CAMBRIDGE UNIVERSITY LIBRARY

Attention is drawn to the fact that the copyright of this dissertation rests with its author.

This copy of the dissertation has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author. In accordance with the Law of Copyright no information derived from the dissertation or quotation from it may be published without full acknowledgement of the source being made nor any substantial extract from the dissertation published without the author's written consent.

AN ARCHAEOLOGICAL STUDY OF
 BAKING AND BREAD
 IN NEW KINGDOM EGYPT

Volume 2

Delwen Samuel

A dissertation submitted for the degree of PhD.

Darwin College, University of Cambridge
January, 1994

LIST OF APPENDICES

Appendix A: Installations and artefacts related to cereal processing and baking at the Workmen's Village, Amarna.

Appendix B: Installations and artefacts related to cereal processing and baking at Deir el-Medina.

LIST OF TABLES

1.1: A theoretical framework for the archaeological study of food provision.
2.1: Published baking scenes from New Kingdom tombs.
2.2: Flow charts of baking as interpreted from primary sources by Wreszinski (1926), Klebs (1934) and Vandier (1964).
2.3: Flow charts of ancient Egyptian baking as presented in some selected general accounts.
3.1: Wheat starch granule loss of birefringence in excess water over a range of temperatures.
5.1: Dimensions of ancient limestone mortar used in emmer processing experiments.
5.2: Proportion of chaff and grain in emmer spikelets.
5.3: Flow chart of experimental emmer processing from stored spikelets to flour.
6.1: Ancient Egyptian bread loaves examined, and mode of analysis.
6.2: Ancient Egyptian bread form and macroscopic structure.
6.3: Ancient Egyptian loaf shape categories.
6.4: Observations of ancient Egyptian bread specimens using high power optical microscopy with transmitted and polarizing light, and iodine staining, of wet mounts.
6.5: Observations of ancient Egyptian bread specimens using scanning electron microscopy.
6.6: Sugar content of loaf 001.
6.7: Characterization of loaves studied with optical and scanning electron microscopy according to the models proposed in Ch. 6.V.
6.8: Finds of ceramic platters from houses in the North Suburb and the houses of the Workmen's Village at the site of Amarna.

LIST OF FIGURES

2.1: A baking scene from the tomb of Nebamun at Thebes (\#17).
3.1: The major components of the ears of emmer, free threshing wheat, and barley.
3.2: The major components of the cereal grain.
3.3: Part of an emmer grain aleurone cell.
3.4: The structure of the glucose molecule.
3.5: The structure of amylose.
3.6: The structure of amylopectin.
3.7: The different stages of starch gelatinization as seen with the scanning electron microscope, according to the scale devised by Rockland et al. (1977).
3.8: A simplified view of the different amylase enzyme actions which occur in the germinating cereal grain.
3.9: Events which occur in the bread loaf during modern baking.
4.1: Recording sheet used to note details of ancient Egyptian bread loaves.
4.2: The drying regime of emmer grain in the spikelet, prepared as comparative material.
4.3: The starchy endosperm of modern raw emmer grain, seen with scanning electron microscopy.
4.4: The starchy endosperm of modern emmer grain after the spikelet was exposed to dry heat.
4.5: The starchy endosperm of modern emmer grain which had been soaked and heated in the spikelet.
5.1: Plan of the houses of the Workmen's Village, Amarna.
5.2: Plan of the houses of the Workmen's Village, Deir el-Medina.
5.3: An ancient deep sieve found at Deir el-Medina.
5.4: An ancient shallow coiled basket found at Deir el-Medina.
5.5: An ancient deep coiled basket found at Deir el-Medina.
5.6: An ancient coiled basket found at Dra' Abu el-Naga'.
5.7 Experimental ancient limestone mortar.
5.8: The ancient quern emplacement from Gate St. 8, Amarna.

LIST OF FIGURES (continued)

5.9: Experimental emmer processing: picking through the spikelets by hand.
5.10: Experimental emmer processing: the waste items removed by hand sorting of emmer spikelets.
5.11: Experimental emmer processing: the spikelets after hand cleaning.
5.12: Outlines of the base of the ancient pestle and the base of the replica pestle.
5.13: Replica wooden pestle.
5.14: Experimental ancient mortar emplaced in the ground ready for pounding.
5.15: Experimental ancient mortar, with spikelets and water.
5.16: The change in volume of unpounded and pounded spikelets.
5.17: Pounding the emmer spikelets in the ancient limestone mortar with the replica wooden pestle.
5.18: A selection of some of the material which scattered out of the mortar during pounding.
5.19: The emmer spikelets after pounding.
5.20: The pounded emmer spikelets drying in the sun.
5.21: The modern coiled basket used for winnowing, and dried, pounded spikelets ready to be winnowed.
5.22: Diagram of the initial winnowing movement used to separate the emmer chaff and grain in the basket.
5.23: The result of the initial winnowing movement.
5.24: Diagram of the second winnowing movement.
5.25: Result of the second winnowing movement.
5.26: Diagram of the third winnowing movement.
5.27: Result of the third winnowing movement.
5.28: Diagram of the fourth winnowing movement.
5.29: Removal of the fine chaff from the basket.
5.30: The material remaining in the basket after most of the light chaff has been winnowed out.
5.31: The separation of grain from spikelets and most of the other heavy chaff after the removal of the light chaff.

LIST OF FIGURES (continued)

5.32: The separation of clean grain from heavy chaff and spikelets.
5.33: The chaff left in the coarse sieve after removal of the whole grain.
5.34: A sample of clean grain.
5.35: An ancient granite quern stone used for experimental grinding.
5.36: The ancient quartzitic sandstone hand stone used for experimental milling.
5.37: Experimental grinding.
5.38: Diagram of the diagonal motion across the quern stone.
5.39: Coarsely ground flour on the quern.
5.40: Finely ground flour on the quern.
5.41: Experimentally produced emmer flour.
5.42: Plan of NE.V, Deir el-Medina.
5.43: Plan of NE.VIII, Deir el-Medina.
5.44: Plan of Long Wall St. 7, Workmen's Village, Amarna.
5.45: Plan of Main St. 5, Workmen's Village, Amarna.
5.46: Plan of East St. 10, Workmen's Village, Amarna.
5.47: Plan of part of the Central City, Amarna.
6.1: A selection of bread loaves from the tomb of Kha.
6.2: Another selection of bread loaves from the tomb of Kha.
6.3: Sketch of loaf 023, from Deir el-Medina, now in the Louvre, an example of a crater loaf.
6.4: Sketch of loaf 028 and loaf 029.
6.5: Some bread from the tomb of Kha.
6.6: More bread from the tomb of Kha.
6.7: Flat bread from the tomb of Imhotep (QV 46).
6.8: Starch microstructure in loaf 017.
6.9: Frass (insect excreta) in bread specimens.
6.10: Some examples of fungal hyphae on ancient bread.
6.11: Evidence for enzyme attack on starch in ancient Egyptian

LIST OF FIGURES (continued)

bread.
6.12: Starch from loaf 014.
6.13: Starch from loaf 023.
6.14: Modern yeast cells.
6.15: A yeast cell in the matrix of loaf 024.
6.16: Possible yeast cells in loaf 014.
6.17: Possible yeast cells in loaf 021.
6.18: Possible yeast cells in loaf 029.
6.19: Experimental round oven.
6.20: Heating the experimental oven in preparation for baking.
6.21: Raw emmer cakes made from experimentally ground flour.
6.22: Experimental emmer bread baking in the oven.
6.23: Experimental emmer loaves after baking.
6.24: A plan of the whole site of Amarna.
6.25: An example of the long, narrow, tapered New Kingdom bread mould.
6.26: Plan of the Central City and part of the Main City at Amarna.
6.27: Two examples of typical ceramic platters from Amarna.

APPENDIX A: INSTALLATIONS AND ARTBPACTS RBLATBD TO CEREAL PROCESSING AND BARIMG AT TBR WORKMEN'S VILLAGE, AMARNA

Sources:
PEBT, T. Bric, and C. Leonard WOOLLEY (1923) The City of Akhenaten. Part I. Brcavations of 1921 and 1922 at el-'Amarneh. London: Bgypt Exploration Society.

KBMP, Barry (ed.) (1986) Amarna Reports III. London: Bgypt Exploration Society.
KEMP, Barry (ed.) (1987) Amaraa Reports IV. London: Egppt Exploration Society.

CEREAL PROCESSING AND BAKING ARTBPACTS/INSTALLATIOHS LISTED BY HOOSB

The location of finds are listed by houses, accompnied by a brief description of room location and installation where such information is provided (wording of publication retained).
[WV, 00] - refers to the page number fron Peet and Woolley, 1923;
[K86, 00] - refers to the page nuber from Kemp, 1986;
[K87, 00] - refers to the page number froa Kemp, 1987.
(A / B) - refers to house type: $A=$ stairs at rear of house; $B=$ stairs at front of house.

Sieves

East St. 12 (B): front hall, palm-fibre sieve, 33 cm diameter, 22/51. [WV, 72]
Gate St. 12 (B): kitchen, circalar sieve, edging of palm fibre bound with paln leaf, mesh with a web of palm fibre crossed by warp of palm leaf, 21 cil diameter, $21 / 301$; fragments of 1 similar sieve, 21/401, fragment similar sieve, raised edges of pala leaf, resembling shallow basket with sieve bottom, 21/405. [WV, 74]
Main St. 8 (A): front hall, 23.5 cm diameter, 22/103. [WV, 79]

Mortars and possible mortars

Main Street: outside $\# 1$, stone mortar let into groand as jar stand. [WV, 68]
Main Street: opposite $\frac{z}{z} 4$, store bowl rimand with stones and mod, found with jar in position. [WW, 68]
Main Street: opposite \#8, jar stand consisting of stone bowl with mud rim 0.40 m high. [WV, 68]
West Street: outside 15 , stone bowl (jar stand) let into ground with remains of built stone rin around it. [WV, 69]
East St. 1: in centre of floor of south west corner of site, a depression, diameter $0.45 \mathbb{m}$ by $0.25 \mathbb{a}$ deep, for a stone bowl? [W, 70]
East St. 10 (B): Into floor is let a mortar of hard white limestone. [WV, 64; Pl. XVII \#6]
East St. 11 (B): front hall?; let into the paving, an hoor-glass-shaped stone ring-stand, 0.20 m high by 0.25 a : a second, 0.20 a high by 0.16 a diameter, found on and floor just outside paved area. [WW, 72]
East St. 12 (B): front hall, set amongst these stone mortar, 0.20 m diameter, by 0.12 m deep. [WV, 72]
Gate St. 9 (A): front room south; originally set in floor, placked out by pillagers. [K87, 32]
Gate St. 11 (B): living room; hour glass shaped vase-stand of limestone. [WV, 73, PI. XIV, $\ddagger 6$]
Main St. 1(B): kitchen; mortar let into floor. [WV, 75]
Main St. 2 (A): front hall?; no description, plan suggests mortar found. [WV, 75]
Main St. 6 (A): front hall; stone mortar 0.20 a deep. [WV, 77, Pl. XVII, \#5]
Main St. 7 (A): front hall; against south wall stone mortar sunk in floor with raised mud rim 0.40 an high; diameter 0.45 m , let into floor near front door, a stone pot stand, bowl shaped, and another against south jam of door to living room; living roon; stone pot stand let into floor. [WV, 78]
Main St. 8 (A): front hall; shallow stone circalar bowl, loose find. [WV, 79]

APPENDIR A continued.
Mortars and possible mortars, continued
Main St. 9 (A): front hall; stone circular bowl, diameter $0.24 \mathrm{~m}_{\text {, }}$ loose find. [WV, 80]
Main St. $10(B):$ front hall; stone mortar sunk flash with floor, near front door, stone jar stand sunk in floor with mud rim around it $0.35 \mathbb{a}$ high, incomplete on north side, by the side of this openiag 0.15 a wide is peg driven into floor and projecting 0.18 a. [WV, 80]

Main St. 11 (A): front hall; shallow limestone mortar, diameter 0.20 m , depth 0.12 m , loose find. [WV, 81]
Main St. 12 (B): front hall; stone mortar, diameter 0.23 a, depth 0.12 m. [WV, 82]
Loog Hall St. 2 (B): kitchen; sunk in floor. [WV, 83]
Loog Wall St. 6 (A): front room, $52 \times 29 \mathrm{ca}$. [unpublished]
Long Wall St. 7 (A): front hall; stone nortar let into floor and flanked with large stones 0.30 whigh - probably jar stand. [WV, 83, Fig. 12]

Long wall St. 8 (A): front hall; stone bowl (jar stand) let into floor and rimed with stone and mad 0.40 a nigh. [WV 84]

Long Wall St. $9(A)$ front hall; stone mortar sunk in floor. [WV, 84]
Long Wall St. 10 (A): front hall; stone mortar sunk in floor; living room; limestone mortar, loose find. [WV, 84, 85]
Long Wall St. 11 (A): front hall; stone mortar suok in floor. [WV,85]
Hest St. 2/3: front room; set with mud brick and mad plaster. [$\mathrm{K} 87,8-9$]
West St. 16 (A): front hall; stone mortar sonk in floor, kitchen; circular shallow stone mortar, diameter 0.30 m , loose fiad. [WV, 87]
West St. 17 (A): front hall; stone bowl (jar stand) sank in floor. [WV, 88]
Hest St. 18 (A): kitchen/staircase; stone mortar sunk flush with floor. [WV, 88]
West St. 20 (A): front hall; mortar sunk in floor. [WV, 89]
Hest St. 22 (A); front room; stone mortar sunk in floor, [WV, 90]
Hest St. 24 (A): front hall; stone boul (jar stand) let into floor. [WV, 91]

Pestles

Wood:
Main Street: opposite $\# 8$, wooden pounder. [WV, 68]
Main St. 6 (A): front hall; wooden pestle, 22/149. [WV, 77, 78]
Main St. 8 (A): living room, wooden pounder; kitchen/staircase, wooden pounder [WW, 79]
Main St. 9 (A): front hall; wooden pestle. [WV, 80]
West St. 13 (A): front hall; wooden pestle, 0.55 п long. [WV, 86]
Stone:
East St. 1: s-e corner, 2 stone pounders. [WV, 70]
Main St. 10 (B): kitchen; granite pounder. [WV, 81]
Long hall St. 1 (B): kitchen; stone poonder. [WV, 82]

Quern emplacements

Identification fairly definite:

East St. 1: south vest room; doable fireplace, line plastered. [WV, 70]
East St. $10(B):$ front hall; square bearth $0.30 \mathbb{I}$ high, north of this a square hob $0.35 \mathbb{I}$ above bed of hearth. [WV, 71]
East St. 11 (B): kitchen; hearth 0.35 a high, cement coated: between it and west wall a shallow bin cement lined. [WV, 72]
Gate St. 8 (A): front rool soath; top destroyed. [K86, 3, 5]

Quern emplacements, continued

Gate St. 11 (B$)$: kitchen; pedestal of brick of usual type with two shallow elliptical depressions in upper surface, whole whitewashed. [WV, 73]
Yain St. 1 (B): kitchen; bin 0.20 a high, inner angles rounded of and face lime-plastered. Mext to it, box-hearth 0.55 a high, top heavily lime-plastered, having two shallow troughs lying north by south with a flat hob between. The outline of the sooke-blackened patch on the wall abore suggests that the bou-hearth was originally a vaulted oven. [WV, 75]
Main St. 4 (A): front hall; square brick bin (or hearth?) lime-plastered, the top divided into three shallow compartaents: south of this a shallow bin formed by lime-plastered mud coping. [WV, 76]
Main St. $5(B)$: Kitchen; corious round fronted hearth 0.30 m high, top divided into 3 depressions; nest to it an enclosure made by a low curped mad coping. Walls originally lime washed, later mod plastered. [WV, 77, Fig. 11]
Maia St. 6 (A): front hall; double enclosare 0.35 m high the north compartment of brick, probably a hearth, the south compartment a bin (?) with as base a (broken) clay dish, diameter 0.55 m . [WV, 77]
Main St. 7 (A): front hall; remains of bor hearth, wall face above saoke blackened. [Wv, 78]
Main St. 9 (A): front hall; square vaulted bin or oren 0.35 a high, north of it a lime plastered bin 0.15 a high. Fireplace in south east corner (?). [WW, 79]

Main St. $10(B):$ front hall; box hearth 0.40 a high and lime plastered bin 0.15 m high. [WV, 80]
Main St. 11 (A): front hall; bor hearth 0.40 a high and bin 0.10 migh. [WV, 81]
Long Wall St. $2(\mathrm{~A}):$ kitchen; bos hearth 0.40 a high and bin 0.10 a high. [WV, 83]
long Wall St. 6 (A): front roon; auch destroyed. [uapoblished]
Long Wall St. 7 (A): front hall, double manger or bin with stone step in front of the south compartaent. [WV, 83]
Long fall St. 8 (A): kitchen; box hearth lime plastered above, in s-w corner, remains of bin also lime plastered. [WV, 84]
Long wall St. $9(A):$ front hall south; against north wall, box hearth (late addition); in north west corner a bin liae plastered 0.85 a high. [WV, 84]
Long wall St. 10 (A): front hall; bin 0.15 m high; lime washed inside, aeat to it a fireplace $0.25 \mathbb{a}$ high open to south. [WV, 84]
Long Wall St. 11 (A): Against north wall a brick bin 0.60 m high, in north east angle bin only $0.05 \mathbb{a}$ high. In north east corner a solid block 0.40 a high. (Description not consistent) [WV, 85]
Long Wall St. 12 (A): kitchen/staircase; trongh fireplace in centre 0.55 m high, lime plastered inside; bin north of it fall of barley hasks. [WV, 86]
West St. 2/3: western end of soath anaeze; top destroyed. [K87, 5]
West St. 13 (A): front hall, against south wall, brick manger (?), in south east corner brick platforn 0.05m high. [WV, 86]

West St. 15 (A): kitchen; trough fireplace 0.35 m high, with shallow bin against its west side, both liae plastered. [WV, 87]
West St. 16 (A): front hall; against north wall, bor hearth 0.20 a high, in north east corner stone platform for bin. [WV, 87]
West St. $17(A)$: front hall; against sonth wall boz hearth with remains of shallow bin in south west corner. [WV, 88]
West St. $18(\mathrm{~A})$: kitchen; against east wall, solid brick hearth and shallow bin in north east corner. [WV, 88]
West 5 . 19 (A): front hall; boz hearth 0.25 a high; in south west corner low-fronted bin; both lime plastered. [WV, 88]
West St. 20 (A): front hall; box hearth 0.50 migh, lime plastered; in north east corner shallow bin, lime plastered. [WV, 89]

APPENDIX A continued.
Quern emplacements, continoed
West St. 21 (A): front hall; against south wall bor hearth $0.40 \llbracket$ high, and in south west corner low fronted bin, both line washed. [WV, 89]
West St. $22(\mathrm{~A}):$ front roon; boz hearth 0.40 a high. In aorth east corner, shallow line plastered bin. Lide plaster also on wall face above hearth. [WV, 90]
West St. 23 (A): kitchen; box hearth 0.50 m high and shallow bin in north west corner. [WV, 90]

Identification uncertain:

East St. 12 (B): kitchen; against south wall, bor hearth with stoke hole in west side. [WV, 73]
Main St. 12 (B): front hall; boz hearth, no other bin beside, no description, plan unclear. [WV, 82]

Loose quern stones

Main St. 6 (A): front hall; flat granite rabbing-quern 0.45a by 0.20m. [WV, 78]
Main St. 8 (A): front hall; flat saddle quern red sandstone 0.34n by 0.18m. [Wv, 79]
Gate St. 9 (A): high in fill; $2 / 3$ fragment quartzitic sandstone. Find 6634, in unit |2075|. [unpublished]
Long wall St. 6 (A): surface level; coaplete red-brown quartzitic sandstone 31.5 : 16 : 8.4 cm , find 49. [unpublished]

West St. 2/3: western end of sourth annere; complete grey quartzitic sandstone. Find 17,544, in unit |2760|. [anpablished]
West St. 18 (A): kitchen/staircase; flat quern. [WV, 88]
West St. 19 (A): staircase; rough millstone. [WV, 89]
West St. 20 (A): front hall; stone quern. [WV, 89]

Ovens

East St. 10 (B): kitchen; 0.70 migh, dianeter 0.37 m. [WV, 71]
East St. 12 (B): kitchen; oren 1.00 an high. [WV, 73]
Gate St. $11(B):$ kitchen; fuel still in position and a charred stick. [WV, 74]
Main St. 4 (A): kitchen; pot-lined oven with solid wall-continuation to south. [WW, 76]
Main St. 5 (B): kitchen; pot lined. [WV, 77]
Main St. 6 (A): kitchen; no trace of oven, but walls smoke blackened in patches. [WV, 78]
Main St. 8 (A): kitchen/staircase; oven 0.80 m high; shallow impression in hob to sonth apparently used as charcoal grate (charcoal found beside it and in cupboard below stairs.) [WV, 79]
Main St. 9 (A): kitchen; plastered walls completely smoke blackened. Sonth east corner two pot lined ovens 0.50 a and 0.60 a high. Much charcoal in ovens, room deep in ashes and barnt straw. [WV, 80]
Main St. 10 (B): kitchen; pot lined oven. [WV, 81]
Main St. 11 (A): kitchen/staircase; pot lined oven foll of ashes. Whole floor of roon covered with layer straw ash 0.60 a thick, and clean sand above. [WV, 82]
Long Wall St. 6 (A): rear room north. [unpablished]
Long Wall St. 7 (A): kitchen; pot lined oven $0.75 \llbracket$ high. Against n wall, stone base of open hearth, wall blackened above. [WV, 83]
Long Wall St. $8(\mathrm{~A})$: froat hall; circular oven 0.60 m high; ashes 0.05 n thick all over this part of floor. [WV, 84]
West St. 13 (A): kitchen; pot lined oven. [WV, 86]
West St. 16 (A): kitchen; pot lined oven. [WV, 87]
West St. 20 (A): kitchen/staircase; pot lined oven 0.80 a high [WV, 89]
West St. 24 (A): kitchen/staircase; pot liaed oven (0.80 a high) [WV, 91]

APPENDI A continved.
hOASES GRODPED ACCORDING TO PRESEHCE/ABSENCE AND LOCATION OP INSTALLATIOHS

Mortars		
Type A (back staitcase)	Type 8 (front staircase)	Other
FRONT	FROMT	
Gate St. 9 West St. 20	Main St. 10	Bast St. 1 (south west corner)
Main St. 6 Hest St. 22	Main St. 12	Hest St. $2 / 3$ (front room; south annexe)
Main St. 7 West St. 23	Bast St. 12	
Main St. 8 West St. 24		
Main St. 9		
Main St. 10		
Long Wall St. 6		
Long Wall St. 7		
Long Wall St. 8		
long Wall St. 9		
Long Wall St. 11		
BACK	BACK	HOT PDLLY EXCAVATED OR DESCRIBED, TERREFORE DKKNOWN
West St. 18	East St. 10	
	East St. 11 ?	Gate St. 11
	Main St. 1	Gate St. 12
		Main St. 2
		Long Wall St. 1
		West St. 15
OTBER	OTEER	NOME POOND
Main St. 7		Gate St. 8
Long Wall St. 2		Main St. 3
Long Wall St. 10		Main St. 4
Hest St. 16		Main St. 5
		Long Wall St. 12
		West St. 13
		Hest St. 19
		$\text { West St. } 21$
		Mest St. 26

APPENDIX A continued.

RELATIONSHIP OF QUERN EMPLACEMEMTS TO MORTARS
Quern emplacement at front:

Mortar at front	Mortar at back	Both back and froat	No mortar/mortar outside
Main St 6 (A)	East St. 10 (B)	West St. 16 (A)	
Main St 7 (A)			Gate St 8 (A)
Main St 9 (A)			Main St 4 (A)
Main St 11 (A)			West St 13 (A)
Long Wall St 6 (A)			West St 19 (A)
Loog Wall St 7 (A)			West St 21 (A)
Loog Wall st $g(A)$			West St 26 (A)
Long wall St 10 (A)			
Long Wall St 11 (A)			
Hest St 17 (A)			
West St 20 (A)			
West St 2? (A)			
Main St 10 ($\mathrm{B}^{\text {) }}$			
Main St 12 (8)			

Quern eaplacement at back:

Mortar at front	Mortar at back	Both froot and back	No mortar/mortar outside
Long Wall St 8 (A) [West St 23 (A)]	Long Wall 2 (A)	East St 11 (日)	Long Wall 12 (A)
	West St 18 (A$)$		West St 15 (A)
	Main St 1 (B)		Main St 5 (8)

* probably not functioning as a house at end of village occupation

APPENDIX A continued.
Quern emplacements

qe $=$ quern emplacement; $q s=$ quern stone

qe 6 qs	no qe, qs	no ge, no qs
Main St. 6 both front hall	St. 8, front hall	Bast St. 12
Mest St. $2 / 3$ western part of		Gate St. 9
s. annexe		Main St. 3
West St. 13 both frout hall?		West St. 24
Nest St. 18 both kitchen		
West St. 19, gs stairs,		
ge front hall		
Mest St. 20 front hall		
Dacertaln: Gate St. 12, Main St. 2, Long Wall St. 1 Eaplacement, no quern stone: remainder		

APPENDIX B: IMSTALLATIOHS AND ARTEPACTS RELATED TO CEREAL PROCBSSING AND BAKIMG AT DEIR BL-MEDINA.
Source:
BROYERE, Bernard (1939) Rapport sur les fouilles de Deir el-Medineh (1934-1935). Troisième partie: Le village, les déchargees publignes, la station de repos du col de la pallee des rois. Cairo: Institut Français d'Archéologie Orientale.

CEREAL PROCESSING AND BAKING ARTEFACTS/[MSTALLATIONS LISTED BY BOOSE

The location of finds are listed by house, accompanied by a brief description of roon location and installation where such information is provided (wording of pablication retained). [D] - indicates that the house was been damaged or destroyed prior to excavation. [000] - refers to the page number (in sone cases, also plate and figure) on which each entry can be found in the poblication.

Plaited mats, sieves
(WB: No description is provided for this type of artefact, and there is no way to assess whether these finds are associated with cereal processing or not. They are included for the sake of completeness.)

NE.VII: room II, a plaited rush mat. [251]
HE.XVI: [D] In the region of the last 5 hooses of the NE quarter and the first 3 houses of the $S E, a$ large quantity of objects were recovered throughout this area including palm and rush baskets, coarse sieves, and winnowing baskets. [262]
SE.VIII: cellar, willow basket. [276]
NH.VI: room II cellar, containing plaited halfa grass mat. [282]
NW. RXV: several baskets. [299]
NW.XXVI: [D] roon III, straw mats. [299]

Querns and quern emplacements

Quern emplacements, described as 'kneading trough' in pablication.
NE.II: room 3, traces in north-east corner. [243]
NE.III: kitchen 1 , traces near the entrance. [244]
NE.V: kitchen, well preserved, brick, six coats whitewash [250, Pl. XIII, upper left, upper right]
NR.VIII: kitchen. [252]
HR.RIV: room 1, brick, whitewashed several times. [260, Pl. XIII, lower right, fig. 24]
HR.XIX: [D] south-east roon, three coats whitexash. [263]
SE.II: kitchen. [266]
SB.IV: [D] kitchen, traces. [269]
NLII: room at end of passage, remains with four lapers whitewash. [280]
NH.IX: kitchen. [284]
NU.XII: kitchen. [287]
C.II: [D] room 1. [302, PI. XIII, lower left]

APPENDIX B continued.
Quern stones.
NE.I: location not stated, hand stone and grain grinding stones. [243]
NE.V: Kitchen, stone to grind grain. [250]
NE. RIII: location not stated, fragments of granite grinders and kneading slabs. [260]
NE.XIV: location not stated, pink granite grinding slab. [260]
NB. KVI: [D] from the region of the last 5 houses of the N.E. quarter, and first 3 of S.B., black or pink granite grinding and airing slabs. [262]
SE.IX: [D] location not stated, granite kneading slabs. [276]
Nh. RII: location not stated, elongated oval pink granite grinding slab. [287]
C.I: location not stated, granite grinders. [302]
C.IV: apparently various rooms of the house, (2-several) granite grinding slabs. [304]

SW.V: kitchen III, elliptical black granite grinding stone. [328]

Mortars (numerals refer to nuaber found)
NE.II: rooz III, 3 set into ground. [243]
NE.III: kitchen 1,2 in floor surrounded by margin of little stones. [244, Pl. VIII, upper left]
NE.IV: kitchen [not mentioned in text, marked on plan]
NE.V: kitchen, 1. [250, P1. XIII, upper left, apper right]
NE.VI: roon II, beneath staircase, 1. \{251\}
NE.VII: roon H, 2 round, 1 square. [251]
NE.VIII: kitchen, 2. [252]
NE.IX: kitchen, 2. [253]
NE. X: kitchen, 2. [255]
NE.XI: roon III, 1 (+ 1?, location not stated) [256, 257]
NE.XIII: room IV, fragments of mortars. [259, 260]
NE.XIV: location not stated, 1. [260]
NE.XVI: [D] cabbyhole under stairs, 1. [262]
NE.XIR: [D] sonth-east corner roon, 2. [263]
SE.I: north-east room, 2. [not mentioned in text, marked on plan]
SE.II: room III, 2; kitchen, 1. [266]
SE.III: [D] narrow southern passageway, 3. [268]
SE.VI: room VI, 1. [271]
SE.VII: easternmost room, $1,40 \mathrm{~cm}$ diam., 45 cII height. [273]
NH.II: kitchen, 1. [280]
NW.IX: kitchen, 1 (or more?). [284]
NK.XIX: [D] roon II, 1. [295]
NH. XR: north-east room, 1. [not mentioned in text, marked on plan]
NW.XXIV: room III or IV, 1. [298]
NH. XXVI: [D] room III, 1 set in north east angle, number of broken mortars from various excavators placed here also, I presure not all from this hoose. [299]
C.I: room IV, 1. [302]
C.IV: roon IV, 2. [304]
C.VII: kitchen, 1 set in floor. [311]

SH.I: roon I, 1. [313]
SH.IV: front room, 1 square, height 30 cm , depth 25 cm , side of square, 52 cm , diameter of hollow at top, 37 cm. [323]
SW.V: roon IV, 1, kitchen, 2 set in ground, 1 full of lime. [326, 327]
SU.VI: kitchen, 2 embedded in floor. [331]

APPENDIX B continued.

Ovens (numerals refer to number found)
NE.I: kitchen, 1 mentioned in teat: 65 cII diameter, thickness Internal ceramic $4 \mathrm{~cm}, ; 2$ marked on plan. [241]
NE.II: kitchen, oren destroyed, traces of 1 visible, walls blackened by smoke. [244]
NE.III: kitchen 1 , traces 1 small square oven, smoke blackened above; kitchen 2, 2 round ovens, well
preserved, height 80 cm , interaal diameter at base 80 cm , at the top 50 cm . Internal ceramic 4 cm , esternal mud coating 15 cm , circular impressions of a jar neck. [244, Pl. XIV, $\ddagger 1]$
NE.IV: kitchen, 2 round, diameter 70 cII [246]
NE.V: kitchen, 1, 70 cm diameter. [250]
NE.VIII: kitchen, 2. [252]
HE. 18: kitchen, traces of 1. [253]
NE.R: kitchen, traces of 1. [254]
NE. XI: kitchen, traces of 1. [256]
NE.XII: kitchen, traces of smoke at oven emplacement, oven itself not mentioned, and not shown on plan. [257]
NE.XIII: kitchen, traces 1 large round oven, 90 cm (dimension not given). [259]
NE.XIV: roon IV, originally kitchen, traces 2, smoke blackening under
second rendering. [260]
NE.XIX: [D] sonth-east room, traces 1 roond oven, signs of soot on wall. [263]
SE.II: kitchen, 1 round oven, diameter 70 cm , height 80 cm , oud coating imprinted with circles 5 cm dianeter, on little platform against north wall. [266]
SE.III: [D] southern passageway, 1. [268]
SE.VI: roon VI, 1 roand, 75 cI (dimension not given). [271]
SE.VII: kitchen, traces 1, saoke blackened walls. [273]
NW.I: roon at far end of passage, 1. [280]
NW.II: kitchen, remains 1. [280]
WW.III: north east room, 1. [not mentioned in text, noted on plan]
WH.IX: kitchen, 1, walls snoke blackened. [284]
Wh. XII: kitchen, 2. [287]
NW.XIII: [D] kitchen, traces 1. [288]
NW. $\mathrm{XVI}:[D]$ one of western roors identified as kitchen, no oven, bot smoke blackened soath wall. [293]
C.V: kitchen, 1. [305]
C.VI: kitchen, traces 2, walls smoke blackened. [309]
C.VII: kitchen, 1. [311]

SW.II: room V or VI, traces 1 ulth ashes and smoke blackening. [318]
SW.V: kitchen, 2 quite well preserved. [327]
SW.VI: kitchen, traces (number onspecified). [331]

APPENDIR B continued.

HODSES GRODPED ACCORDING TO PRESENCE/ABSENCE OP INSTALLATIONS

Mortars

Houses with no mortars	Houses with one mortar	Houses with more than one mortar
NE.I	NE.IV, back	NE.HI, 3, back
NE.RII	WR.V, back	NE.III, 2, back
NE, XV [D]	NB.VI, under stairs	NE.VII, 3, back
NE.XVII [D]	NE.XI, back	NE.VIII, 2, front
NE.RVIII [D]	NE, XIV, back	NE..IX, 2, back
SE.IV [D]	NE.XVI, under stairs	NE.8, 2, back
SE.V	SE.VI, back	NE.XIX, 2, back
SE.VIII	SE.VII, back	SE.1, 2, back
NH.I	SE.IX, back	SE.II, 3, back
WW.1II	Wh.II, back	SE.IIL, 3, back
NW.IV	Wh.18, back	C.IV, 2, back
WW.V	NW.XIR, middle	SW.V, 2 side, 1 back
NW.VI	NW.XX, back	SW.VI, 2 front
WW.VII	NH. XXII, back	
NW.VIII	WV.8XIV, location?	
WH.X	Wh. M VVI, back	
WW.XI	C.I, back	
NW.RII	C.III, front	
N6. RIII [D]	C.V, back	Other
NW.RIV	C.VII, back	
NW. SV [D]	SW.I, front	NE.XIII, broken frags, back
WW.RVI [D]	SW.II, front	
WW.XVII [D]	SW.IV, front	
NW.SVIII [D]		
NW.88I		
WW. RXIII		
NW. XXV		
NW. XXVII [D]		
C.II [D]		
C.VI		
SW.III [D]		

APPENDIX B continued.

Querns

qe = quern emplacement; qs = quern stone [D] = honse damaged or destroyed

qe \& qS	qe, no qs	no qe, qs
NE.V	HE.II	NE.I
NE.RIV	MB.III	NE. 8 III
NE.XIX	HE.VIII	NE.XVI [D]
SE.II	SE.IV [D]	NB. XVII [D]
NW. XII	NW.I	NB.XVIII (D]
	C.II [D]	SB. I
		SE.III
		SB.IX
		WN.IX
		WW. XXVI [D]
		C.I
		C.IV
		SH.V

	no qe, no qs	
NE.IV	NW.V	NW. XXII [D]
NE.VI,	NW.VI,	NW.X8III,
NE.VII,	WW.VII,	NW. XXIV,
NE.IX,	NH.VIII,	WW.xXV
NE. X ,	WH. K ,	NH. XXVII [D]
NE. ZL ,	NH. NL ,	C.III [D]
NE. R II,	NW.RIII,	C.V
NE.RV [D],	NH.XIV,	C.VI
SE.V,	NW. XV [D],	C.VII
SE.VI,	NW.RVI [D],	SH.I
SE.VII,	NH.XVII [D],	SW.II
SE.VIII,	Wh. XVIII [D],	SH.III [D]
NH.II	NW. SIX [D],	SH.IV
NW.III	NW. R (1	SU.VI
WH.IV	NH. XXI	

Table 1.1: A theoretical framevork for the archaeological stady of food provision.
(adapted from Goody, 1982: 37).

Table 2.1: Published New Kingdom tombs with wall paintings showing baking scenes. All tombs date to the 18 th Dynasty (c. 1550-1307 BC) with the exception of Ramesses III (1194-1163 BC). All are located at Thebes. In addition to the tomb paintings listed here, an Amarna relief from Hermopolis, now the Brooklyn Museum (62.149), shows two different baking methods in separate chambers (Cooney, 1965: 73).

TOMB NAME	TOMB \#	PUBLICATION
Nebamun	17	Wreszinski, 1923: Pl. 125 Säve-Söderbergh, 1957: 24-25, P1. 22
Huy	40	Davies and Gardiner, 1920a: Pl. 36
Neferhotep	49	Davies, 1933: 38, Pl. 45
Amenemhet	53	Wreszinski, 1923: Pl 87b, 180
Ken-Amun	93	Wreszinski, 1923: Pl. 301-302 Davies, 1930: 51-52, P1. 7, 58-59
Rekh-mi-re	100	Virey, 1889: 46-48; 91 . 1,9,11,12 Newberry, 1900: 35, 38-39, P1. 12-14,22 Wreszinski, 1923: 324-330 Davies, 1943: 38-39,43-45, P1. 38,41,48-51
Dhutnufer	104	Davies, 1929: 240, Fig. 1A, 1B
Ramesses III		$\begin{aligned} & \text { Vandier, 1964: Fig. } 152 \\ & \text { (see also Darby et al., 1977: Fig. 12.14) } \end{aligned}$

Pable 2.2: Flow charts of baking as interpreted from primary sources by Wreszinski (1926: 1-15) i Klebs (1934:176-177); Vandier (1964: 308).

1. WRESZINSKI'S IMTERPRETATION

2. VANDIER'S INTERPRETATION

3. Firm:
 reheated moulds? or shapes dough placed in moulds and baked in irregalarly shaped orens

Baked directly in ovens or on metal plates
over round oven

Table 2.3: Flow charts of ancient Egyptian baking as presented in some selected general accoants.

1. DARBY et al. (1977: 502-12)	2. SIST (1987:	$\begin{aligned} & \text { 3. WILSON (1988: } \\ & 12-14) \end{aligned}$	$\begin{gathered} \text { 4. STROobal (1992: } \\ 125-126) \end{gathered}$
(YB: poonding ignored in this account)	Grain cleaned br sieving	Cereal sometimes parched	Stone pestles on flat mortars: coarse croshed grain
Cereal winnowed	Ground to flour with long pestle in mortar	Grain crashed in mortar	
			Milled on rall crlim-
\downarrow	\downarrow	Milled on saddle quern	saddle drical or
Pounded and groand on	Sieved to remove		quern conical
saddle quern:	imporities		mortars for
crasted grain		Sieved: coarse flour and	finer grinding
	\downarrow	whole and partly crashed	\downarrow !
\downarrow	Milled	grain	Soretimes sieved:
Cribbled and sieved with			never thoroughly milled
rash or papyras sieves:	v	\downarrow	or sieved: whole grains i?
largely wholemea! flour	Flour mixed with water	Flour mised with water,	in bread I
	(Leavened at some stage)	salt	
Koeaded, br hand or with	\downarrow	\downarrow	Dough aixed and kneaded by
feet in tubs	Baked:	Baked:	hand, or by feet in trough
	1. Directly on fire	1. Directly on flat stone	
\downarrow	2. Slabs of stone orer	over fire	
Salt and spices aight	flames	2. Baking floor inside	Yeast, salt, spices, milk,
be added	3. (New Kingdom only:	clay oren	etc. added
	Loaves attached to internal walls of	3. Slapped on pottery wall	
	lateral wals of		Dong rose
Sour dough or yeast added:	cylindrical oven	4. Cooked in ashes of fire	Dough rose
seni-solid preparation			
			Voolded or shaped
\downarrow			Moulded or shaped
Baked:			
1. On open fire			\downarrow
2. Orer ashes			Baxed:
3. On hocizontal slab			1. (Early way) open fire
orer oren			or embers
4. Preheated moulds			2. (Early way) simple hob
5. (Later way) pressed			3. (01d Kingdon onward)
against preheated			preheated thick moulds
internal cylindrical			4. (Middle Kingdor onward)
oren walls			ledge inside tall oren

Table 3.1: Wheat starch granule loss of birefringence compared to susceptibility to glucoamylase over increased temperature. This table shows a comparison between the extent to which birefringence is lost amongst a population of wheat starch granules, and the extent of gelatinization as measured by the susceptibility of those granules to glucoamylase in excess water, over a range of temperatures. Susceptibility of starch granules to glucoamylase is a better measure of the true extent of gelatinization. The data show that loss of birefringence occurs before starch granules are fully gelatinized. (Data from Goering et_al.. 1974: 767.)

Temperature ${ }^{\circ} \mathrm{C}$	\% loss of birefringence	\% gelatinization (susceptibility to glucoamylase
55	46.8	9
60	77.3	27
65	100	70
75	-	81

Table $5,1:$ Ancient limestone mortar used in experiments.	
Measurements to nearest half centimeter.	
Dimension measured	Measurement (cm)
Maximum exterior diameter	26.5
Rim exterior diameter	14
Base exterior diameter	22
Exterior height: base to rim	22
Interior rim diameter	8.5
Approximate diameter,	
interior base	14
Interior height, base to rim	8
Base thickness	
Total capacity (to rim)	2.4 L

Table 5.2: Proportion of chaff and grain for emmer spikelets separated by hand.

Material	Weight (g)	Volume (mL) (more or less packed)
Whole spikelets	50	95
Chaff	11.2	120
Grain	38.7	51

Chaff as a percentage of spikelets 22.5\%
46.3\% *

Grain as a percentage of spikelets
77.5%
53. 7%

* Based on difference between spikelets and grain volume.

Table 5.3: Flow chart of experimental cereal processing from stored spikelets to flour. Tines are based on a single, unskilled individual carrying out all tasks.

PRODUCT/ACTIOH

BY-PRODOCT
TOOLS DSED
TIME TAKEN PER AMODNT
Dacleaned emmer

Spikelets and weed seeds, stones,
of same size and weight

Low table - optional $10-15 \mathrm{~min} . / 400-500 \mathrm{ml}$

Clean emer spikelets

Whole spikelets without grain; broken chaff of all sizes; whole freed grain; some large cracked $+\begin{aligned} & \text { Whole } \\ & \text { spikelets, }\end{aligned}$ grain fragments; all damp

Table 6.1: Ancient Egyptian bread loapes examined, and node of analysis.
NB: Brackets indicate loaves not handled and examined directly, but observed in museam cases.

Inven tory	Museus	; Accession	\| Original	Date	Tomb	General	Optical	
) Nuaber	location	((Dyassty)!	name	description?	study? :	study?
001	B	5391 (86C)	UNKNOWN	ONKNOW	UNKNOWN	t	+	+
002	BM	5348 (WS)	UNKHONH	UYKNOHN	JWKNOWN	+	-	-
003	BM	5359	UNKNOWN	OKKNOW	dnKnown	t	-	-
004	8M	15745;	OWKNOWN	ONKNOW	UNKNOWN	+	-	-
005	BM	5351	OWKNOW	OSKNOW:	UNKYOWN	+	-	-
006	TORIN	7019	UNKYOWN	$18 ?$	UNKNOWN	+	-	-
007	goris	1020	D.SKOWY	$18 ?$	UNKYOWN	+	-	-
008	TURIN	?	DEIR EL-MEDINA	18	KHA	+	-	-
009	TJRIN	?	deir El-medina	18 ...	KHA	+	-	-
010	TORIN	?	DEIR EL-MEDIYA	18	KHA	+	-	-
011	TURIT	?	DEIR EL-MEDIYA	18	KHA	t	-	-
012	TURIS	?	DEIR EL-MEDIYA	18	KHA	+	-	-
013	TURIN	?	DEIR EL-MEDIYA	18	KHA	+	-	-
014	ASBYOLEAN	1921.1395	SEDMENT	9	Cem. 2100	+	+	+
015	ASGMOLEAN	1167	U:KNOW	USKYONY	UNKYOWN	+	+	+
017	ASHMOLEAY	1961.52\%	THEBES?	USKYOW	UXKYOWN	+	+	\dagger
018	ASHMOLEAN	1878.162	THEBES	DYK YOM	UWKNOWH	+	-	\bullet
019	ASBMOLEAN	1885.234	THEEES	OSK SOW	UNKNOWN	+	-	-
021	LOOVRE	E14 554	DEIR EL-MEDIYA	18	JSKNOWN	+	+	+
022	LOOVRE	E14 555	DEIR EL-MEDINA	18	UWKNOWN	+	+	+
023	LODVRE	E14 673	deir El-yediya	18	DXKNOW	+	+	+
024	LOUVRE	?	DEIR EL-HEDINA	18	ONXNOWN	+	+	+
025	LODVRE	4084	DEIR EL-MEDINA	18	JNKNOWS		-	-
028	LOUVRE	21983	DEIR EL-MEDIYA	18	DYKMOW:	+	+	+
029	LODVRE	E16410	DEIR EL-MEDINA	18	UNRNOW	\dagger	+	+
018	LOJVRE	in E14617	DEIR EL-MEDIMA	N.K.	UNXYOW	+	+	+
049	LODVRE	in E14617	dEIR EL-MEDIYA	N.K.	UNKNOUN	+	+	+
064	LOUYRE	no number	DEIR EL-YEDINA	N.K.	USKYOWN	t	+	+
065	BM	5341	UNKNOW	UnKNOWN	UNK: XOH	t	-	-
066	BY	5341	OXKNOWN	ONKNOW:	OXXMOW	+	-	-
067	BM	5346	THEBES?	N.K.?	UNKNOWY	t	-	-
068	BM	40942	DEIR EL-bAGARI	11	(oote 1)	+	-	-
069	BM	5353	UNK MOWN	N.K.?	UNKNOW	+	-	-
070	BM	36193	THEBES?	A.K.?	UNKNOW	+	-	-
071	BOSTON	72.4757c	OXKNOW	18?	UNKYOUN	+	-	-
072	CAIRO	644,645	THEBES	1320 BC	TUTANKHAMON	(+1	-	-
073	CAIRO	49095-49098	dEIR EL-bagari	11	MAIT?	(+1	-	-
074	CAIRO	38643	DEIR EL-MEDINA?	N.K.	ONKNOWN	(t)	-	-
075	CAIRO	38644	DEIR EL-MEDIMA?	N.K.	UNKNOHN	$(+)$	-	-
075	CAIRO	38645	DEIR EL-YEDIYA?	N.K.	UYKNOW	(+1	-	-
077	CAIRO	no number	DEIR EL-MEDINA?	N.K.	OURNOWN	(t)	-	-
078	CAIRO	no nuaber	DEIR EL-MEDINA?	N.K.	UNKNOWK	(t)	-	-
079	CAIRO	no number	DEIR EL-MEDINA?	N.K.	UNKNOHE	(+)	-	-
080	CAIRO	71599	DEIR EL-MEDIMA?	N.K.	UNKNOW	(t)	-	-
082	CalRO	11598	DEIR EL-:EDI:A?	V.K.	UUKYONS	(+)	-	-

note l: fron temple of Menjnotep debris.
fable 6.2: Ancient Bgyptian bread fora and macroscopic structure. Scale of relative testare: 1 -very fine; 2 -mediam zeal; 3 -coarse meal; 4 -endospera fragments $\frac{1}{2}$ grain in size or greater; 5 -whole grains present. Abbreviations for macro-inclosions: B-barley; E-eamer; l-boliua; bl-black; ch-chaff; frag-fragnent; gl-gluae; gr-grain; leg-legunions; pc-piece; sl-slightly; spklt-spikelet; \downarrow-very; unid-unidentifed;

Inven-1 tory $\{$	Moseak	Accession	Original location	$\begin{aligned} & \text { Date } \\ & \text { i(Dynasty) } \end{aligned}$	$\begin{aligned} & \text { Toub } \\ & \text { nane } \end{aligned}$	 General shape	Selected coments on form and decoration	Maximun ${ }_{\mid}$length \mathbb{n}	Mazimon idth an	epth man (range)	Colour	Macro inclusions	$\begin{array}{l:l} \text { elative } \\ \text { extore } \end{array}$	Stractore	
001	BM 5	5391 (B6C)	ONKMOHK	OHKNOUH	OMKMOUM	(note 1)	(note 1) ;	(sote 1)	(note 1)	(note 1)	ORANGE TO MR. BLACK	E rachis, few L, few large calms, B ?	2-5	(HEEVILS)	BY HiND
002	BM 5	5348 (WS)	OHKHOHH	OKKMOIM	OKKHONH	¢RAG. CRATER		85	63	19-36	DARK BROMN	$+\mathrm{L}, \mathrm{E}$ gr, some fine ch, ash anderside	3-4	SL. POROES	HAND, 1700]
003	BM 5	5359	OXXNOHN	ONKMOUH	OKKNOHH	FRaghent		55	35	21	DARK BROWN	E grain, 1 pe ch,	1:4	(WEEVILS)	87 8x ${ }^{\text {d }}$
004	BH	15745; $85-7.23 .41$	OMKNOUN	OnKMOIH	OWKNOHN	PraGHEMT	PROBABLY MODER	111	60	25-33	PALE BROWN	few v. fine ch onderside	1	POROUS	by davo
005	BM 5	5351	ONKMOMH	OWXNOHN	ONKNOUN	frag crater		77	49	11-28	DARK 8ROUN	\& grain, few fine ch, gypsum frag	4	(WEEVILS)	B7 8x\%
006	TORIN	7019	OHKMOYH	18 ?	UNXMOWH	ISOSCELES TRIANGLE	VERY flat; long; nearly complete	280	130	30	ORAMGY BROHI	E spklt, gl, +L. +fine ch	2-4	SL. POROES	By $\mathrm{axy}^{\text {d }}$
007	TORIM	7020		18 ?	THRHOLM	CRRTER	(note 2)	160-180	160-180	30	ORANGY BROHN	+LE/B??	2-4	SL. POROOS?	BY Bax
008	TURIN	? (note 3)	DEIR EL-HEDINA	18	KLA	BOLTIE	bohed CROSS-SECTION; SLIGETLY Chipred.	200	80	10	MED. BROWN	+ line ch, some E ch	?	PORODS	By Ma M $^{\text {a }}$
009	TORIN	?	deir el-hedina	18	KRA	FISH?(COMPLETE)	dODBLED OVER PIECE OR DODGH, BANDED by TWO THIN STRIPS ON TOP SDRRACE	90	27	12	DARX BROWN	node seen	?	?	BY BAID
010	TURIX	?	deir el-hedina	18	KHA	volvar (note 4)	IMPRESSED CENTRAL INDENTATION, ENCIRCLED BY FINE PRICKED HOLES	205	165	50	RED BROWN	none seen	?	?	BRMDEFOCLS
011	TORIN	? (note 5)	deir elm-MEDINA	18	KHA	SPLII LOAF 2 JOINED PARTS	1 SIDE PARTIALLY SLASBED W. KHIPE, ARC OP SMALL IMPRESSED DISKS ABOVE.	c. 210	c. 175	100	N/R	hard to see, + ch	2-4?	FINE, DEMSE	BRMDStOOLS
012	TURIH	?	deir el-hedina	18	XHA	FLAT DISK	Central indentation made wify finger	155	131	23	GOLD BROW	node seen	1	?	BY 830
013	PDRIN	?	deir el-medina	18	K ${ }^{\text {¢ }}$	V. FLAT DISK	V. thin, pinched op rim C. lca froh edce	175	175	14	LIGH? BROWH	+ fine ch, E \& B gr.	?	?	BY BALD
014	ASBMOLEAN	N 1921.1395	SEDMENT	9	CEM 2100	CRAPER		140	140	30	BROUN ORANGE	sorface bl ash, few ch, E gl, L?	1-2	?	BY Ball
015	ASBMOLEAM	1167	OWXMOHX	OHKNOUH		eqdilaferal TRIANGLE	MOCA THICKER REL. TO TORIN TRIAMGLE, POINTS AND SIDES SHOOTLLY ROONDED	135(note6)		40	DARK Brown	E gl spklt fork	?	(HEEVILS)	BY Bald
017	ASbMoLEAN	N 1961.524	TBEBES?	OHXNOUN	OWKMOW	FRAG. CRAPER	V. RAISED EDGE CENTRAL DEPRESSION, aASE V. THIM	125	70	45	ORANGE-BROMN	Egl, 1 Egr, unid seed, L? sl. ch,	1-2	SL. POROUS	BY 日月, ${ }^{\text {P }}$
018	ASAMOLEAR	K 1878.162	TBEBES	OHKNOLH	OWRMOUY	SHALL PRAG.		20			PALE BROUN	∇ little ch	3-4	DRY?	
019	ashyolbar	N 1885.234	TBEBES	OWKNOUN	OKRHOUN	SMALL PRAG.	PROBABLY MODERN	,	1	,	V. PALE BR.	- little ch	1	V. POROOS	?
021	LOJVRE	E14 554	DEIR EL-HRDIM	18	ONKHOHK	Thin Plat disk	ROPPLLED EDGES, TOP INDENTED Y . FIMGERS	106		10	DARX BROWN	∇ few fine shreds ch	1-2	(HEEVILS)	BY EMD
022	LOUVRE	B14 555	DBIR ER-MEDIMA	18	OKKMOH1	eqjilageral tRIAMGLE	relatively filck, points, sides SMOOTHLY RODHD.	(note 7)	1	30	PALE YELLOU	+ whole gr, most 8, few B, L, coarse ch	1;5	POROUS	BY BMV
023	LODVRE	E14 673	DEIR BL-MEDIHA	18	TEKMOIN	CRATER	CENPRAL RODND DEPRESSION, WHOLE MADE OF COILS	170	163	15-30	ORANGY BROWN	∇ fev fine shreds ch sadll unid flecks	1	?-HAXBD OP	BY GXID
024	LODVRR	?	DBIR BL-MEDINA	18	OHKHOUH	PRRG.	THRMONK	1	1	10	DARK BROHN	no trace cereal frag	1	VERY FINB	?
025	LOVVRE	4084	DEIR EL-MEDINA	18	ONXHOWH	PrAG,	TEIN, BONL-SHAPED, COPPED OVER MODLD	95	57	10-20	N / R	none seen	1-2	PINE	YOOLOED
028	LODVRB	21983	DEIR EL-MEDINA	18	OnPHOUN	COHE	NARROH, SEORT, IMCOHPLETE	110	40	40	PALE BROWN	B gr, L, no ch seen	2;5	N / R	BY HaND
029	LODVRE LOCVRB	E16410	DEIR BL-MEDINA	18	DNENOUM	COHE	AS 028; PAINT SUEET SCENT	114	40	24-37	MED. BROWE	$1 \mathrm{BgI}, \mathrm{L}$, no ch	1;5	(WEBYILS)	BY HaND
048	LOJVRR LOJYR	in E14617	DEIR EL-MRDINA	N.K.	THRYOUK	SHALL PRAG.	BROKEN OPF ORIGINAL LOAP WEEN FRESH	/	1	1	GOLD YELLOW	none seen	1	DEMSE	?
049	LODVRE	in E14617	DEIR EL-MEDINA	N.K.	DWXHOUH	SHALL PRAG.	BROKEN OPF ORIGINAL LOAP WHEN FRESH	1	1	20	N/R	none seen	N/R	PORODS	8Y Byo
055	Lur	no nuber	DEIR EL-MEDIM	N.K.	than	Plat disk	NO DEPRESSION, REL. THIN	1	1	1	\checkmark dark brown	none seen	(WEEVILS)	(WEEVILS)	BI Baw
065	Bh	5341	UNXROH:	UnMMOUN	OKKHOWY	RODND DISX	GAND IMPRINT ${ }^{\text {ONDERSIDE }}$	140	140	13	DJLL BROHM	+L, E spklt, gl	3-4	POROOS	BY AXAID
066	BM	5341	OHXNOUNK	ONKHOUN	ONKMOUM	RODHD DISK	SMALLER THAN 065; HAND \& FINGER PRINTS LOAP SL BOHED COYYEX BBLOH/CONCAVE ABOVE	115	107	11	DULL ERONN	gr, 1-2 B gr Smear ash? Flat LEG.	3-5	POROOS	BY BMAL
067	8 ${ }^{\text {r }}$	5346	THBBES?	H.K.?	OKKMOU'K	RODND, THICK, IRREGULAR	BASE MOULDED, TOP RING ADDED, HEAT INDENTATIONS, INCOMPLETE	85	58	43	DARK BROWN	Date stoses, calyz E rachis, gr; fruit?	1-2	FINE, DBISE	MODLDSD

Table 6．2：Ancient Egyptian bread form and acroscopic structare．Scale of relative texture： 1 －very fine； 2 －medina meal；3－coarse real； 4 －endospera fragrents $\}$ grain in size or greater； 5 －whole graios preseat．

+ －large numbers of；＋－very large auabers of．Other abbreviations：N / R－not recorded；MR－nearly；MED－aediun；BR－browa；SRFC－sarface．

$\begin{aligned} & \text { Inven- } \\ & \text { tory } \end{aligned}$	Moseall	｜Accession	Original location	$\left\{\begin{array}{c} \text { Date } \\ (\text { Dyanasty }) \end{array}\right.$	$\begin{array}{ll} \text { Tomb } \\ \text { name } \end{array}$	General shape	Selected conaents on form and decoration	｜Maxiana｜Mariana ｜length maimidth an	｜Depth an （range）	Colour	Hacro Re iaclusions te	Relative texture	Stractare	Method of foration
068	BM	40942	DEIR EL－bABARI	11	（note 8）	eqdilateral triangle	ROONDED POINTS，BOTED SIDES	188（notes） 235	20	PALE YELLOW	+t ，terainal E spk！t	1－5	日EAYY，SOLID	HODLDED？
069	BM	5353	OKKMOM	N．K．？	ОНK\％OM	four lobed	LOBES TURYED DP FROM BODY OF LOAF BOLE PIERCED THRODGH	$60 \quad 45$	10	GREBK－AROHH	Bit onid ch	1－3	SL．POROUS	by amd
070	BM	36193	TEEBES？	N．K．？	OKKHOW	tapered rolu	BOTH ENDS TAPERED，ORE TIP SMOOTEED	15547	35	PALE BROWH	White stone，14， 8 gr	3－5	PORODS	By gand
072	CAIRO	644， 645	TEEBES	1320 BC	TUTAMKEAMON	日RLE DISK	＇TI＇SHAPE， 10 On display	c．100－150（note 10）	c． $10-50$	MED．BROHY	Doid shreds－leaf？ peel？；corlander	？	？	EY EAMD？
073R，D	Cairo	49095，49098	DEIR EL－8ABARI	11	MAIT？	eqdilateral triangle	VERY LARGE，ROUHDE日 POINIS AhD SIDES VERY COARSE TERTORE，THIM FLAKY CRDST	c．200－250	c． $30-50$	SREC VHITIS日 ／YELLOUISE	\＆gr；unid ch	1－5	Or．PORODS？	？
073日	CAIRO	49096	DEIR EL－BABARI	11	MAIT？	AS 073R，${ }^{\text {d }}$	AS 073，D	，			\＆ $\mathrm{gr},+8 \mathrm{gr}$ ，wnid cb	1，4－5	0i．POROOS？	
0736	cairo	49097	DEIR EL－bagari	11	MAIT？	AS 073A，D	SEAPE AS OTHERS，TEXPDRE MOCE SINER， hany fever hiole gr，no teil crist．	\checkmark		．	\＆．gr，unid ch	2－4	Qr．POROUS？	
074	CAIRO	38643	DEIR EL－MEDINA？	N．K．	OHKHONH	CRAPER	CONVEXLY BOWED，FORKED EY COILIMG， PRICXED DOTS ARODHD INDEHTATION．	11	1	N／R	？	？	$?$	BY MAND
075	CAIRO	38644	DEIR EL－MEDINA？	N．K．	UHKNOWN	SPLIT LOAF	LIKE 011；ONE SIDE KHIEE SLASHED，V． FINE IMPRESSED OVAL PAPYERNS ABOYE	1	1	HED．BROWH	？	3	DENSE？	HAND \＆Y00is
076	CAIRO	38645	DEIR EL－HEDINA？	N．K．	THKMONX	PAPYRUS BEAD	FLAT LOAF，ALSO LİE RAM＇S EEAD SHAPE	1 c． 200	c． 10	N／R	？	3－4	？	BY BAMD BY BaMD
077	CAIRO	no araber	DEIR EL－MEDINA？	N．K．	OHKNOHE	RACQUET	EDGES RAISED WITA EXFRA DOOCE	c． 150 c． 70	c． 10	MED．PROHM	？	？	？	BY Bahd
078	CAIRO	no paaber	DEIR EL－HEDINA？	N．K．	OHKYOWN	BOWTIE	LIKE 008	c． 200	1	MED．AROLH	？	？	？	BY B ${ }_{\text {B }}$
078	CAIRO	no nurber	DEIR EL－HEDIHA？	N．K．	OHKYOWN	SLAT DISK	SHALL RODHDEL WITE PIMCEED，SCALLOPBD EDGES，V．FLAT，CDRVED OPHARDS	c． 60	c． 5	Mad．Brond	．	？	？	B1
080	CAIRO	71599		N．	OXKMOUH	LENS SBAPED	f⿴囗十 TAPERED；SQOARE STAYP OA DPPER SDRFACE	c． 200	c． 80	DIMGY BROIH	？	1	V．DEMSE？	$?$
081	CAIRO	71598	DEIR ELHEDIA？	N．	Onkiont	Lens sakid	OKDERSIDE LINED YITE FIHE CLOTB	c． 200	c． 80	DARK BROHL	？	1	V．DENSE？	？
071	BOSror	72．4757c	OHRNOUM	18 ？	OHKMOMH	Prag．COME	ODIER SORFACE SHOOFE	c． 160	c． 55	DARR PORPLE	Fig seeds	N／h	DENSE	？

note 1：many sizes，shapes，broken frags．bread from one basket，all same colonr，textare，etc．
note 2：4 loaves of this fora from same type of dongh．
note 3： $3 \frac{1}{2}$ loaves of this type fron same tonb．
note 4：several other loaves of this type from
note 5： 10 loaves of this type from sane torb．
note 6：longest side measared
note 7：Edges measored 150x160x160 am．
note 8：Fron teaple of Menjhotep debris．
note 9：Different reasurement method
note 10：Measurement across base．

Table 6.3: Ancient Egyptian loaf shape categories, using data from Table 6.2. NB: fragments of indeterminate shape are not included.

CIRCULAR

- flat, thin:

021; 064; 065; 066; 079.

- more or less flat, central depression: 002; 005; 007; 010; 012; 013; 014; 017; 023; 074.
- lens shaped:

080; 081.
TRIANGULAR

- more or less equilateral:

015; 022; 068; 073.

- more or less isosceles:

6.

CONICAL
028; 029; 071.
TAPERED ROLL
070.

HALF DISK
072.

MORE OR LESS FLAT, SHAPED
008; 069; 076; 077; 078.
SPLIT LOAF
011; 075.
DECORATED FORMS
009.

MOULDED
025; 067.

Inven- tory	Moseua	Accession Nuaber	$\begin{array}{\|ll} \text { Original } & \text { Date } \\ \text { location } & \text { (Dynasty) } \end{array}$	Observations using transnitted light: free starch granules.	Observations using transmitted light: Endospern choaks and starch gramales within then.	Stracture of aaterial stained vith iodine	Resolts of iodine stain
001	BM	5391 (BEC)	OKKNOWH OHKROHN	Few. Dagarked: biref; ringed, pitted, chanoelled: largely biref, sone clear. Some si. distorted. Some dispersed clouds of flecks.	Svollen \&/or distorted, heavily ringed/chanoelled. clear. Sobe partially to heavily riaged, undistorted: most biref, some partially biref.	Large chooks, fey free granoles: Little chonk enittigg streans of material: V. few free granales: Clouds, streans seall frags, large dense chonks:	Deep parple-black, violet edged. Violet. Pale violet. Dark reddish-brown.
014	ASHMOLEAN	1921.1395	SEDMEMT 9	Sone large, distorted, bent, suollen: clear. Swollen or undistorted: sone fully biref, nost clear; some pitted: clear or slightly biref.	Alqost all clear; some fally biref, no sign of nodification.	All little frags, all free granales: Sone irregular chanks, most sabll, one large:	Deep porple. Brownish.
015	asamolean	1167	OKKMOHE OKKMOYH	Essentially do free granules.	Almost all liregolar: clear.	Chanks: loge ants thin sheets dispersing fror chonks:	Deep violet black. Reddish brown.
017	ASEMOLEAN	1961.524	TEEBES? OHKNOH	Hardly any, mostly ondistorted: biref. One pitted and ringed.	Lots of chaks, almost all clear, some saall patches vithin thea: biref.	Everything:	Deeply purple black.
021	LOOVRE	E14 554	DEIR EL-HEDIMA N.K.	Relatively fer, nearly all W. concentric rings, sone chanaelled: most clear, some biref.	Many l.granules channelled, many granules clear, some faiatly to strongly biref, small granoles: clear.	Chunks \& large free granales: Host tiny frags, diffose chonks, shall granules: Fer free pieces and in some chonks: Very fer pieces: Swall chips:	Dark parple. Kedian purple. Bright aageata porple. Brownish parple. Onstained dark golden orange.
022	LODVRE	E14 555	deir el-medina r.k.	No free granules.	Ho signs pitting or ringing, bat ∇. distorted: clear.	Endospera chunks:	Deep porple-black. Dark violet. Violet brown.
023	LOOVRE	E14 673	dEIR EL-hEDIMA M.K.	Greyish clondy masses: clear; a few free granales in cloudy aasses: sone pits $\ddagger / 0 \mathrm{r}$ rings: clear or sone biref: anodified: biref.	Many 7. distorted, bent, few partly ringed: clear; sone less distorted, strongly ringed: \downarrow. slight biref.	Saall particles, dispersed aasses, chunks: Small anoont at edges of chunks:	Deep prople-black. Dark riolet Dark violet-brown.
024	LOOVRE	?	DEIR EL-MEDIHA M.K.	None seen.	Aloost all clear, \%. few small granules biref.	Chunks \& ฉ. seall particles: Longs streass trailing from sore chuaks:	Dark purple-black. Reddish-brown.
028	LOUVRE	21983	DEIR EL-MEDINA M.K.	Few: biref.	Most granules packed, distorted, shrivelled, with heavy concentric rings: mostly clear; few w. residual biref. Many snall grannles visible.	Alaost everything, some granoles eabedded in lighter matrix: Sore parts of endospera chunks: Kany small particles: Sone chonks:	Deep porple-black. Dark violet. intense violet. Dark reddish-brown.
029	LOUVRE	E16410	DEIR EL-MEDIMA N.K.	Grey clouds dispersed material: clear.	Large chunks: v . shrivelled and distorted (aore than 028), aany with tightly packed concentric rings: clear.	Large chonks, small particles: a fev dense small chunks: Sose streans of eaterial:	: Deep purple-black to dark violet. Deep violet-bluish. Reddish-violet.
048	LOOVRE	in E14617	DEIR EL-MEDINA M.K.	Large dispersed greyish masses: clear; trapping free graaules: fully biref. Free granules, ringed: fully or partially biref.	Many fine to large chunks, granules within: nany pitted: biref; sone strongly riaged: fully) partially biref; aany distorted: clear. Few uppitted, uoriaged: biref.	Snall discrete chouks: Dispersed grey azsses:	\| Purple-black. -i Hagenta. - Brown eagenta. Deep violet w. brownish tinge.
019	LODVRE	in E14617	OEIR EL-MEDINA A.K.	Some. Condition not noted.	Some bent and distorted: clear; nost have concentric riags and pits: nainly biref but nany clear. (Whole range modification showing whole range biref.)	All little particles, all free granules: Granoles within endospern: Sone free granules: Sone individual granoles:	s: Very dark porple. Parple-black to deep violet. Violet. Violet-bluish.
064	LOOVRE	no number	deir el-medima M.K.	No free granules seen. Grey dispersed chunks: clear.	Heavily distorted: clear; distorted with conceatric riags: partially biref.	Fine dispersed particles, large chunks: Many chonks: Sone streans of aterial:	s: Deep parple-black. Deep violet. ; Violet-Eagenta. -: Reddish-violet. ; Reddish-brown.

Table 6.5: Ancient Egyptian bread loapes: resolts of obserrations using scanning electron aicroscopy.

 (Rockland et al., 1977). See Fig. 3.7 for representations of the different stages of gelat inization.

Table 6.6: Sugar content of loaf 001. Sugars were determined using the Englyst Method (Englyst et al., 1989; Englyst and Kingman, 1990), and the analysis was carried out in the laboratory of Dr. Hans Englyst. All sugars listed are monosaccharides, with the exception of uronic acid, which is a substituted sugar.

Saccharide	Quantity (g/100 g dry matter)
(Total non-starch saccharide)	5.1
Cellulose	2.2
Rhamnose	-
Fucose	0.1
Arabinose	0.2
Xylose	0.6
Mannose	0.3
Galactose	0.2
Glucose	0.9
Uronic acid	0.6

Table 6.7: Characterization of analysed loaves, according to models proposed in Ch. 6.V. The notation "cf" indicates that the designation is probable but not certain.

LOAF \#	PROPOSED METHOD OF PRODUCTION	COMMENTS
001	C-1	
014	cf $\mathrm{C}-1$	
015	cf C-1	$\mathrm{C}-1$ is the best fit, assuming a very wet dough.
017	A	
021	C-1	
022	C-1/D	Cannot determine the process with the evidence available.
023	D	Supported by presence of shattered starch.
024	C-1	
028	C-1/D	Cannot determined the process with the evidence available. N.B. No sweet scent.
029	cf D	N.B. Sweet scent.
048	D	Supported by presence of shattered starch and absence of red-brown staining material.
049	C-1	
064	C-1/D	Probably D, supported by presence of shattered starch and heavily distorted granules, but few streams of violet to red-brown staining material suggests Cl is a possibility.

SUMMARY OF MODELS:
A: Spikelets not soaked, only sprinkled with water when pounded processed to flour according to procedure outlined in Table 5.3dough made - baked.

B: Spikelets soaked - dried enough for dehusking - damp grain milled into paste - paste baked.
C-1: Spikelets soaked, grains germinate - air dried - processed to flour according to procedure outlined in Table 5.3-moist dough made - baked.

C-2: Spikelets soaked, grains germinate - air dried - processed to flour according to procedure outlined in Table 5.3-stiff 'dry' dough made - baked.
D: Spikelets soaked, grains germinate - roasted - processed to flour according to procedure outlined in Table 5.3 - dough made - baked.

Table 6.8: Finds of platters from houses in the North Suburb and the houses of the Workmen's village at the site of Amarna.

Key to references:
P \& W: Peet and Woolley, 1923;
F\& P: Frankfort and Pendlebury, 1933;
AR IV: Kemp, 1987;
N/D: house not described in text.
Nerth Suburb

House	Reference	Comments
S.35.3	$F \& P: N / D$	Type II.5; small house, no oven on plan, stairs.
T. 33.1	$F \& P: 68$	Type II.5; estate, no oven on plan, stairs.
T. 35.6		Type II.4; outbuildings to east.
T. 35.9	$F \& P: 41$	Type II. 5; medium house, courtyard oven.
T. 35.10	$F \& P: 38$	Type II.5; small house, no oven on plan, no stairs.
T. 35.14	$F \& P: N / D$	Type II.5; medium house, no oven on plan, stairs.
U. 33.10	$F \& P: 74$	Type II. 5; small house, no oven, stairs.
U. 36.34	$F \& P: 22$	Type II.5; large house, no oven on plan, but text mentions kitchen, stairs.

Workmen's Village (all mentions of Type III pottery from P \& W transcribed, see Ch. 6.VIII.C. 3 for chapel finds)

House	Reference	Comments
East 1	P \& W: 71	III/?: on staircase; III: bedroom.
East 10	$\text { Peet, } \frac{1921:}{177}$	Rough flat dish with low ridge; in oven.
East 12	P \& W: 73	III: in kitchen.
Gate 8	AR IV: 134-8	Bread platters; total of 3 in house.
Gate 11	$\begin{aligned} & \text { P \& W: } 73 \\ & \text { unpubished } \end{aligned}$	III/1020A: in oven and elsewhere. III/1020C, unfired, III/1020.
Main 1	P \& W: 74	Flat bread tray: living room.
Main 3	unpublished	III/1020B
Main 5	P \& W: 77	III/132: living room; III/33: bedroom.
Main 6	P \& W: 78	Fragments of baking dish: front hall.
Long Wall 7	P \& W: 83	III/34: Front hall.

Eiq. 2.1: A baking scene from the tomb of Nebamun at Thebes (\#17), dating to the $18 t h$ Dynasty ($1550-1307 \mathrm{BC}$). The figure on the right seems to be engaged in cutting a round object, possibly a loaf. The two left-hand figures are preparing round or disk-shaped bread, which is baked in a cylindrical oven. Note the representations of loaves above the figures, showing a row of round or disk-shaped bread and a row of paddle-shaped or racquet-shaped bread, both decorated with markings. Drawing by Kate Spence after SäveSöderbergh, 1957, Plate 22.

Fig. 3.1: The major components of representative cereal ears. Emmer, a glume wheat, is shown above. Upon threshing, the ear breaks up into spikelets, which need further processing to free the grain and separate it from the spikelet chaff. In comparison, the threshed ears of bread wheat, to the lower left, break up into free grain and chaff, with most of the rachis segments staying attached to each other. When threshed, the ears of hulled barley break up into the hulled grain, a small amount of fine chaff from the glumes, and the joined rachis segments. From Hillman, 1981, reproduced with permission of the author.

Fig. 2.1

Fig. 3.1

TRER-TMRESKIRG WKEAT A-q. BAEAD NHEAT

Fia. 3.3: Scanning electron micrograph of part of
an emer grain aleurone cell. The
aleurone cell is on the left, with the typical
interior granular texture (G). To the right is
starchy endosperm (S).
Fia. 3.4: The structure of the glucose molecule,
The molecule is composed of six
carbons (numbered conventionally in the diagram),
five of which make up a ring, together with one
oxygen molecule. Attached to each carbon atom is
one hydrogen atom and one oxygen-hydrogen group
(called an hydroxyl group). Depending on the
configuration of the atom involved in inter
molecular bonds, the linkages which glucose
makes with other glucose molecules can be in the
"a" or " β " form. The configuration of linkages in
starch are all in the a form.

Fig. 3.2: The major components of the cereal grain,
The bran layn in longitudinal and cross sections.
tissue layers which are represented schematically
here. Drawing by Kate Spence.

Fig. 3.5: The structure of amylose.
(a) Representation of a portion of amylose, showing the $a-1,4$ linkages between glucose units. Attached hydrogen and ring carbon atoms have been omitted for clarity. All the glucose units are joined by their \#l and \#4 carbon atoms. Enzymes act at the non-reducing ends of the molecule. After Kennedy et al. (1987) with modifications after Coultate (1989).
(b) A simplified diagram of the linear amylose molecule.

Fig. 3.6: The structure of amylopectin.
(a) Representation of a portion of amylopectin, showing the $a-1,4$ and a-1,6 linkages. Attached hydrogen and ring carbon atoms have been omitted for clarity. The linear sections of the molecule are made up of glucose units joined by their \#l and \#4 carbon atoms, while the branch points are formed by a link between \#l and \#6 carbon atoms. After Kearsley and Sicard (1989) with modifications after Coultate (1989).
(b) A simplified diagram of a portion of the branched amylopectin molecule.

Fig. 3.5

Fig. 3.6

(b)

Fig. 3.7: Schematic representations of Lima bean starch granules, illustrating the different stages of gelatinization as seen with the scanning electron microscope according to the scale devised by Rockland et al. (1977). The different stages are as follows:
S-0: ungelatinized; S-1: swollen; $S-2$: dimpled or indented;
S-3: doughnut; S-4: rubber raft; $S-5$: pancake; $S-6$ (not shown): dispersed. Note the different scale for the starch granules in stages $S-0$ and $S-1$, and the later stages. Drawing by Kate Spence.

Fig. 3.7

Fig. 3.8: Schematic diagram indicating a simplified view of the
different amylase enzyme actions which occur in the
germinating cereal grain. After Manners, 1974, MacLeod, 1979, and
Greenwood and Munro, 1979.
(a) A representation of the effect of the different amylases on
amylose and amylopectin. Amylose and amylopectin are represented as
shown in Figs. $3.5 b$ and $3.6 b$. Although the enzymes and starch
molecules have been shown separately, it should be remembered that,
apart from the initial attack by a-amylase, all these processes take
place concurrently. In this diagram, intermediate products are shown,
as well as the small dextrin chains and simple sugars which are
produced after prolonged enzyme action. The most abundant simple
sugar produced as a result of germination is maltose.
(b) The action of enzymes on the starch granule, showing the order of
action of the different enzymes active in the germinating grain.

Fig．3．9：Events which occur in the bread loaf when white pan bread is baked in a modern tunnel oven and the temperatures at which various processes begin and end．（Data from Stear，1990．） Although the baking procedure and bread recipe is totally different to the ancient Egyotian method，many of the events rhich occur at specific temperatures are the same or similar．Enzymes are deactivated at specific temperatures，while starch mill gelatinize over a range of temperatures depending on the loaf conditions for モxanolき，さロisture，acidity）．

Fig. 3.9

Fia, 4.1: Recording sheet used to note details of ancient Egyptian bread loaves.

```
Nluseum
Sitorage Loc'n:
A.ddn'l info
Erovenance
T'omb:
                                    Accession #:
Exxcavator:
Field notes/Publ'ns
Addn'l info:
Lescription
length:
                                    Sketch:
h'idth
Ereadth:

Fig. 4.2: The drying regime of emmer grain in the spikelet, prepared as comparative material. See text (Ch. 4.V) for an explanation of the different preparation regimes, labelled \(C, D, E\), and \(F\). As is indicated by the dotted line, the ' \(C\) ' and ' \(D\) ' batches were placed in the drying cabinet when the temperature was over \(65^{\circ} \mathrm{C}\), which may well have caused the starch to gelatinize. Although the other batches were also heated above \(57^{\circ} \mathrm{C}\) (the temperature of onset of gelatinization of wheat starch), as the starch was in the undisturbed grain, it is likely that few starch granules were gelatinized (see Ch. 3.VI.D.3).

Fig. 4.3: The starchy endosperm of modern raw emmer grain, seen with scanning electron microscopy. A: large, A-type starch granule; \(B:\) small, \(B\)-type starch granule; \(C\) : protein matrix. The smooth, somewhat irregular disk shaped large starch granules are firmly embedded in the closely adhering protein matrix. The small, more or less spherical, starch granules are distributed in the interstices between the large granules. The close packing of large and small starch granules in the starchy endosperm sometimes cause indentation marks on large granules (D) and may cause small granules to become compressed and angular (E).

Fig. 4.2


Fig. 4.3


Fig. 4.4: The starchy endosperm of modern emmer grain after the spikelet was exposed to dry heat up to about \(150^{\circ} \mathrm{C}\). The structure of the protein matrix (C) has changed markedly from the structure of protein in untreated emmer grain; it has shrunk away from the starch granules. The morphology of both the large, A-type starch granules (A) and the small, B-type starch granules (B) remains unchanged. There is no sign of distortion, pitting, or other damage.

Fig. 4.5: The starchy endosperm of modern emmer grain which had been soaked and exposed to temperatures of about \(85-90^{\circ} \mathrm{C}\) when still in the spikelet. With this wet heat treatment, the protein matrix (C) has shrunk away from the starch granules. Many of the large starch granules have gelatinized. They are swelled and flattened into pancake forms (A). Although some of the small starch granules have also flattened and begun to disperse (D), others still retain the spherical morphology of ungelatinized starch (B).


Eig. 5.1: Plan of the houses of the Workmen's Village, Amarna, with cereal preparation and baking tools and installations marked. After Peet and Woolley, 1923: Plate XVI.

Fig. 5.1



\section*{KEY}

(i) Probable oven
- Mortar
\(\because\) Possible mortar
OL Loose mortar
- Mortar with rim

Quern emplacement
然Possible quern
- Loose quern

1 Pestle/pounder
\(\square\) Ceramic plotter
\[
\begin{aligned}
& \text { Probably not } \\
& \text { normal residence }
\end{aligned}
\]

Fia. 5.2: Plan of the houses of the Workmen's Village, Deir elMedina, with cereal preparation and baking tools and installations marked. After Bruyère, 1939: Plate I.


Eig. 5.3: An ancient sieve found at Deir el-Medina (exact location unrecorded). It is about 40 cm in diameter, and the rim is made up of four to five coils of basketry, so that the sieve depth is about 6.3 cm . The sieve mesh is apparently made of rush. Drawing by Kate Spence from Gourlay, 1981: 129, Plate IX, B, number 10.177.

Fig. 5.4: An ancient coiled basket with a flaring rim, found at Deir el-Medina (exact location unrecorded). The total diameter is 38 cm . The shallow shape would have been suited to small scale hand winnowing of pounded spikelets indoors or in a restricted space, without wind assistance. Drawing by Kate Spence from Gourlay, 1981: 73-74, Plate VI.E, number 10.9.

Fig. 5.5: An ancient coiled basket with a deep, steeply sloping rim, found at Deir el-Medina (exact location unrecorded). The total diameter is 26 cm . This deep type of basket would not have been suited to small scale hand winnowing of pounded spikelets without wind assistance. Drawing by Kate Spence from Gourlay, 1981: 73, Plate VI.D.

Fig. 5.6: An ancient coiled basket found at the New Kingdom necropolis of Dra' Abu el-Naga', but of unknown date and exact provenance. It is about 50 cm in diameter, and the lipless edge is reinforced by a stitched border. It would have been well suited to small scale hand winnowing of pounded spikelets. Drawing by Kate Spence after Schäfer, 1908: 172.

Fig. 5.3


Fig. 5.4


Fig. 5.5


Fig. 5.6


Fig. 5.7 Experimental ancient limestone mortar from Gate St. 9, Workmen's Village, Amarna.
(a) Side view, showing the exterior, which has been tapered by chiselling, but left rough.
(b) Interior view. Note the flanged interior curve, the robust thick walls, and the roughness of part of the interior, caused by imperfections in the limestone. Most of the interior has been worn very smooth.
(c) Section and interior views of the mortar. Note especially the robustness of the walls and base. Originals by A. Boyce. From Samuel, 1989: 261, Fig. 12.3.

Fig. 5.7 (a)

(b)

(c)

Fig. 5.8: The ancient quern emplacement from Gate St. 8, Amarna. All
measurements in centimetres. Drawings by Kate Spence.
(a) Plan of the emplacement, based on measurements of the ancient emplacement. (b) Elevation of the emplacement, after Kemp, 1986a: 4, Fig. 1.2. (c) Perspective reconstruction of the quern emplacement as it would
have looked in use with the quern stone in position have looked in use with the quern stone in position.
Fig. 5.8


Fig. 5.9: Experimental emmer processing: picking through spikelets by hand to remove unwanted items. Photograph by Catherine Powell.

Fig. 5.10: Experimental emmer processing: the waste removed by hand sorting of emmer spikelets. Items extracted include culm nodes, weed seeds, including various weed grasses, small clumps of earth and stones. Scale bar is 1 cm . Photograph by Gwil Owen.

Fig. 5.11: Experimental emmer processing: the spikelets after hand cleaning. Note the weed grass seed still left (W), and the few loose emmer grains (E). Scale bar is 1 cm . Photograph by Gwil Owen.


Fiq. 5.12: Outlines of the base of the ancient pestle (below) found from the front room of Main St. 6, Workmen's village (shown in Peet and Woolley, 1923: Pl. XIX, \#l, right), and the base of the replica pestle (above) modelled on the ancient specimen. Shown actual size. Drawing by Kate Spence.

Fig. 5.13: Replica wooden pestle. Note the slight warp curving most clearly about the knot on the left. The scale bar is one metre, marked in 25 cm intervals.

Fig. 5.12


Fig. 5.13


Fig. 5.14: Experimental ancient mortar, shown in Fig. 5.7, emplaced slightly above the ground ready for pounding. The rim protrudes slightly above ground level to prevent dust and dirt being kicked inside.

Fig. 5.15: Experimental ancient mortar, with about half a litre of spikelets in it as well as water to moisten the spikelets, ready for pounding.

Fig. 5.16: The change in volume of unpounded and pounded spikelets.
(a) Dry spikelets ready for pounding. The distance between the level of the spikelets and the rim of the mortar is 9 cm (from 3 cm to 12 cm).
(b) Moistened, pounded spikelets. The distance between the level of the spikelets and the rim of the mortar is now 7 cm (from 3 cm to 10 cm ).




Fig. 5.20: Experimental emmer processing: the pounded emmer spikelets drying in the sun. The pounded spikelets shown here come from a total of one litre of dry spikelets, pounded in two lots of 500 mL .

Fig. 5.21: Experimental emmer processing: the modern coiled basket used for winnowing, and a handful of dried, pounded spikelets ready to be winnowed.

> Fig. 5.22: Diagram of the initial winnowing movement used to separate the emmer chaff and grain in the basket. The basket was held at a steep angle, the lower edge nearest the body, and in this position the whole basket shaken away and towards the body. Drawing by Kate Spence.

Fig. 5.23: The result of the initial winnowing movement. The heavier items have shifted and rolled to the bottom edge of the basket, with a scatter of grain and light chaff running up to the top edge of the basket. The grain and light chaff are at the bottom of this photograph.


Fig. 5.24: Diagram of the second winnowing movement. The basket, held at a fairly steep angle, was waggled back and forth. The top of the basket was moved in a large arc towards and away from the body, while the bottom of the basket remained more or less stationary. Drawing by Kate Spence.

Fig. 5.25: Result of the second winnowing movement. The heavier items in the bottom of the basket have remained almost stationary, while the material in the top of the sieve has spread out, separating the fine light chaff from the grain.

Fig. 5.26: Diagram of the third winnowing movement.
The basket, held at a fairly steep angle, was tipped from side to side. The lower side was held almost stationary, while the top was tipped in a broad arc. Drawing by Kate Spence.

Fig. 5.27: Result of the third winnowing movement. The heavier items remain almost stationary at the lower edge, while the material at the upper edge is almost pure fine chaff. Below the collection of fine chaff is clean grain.


Fig. 5.28: Diagram of the fourth winnowing movement. While the grain and chaff in the basket were tossed into the air, the basket was quickly moved in a tight zigzag motion. This helped to separate better the fine chaff from the rest of the material. Drawing by Kate Spence.

\section*{Fig. 5.29: Removal of the fine chaff from the basket.}
(a) The upper edge of the basket was flipped sharply upwards, throwing the light chaff which had accumulated there over the edge and onto the ground. At the same time the grain and other items which were in the centre of the basket shifted to the basket edge.
(b) A selection of the light material which was flicked out of the winnowing basket. This is composed mainly of lemmas and paleas, along with some glumes and heavier items such as whole spikelet forks with the glumes attached but the grain and inner chaff stripped out. There are also a few pieces of small grain fragments. Photograph by Gwil Owen.


Fig. 5.30: The material remaining in the basket after most of the light chaff has been winnowed out. This is composed of a mixture of clean grain, whole empty spikelets, and whole unbreached spikelets, as well as small heavy chaff such as glumes and spikelet forks.

Fia. 5.31: The separation of grain from spikelets and most of the other heavy chaff in the winnowing basket after the removal of the light chaff. The grain is at the bottom of this photograph.


Fig. 5.32: The separation of clean grain from heavy chaff and spikelets. In the plastic jug on the upper left is whole grain separated in the winnowing basket as shown in Fig. 5.31, and removed by hand. On the cloth below is whole grain which was sieved from the remaining heavy chaff and spikelets with a 3.18 mm geological sieve. In the sieve to the upper right is what remained, mainly the heavy chaff and spikelets, but also some grain. There is still quite a lot of chaff mixed up with the grain. Most of this is composed of whole terminal emmer spikelets which are about the same size as the whole grain.

Fig. 5.33: The chaff left in the coarse sieve after removal of the whole grain. This is composed mainly of empty spikelets, but there are also some whole unbreached spikelets, spikelets with one grain still trapped, and whole grains. Scale is 1 cm . Photograph by Gwil Owen.

Eig. 5.34: A sample of clean grain obtained by a combination of winnowing from heavy chaff in the basket, and sieving through the 3.18 geological sieve. Much of the bran has been shredded. Some of the chaff has been picked out by hand, but there are stili a few spikelet forks remaining. Note the few free threshing wheat grains (F) and a hulled barley grain (B). Scale is 1 cm . Photograph by Gwil Owen.



Fig. 5.35: An ancient granite quern stone from the Main City of Amarna, used for experimental grinding.
(a) Oblique view showing the smooth flat surface, and the roughly chiselled underside.
(b) The grinding surface. Most of the surface is slightly roughened, but both tips have been worn so much anciently that they are polished.
(c) Drawings of the experimental ancient quern. The exaggerated surface rendering shows the roughened surface and the polished tips. The side view shows the slight concave longitudinal curve, while the cross section shows the slight convex curve across the breadth. Originals by A. Boyce. From Samuel, 1989: 262, Fig. 12.4.
(a)

(b)

(c)


Fia. 5.36: The ancient quartzitic sandstone hand stone used for experimental milling.
(a) Top view.
(b) Working flat underside.


Eig, 5.37: Experimental grinding on the replica quern emplacement with the ancient granite saddle quern and ancient quartzitic sandstone hand stone. Both photographs by Paul Nicholson.
(a) Side view. Note how the lower body is firmly wedged between the back of the emplacement and the structural wall behind. The upper body is free to rock back and forth, bearing down on the quern.
(b) Front view.

Fig. 5.38: Diagram of the diagonal motion across the quern stone occasionally used to move grain and meal at the edges of the stone back into the centre. Drawing by Kate Spence.

Fig. 5.41: Experimentally produced emmer flour.
(a) A basket of flour obtained from 1.2 kg of
reasonably cleaned grain.


Fia. 5.40: Finely ground flour on the quern.


Eig. 5.43: Plan of NE.VIII, Deir el-Medina. The cereal processing installations are coded as in Fig. 5.42. The small purple object indicates that a loose quern stone was found together with the cereal processing installations. After Bruyère, 1939, Plate. I.

Fig. 5.42: Plan of NE.V, Deir el-Medina, with the quern emplacement (estimated position) in purple, the two mortars in red, and the two ovens in green. After Bruyere, 1939, Plate I.

Fig. 5. 46: Plan of East St. 10, Workmen's Village, Amarna, with the cereal processing installations coded as in Fig. 5.42. After Peet and Woolley, 1923: Plate XVI.

Fig. 5.45: Plan of Main St. 5, Workmen's Village, Amarna, with the cereal processing installations coded as in Fig. 5.42. After Peet and Woolley, 1923: Plate XVI.

Eig. 5.44: Plan of Long Wall St. 7, Workmen's Village, Amarna, with the cereal processing installations coded as in Fig. 5.42. After Peet and Woolley, 1923: Plate XVI.


Fig. 5.46


Fig. 5.45


Fig. 5.47: Plan of part of the Central City. It shows the location of
the room with 45 mortars in building \(R 42.9\), and the
suggested route of pounded spikelets to the area where a large
concentration of querns were found. From this grindery area', flour
must have gone to the great range of bakeries running along the
southern perimeter of the Greater Aten Temple, while chaff might have
been taken to building \(S 40.1\), where cattle were probably kept. After
Pendlebury, 1951 , Plate I .


Fig. 6.1: A selection of bread loaves from the 18 th Dynasty tomb of Kha, Deir el-Medina, now in the Turin Egyptian Museum. Shapes discussed in the text include: ridged disk corresponding to 013 (1); disk with small indentation similar to 012 (2); vulvar shape corresponding to 010 (3). The vulvar loaf to the centre right shows a ring of pricked holes around the central indentation. Photograph courtesy of the Turin Egyptian Museum.

Fig. 6.2: A selection of bread loaves from the 18 th Dynasty tomb of Kha, Deir el-Medina, now in the Turin Egyptian Museum. Several of the shapes discussed in the text are shown. In the middle row, far left and centre, are vulvar shapes, corresponding to 010. The right hand loaf has a ring of pricked holes around the central indentation, but these are difficult to distinguish from weevil holes in the photograph. In the back row and middle right are split loaves corresponding to 011 . Note the palm frond nets, the slashes in the sides of each, the central crack running across the loaves (most clearly seen on the loaf on the far right, back row), and the lightly impressed circular or oval decorations above and below the slash (most clearly seen on the loaf to the far right, middle row). In the front row and right side are bowtie shaped loaves corresponding to 008. I am very grateful to Dagmar Winzer for this photograph, as well as Fig. 6.5, 6.6. 6.7, and permission to use them.


Fig. 6.3: Sketch of loaf 023, from Deir el-Medina, now in the Louvre, an example of a crater loaf. Both the upper side and lower side are shown. The seams in the lower side are especially visible, indicating how the bread was built up from individual coils and pieces of dough. The numbers refer to the general order of addition of each piece. Where two pieces have the same number, the exact order of addition is uncertain. Drawing by Kate Spence.

Fig. 6.4: Sketch of loaf 029 in some views and loaf 028 in cross section, both examples of conical loaves. Loaf 029 is shown in cross section, side view, and from below (i.e. the underside). The irregularity of the loaf, and the flattened undersides as seen in the cross sections of both loaves, clearly demonstrate that these specimens were formed by hand, not in conical moulds. Drawing by Kate Spence.

Fig. 6.3


Fig. 6.4


Loaf 029


Eig. 6.5: Some bread from the 18 th Dynasty tomb of Kha, Deir elMedina, now at the Turin Egyptian Museum. This photograph overlaps with Fig. 6.6. Back and centre: split loaves (011); front far left: racquet shape; centre front: variation on the racquet shape with bent 'handle'; front right: trussed animal. Photograph by Dagmar Winzer.

Fia. 6.6: Some bread from the 18 th Dynasty tomb of Kha, Deir elMedina, now at the Turin Egyptian Museum. Back and centre: split loaves (011). The palm frond matting is clearly seen, and, except for the middle right loaf, the deep slashes in the sides of the loaves, and the cracks down the centre indicating they were made in two halves. The lightly impressed circle decorations are clear on the middle right loaf. Front left: fish-shaped bread (009); front right: racquet shape, similar in form to 077. Compare this shape to the racquet-shaped loaves depicted in the tomb of Nebamun (Fig. 2.1). Photograph by Dagmar Winzer.


Eig. 6.7: Flat bread in the form of an isosceles triangle (006), from the tomb of Imhotep, an 18th Dynasty vizier buried in the Valley of the Queens (QV 46), now on display at the Turin Egyptian Museum. Photograph by Dagmar Winzer.


Eig. 6.8: Starch microstructure in loaf 017.
(a) Large and small starch granules lining an air pocket in the crumb matrix. The granules are swollen (S) and dimpled (D) but largely retain their individual boundaries. One large granule (M) still retains packing marks on its surface. There is apparently some protein (P) in between the starch granules, but it forms a very discontinuous matrix full of holes. Much of the crumb structure appears to be formed by gelatinized starch, as would be expected from a loaf made with gluten-free dough.
(b) An air pocket where the starch granules have lost their individual boundaries and have dispersed into a continuous matrix. The long thin structures (F) running across the surface of the starch are filamentous fungi.


Eig. 6.2: Frass (insect excreta) in bread specimens.
(a) Frass (F) adhering to the crumb of loaf 021.
(b) Frass adhering to the crumb of loaf 028.


Fig. 6.10: Some examples of fungal hyphae on samples of ancient bread.
(a) From loaf 017. Starch granules (S) can be seen forming a cratered surface, across which run a network of fungal hyphae ( H ).
(b) From loaf 024. Note that the scale is different from 10 (a) and 10 (c). Fungal hyphae ( \(H\) ), parts of which seem to be covered in a fine fibrous network (N) cover much of the field of view. They overlie the crumb matrix which appears to be composed in this area of very dispersed starch (S).


Fig. 6.10: Some examples of fungal hyphae on samples of ancient bread.
(c) From loaf 024. Fungal hyphae (H) run over agglomerations of material (G) which are too large to be individual starch granules. They are probably composed of starch, but the process which caused this appearance is unknown. The large round object ( \(R\) ) has not been identified.

\section*{Fig. 6.11: Evidence for enzyme attack on starch in several different specimens of ancient Egyptian bread.}
(a) From loaf 021. The large starch granules (A) in this view have pits (P) marking their surfaces. The equatorial groove ( \(E\) ) of one large granule is visible. Although the large starch granules have swollen and flattened, the small starch granules (B), embedded in a matrix which may be composed of protein or dispersed starch, retain their spherical morphology. The few pits in the dispersed matrix (M) may be from pitted gelatinized starch, or may be holes in the protein matrix.


Eig. 6.11: Evidence for enzyme attack on starch in several different specimens of ancient Egyptian bread.
(b) From loaf 023. Although the starch in this view is distorted and dispersed, some pits are still distinct on the surface (P).
(c) From loaf 029. A hollowed small starch granule (S) is clearly visible, with prominent laminations. This hollowed shape is typical of enzyme attack on small starch granules of wheat. Other small starch granules which have been attacked by enzymes (H) show a similar appearance but are somewhat less obvious in this photograph.


\title{
Fiq. 6.11: Evidence for enzyme attack on starch in several different specimens of ancient Egyptian bread.
}
(d) From loaf 049. There are no whole granules, but many fragments, showing heavy laminations and hollowed interiors typical of enzymatic attack (L). Some pits are visible on the surface of a broken granule ( \(P\) ). The particulate texture indicates that advanced enzymatic breakdown has destroyed the coherent structure of unmodified starch, while the glassy looking material (G) is gelatinizated, dispersed starch.
(e) From loaf 049. The centre is taken up by a large starch granule nearly destroyed by enzymatic attack (Q). The process has left behind only a shell with the typical channelled laminations of enzymatic breakdown. Other fragments of degraded starch with laminations still visible are also present (L), while a hollowed small granule (H) lies just above the central large shell. Much of the material visible in this micrograph consists of particulate starch resulting from extensive enzymatic attack.


\footnotetext{
Fig. 6.12: Starch from loaf 014. The starch is gelatinized, appearing as rubber raft shaped - S-4 (F), flattened into a pancake shape - S-5 (C), and dispersed - S-6 (D). Some of the material which appears pierced by many small holes is probably protein matrix (M). The prominent spicules (K) have not yet been identified, but could be analysed with microprobe techniques.
}

Fig. 6.13: Starch from loaf 023. Note the fine particulate material in the lower right area (W) and the transition to gelatinized starch (V). The lumps on the left of the micrograph (U) are too large to be individual starch granules and although they probably consist of starch, the reasons for their appearance remain unknown.


Eig. 6.14: Modern yeast cells. Both micrographs have generously been provided by Nigel Davies, BRFI.
(a) A chain of budding yeast cells. One cell has several bud scars (Y) and a newly forming bud (D).
(b) Enlarged view of budding yeast cells. Bud scars are visible on the central cell (Y).


Fig. 6.15: An unmistakeable yeast cell in the matrix of loaf 024 ( X ). It is identified on the basis of its size - about \(6.7 \mu \mathrm{~m}\)
 1982: 4), more or less spherical shape, and very clear birth scar (Q) on the right of the cell. What appears to be a small bulge on the left side of the cell (D) is the beginnings of a new cell budding out at the time of desiccation. The yeast cell appears to be an integral part of the bread matrix, but later contamination after this interior piece of crumb was exposed to the air cannot be ruled out completely.

Fig. 6.16: Possible yeast cells in loaf 014. Two possible yeast cells are just above the very centre of the micrograph (V). If yeast cells, they have collapsed somewhat. The upper one, especially, seems to show a bud scar. One reason to doubt the identification is their small size; they are barely 3 pm in length. Also visible in this micrograph are swollen, flattened large starch granules (F) and abundant spicules ( \(R\) ), whose origin is at present unknown.


Fig. 6.17: Possible yeast cells in loaf 021. The identification of the objects labelled (V) as yeast is highly uncertain and is not helped by the fact that they appear collapsed and obscured by other material. They could be distorted small starch granules. At approximately \(6 \mu m\) in length, they are the right size for yeast cells, but their surface texture looks too smooth for yeast.

Fia. 6.18: Possible yeast cells in loaf 029 (Z). They appear to have marks on the left side which might be birth scars, but due to their orientation, these cannot be seen clearly. They are rather small for yeast cells, at about \(4 \mu m\) and \(3.4 \mu \mathrm{~m}\). Note the irregular small starch granules (Q), and the somewhat blistered, possibly pitted surface, of the large starch granule (T), as well as the gelatinized starch behind (J).

Fig．6．20：Heating the experimental oven in
emmer bread baking in the oven


loaf ined at a considerable angle
STIE
sey โеұчәшт uat Fig．6．22：Exper totally collapsed
ower edge of t sticking well is inclined is burning，but it is


Fig. 6.21: Raw emmer cakes made from experimentally ground flour (see Fig. 5.41), formed into disks and left while the oven was being heated. Note the thickness of the loaves, the high chaff content, and the cracking, especially around the edges, showing that the dough is very dry.

```

Fig. 6.23: Experimental emmer loaves after baking.
(a) Top of the loaf. The surface is dry and cracked, and one edge rather badly burnt.

```
(b) Underside of the loaf. Although the edge is rather badly burnt, the rest of the underside, with its shiny, smoothed texture, does resemble the appearance of many ancient loaves.


\title{
Eig. 6.24: A plan of the whole site of Amarna, with the main regions marked. After Baines and Malek, 1984: 123.
}

Fig. 6.25: An example of the long, narrow, tapered New Kingdom bread mould, from the square oven of the Chapel 556 annexe. Drawing by A. Boyce at one third scale. From Kemp, 1987a: 78.

Fig. 6.27: Two examples of typical ceramic platters from Amarna. Unpublished drawings by A. Boyce, provided by P. Rose.

Fig. 6.24


Fig. 6.25

67293

\(1: 3^{0}=5\)

Fig. 6.27

Crand \(\qquad\)

Fig. 6.26: Plan of the Central City and part of the Main City at Amarna, showing sherd survey locations and the buildings mentioned in the text where large quantities of bread moulds were found. From Rose, 1989: 103, Fig. 5.1.
```

