γd

(σ(ε) ηd) · nd dΓ = 0 (14)

Now using properties of the Dirac-delta distribution
∫

Ωe\Γd

(−
le

Ae

nd ⊗ ηd) : σ (ε) dΩ +

∫

Ωe

δΓd
(σ(ε) ηd) · nd dΩ = 0 (15)

Equation (14) can be rearranged to express the traction force on the discontinuity and in
the bulk of the element.

1

Ae

∫

Ωe\Γd,e

σ(ε)nd dΩ

︸ ︷︷ ︸

average on Ωe\Γd

=
1

le

∫

Γd,e

σ(ε)nd dΓ

︸ ︷︷ ︸

average on Γd

(16)

For constant strain elements (three-noded triangle and four-noded tetrahedron), the constant
strain field assumption used to find (12) is exact, so the average tractions (16) are also the
exact solution. For higher order elements, the traction continuity requirement is imposed in
an average sense.

For finite element implementation, it is necessary to form an interpolation matrix (G∗) for
calculating the internal force vector associated with the degree of freedom at the disconti-
nuity.

f int =

∫

Ω

{
BT

σ

G∗T
σ

}

dΩ =

{
f int
u

f int
α

}

(17)



Taking variations of ηd in equation (15), a special interpolation matrix G∗
e can be formed

G
∗
e =

(

δΓd
−

le

Ae

)

nd (18)

where for two-dimensional problems the, the matrix nd is

nT
d =

[
nx 0 ny

0 ny nx

]

(19)

From the virtual work equation, the element stiffness matrix can then be formed

∫

Ωe

[
BT

e DBe BT
e DGe

G∗T
e DBe G∗T

e DGe

]

dΩ

{
ȧe

α̇e

}

=

{
ḟ int
u,e

0

}

(20)

As with EAS methods, the enhanced, incompatible modes can be statically condensed at
element level. This makes the method simple to implement in existing finite element codes.
Notice that the hybrid approach, in general, results in a non-symmetric element stiffness
matrix, irrespective of the constitutive model applied.

The final step to apply the method numerically is to deal with the Dirac-delta distribution.
Since unbounded strains do not fit with numerical implementation, nor with continuum
constitutive laws, the Dirac-delta distribution is regularised with a function that satisfies
the necessary integration properties of the distribution.

δΓ ≈
1

k
(21)

As k → 0, the approximation (21) approaches the exact solution.

NUMERICAL EXAMPLES

The following example has been analysed with the embedded discontinuity and smeared
Rankine models for two unstructured meshes of different densities. The underlying element
is a three-noded triangle and a Rankine plasticity constitutive law with exponential softening
has been applied. The specimen is taken from Berends et al. (1997) and the material parame-
ters are: E = 10×103MPa, ν = 0.2, fct = 1.0MPa, Gf = 0.02N/mm2 and k = 1.0×10−7mm.
It can be seen in Figure 3 that the embedded model gives indistinguishable results for the
two meshes, while conventional Rankine model with fracture energy regularisation gives a
difference in total energy dissipation for the two meshes. The deformed meshes for the
embedded analysis are also shown in Figure 3.

CONCLUSIONS

The embedment of discontinuities can be successfully applied to overcome mesh dependence
in softening problems. It is also a promising technique to model curved cracking via classical
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Figure 3: Load-displacement and deformed meshes (with rotating discontinuity)

continuum laws, which has not been successful using smeared approaches. Since the discon-
tinuous modes are incompatible and continuum constitutive laws are applied, the method
can be easily implemented in existing finite element codes. However, some care must still
be taken when applying continuum relationships that spurious stress states to do not de-
velop (plasticity) and robustness is not severely compromised when calculating a consistent
tangent (damage).
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