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Sensitivity analysis of low-density jets and flames

Gary J. Chandler

Abstract

This work represents the initial steps in a wider project that aims to map out the

sensitive areas in fuel injectors and combustion chambers. Direct numerical simulation

(DNS) using a Low-Mach-number formulation of the Navier–Stokes equations is used to

calculate direct-linear and adjoint global modes for axisymmetric low-density jets and

lifted jet diffusion flames. The adjoint global modes provide a map of the most sensitive

locations to open-loop external forcing and heating. For the jet flows considered here,

the most sensitive region is at the inlet of the domain.

The sensitivity of the global-mode eigenvalues to force feedback and to heat and

drag from a hot-wire is found using a general structural sensitivity framework. Force

feedback can occur from a sensor-actuator in the flow or as a mechanism that drives

global instability. For the lifted flames, the most sensitive areas lie between the inlet

and flame base. In this region the jet is absolutely unstable, but the close proximity

of the flame suppresses the global instability seen in the non-reacting case. The lifted

flame is therefore particularly sensitive to outside disturbances in the non-reacting zone.

The DNS results are compared to a local analysis. The most absolutely unstable re-

gion for all the flows considered is at the inlet, with the wavemaker slightly downstream

of the inlet. For lifted flames, the region of largest sensitivity to force feedback is near

to the location of the wavemaker, but for the non-reacting jet this region is downstream

of the wavemaker and outside of the pocket of absolute instability near the inlet.

Analysing the sensitivity of reacting and non-reacting variable-density shear flows

using the low-Mach-number approximation has up until now not been done. By includ-

ing reaction, a large forward step has been taken in applying these techniques to real

fuel injectors.

Key words: hydrodynamic instability, low-density jet, low-Mach-number

Navier–Stokes, diffusion flame, structural sensitivity, force feedback, hot wire, adjoint

operator, non-normality, global modes, absolute instability.
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Preface

The work described in this thesis was undertaken between March 2008 and May 2010 at

the Department of Engineering, University of Cambridge, with occasional brief visits to

LadHyX, École Polytechnique. Preliminary work in this field was undertaken between

October 2006 and March 2008 and was presented at the 2007 APS/DFD annual meeting

in Salt Lake City, Utah.

The numerical computations were initially carried out on the LadHyX cluster, with

subsequent work performed using the Darwin Supercomputer of the University of Cam-

bridge High Performance Computing Service (http://www.hpc.cam.ac.uk/).

The work represents the first steps of a much wider project and as such has been

written with continuation and future work in mind. In particular chapter 6 gives some

quite detailed descriptions of what could be done next and contains preliminary work

I’ve started, but not had a chance to follow up. Included throughout the text are many

suggestions and references, particularly in the boundary conditions section, that I hope

will give anyone who wishes to continue this work a bit of a head start.

I’ve tried to make the sections and chapters as self-contained as possible, so that it

is hopefully possible to go straight to the section of interest without the prerequisite

of reading all the previous chapters. In particular I hope the sections in chapter 4

on sensitivity analysis can be read by anyone with an idea of linear systems. The

derivations assume no knowledge of the exact form of the governing equations, boundary

conditions or solution procedure. All that is needed are the direct and adjoint global

modes of any time-evolving linear system. The structural sensitivity section is a short

opening section giving a general framework with the following two sections going into

specific examples for hydrodynamic instability.

Finally it’s worth mentioning the ‘Instaflow’ application that was used to produce

the results of the local analysis in chapter 5. This is a Matlab graphical user interface
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developed by my supervisor Dr. Juniper and a number of of his students. While I have

not used it thoroughly myself, it seems to make light work of slicing up and analysing

my vast amounts of numerical data.
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CHAPTER 1

Introduction

Fuel injectors

Fuel injectors exploit natural hydrodynamic instabilities to mix reactants well in com-

bustion chambers. Good mixing is essential to ensure complete combustion over a short

distance. In gas turbines, for instance, this minimizes overall length and weight, which

is important for increasing the fuel efficiency of the aircraft. Fuel injectors have elab-

orate shapes and complex flow dynamics, often involving large amounts of swirl and

turbulence. To a first approximation, however, fuel injectors can be considered to be

one of two types of shear flow: a jet flow, where the injected fuel velocity is greater

than the surrounding oxidizer velocity, or a wake flow, where the injected fuel velocity

is less than the surrounding oxidizer velocity. Jet type fuel injectors are commonly used

in automotive engines, whereas wake type injectors are commonly used in gas turbines.

The physical properties and analysis of each type of flow are closely related.

Turbulent shear flows are far better at mixing than laminar shear flows. According

to Schmid & Henningson (2001), transition to turbulence usually starts with the pro-

jection of random initial disturbances into exponentially-growing eigenmodes and/or

transiently-growing optimal perturbation structures. The linear growth of these pri-

mary instabilities usually leads to nonlinear saturation and the new quasi-steady flow

becomes the base flow for shorter-wavelength secondary instabilities. Nonlinearities

and/or higher instabilities proceed to excite an increasing number of scales and fre-

quencies in the flow, eventually leading to the breakdown to turbulence. Linear growth

mechanisms are therefore an influential part in the transition process and are looked at

specifically by Henningson & Reddy (1994).
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In aircraft engines, the fuel and air are both turbulent before they enter the com-

bustion chamber. Broadwell & Breidenthal (1982) show that large scale structures

in the turbulent shear flows are responsible for mixing. In particular they describe a

mixing model where the interfacial area between the two fluids grows as it is distorted

by the motion of the large scale structures and by secondary structures and small ed-

dies, which exist within the large scale structures. This starts slowly and becomes

more and more rapid as successively finer scales develop, until the Kolmogorov scales

are reached, where rapid molecular diffusion occurs. This initial model assumes that

the diffusion-layer thickness is small compared to the turbulent-layer thickness, which

is appropriate for high Schmidt and Reynolds numbers. Broadwell (1988) extended

this model to interfaces with diffusion layers, where the thickness is dependent on the

molecular transport coefficients. In both cases, the fluid entrainment rate, caused by

the motion of the large scale structures, is influential to the mixing rate, a finding that

is supported by Catrakis et al. (2005). These large-scale coherent structures have been

observed in turbulent jet flow at high Reynolds numbers by Broadwell & Mungal (1991)

and Catrakis et al. (2002). The large scale structures occur due to global instabilities

of the turbulent shear flow. Global instability therefore plays an important role in both

the transition to turbulence and turbulent mixing itself.

Within the mixing zone there is a region where the fuel to oxidizer ratio is sufficiently

close to the stoichiometric ratio for combustion to occur. The local flow conditions,

however, affect combustion by convecting heat away from the combustion zone. If the

rate of convection is too large, the flame cannot stabilize at that point. An example

of this occurs in lifted jet diffusion flames, where the liftoff height is sensitive to the

jet velocity (Brown et al., 1999). Combustion has a significant effect on flow dynamics

and mixing within the combustion chamber. The combustion process for most com-

mon fuels is complex and involves many different intermediate reactions to convert fuel

and oxidizer into the final combustion product. The reacting gas is a non-isothermal

mixture of multiple species, each having a different set of transport coefficients. Each

species must be tracked individually and the rates at which these species react require

careful modelling (Poinsot & Veynante, 2005). This is complicated further with incom-

plete combustion and secondary reactions due to the high temperatures, such as the

generation of nitrogen oxides from the nitrogen and oxygen contained in air.

Initial work into combustion chambers for rockets and aircraft involved much ex-

perimentation and guesswork (Heppenheimer, 1997). Today our ability to measure and
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simulate the internal processes of combustion chambers has improved our knowledge

of what is happening, but it has not always improved our understanding of why it is

happening. To answer the question ‘why’ rather than ‘what’ requires a greater toolbox

than accurate modelling alone. Although applied mathematicians have developed many

useful tools, it is only relatively recently that some of these tools have been applied to

real fuel injectors. A recent example is the ‘Instaflow’ application (Correia Da Costa,

2009), which uses local analysis techniques (Huerre & Monkewitz, 1990) to provide

extra information about the nature and origin of existing global modes inside real com-

bustion chambers. Nonlinear adjoint looping has also recently been used to find optimal

perturbations in a canonical combustion-instability problem, to improve understanding

of triggering of sustained oscillations in a linearly stable system (Juniper, 2011).

The behaviour of a combustion system is extremely sensitive to the injector geom-

etry, the heat release due to combustion and acoustics in the combustion chamber (see

Culick et al., 1995, and Ananthkrishnan et al., 2005, for a review of combustion insta-

bility). The design of an injector also influences the overall cost of manufacture and

running of the engine and involves many simulations and experiments to improve ex-

isting designs incrementally. An understanding of the sensitive areas of an injector can

not only allow a more guided design approach, but can also provide useful information

for the design team. For example, if the desired flow dynamics have been established

by computational fluid dynamics, sensitivity information could significantly aid the re-

alization of that design by providing the materials scientists and structural engineers

with information about the most influential parts of the desired injector geometry, i.e.

the regions of the injector that must not be altered between the prototype and the

manufacturing stage.

The overall aim of the wider project is to develop the capability of producing sen-

sitivity maps of real fuel injectors in combustion chambers. The maps would give

information about where various design changes have the largest and smallest effects

on the rate of mixing and the sensitivity to acoustics. This thesis represents part of

the initial work into adapting existing sensitivity analysis techniques within the fluid

dynamics community to eventually be applied to real fuel injectors.

The starting point is the work by Giannetti & Luchini (2007), who produced sen-

sitivity maps for the primary instability of a cylinder wake. Cylinder wakes and fuel

injectors are both natural oscillators (as opposed to amplifiers, see Huerre & Monkewitz,

1990; Chomaz, 2005) and have therefore a natural frequency of oscillation and global
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mode shape that dominate the flow dynamics. The natural oscillation is believed to

arise from a hydrodynamic feedback loop that is inherent in the underlying system of

equations (Chomaz et al., 1991; Monkewitz et al., 1993; Giannetti & Luchini, 2007).

The spatial sensitivity maps calculated by Giannetti & Luchini (2007) give the

sensitivity of the frequency and amplitude of the natural oscillation to perturbations

of an assumed force-momentum feedback coupling. Giannetti & Luchini (2007) define

the region of maximum sensitivity as the ‘instability core’. The ‘instability core’ of

the primary instability of a fuel injector is of key interest because it is the region

that has the largest influence on the global flow dynamics and combustion process.

It has therefore the largest influence on the overall efficiency of the fuel injector and

combustion chamber design.

It is worth pointing out that the use of sensitivity maps is not a new concept in

engineering design optimization. The principles on which they are established were

first used for steady fluid dynamic design by Pironneau (1974) and later for aerody-

namic design optimization of a wing by Jameson (1988), which gave rise to a large

expansion of aeronautical optimization research (see Jameson, 1999; Newman et al.,

1999). While similarities exist between the sensitivity maps for current aeronautical

design optimization and for cylinder wakes, the fundamental difference is the stability

properties of the flows concerned. For aeronautical applications the flows considered

are steady and lend themselves in a more straightforward way to design optimization

using sensitivity information. For cylinder wakes and fuel injectors the flows are un-

steady and require therefore a more complex approach for design optimization using

sensitivity information.

Flow instability methods

Early work in flow instability produced the well-known Rayleigh’s inflection point cri-

terion for inviscid parallel flows (Rayleigh, 1880). In more modern times the use of

linear eigenmodes to study the instability of parallel shear flows (see Drazin & Reid,

1981) has become increasingly popular. The concepts of absolute and convective in-

stabilities, originally introduced in plasma physics (Briggs, 1964), distinguish between

parallel flows that oscillate of their own accord and parallel flows that act as ampli-

fiers of external disturbances. Under the parallel flow assumption, Ashpis & Reshotko

(1990) applied the absolute/convective approach to the vibrating ribbon problem, in
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which a boundary layer amplifies the disturbance produced by the ribbon. Huerre &

Monkewitz (1985) carried out a similar analysis for a parallel spatial mixing layer and

dicuss the implications for hot jets and wakes.

Juniper (2006) used a linear spatio-temporal analysis to provide a thorough theoret-

ical account of the effect of confinement on the transition from convective to absolute

instability for parallel planar jets and wakes. This work is particularly relevant in the

study of fuel injectors given the observation by Barrère et al. (1960) that confining

the outer flow of fuel injectors is beneficial for mixing. This observation is supported

by results from numerical (Delbende & Chomaz, 1998; Garcia-Villalba et al., 2006)

and theoretical (Juniper & Candel, 2003) studies, which suggest that confinement can

enhance the instability of the flow.

The extension of the absolute/convective approach to weakly non-parallel flows can

be made using a WKBJ approximation (Bender & Orszag, 1978) and introduces the

concepts of global modes and the wavemaker (Huerre & Monkewitz, 1990; Huerre &

Rossi, 1998; Huerre, 2000). This approach is known as a local analysis, because at each

streamwise location the flow is considered independently. At each streamwise location

the flow is assumed to be parallel and to extend infinitely far up- and downstream. It

is then assessed to be either absolutely unstable, where disturbances spread up- and

downstream, or convectively unstable, where disturbances are swept away from the

source. For weakly non-parallel flows to act as oscillators, they require a region of

absolute instability that is large enough and strong enough to act as a wavemaker.

The wavemaker provides a natural oscillation that can be amplified finite distances up-

and downstream by surrounding convectively-unstable regions in the flow, which gives

rise to a global mode. A particularly relevant application of linear absolute/convective

instability methods to analyze fully nonlinear global modes in hot and helium jets has

been made by Kyle & Sreenivasan (1993).

Weakly nonlinear theory, involving Landau amplitude equations, provides a more

accurate extension of the linear theory to the fully nonlinear regime in the vicinity

of the first bifurcation point (Huerre & Rossi, 1998; Chomaz, 2005). Fully-nonlinear

extensions and the front concept are reviewed by Huerre (2000) and Chomaz (2005),

with the latter reviewing in depth the role non-normality plays in non-parallel flows

and how non-normality limits the use of linear theory to describe nonlinear dynamics.

Pier (2002) successfully applied a local analysis to a highly non-parallel cylinder wake

using both linear and nonlinear theory.
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The non-parallel approaches typically make use of a steady, but unstable, solution of

the fully-nonlinear governing equations. Traditionally this has been done with root find-

ing algorithms, such as the Newton methods, applied to the steady nonlinear problem

(Fletcher, 1991). Methods that damp down the high-frequency unstable components in

the unsteady problem (Åkervik et al., 2006) have recently been gaining in popularity

due to the relative ease with which they can be applied to existing time-stepping codes.

Linear eigenmodes have been calculated and used in numerical stability studies of

highly-non-parallel flows. For example Zebib (1987) and Hill (1992), with spectral

techniques, and Jackson (1987), with finite elements, used linear eigenvalue theory to

predict the critical Reynolds number for the onset of oscillations in the flow behind a

cylinder. To analyze the secondary instability behind a cylinder, Barkley & Henderson

(1996), using a spectral-element method, conducted a linear Floquet stability analysis

with the time-evolving nonlinear global mode as the base flow. The Floquet stability

analysis is an extension of the eigenfunction analysis for periodic time-evolving base

flows.

Numerical analysis has also opened the door to different modal decomposition tech-

niques. In flow control and model reduction, Proper Orthogonal Decomposition (POD)

is often used (Berkooz et al., 1993). The use of Krylov methods for linear eigenmode

decomposition in unstable flows (Edwards et al., 1994) has led to a new decomposi-

tion technique for fully nonlinear problems. Applying Krylov techniques to a nonlinear

time evolution, Rowley et al. (2009) and Schmid (2010) calculate dynamic modes that

characterize nonlinear behaviour in a similar way to the way in which eigenmodes char-

acterize linear behaviour. Schmid et al. (2010) carried out a reconstruction and dynamic

mode decomposition of experimental data of a helium jet.

Non-normality

While modal analysis techniques give good insight into the long time hydrodynamic

instability behaviour, they usually do not give a quantitative description of short-term

disturbance behaviour. Transient effects arise from modal interactions due to the non-

normality of the governing operator. An operator is referred to as normal if its set of

eigenfunctions are orthogonal and is referred to as non-normal if the set of eigenfunctions

are not orthogonal. For open flows, the main source of non-normality in the linear

evolution operator is the difference in sign of the regular and adjoint basic flow advection
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term compared to the diffusive term, which causes spatial separation of the direct and

adjoint modes (Chomaz, 2005).

The analysis of transient effects falls into the category of non-modal stability theory

(Schmid & Henningson, 2001; Schmid, 2007). For highly non-normal flows the spectrum

of eigenvalues is often a poor indicator of disturbance behaviour in the short term and a

disturbance that grows most over a short time scale often differs significantly from the

least stable eigenmode. Trefethen et al. (1993) introduced the concept of pseudospectra

to quantify non-normal amplification and point out that transient growth can occur

even when a corresponding modal analysis would predict that all eigenmodes are stable.

Cossu & Chomaz (1997) demonstrated that stream-wise non-normality can lead to large

transient growth of the initial perturbation energy.

As well as transient effects, non-normality can lead to extreme sensitivity to forcing

(Chomaz, 2005) and extreme sensitivity of eigenvalues to operator perturbations (Reddy

et al., 1993). Non-normality can also lead to to a wide gap between the critical Reynolds

numbers calculated by linear eigenfunction theory and energy stability theory (Reddy

et al., 1993) and to pseudoresonance (Trefethen et al., 1993), where a large resonance

occurs in an amplifier type flow even though the forcing frequency is not near any

eigenvalue frequency.

Adjoint operators

The concept of non-normality is closely linked to that of adjoint operators. If an

operator is normal it commutes with its corresponding adjoint operator; if an operator

is non-normal it does not commute with its adjoint operator. In terms of eigenfunctions

for a linear operator, the set of direct linear eigenfunctions and the corresponding

set of adjoint eigenfunctions are biorthogonal (Salwen & Grosch, 1981; Hill, 1995).

This means that for each direct eigenfunction there is only one non-orthogonal adjoint

eigenfunction, which has an adjoint eigenvalue that is the complex conjugate of the

corresponding direct eigenvalue.

The adjoint operator essentially provides gradient information about the direct op-

erator and has been used directly in receptivity analyses (Hill, 1995); in optimal flow

control (Bewley, 2001; Guegan et al., 2006); and in optimization routines to find ‘opti-

mal perturbations’ for maximum transient growth using linear theory (Andersson et al.,

1999; Luchini, 2000; Corbett & Bottaro, 2001; Guegan et al., 2006).
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A number of extensions to the linear optimal perturbation framework have been

successfully implemented, for example, optimal perturbations for flows with moving

domains (Protas & Liao, 2008) and optimal perturbations for fully nonlinear systems

(Zuccher et al., 2006; Juniper, 2011), where the adjoint of the nonlinear operator is

actually linear and is calculated using a time-evolving operator derived from the time-

evolving direct calculation.

It is worth pointing out that, although adjoint operators are versatile, they are not

the only means to carry out analyses like those above. Butler & Farrell (1992) used a su-

perposition of the leading eigenmodes to create a variational problem, which was solved

for optimal perturbations. Another alternative for the optimal perturbation problem is

to carry out a singular value decomposition of the non-self-adjoint perturbation matrix

(Schmid & Henningson, 2001). Schmid & Henningson also use a similar approach in

the related problem of optimal forcing. The use of adjoint techniques forms an efficient

optimization routine for systems with many degrees of freedom. For systems with few

degrees of freedom, however, estimating the local gradient function with a numerical

scheme is relatively simple.

The form of the adjoint depends on the inner product used to determine it, with

a natural choice being one related to the disturbance energy (Schmid & Henningson,

2001). Other choices of inner product to define the adjoint exist and are discussed in

depth by Protas et al. (2004).

Sensitivity analyses

The experiments of Strykowski & Sreenivasan (1990) determined the most sensitive re-

gions of the primary instability of a cylinder wake to the placement of smaller cylinders.

They found that when the smaller cylinders were placed in certain regions, the natural

oscillation of the wake could be suppressed. This prompted the numerical sensitivity

analyses of Hill (1992) and Giannetti & Luchini (2007). Similar experimental studies,

perhaps more relevant to the present work, are those of Sreenivasan et al. (1989) and

Toong et al. (1965). Sreenivasan et al. observed the suppression of natural oscillations

in helium-air jets by the placement of a control wire in the near field of the jet, while

Toong et al. studied the flame behind a burning cylinder and found that the place-

ment of small non-burning cylinders slightly downstream of the main burning cylinder

suppressed the natural oscillation of the flame.
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Hill (1992) modelled the drag force exerted by a small cylinder on the flow near the

first bifurcation point of a cylinder wake and used linear theory and adjoint eigenfunc-

tions to predict the most sensitive regions, which coincided well with the experimental

findings of Strykowski & Sreenivasan (1990). Giannetti & Luchini (2007) extended the

work of Hill (1992) by lengthening the computational domain and provided a more

general framework in terms of the force-momentum feedback coupling and instability

core. Using a linear Floquet analysis, Luchini et al. (2008) performed a sensitivity

analysis similar to that of Giannetti & Luchini (2007) for the cylinder wake away from

the bifurcation point and well into the fully nonlinear regime. Using a similar Floquet

technique Giannetti et al. (2010) calculate the location of the core of the secondary

instability of a cylinder wake that develops on the saturated nonlinear global mode.

With the exception of Hill (1992), the sensitivity analyses described above have

focused on structural perturbations of the linear operator resulting from a change in

the perturbative forcing in the linear equations. This perturbative forcing only affects

the linear global modes and not the underlying base flow. Hill (1992) recognised that

the steady component of the drag force would affect the instability through altering the

base flow, but treated it as negligible compared to the direct effect of the perturbative

force on the linear operator. Bottaro et al. (2003) found, however, that relatively

small changes in the base flow of plane Couette flow have a destabilizing effect on the

eigenvalues. The concept of the sensitivity to a steady force was developed in a more

general linear Lagrange-multiplier framework by Marquet (2008) for the incompressible

flow behind a cylinder near the bifurcation point and this approach has been extended

by Meliga (2008) for near-bifurcation compressible after-body flows, which allow for

the introduction of the sensitivity to steady heating and the sensitivity to localized

wall blowing and cooling. Meliga & Chomaz (2010) applied the same technique to

investigate the global modes of a jet impinging on a flat plate.

Giannetti et al. (2010) state that the sensitivity to the perturbative source terms

alone is the appropriate tool to study the position of the wavemaker and investigate the

physical nature of the instability, whereas the investigation into the sensitivity to steady

source terms is more appropriate to develop effective control strategies to suppress the

instability or for direct comparison to experiments. This statement is plausible and

suggests that steady source terms influence eigenvalue growth rates and frequencies to

a greater extent than perturbative source terms. If this is the case then the sensitivity

to steady source terms would also be more appropriate for design optimization, while
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perturbative source terms would provide a greater insight into the actual instability

mechanisms present in the flow.

Overview

As the initial part of a wider project, this work first calculates in chapter 2 the direct

and adjoint global modes for the primary instability of a low-density jet mixing with

an ambient fluid. This is representative of a light gaseous fuel being injected into a

combustion chamber containing air. To analyze the effect of heat release due to com-

bustion and the resulting fluid expansion on the sensitivity of the primary instability,

the model is extended in chapter 3 to that of a lifted jet diffusion flame by including

a simple combustion model. In chapter 4, a physical meaning of the adjoint global

modes is derived and the direct and adjoint modes are used to carry out a similar sen-

sitivity study to that of Giannetti & Luchini (2007) for the low density jet and lifted

jet diffusion flame. The sensitivity of the eigenvalues to the placement of a hot wire

in the flow is then considered. The last section of chapter 4 compares the results to a

local analysis. Chapter 5 outlines the next steps to move further towards the goal of

sensitivity maps of real fuel injectors. Finally, in chapter 6, some overall concluding

remarks are drawn for this work.



CHAPTER 2

Hot jets

2.1 Introduction

An axisymmetric non-swirling low-density jet has been chosen as the first problem to

investigate, because it contains some of the key elements that drive instabilities in real

fuel injectors, while still being of fundamental interest to the fluid dynamics community.

The local analysis of Lesshafft & Huerre (2007) highlights the importance of the density

ratio of the jet to the surroundings in determining whether the flow behaves as an

oscillator or an amplifier. When the ratio is unity the jet behaves as an amplifier. As

the density ratio decreases, i.e. the jet becomes lighter than the surroundings, the flow

becomes more unstable until a natural oscillation occurs.

The particular type of low-density jet studied in this chapter is that of a hot jet,

which is dynamically similar to a jet containing a low-density species surrounded by a

high-density species, herein referred to as a light jet. A number of experimental studies

have observed oscillatory behaviour for both hot and light jets. Sreenivasan et al. (1989)

looked at the nature of absolute instability of helium-air jets exiting into ambient air;

Monkewitz et al. (1989) studied the entrainment of fluid into self-excited hot jets at

transitional Reynolds numbers; Monkewitz et al. (1990) studied self-excited oscillations

and mixing in a heated round jet; Yildirim & Agrawal (2005) studied self-excited os-

cillations in momentum-dominated helium jets and Schmid et al. (2010) carried out a

dynamic-mode decomposition of experimental data from an unforced and harmonically

forced helium jet.

Early theoretical studies on variable density shear flows were performed by Taylor

(1931), Goldstein (1931) and Drazin (1958). For the specific case of low-density jets,
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Monkewitz & Sohn (1988) performed a local analysis of hot jets exiting into ambient

conditions, which was extended by Jendoubi & Strykowski (1994) to jets with coflow

and counterflow. The spatio-temporal analysis of the full impulse response was then

completed by Lesshafft & Huerre (2007). Lesshafft et al. (2006) carried out a theoretical

study of nonlinear global modes in hot jets and Nichols et al. (2007) carried out a direct

numerical simulation (DNS) and local analysis to look at the effect buoyancy plays on

the nature of self-sustained oscillations in variable-density jets.

In this study the direct and adjoint global modes are found with DNS using a

low-Mach-number formulation of the Navier–Stokes equations as used by Nichols et al.

(2007).

2.2 Governing equations

The Low-Mach-number approximation

The low-Mach-number approximation (McMurtry et al., 1986; McMurtry, 1987) pro-

duces a set of equations that allow for density variation due to temperature or species

variation, but not due to compressibility. The low-Mach-number equations allow there-

fore the study of low density jets and flames without the need to resolve acoustic time

and length scales. They are based on the fully compressible Navier–Stokes equations

and lie in between the fully compressible and incompressible Navier–Stokes equations,

bearing resemblances to both. The Low-Mach-number equations are different to those

formed with the Boussinesq approximation. Using the Boussinesq approximation, den-

sity variations are neglected everywhere except in the buoyancy related terms, whereas

using the low-Mach-number approximation density variations are included everywhere.

The Boussinesq approximation is commonly used in geophysical flows where the density

varies with height due to atmospheric effects. This variation is not considered in the

low-Mach-number equations, where density variation is only caused by different species

or temperature variation.

The nonlinear low-Mach-number equations have been used successfully to simulate

self-sustained oscillations in variable-density round jets (Nichols, 2005; Nichols et al.,

2007); unsteady combustion in pre-mixed flames (Najm et al., 1998); turbulent reactive

plumes (Cook & Riley, 1996); and self-sustained oscillations in variable-density lifted

diffusion flames (Nichols, 2005; Nichols & Schmid, 2008; Nichols et al., 2009).
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While a set of adjoint equations has been formed for many different equation sets

in fluid dynamics, this does not seem to have been done for the low-Mach-number

equations. The adjoint equations corresponding to the incompressible Navier–Stokes

equations are well known (see Giannetti & Luchini, 2007, for an example), while the

adjoint equations corresponding to the fully-compressible Navier–Stokes equations have

been derived by Cerviño et al. (2002) and Meliga (2008).

Equation derivations

Starting from a set of non-dimensionalized fully-compressible Navier–Stokes equations,

each variable is expressed in a form similar to p = p(0) + γMa2p(1) + · · · , where p is

the non-dimensional pressure, and the Mach number, Ma, and γ are defined in table

2.1. In the limit of low Mach number, all terms of order Ma2 disappear except for

the pressure term in the momentum equation, which contains the factor 1/γMa2. This

term implies that the low-Mach-number momentum equation is balanced by ∇p(1) and

that ∇p(0) = 0.

The domain is cylindrical and uses a collocated grid with cylindrical polar coor-

dinates (r, θ, x). The inlet (jet exit plane) is located at the axial location x = 0 and

the outlet at x = Xmax, with uninormly spaced grid points in the axial direction. The

lateral boundaries are located at a radial distance r = Rmax from the centreline, with

skewed grid spacing in the radial direction. For the results in this thesis, only axisym-

metric flows are considered, but the analysis can be extended to fully 3D regimes. The

full derivation of the nonlinear equations along with a full description of the compu-

tational domain and non-dimensionalizations are given in Nichols et al. (2007). The

definitions of all non-dimensionalized variables and parameters are given in table 2.1.

The superscript (0) has been dropped on all non-dimensional variables except for p. Di-

mensional variables are denoted by (∼), ambient conditions are denoted by subscript (0)

and conditions for the jet at entry are denoted by subscript (j). The non-dimensional
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nonlinear low-Mach-number equations are

Dρ

Dt
+ ρ(∇ · u) = 0, (2.1a)

∂ (ρu)

∂t
+ ∇p(1) − ∇ ·

(
1

S1Re
τ − ρuu

)
+ Ri (1 − ρ) ĝ = 0, (2.1b)

ρ
DT

Dt
−

1

S1RePr
∇2T = 0, (2.1c)

ρ ((S1 − 1) T + 1) = p(0), (2.1d)

∇p(0) = 0, (2.1e)

τ ≡
[
∇u + (∇u)T

]
−

2

3
(∇ · u) I,

where the identity matrix I has the same matrix dimensions as ∇u and τ is the viscous

stress tensor. The vector ĝ is a unit vector in the direction of g, the acceleration due

to gravity. The pressures p(0) and p(1) are known as the thermodynamic pressure and

hydrodynamic pressure respectively because p(0) is determined by the temperature in

the state equation (2.1d) and p(1) is determined by the hydrodynamic forces in the

momentum equation (2.1b).

The physical properties µ, λ, R, cp and γ, described in table 2.1, are assumed

to be uniform and constant and can therefore be used directly in the non-dimensional

variables and parameters. The Prandtl number Pr expresses a non-dimensional ratio of

momentum diffusivity to thermal diffusivity. The parameter S1 is the ratio of ambient

density to jet density, which implies that S1Re forms a Reynolds number based on the

ambient density instead of the jet density. The Richardson number, Ri expresses a

ratio of gravitational potential energy to kinetic energy. For the results in this thesis it

is set to zero, but it is carried through the derivation as it may be useful in some cases,

such as vertically orientated diffusion flames.

The dimensional equation of state, p̃ = ρ̃RT̃ , implies that the ambient pressure p̃0 is

equal to ρ̃0RT̃0. Together with the definition of non-dimensional pressure, p, in table 2.1,

this implies that the non-dimensional ambient pressure p0 = p̃0/ρ̃0RT̃0 = 1. Equation

(2.1e) implies that p(0) is uniform in space and, assuming that the boundary conditions

on p(0) are time independent, p(0) is also constant in time. Under the assumption of

low Mach number, p(0) ≈ p and we conclude therefore that p(0) ≈ 1.
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Reference quantities:

Ambient density (kg m−3): ρ̃0

Ambient temperature (K): T̃0

Jet density (kg m−3): ρ̃j

Jet temperature (K): T̃j

Jet diameter (m): d̃j

l2-norm of jet velocity (m s−1): ‖ũj‖ ≡ ũj

Dynamic viscosity (N m−2 s): µ

Thermal conductivity (W m−1 K−1): λ

Gas constant (J kg−1 K−1): R

Specific heat capacity
cpat constant pressure (J kg−1 K−1):

Ratio of specific heats: γ

Acceleration due to gravity (m s−2): g ≡ ‖g‖

Non-dimensional variables:

Velocity: u ≡ ũ/ũj

Density: ρ ≡ ρ̃/ρ̃0

Temperature: T ≡
(
T̃ − T̃0

)
/
(
T̃j − T̃0

)

Pressure: p ≡ p̃/
(
ρ̃0RT̃0

)
≈ p(0) + γMa2p(1)

Time: t ≡ t̃ ũj/d̃j

Spatial derivatives: ∇ ≡ d̃j∇̃

Non-dimensional parameters:

Mach number: Ma ≡ ũj/
(
γRT̃0

)1/2

Reynolds number: Re ≡ ρ̃j ũj d̃j/µ

Prandtl number: Pr ≡ µcp/λ

Richardson number: Ri ≡ gd̃j/ũ2
j

Density ratio: S1 ≡ ρ̃0/ρ̃j

Table 2.1: Non-dimensionalized variables and parameters for non-reacting jets.
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The base flow is a steady solution to (2.1) and satisfies

∇ · m̄ = 0, (2.2a)

∇p̄(1) − ∇ ·

(
1

S1Re
τ̄ − ρ̄ūū

)
+ Ri (1 − ρ̄) ĝ = 0, (2.2b)

m̄ · ∇T̄ −
1

S1RePr
∇2T̄ = 0, (2.2c)

ρ̄
(
(S1 − 1) T̄ + 1

)
= 1, (2.2d)

τ̄ ≡
[
∇ū + (∇ū)T

]
−

2

3
(∇ · ū) I,

m̄ ≡ ρ̄ū,

where p(0) has been replaced by the value 1 in (2.2d). The nonlinear equations (2.1)

are linearized about the base flow to form:

∂ρ′

∂t
+ ∇ · m′ = 0, (2.3a)

∂m′

∂t
+ ∇ ·

(
ρ̄ūu′ + ρ̄u′ū + ρ′ūū

)
+ ∇p′ −

1

S1Re
∇ · τ ′ − Riρ′ĝ = 0, (2.3b)

ρ̄
∂T ′

∂t
+ ρ̄ū · ∇T ′ + m′

· ∇T̄ −
1

S1RePr
∇2T ′ = 0, (2.3c)

ρ′

ρ̄
+

(S1 − 1) T ′

(
(S1 − 1) T̄ + 1

) = 0, (2.3d)

τ ′ ≡
[
∇u′ +

(
∇u′

)T ]
−

2

3

(
∇ · u′

)
I, (2.3e)

m′ ≡ ρ̄u′ + ūρ′, (2.3f)

where m′ is the linearized momentum and p′ is the linear perturbation of p(1). For

the rest of this chapter the primes on the direct linear perturbation variables have been

dropped for clarity and p refers to the linear perturbation of the hydrodynamic pressure

p(1).
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2.3 Calculating adjoints

Introducing the direct linear operator, L, the system of linearized perturbation equa-

tions, (2.3), can be expressed as

∂q

∂t
− Lq = 0, (2.4)

q ≡

[
m

T

]
,

where m and T are functions of the axial and radial coordinates, x and r, and time t.

The state vector q does not contain p and ρ because these can be derived from m and

T using (2.3).

Our main interest is in the global modes of (2.4) and their corresponding frequencies

and growth rates. We are therefore interested in non-trivial solutions of (2.4) of the

form

q (x, r, t) = q̂ (x, r) exp (σt) . (2.5)

Substituting (2.5) into (2.4), we can write the new system of equations as

σq̂ − Lq̂ = 0. (2.6)

To form the adjoint equations and find the adjoint global modes, (2.6) needs to be

rearranged. To achieve this it is useful to define an inner product

〈q1, q2〉 ≡
1

V

∫

V
qH

1 q2 dV, (2.7)

where qH
1 is the Hermitian of q1. In this notation, qH

1 q2 ≡
∑

i q
∗
1i q2i, where superscript

(∗) denotes the complex conjugate. The adjoint eigenmodes themselves depend on

this choice of norm but, when they are recombined with the direct modes to give the

sensitivity of the eigenvalue to changes in the operator L, and other robust measures,

the effect of the norm cancels out. Using the inner product, (2.6) is premultiplied by

an arbitrary vector q̂+, to give:

〈
q̂+, σq̂

〉
−
〈
q̂+, Lq̂

〉
= 0. (2.8)

The vector q̂+ will soon be identified with the adjoint global mode corresponding

to q̂. The adjoint global mode can be found before or after (2.8) is discretized and
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the two methods, although subtly different, are theoretically equivalent (Giannetti &

Luchini, 2007). Discretizing before is labelled the ‘discrete-adjoint’ approach whereas

discretizing after is labelled the ‘continuous-adjoint’ approach. This distinction is the

same as that made by Bewley (2001) between the ‘optimize then discretize’ (OTD)

approach and the ‘discretize then optimize’ (DTO) approach and also the distinction

made by Vogel & Wade (1995) between the ‘discretization of the adjoint system’ and the

‘adjoint of the discrete system’. Giles & Duta (2003) outline some of the programming

benefits of the discrete approach in the context of aircraft design and highlight the use

of automatic differentiation software that can calculate the discrete-adjoint operator

automatically. A review of research on both discrete- and continuous-adjoint design

methods for steady flows is given by Newman et al. (1999). Sirkes & Tziperman (1997)

compare the discrete- and continuous-adjoint approaches when calculating the time-

dependent sensitivity of a cost function to initial conditions for an atmospheric system.

2.3.1 Continuous-adjoint approach

General formulation

The continuous-adjoint operator of L is L+ and is defined implicitly by

〈(
L+q̂+

)
, q̂
〉
≡
〈
q̂+, Lq̂

〉
. (2.9)

L+ can be found by rearranging (2.8) with integration by parts to give:

〈(
σ∗q̂+

)
, q̂
〉
−
〈(

L+q̂+
)
, q̂
〉

= b. (2.10)

By selecting appropriate boundary conditions, the boundary term b can be set to zero,

which means that (2.9) is satisfied. At this point q̂+ can still be an arbitrary vector

but, in order for (2.10) to be satisfied for arbitrary q̂, q̂+ must satisfy

σ∗q̂+ − L+q̂+ = 0. (2.11)

A vector q̂+ satisfying (2.11) is a global mode of the continuous-adjoint operator

L+ with a corresponding eigenvalue equal to σ∗. Global modes of L+ will be referred

to hereafter as continuous-adjoint global modes and are time-independent solutions of
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the system

−
∂q+

∂t
− L+q+ = 0, (2.12)

where q+ ≡ q+ (x, r, t) ≡ q̂+ (x, r) exp (−σ∗t) ,

and q+ ≡

[
m+

T+

]
.

The minus sign in front of the time derivative term in (2.12) appears due to the in-

tegration by parts of the time derivative term in (2.4). Remembering that adjoint

simulations are run backwards in time, t could be replaced with −t+, which would put

the adjoint system of (2.11) and (2.12), in a similar form to the direct system of (2.4),

(2.5) and (2.6).

Specific formulation

The time derivative terms and continuous-adjoint operator form a set of adjoint equa-

tions that are created by successive integration by parts of the set of direct equations

(2.3). The exact form of the adjoint equations depends on the exact form of the direct

equations. The aim is to find a set of adjoint equations that closely mimics the set

of direct equations so that they both can be solved using a similar algorithm. The

incompressible and fully-compressible direct Navier–Stokes equations are naturally in

a suitable form. The low-Mach-number Navier–Stokes equations, however, are not.

A naive approach would be to apply integration by parts to (2.3). The ∂ρ/∂t term

in (2.3a), however, leads to adjoint equations that require ∂p+/∂t to be approximated

from p+ at the current and previous time steps. This approximation is not present

in the direct algorithm and leads to large numerical errors. The direct and adjoint

low-Mach-number equations closely mimic one another when the direct equations take
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the form

(S1 − 1)

(
m̄i

∂T̂

∂xi
−

1

S1RePr

∂
2T̂

∂xi
2

)
+

∂

∂xi

(
m̂i

ρ̄

)
= 0, (2.13a)

σm̂i +
∂

∂xj

(
m̄jm̂i

ρ̄
+

m̂jm̄i

ρ̄
−

ρ̂m̄jm̄i

ρ̄2

)
+

∂p̂

∂xi
. . .

−
1

S1Re

(
∂

2

∂xj
2

(
m̂i

ρ̄
−

ρ̂m̄i

ρ̄2

)
+

1

3

∂
2

∂xj∂xi

(
m̂j

ρ̄
−

ρ̂m̄j

ρ̄2

))
− Ri ρ̂ĝi = 0,

(2.13b)

σT̂ +
m̄i

ρ̄

∂T̂

∂xi
+

m̂i

ρ̄

∂T̄

∂xi
−

1

S1RePr

1

ρ̄

∂
2T̂

∂xi
2 = 0, (2.13c)

ρ̂

ρ̄2
+ (S1 − 1) T̂ = 0. (2.13d)

To obtain (2.13) from (2.3) a number of steps have been taken: (2.5) is substituted into

(2.3); u and τ are removed by using (2.3f) and (2.3e); (2.2d) is substituted into (2.3d)

to remove T̄ ; (2.3a), (2.3c) and (2.3d) are divided through by ρ̄; (2.3d) is differentiated

with respect to time and substituted into (2.3c), which is then substituted into (2.3a);

and the terms that contain m̂i in (2.13a) have been combined using (2.2d) to form:

(S1 − 1) m̂i
∂T̄

∂xi
+

1

ρ̄

∂m̂i

∂xi
= m̂i

∂

∂xi

(
(S1 − 1) T̄ + 1

)
+
(
(S1 − 1) T̄ + 1

) ∂m̂i

∂xi

=
∂

∂xi

(
m̂i

ρ̄

)
.

(2.14)

If the adjoint variable multiplying (2.13a) is labelled p̂+, then forming the adjoint

equations with the terms on the left hand side in (2.14) would result in both p̂+ and

∇p̂+ appearing in the adjoint momentum equation. This would make the formation

and solution of a Poisson equation more difficult. The rearrangement in (2.14) allows

the adjoint momentum equation to be formed with just ∇p̂+ and is therefore necessary

for the adjoint Poisson equation to be solved.

Premultiplication of each equation in (2.13) requires the introduction of two extra

adjoint variables to premultiply (2.13a) and (2.13d). The labelling of these variables

is unimportant, but it is helpful to think of the variable premultiplying (2.13a) as the

adjoint pressure and the variable premultiplying (2.13d) as the adjoint density. The

adjoint momentum and temperature naturally premultiply (2.13b) and (2.13c) respec-

tively. Through successive integration by parts, the adjoint equations corresponding to
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(2.13) are

∂m̂+
i

∂xi
= 0, (2.15a)

σ∗m̂+
i −

m̄j

ρ̄

(
∂m̂+

i

∂xj
+

∂m̂+
j

∂xi

)
−

1

S1Reρ̄

(
∂

2m̂+
i

∂xj
2 +

1

3

∂
2m̂+

j

∂xj∂xi

)
−

1

ρ̄

∂p̂+

∂xi
+

T̂+

ρ̄

∂T̄

∂xi
= 0,

(2.15b)

σ∗T̂+ − m̄i
∂

∂xi

(
T̂+

ρ̄
+ (S1 − 1) p̂+

)
− . . .

1

S1RePr

∂
2

∂xi
2

(
T̂+

ρ̄
+ (S1 − 1) p̂+

)
+ (S1 − 1) ρ̂+ = 0,

(2.15c)

m̄im̄j
∂m̂+

i

∂xj
+ Ri ρ̄2m̂+

i ĝi +
m̄i

S1Re

(
∂

2m̂+
i

∂xj
2 +

1

3

∂
2m̂+

j

∂xj∂xi

)
+ ρ̂+ = 0. (2.15d)

Equation (2.15) shows that p̂+ and ρ̂+ can be derived from m̂+ and T̂+ in the same

way as p̂ and ρ̂ can be derived from m̂ and T̂ using (2.13).

In forming (2.15c), the base flow condition (2.2a) has been used to shift m̄i outside

the derivative. This ensures that the adjoint pressure appears only inside a derivative,

which reduces numerical error because the solution to the adjoint pressure Poisson

equation is accurate only up to an arbitrary constant. Alternatively,
(
T̂ /ρ̄

)
∇ · m̄

could have been added to the left-hand side of (2.13c). The base flow condition (2.2a)

ensures this extra term is approximately zero, but now integration by parts gives (2.15c)

directly without requiring any further use of (2.2a). In practice, the forms in (2.13c)

and (2.15c) give the smallest discrepancy between the direct and adjoint global mode

frequencies and have been used for this work.

2.3.2 Discrete-adjoint approach

Equations (2.4), (2.6) and (2.8) are discretized to give:

∂q

∂t
− Aq = 0, (2.16)

σq̂ − Aq̂ = 0, (2.17)
(
q̂+
)H

(Dσq̂) −
(
q̂+
)H

(DAq̂) = 0, (2.18)

where the state vector, q, and global mode vector, q̂, have changed from continuous

functions, q (x, r, t) and q̂ (x, r), to discrete arrays of vectors located at grid points that
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span the domain. Alternatively the continuous scalar fields that form the continuous

vectors can be discretized to form separate discrete scalar fields, which are then com-

bined to form discrete vectors of arrays. The matrix A is the discretized version of the

direct linear operator L. The diagonal volume distribution matrix D represents the

volumes associated with each grid point as a fraction of the total volume of the domain

and is required so that the terms in (2.18) are equivalent to the inner products in (2.8).

The product qH
1 Dq2 represents a discrete volume summation in the same way that the

inner product (2.7) represents a volume integral.

To find the discrete-adjoint global mode, each of the terms in (2.18) is rearranged

so that the discrete direct global mode alone follows the Hermitian operator:

(
σ∗DH q̂+

)H
(q̂) −

(
AHDH q̂+

)H
(q̂) = 0, (2.19)

⇒ for arbitrary q̂ : σ∗DH q̂+ − AHDH q̂+ = 0. (2.20)

By comparing (2.20) to (2.11) it is clear that the discrete-adjoint global mode, labelled

q̂⊕, is

q̂⊕ ≡ DH q̂+, (2.21)

⇒ σ∗q̂⊕ − AH q̂⊕ = 0. (2.22)

The matrix AH is the conjugate transpose of A. This is different to A+, the discretized

version of the continuous adjoint operator L+. The discrete-adjoint global mode q̂⊕

and eigenvalue σ∗ are solutions of the system

−
∂q⊕

∂t
− AHq⊕ = 0, (2.23)

where q⊕ ≡ q⊕ (x, r, t) ≡ q̂⊕ (x, r) exp (−σ∗t) ,

and q⊕ ≡

[
m⊕

T⊕

]
.

By establishing a rigorous relationship between the discrete- and continuous-adjoint

global modes and eigenvalues, the two approaches can be seen to be equivalent. A

continuous-adjoint global mode, q̂+, can be found either by using the continuous-adjoint

approach or by using the discrete-adjoint approach and converting q̂⊕ to q̂+ via (2.21).
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2.4 Numerical approach

A nonlinear DNS code, provided by Joseph Nichols, is used to obtain a steady solution

of the base flow equations and is used as the starting point for the direct linear and

adjoint codes. If the flow is unstable, the base flow may be calculated by adding selective

frequency damping (SFD) to the nonlinear equations (2.1) (Åkervik et al., 2006). If

(2.1) is written as
∂q

∂t
= f(q), (2.24)

then adding SFD creates the sytem:

∂q

∂t
= f(q) − χ(q − w), (2.25)

∂w

∂t
=

(q − w)

∆
, (2.26)

where χ and ∆ are control parameters and w is a temporally low-pass filtered solution of

q. Equation (2.26) is the differential form of an exponential low-pass temporal filter. At

a fixed point, w = q, and the effect of the SFD terms is nil, but they allow an unstable

fixed point to be reached numerically by artificially damping unstable frequencies along

the convergence path. To produce the base flows in this thesis, simple time-stepping is

used until the SFD system converges to a steady solution that satisfies (2.2).

All versions of the code use sixth-order compact finite difference schemes (Lele,

1992) to compute spatial derivatives in the axial and radial directions. Values along

the centreline of the domain are calculated with asymptotic equations (Constantinescu

& Lele, 2002) that differ slightly from the regular equations. A 4th-order Runga–Kutta

time marching scheme is used, involving an explicit version of the projection method

used by Chorin (1968), which requires the solution of a pressure Poisson equation. The

Poisson solver uses direct cosine transforms (DCTs) along each line of grid points in

the axial direction to decouple the system into separate wave numbers. A standard

complex fast Fourier transform (FFT) algorithm is used with pre- and postprocessing

routines that allow the efficient computation of two real DCTs for each complex FFT

(Cooley et al., 1970; Swarztrauber, 1977; Schumann & Sweet, 1988). The forward DCTs

are applied first to the right hand side of the Poisson equation. An efficient algorithm

(based on the Thomas algorithm) is then applied to solve the decoupled system of

one-dimensional equations. Finally the inverse DCTs are applied to give the pressure.

Further details of the code can be found in Nichols (2005). This section contains a

summary of the relevant parts of the direct and adjoint solution algorithms.
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2.4.1 Computing global modes

The eigenvalues and global modes are found using ARPACK, which uses the implicitly

restarted Arnoldi method (Lehoucq et al., 1998). An introduction to these methods

is given by Schmid (2007). ARPACK calculates the eigenvalues and eigenvectors of

a virtual time-stepper matrix that represents the evolution of the flow from time t

to time t + N∆t, where ∆t is the time advanced by a single application of the time-

stepping algorithm and N is the number of applications. If an explicit single-step

time discretization is used, such as a Runge–Kutta method, (2.16) and (2.23) can be

expressed as

q(t + N∆t) = MNq(t), (2.27)

q⊕(t − N∆t) =
(
MH

)N
q⊕(t), (2.28)

where M is the matrix exponential of A∆t, MH is the matrix exponential of AH∆t

and superscript (N) denotes the matrix raised to the power of N .

The continuous-adjoint described by (2.12) is discretized in space and time to give:

−
∂q+

∂t
− A+q+ = 0, (2.29)

and q+(t − N∆t) = M+Nq+(t), (2.30)

where M+ is the matrix exponential of A+∆t.

The eigenmodes and eigenvalues calculated by ARPACK correspond to the matrices

MN , (MH)N and M+N . The eigenmodes are the same as those of the matrices A,

AH and A+, but the eigenvalues depend on N∆t. From (2.17), σ is an eigenvalue of

A and if λ is the corresponding eigenvalue of MN then

λ ≡ exp (σN∆t) , (2.31)

⇒ σ ≡
1

N∆t
(ln (|λ|) + i arg (λ)) , (2.32)

where | | is the absolute value of a complex number.

A two-sided Arnoldi algorithm, which gives both the direct and adjoint eigenmodes,

has been proposed by Ruhe (1983). The two-sided algorithm uses a combination of the

approximate left eigenvectors of the direct solution as the initial state for the adjoint

calculation. While this improves the speed of convergence of the adjoint algorithm, the

use of parallel computing allows the direct and adjoint calculations to be run side by
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side and is therefore quicker overall. Giannetti & Luchini (2007) use a two-sided inverse

iteration algorithm to efficiently calculate the discrete-adjoint modes at the same time

as the direct modes.

2.4.2 Direct linear algorithm

Converting (2.13) into time-dependent form and discretizing in time with a 1st-order

explicit Euler scheme, the direct system can be written as

∇ · mn+1 − k h(mn+1, Tn+1) = 0, (2.33a)

mn+1 − mn

∆t
+ ∇p∗ − f(mn, ρn) = 0, (2.33b)

Tn+1 − Tn

∆t
− h(mn, Tn) = 0, (2.33c)

ρn + kTn = 0, (2.33d)

where f and h are functions representing the remaining terms in the equations and k is

a constant scalar field that is dependent upon the base flow. Subscript (n) denotes the

value of the variable at time step n and subscript (∗) denotes an intermediate value.

The variable ρn can be eliminated using (2.33d). The variable p∗, however, requires

the formation of a Poisson equation. Taking the divergence of (2.33b) and rearranging

gives

∇2p∗ =
1

∆t
(∇ · [mn + ∆t f(mn, ρn)] − ∇ · mn+1) . (2.34)

The variables Tn+1 from (2.33c) and mn are substituted into (2.33a) to give an

approximation for ∇ · mn+1:

∇ · mn+1 ≈ k h(mn, Tn+1),

⇒ ∇ · mn+1 ≈ (S1 − 1) ρ̄

(
−mn · ∇T̄ − m̄ · ∇Tn+1 +

1

S1RePr
∇2Tn+1

)
. (2.35)

The Poisson equation is then solved for p∗ and (2.33b) can then be used to find mn+1.

The term inside the square brackets in (2.34) is the auxiliary momentum

m∗ = [mn + ∆t f(mn, ρn)] , (2.36)

⇒ mn+1 = m∗ − ∆t∇p∗. (2.37)

To improve temporal accuracy the 4th-order Runge–Kutta scheme is used, which is

formed from the 1st-order Euler scheme shown above.
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2.4.3 Continuous-adjoint algorithm

Converting (2.15) into time-dependent form and discretizing in time with a 1st-order

explicit Euler scheme, the continuous-adjoint system can be written as

∇ · m+
n+1 = 0, (2.38a)

−

(
m+

n+1 − m+
n

∆t

)
−

1

ρ̄
∇p+

∗ + f+
(
m+

n , T+
n

)
= 0, (2.38b)

−
T+

n+1 − T+
n

∆t
+ h+

(
ρ+

n , T+
n , p+

n

)
= 0, (2.38c)

ρ+
n + k+

(
m+

n

)
= 0, (2.38d)

where f+, h+ and k+ are functions representing the remaining terms in (2.15b), (2.15c)

and (2.15d) respectively.

The derived variable ρ+
n can be eliminated by substituting (2.38d) into (2.38c) .

The derived variable p+
∗ , however, requires the formation of a Poisson equation. Taking

the divergence of (2.38b) and rearranging gives

∇2p+
∗ =

1

∆t

(
∇ ·

(
ρ̄
[
m+

n + ∆t f+
(
m+

n , T+
n

)] )
− m+

n+1 · ∇ρ̄ − ρ̄∇ · m+
n+1

)
. (2.39)

Equation (2.38a) is used to remove the ∇ · m+
n+1 term from (2.39). The remaining

m+
n+1 is approximated by m+

n in a similar way to the way in which mn+1 is approxi-

mated by mn in (2.35). The adjoint Poisson equation is then solved for p+
∗ . The adjoint

pressure is then substituted into (2.38) to find m+
n+1 and T+

n+1. The term inside the

square brackets in (2.39) is the adjoint auxiliary momentum field

m+
∗ =

[
m+

n + ∆t f+
(
m+

n , T+
n

)]
, (2.40)

⇒ m+
n+1 = m+

∗ −
∆t

ρ̄
∇p+

∗ . (2.41)

In order for the diffusive term in the adjoint momentum equation to be well-behaved

it is necessary to use a negative time step, which is achieved by changing the sign in

front of terms containing ∆t in the above equations. Again, the 4th-order Runge–Kutta

scheme is used to improve temporal accuracy.
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2.4.4 Discrete-adjoint algorithm

To form a discrete-adjoint algorithm, the direct algorithm needs to be represented

as one large matrix, although this matrix is never actually formed. The discrete-

adjoint algorithm is formed from the conjugate transpose of this matrix representation.

The direct code was not initially written with the discrete-adjoint approach in mind

and a matrix representation method, which expands and contracts the state vector, is

therefore employed. This method can cope with a wide range of algorithmic structures

and has been adapted to transpose accurately, for example, the centreline equations,

the Poisson solver and the 4th-order Runga–Kutta scheme.

First, all the steps in the direct solution algorithm are broken down and represented

as simple matrix-vector products. At the start of the time step, only the variables

contained in the state vector exist. At points in the time step algorithm, derived

variables are introduced and the vector grows. When the derived variables are no

longer needed they are removed and the vector shrinks, eventually back to the size at

which the time step started. For example, the state equation, (2.3d), is represented as

a matrix with 4 rows and 3 columns that multiplies the state vector containing three

scalar fields: mx, mr and T . The top 3 rows of this matrix form a 3×3 identity matrix.

The bottom row calculates ρ from a combination of mx, mr and T and this forms the

fourth field in a new vector containing mx, mr, T and ρ. Once ρ is no longer needed a

matrix with 3 rows and 4 columns is used to convert back to a three-field vector.

The scalar fields are discretized to form a single state vector containing scalar values.

This is achieved by consecutively storing values in the axial direction at each discrete

radial location in turn. The middle values for each discretized scalar field correspond

therefore to the centreline of the domain. The middle rows of the corresponding matrix

represent the centreline equations and the other rows represent the regular equations.

Transposing this matrix is most easily achieved by forming one vector with zeros ev-

erywhere except at the centreline and another vector, equal to the current state vector,

except with zeros only at the centreline. The transposed centreline equations are ap-

plied to the first vector and the transposed regular equations are applied to the second

vector. The two resulting vectors are then added to form the final state vector for the

transposed step.

The compact finite difference scheme (Lele, 1992) solves the system:

A
∂q

∂x
= Bq, (2.42)
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where A is tridiagonal. By noting that
(
A−1

)T
=
(
AT

)−1
the transpose of this

difference scheme is found by solving

AT q⊕
∗ = q⊕, (2.43)

∂q⊕

∂x
= BT q⊕

∗ , (2.44)

where q⊕
∗ is a temporary vector.

For the Poisson solver, the transpose of the matrix representations results in trans-

posed inverse DCTs being applied first, the transposed decoupled Poisson solver being

applied next, and transposed forward DCTs being applied last. Conveniently the in-

verse DCT is similar to the transpose of the forward DCT and the forward DCT is

similar to the transpose of the inverse DCT. In both cases, only the value correspond-

ing to the constant coefficient requires altering, which can be easily done in the pre-

and postprocessing routines. The decoupled Poisson solver is transposed in a similar

way to the way in which the compact difference scheme is transposed.

A matrix representation of the 4th-order Runge–Kutta scheme is formed by ex-

panding the state vector at each of the four steps. At each intermediate Runge–Kutta

step the new vector is added to the bottom of the state vector. The last matrix-vector

product is then

[
qn+1

]
= [ 0 I/6 I/3 I/3 I/6 ]




qn

q1
n

q2
n

q3
n

q4
n




. (2.45)

The Runge–Kutta matrices can be transposed and reordered accordingly to provide the

exact transpose of the whole 4th-order Runga–Kutta algorithm.

The usual way to implement axisymmetry is to mirror the domain about the cen-

treline at the end of the time step. The transpose of this matrix is consequently placed

at the start of the time step and sets half of the domain to zero. With this matrix, the

adjoint is not axisymmetric. To overcome this, a symmetrical matrix that sets values

in the domain to the average value of both sides about the centreline is used at the

start and at the end of the time step in both the adjoint and direct algorithms.

A derived boundary value is one that is derived from the values of the state vector

that lie inside the boundary. A derived boundary value at a new time step is therefore
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independent of the value currently stored at the boundary. Numerical Dirichlet and

Neumann boundaries are of this type, whereas a convection boundary is not and relies

on the previous value at the boundary. Passing derived boundary values to ARPACK

is not only unnecessary, it can be detrimental to convergence. The complete step, from

one Arnoldi vector to the next, first applies a matrix that sets the derived boundary

values and adds these to the state vector received form ARPACK. The axisymmetry and

time-evolution matrices are then applied and finally a matrix is used that removes any

derived boundary values from the state vector. Now that the whole matrix sequence has

been established it is straightforward to transpose it for the complete discrete-adjoint

algorithm.

2.4.5 Boundary conditions

The boundary conditions used for the base flow, direct perturbations and continuous-

adjoint perturbations are summarized in table 2.2. The discrete-adjoint boundary con-

ditions are the exact matrix transpose of the discretized direct boundary conditions.

Before discussing the boundary conditions for the different simulations, some gen-

eral points can be made. Although setting boundary conditions on momentum and

temperature is enough information to describe a unique solution (Sani et al., 2006),

the efficient solution of the pressure Poisson equation in the projection method requires

boundary conditions for the hydrodynamic pressure and auxiliary momentum fields,

which must be consistent with the system of equations and the boundary conditions

already set.

On the boundaries, the projection steps ((2.37) for the direct case) imply that

the auxiliary momentum is equal to the actual momentum plus a multiple of ∇p∗.

It is convenient therefore to set ∇p∗ = 0, which allows the boundary conditions on

the auxiliary momentum to be the same as those for the actual momentum. To set

∇p∗ = 0, it is necessary and sufficient to set the spatial derivatives tangential to the

boundary (∂p∗/∂τ) and normal to the boundary (∂p∗/∂n) to zero, where the spatial

co-ordinates τ and n are tangential and normal to the boundary surface respectively.

For the axisymmetric case with no swirl and Re ≫ 1, ∂p∗/∂τ ≈ 0 on all boundaries.

Assuming no swirl is necessary because swirl can create a significant pressure drop

towards the centreline. A high Reynolds number is required so that viscous corrections

near the inlet, which cause a radial pressure gradient at inlet, are small. The solution
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of the pressure Poisson equation defines the pressure only to within a constant and the

overall pressure level can therefore drift if a Dirichlet condition is not set on part of

the pressure boundary. Far from the inlet, where the flow is varying slowly, ∂p∗/∂n ≈

0, allowing a homogeneous-Dirichlet condition to be set explicitly on the lateral and

outlet boundaries. ∂p∗/∂n = 0 can then be set as the pressure boundary condition

at the inlet. Setting a homogeneous-Neumann pressure condition at the inlet and

a homogeneous-Dirichlet condition at the outlet helps generate a pressure build up at

start up, which pushes any transients towards the outlet and out of the domain (Joseph

Nichols, personal communication).

Field
Base flow Direct linear Continuous-adjoint

x = 0 Xmax Rmax x = 0 Xmax Rmax x = 0 Xmax Rmax

mx D C v-T-F h-D C h-D h-D h-D h-D

mr h-N C v-T-F h-D C h-D h-D h-D h-D

T D C h-D h-D C h-D h-D h-D h-D

p h-N h-D h-D h-N h-D h-D h-D h-N h-D

mx∗ D C v-T-F h-D C h-D h-D h-D h-D

mr∗ h-N C v-T-F h-D C h-D h-D h-D h-D

Table 2.2: Boundary conditions. D→ Dirichlet, h-D→ homogeneous Dirichlet,

h-N→ homogeneous Neumann, C→ convective, v-T-F→ viscous traction free.

Base flow boundary conditions

The boundary conditions for the base flow are the same as those used in the nonlinear

simulations by Nichols et al. (2007). At inlet these are Dirichlet for axial momentum

and temperature, with top-hat inlet profiles formed from Michalke’s profile number two

(Michalke, 1984):

y(0, r) ≡
1

2

(
1 + tanh

(
1

4

d̃j

2θ

(
1

2r
− 2r

)))
, (2.46)

T (0, r) = y(0, r), (2.47)

ρ(0, r) =
1

(S1 − 1)T (0, r) + 1
, (2.48)

mx(0, r) = ρ(0, r)
(
uc + (1 − uc) y(0, r)

)
, (2.49)
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where θ is the momentum thickness, uc is the non-dimensional coflow velocity and the

non-dimensional jet diameter is 1. A homogeneous-Neumann condition is used for the

radial momentum. A small positive coflow velocity helps reduce the accumulation of

numerical errors by slowly advecting them out of the domain. With uc ≪ 1, however,

the inlet conditions approximate a jet exiting from a hole in a flat wall. The lateral

boundaries allow fluid entrainment through a viscous traction-free momentum boundary

condition and a homogeneous-Dirichlet temperature condition. The outlet boundary is

a convection boundary condition for all fields (Gresho, 1991).

Direct linear boundary conditions

The base flow at the inlet and lateral boundaries is assumed to be inwards and a

homogeneous-Dirichlet boundary condition is set for the momentum and temperature

perturbation fields. This is a restrictive boundary condition, particularly on the inlet

plane, where the flow can be absolutely unstable. The flow and geometry upstream of

the jet exit plane can make a significant difference (Flavio Giannetti, personal commu-

nication) and this will be examined in the future either by including the upstream region

or by allowing perturbations to travel upstream through the inlet. Gresho (1991) points

out that the convective boundary condition can be used for inlets as well as outlets and

that this is sometimes necessary for meaningful results. It may then be beneficial to im-

pose at the jet exit plane a homogeneous-Dirichlet condition outside the jet, mimicking

a solid wall, and a convection condition inside the jet, mimicking a hole.

For shorter domains a convection outlet boundary condition is necessary for all per-

turbation fields to allow disturbances to flow out of the domain with minimal reflections.

For long domains a homogeneous-Dirichlet condition can be used if perturbations have

reached a small enough amplitude at the exit. If this is the case, a convection condition

produces almost identical results, which is why it has been used for all simulations.

If needed, a numerical sponge can be used to reduce reflections at the outlet bound-

ary further. Although it has not been tried with this code, a Robin outlet boundary

condition used by Ehrenstein & Gallaire (2005) that matches the global mode to a

linear approximation of the local dispersion relation at the outlet may reduce unwanted

reflections further.
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Continuous-adjoint boundary conditions

The boundary terms, arising from the integration by parts in the derivation of the

adjoint equations, are represented by b in equation (2.10). Assuming Re ≫ 1, the

boundary terms containing a factor of 1/Re can be neglected. The remaining boundary

terms forming b are

1

V

∫

V

∂

∂xi

(
p̂+∗m̂i

ρ̄

)
+ (S1 − 1)

∂

∂xi

(
p̂+∗T̂ m̄i

)
+

∂

∂xi

(
m̂+∗

i p̂
)

+
∂

∂xi

(
T̂+∗T̂ m̄i

ρ̄

)
. . .

+
∂

∂xi

(
m̄im̂jm̂

+∗
j

ρ̄

)
+

∂

∂xi

(
m̂im̄jm̂

+∗
j

ρ̄

)
+ (S1 − 1)

∂

∂xi

(
T̂ m̄im̄jm̂

+∗
j

)
dV = 0.

(2.50)

Using the divergence theorem the volume integral in (2.50) can be transformed into a

surface integral

1

V

∫

S

(
p̂+∗m̂i

ρ̄

)
+ (S1 − 1)

(
p̂+∗T̂ m̄i

)
+
(
m̂+∗

i p̂
)

+

(
T̂+∗T̂ m̄i

ρ̄

)
. . .

+

(
m̄im̂jm̂

+∗
j

ρ̄

)
+

(
m̂im̄jm̂

+∗
j

ρ̄

)
+ (S1 − 1)

(
T̂ m̄im̄jm̂

+∗
j

)
nidS = 0,

(2.51)

where ni is the outward pointing unit normal vector of the surface S.

The flow direction for the adjoint is reversed. The inlet is at Xmax and the outlet is

at x = 0. The boundary conditions for the adjoint pressure are therefore also reversed

to push any transients out of the domain. p+
∗ is therefore set to zero on x = 0, and

on r = Rmax. For the axisymmetric case with no swirl, ∂p+
∗ /∂τ ≈ 0 on all boundaries,

implying p+
∗ ≈ 0 on Xmax. ∂p+

∗ /∂n is set to zero on Xmax and it is still reasonable

to assume ∂p+
∗ /∂n ≈ 0 on Rmax. The assumption that ∂p+

∗ /∂n ≈ 0 on x = 0 is

probably less valid and it may be the cause of some of the discrepancy noticed between

the direct and continuous-adjoint results in section 2.6. It has been assumed, however,

that ∂p+
∗ /∂n ≈ 0 on x = 0 in order to set ∇p+

∗ = 0 on x = 0. An improvement

might be found in future by storing ∂p+
∗ /∂n from the previous time step and setting

m+
x∗ = m+

x + (∆t/ρ̄)(∂p+
∗(n−1)/∂n) on x = 0.

On the lateral boundaries, the homogenous-Dirichlet conditions imposed on all the

direct perturbation variables ensure the boundary terms in (2.51) are zero. A conve-

nient choice is to set the same conditions on the adjoint variables. At x = Xmax, a
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homogeneous-Dirichlet condition on m+ and T+, together with p+
∗ ≈ 0, ensures the

boundary terms in (2.51) are approximately zero. At x = 0 a homogeneous-Dirichlet

condition set on m+ together with the homogeneous-Dirichlet conditions on m and

T ensure all the boundary terms in (2.51) are zero. It is also convenient to set a

homogeneous-Dirichlet condition on T+ at x = 0.

Unlike at the direct outlet at Xmax, the adjoint perturbations are large near x = 0

and this causes reflections at the homogeneous-Dirichlet boundary condition. If the

domain is too short, the reflections set up standing waves between the inlet and outlet.

This type of behaviour has also been observed in spatial mixing layers by Buell & Huerre

(1988), who suggested that the streamwise boundaries of the finite domain triggered

the global resonances.

If a convection condition is used for m̂+
i at x = 0 instead of a homogeneous-Dirichlet

condition, the boundary term (m̂+∗
i p̂) is no longer precisely zero. It is, however, ap-

proximately zero, because p̂ is approximately zero at x = 0. There is also the question

of which is physically more correct. The jet is modelled as exiting through a hole in a

wall. A wall suggests that no perturbations, adjoint or direct, should pass out through

the boundary at the jet exit plane, implying that a homogeneous-Dirichlet condition

for the adjoint momentum is appropriate. Inside the jet, however, perturbations could

travel upstream of the jet exit plane, implying a convection condition for the adjoint

momentum could be more appropriate. In practice it was found that the homogeneous-

Dirichlet condition produces continuous-adjoint eigenvalues slightly closer to the direct

eigenvalues and so this is the condition that has been used for this work. Although

it has not been tested, an adjoint boundary condition that is homogeneous Dirichlet

outside the jet and convection inside the jet may have some benefits.

Comparisons between the continuous-adjoint boundary conditions and the discrete-

adjoint boundary conditions are difficult because the algorithms in which they are

applied are different. In both cases, an approximation of the true adjoint boundary

condition is satisfied at the end of the time step. The continuous-adjoint algorithm

enforces the boundary conditions directly after the state vector is altered, whereas the

discrete-adjoint algorithm applies the transpose of the direct boundary conditions at

the start of the time step and then updates the state vector.
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2.5 Code validation

To check the direct linear code, the boundary between absolute and convective insta-

bility is calculated as S1 is varied and the results are compared to those of Lesshafft &

Huerre (2007). The response to an impulse is calculated in a long domain with a parallel

base flow and the energy at the site of the impulse is monitored. The flow parameters

of Re = 1000 and R/θ = 20 from Lesshafft & Huerre (2007) were used with a non-

dimensional domain size of 6.0× 84.5 (diameter × length) with 285× 7271 grid points

and time step ∆t = 0.003. The energy at the site of the impulse was found to decay

for density ratios S1 6 1.61 and grow for ratios above this. For this flow configuration,

the absolute/convective instability boundary in figure 9 of Lesshafft & Huerre (2007)

lies at S1 ≈ 1.54 (corresponding to S ≈ 0.65 in their figure). Given the difficulties in

using a time marching code to obtain absolute/convective boundaries for parallel flow,

this agreement is better than expected. It is likely an improvement could be found if

unwanted numerical disturbances could be filtered out. Above a certain time, these

disturbances grow too large and dominate the site of the original impulse, despite the

impulse response further downstream being many order of magnitudes larger. If these

disturbances could be reduced, the true impulse response could be realized for much

longer times. It is then likely that the energy at the site of the impulse, for density

ratios between 1.54 and 1.61, would eventually start to grow.

A comparison between the direct, discrete-adjoint and continuous-adjoint results is

useful to check the validity of all three codes. The three approaches will only match

if all three sets of equations and solution algorithms are correctly modelling the flow

and if the discretization and boundary errors are small. The discrete-adjoint code was

continuously checked during the implementation and debugging process by calculating

q⊕(t1) · MNq(t2) − q(t2) ·
(
MH

)N
q⊕(t1), which is zero to machine precision. A sim-

ilar check for the continuous-adjoint code showed fairly small discrepancies, but these

were sensitive to the time window represented by MN and the times t1 and t2 and

are therefore not conclusive. The discrepancies arise because the numerical scheme of

the continuous-adjoint algorithm has different truncation errors to that of the direct

algorithm.

Comparing the direct and adjoint eigenvalues and global modes, however, provides

a much better validity check. The direct and adjoint global modes from ARPACK were

first time marched to check that they kept their form and grew at the predicted rate.
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This was always found to be the case. The discrete-adjoint eigenvalues calculated by

ARPACK match the direct eigenvalues to the convergence tolerance specified. Figure

2.1 in the next section shows the discrepancy between the largest magnitude eigenvalues

for the direct and continuous-adjoint systems to be relatively small. Figures 2.4 and

2.5, and figures 2.7 and 2.6 show that the continuous- and discrete-adjoint global mode

shapes are in reasonable agreement for the highest resolution case.

Figures 2.1, 2.7 and 2.6 can also be used to check the resolution. The minimal

change between the medium-resolution and high-resolution results suggests the high

resolution used is adequate for this problem.

In table 4.1 (in chapter 4), a comparison is made between the eigenvalues of the

direct global mode, the results of local analyses and the nonlinear global mode frequen-

cies observed in the numerical study of Nichols & Schmid (2008). The non-reacting

frequency calculated by ARPACK is within 4% of the frequencies predicted by the

local analysis in this work and the local analysis of Nichols & Schmid. These values,

however, are approximately 20% lower than the frequency of the nonlinear global mode,

but Nichols & Schmid point out that this in in agreement with the findings of Lesshafft

et al. (2006). The origins of this discrepancy are discussed in section 4.1.1.

Computations were also carried out to compare the direct linear eigenvalues to the

experimental results of Monkewitz et al. (1990). This was perhaps slightly ambitious

given that the relatively high Reynolds numbers used by Monkewitz et al. resulted

in near parallel base flows and therefore a highly non-normal linear operator (see sec-

tion 4.1.1). A further limitation was imposed by the thin shear layer at the nozzle exit

that required a higher resolution than previously used. The domain was subsequently

shortened to reduce the total number of grid points back to a reasonable level, but this

is believed to have led to triggering of numerical global resonances (Buell & Huerre,

1988). Nevertheless the dominant Strouhal numbers predicted by the linear code are

comparable to those observed by Monkewitz et al.. For S1 = 1.333 a dominant Strouhal

number of St = 0.59 is predicted by the linear code, which compares to the value of

St ≈ 0.3 observed by Monkewitz et al.. For S1 = 1.538 a dominant Strouhal number of

St = 0.57 is predicted by the linear code, while Monkewitz et al. note that the jet seems

to flip-flop between two modes with St ≈ 0.3 and St ≈ 0.45. ARPACK successfully

converged to 10 eigenvalues for each value of S1. All 20 eigenvalues were of comparable

magnitude and frequency, with some of the less dominant eigenvalues giving Strouhal

numbers close to 0.3 and 0.45. This finding compares well to those of Monkewitz et al.,
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who found a number of pressure spectra peaks in the range 0.3 < St < 1.0.

Taking into account all the validity checks performed, there is nothing to suggest the

new non-reacting codes are functioning incorrectly. All the checks have given plausible

results for a linear analysis and the discrepancies compared to nonlinear results are

within what is expected.

2.6 Results

All the results are at a Reynolds number of 1000. This is large enough to satisfy

the assumption that 1/Re ≪ 1, but small enough to allow sufficient spreading of the

shear layer over the length of the domain. The Prandtl number is 0.7. The inlet

profile has a shear layer thickness parameter d̃j/(2θ) = 12.5 and coflow uc = 0.01.

The Richardson number is zero and S1 = 7.0. The non-dimensional axial domain

length is 36.0 and the non-dimensional domain diameter is 8.0. This setup represents

a confinement ratio (domain diameter to jet diameter) of 8, which is large enough for

the effects of confinement to be negligible (Juniper, 2008).

Three grid sizes are used: 127×1027 (low-res), 181×1449 (mid-res) and 255×2049

(high-res), corresponding to radial × axial grid points (Nr × Nx). The corresponding

time steps are ∆t = 0.00707 for the high-res simulations and ∆t = 0.01 for the others.

The grid is uniform in the axial direction, but skewed in the radial direction to give

higher resolution near the shear layers and boundaries.

Figure 2.1 shows the eigenvalues with largest real part (highest growth rate) for the

direct, discrete- and continuous-adjoint cases at low-, mid-, and high-res. The direct

and discrete-adjoint eigenvalues at each resolution match to 6 decimal places, which is

the tolerance specified for the convergence of ARPACK. The imaginary part is equal to

2πSt , where St ≡ f̃ d̃j/ũj is the Strouhal number and f̃ is the dimensional frequency of

the global mode in Hertz. The discrepancy between Im(σ) for the direct and continuous-

adjoint systems at each resolution is ∼ 0.1% of |σ|, whereas the discrepancy between

Re(σ) at each resolution is ∼ 1.5% of |σ|, where | | is the absolute value of a complex

number.

The base flow is given in figure 2.2. The real part of the most-unstable direct,

discrete-adjoint, and continuous-adjoint global modes at high-res are given in figures

2.3, 2.4, and 2.5 respectively. A convention used throughout this work is that if the

minimum/maximum values of the figures are stated as ‘min’/‘max’, they also refer to the
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Figure 2.1: Comparison of the most-unstable eigenvalue calculated by the direct (∗),

discrete-adjoint (⊕) and continuous-adjoint (+) algorithms using low-res (black), mid-

res (blue) and high-res (red). The origin has been included to show the relative magni-

tudes of the real and imaginary parts of the eigenvalue estimates and to show the size

of the discrepancies between the different estimates relative to the magnitude of the

eigenvalue.

minimum/maximum values of the data, whereas if they are stated as ‘figure min’/‘figure

max’, they refer to the figure values only and differ from the actual minimum/maximum

values of the data. In the modal figures, the minimum/maximum values have been set

using the value with larger magnitude so that the figure is centred on zero. Only

a portion of the domain close to the inlet is shown in figures 2.4 and 2.5 because

the low-amplitude downstream structure of the adjoint modes does not show up with

the contours used in these figures. The discrete-adjoint mode has been multiplied

by (DH)−1 (volume distribution corrected) so that a comparison can be made to the

continuous-adjoint mode (see equation (2.21)). The modes have been normalized so

that 〈q̂, q̂〉 = 〈q̂+, q̂+〉 = 〈(DH)−1q̂⊕, (DH)−1q̂⊕〉 = 1.
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Figure 2.2: Non-dimensional base flow at high resolution.

Figures 2.4 and 2.5 show that the discrete-adjoint mode has a similar structure to

the continuous-adjoint mode, but is obscured by a numerical artefact close to the inlet.

This nonphysical behaviour near boundaries has been seen by the author in other

discrete-adjoint systems and is possibly related to the strong nonphysical behaviour

found by Sirkes & Tziperman (1997) when using the discrete-adjoint approach. The

maximum and minimum values quoted on the graph are for the normalized amplitude

of the physical mode. The numerical spikes near the inlet extend beyond the quoted

maximum and minimum and cause the normalized amplitude of the physical mode in

the discrete-adjoint case to be lower than in the continuous-adjoint case.

To analyze the adjoint mode structure further downstream it is useful to overlay

each adjoint mode field with each corresponding direct mode field by taking the absolute

value of their product at every point in the domain. The absolute values of the overlaid

fields are shown in figures 2.7 and 2.6. In chapter 4 the physical meaning of this will



2.6 Results 39

Axial velocity: min (blue) = -8.1, max (dark-red) = 8.1

x

r

0 3 6 9 12 15 18 21 24 27 30 33 36
0

2

4

PSfrag replacemen

Radial velocity: min (blue) = -2.8, max (dark-red) = 2.8

x

r

0 3 6 9 12 15 18 21 24 27 30 33 36
0

2

4

Density: min (blue) = -8.6, max (dark-red) = 8.6

x

r

0 3 6 9 12 15 18 21 24 27 30 33 36
0

2

4

Axial momentum: min (blue) = -3.8, max (dark-red) = 3.8

x

r

0 3 6 9 12 15 18 21 24 27 30 33 36
0

2

4

Radial momentum: min (blue) = -0.94, max (dark-red) = 0.94

x

r

0 3 6 9 12 15 18 21 24 27 30 33 36
0

2

4

Temperature: min (blue) = -20, max (dark-red) = 20

x

r

0 3 6 9 12 15 18 21 24 27 30 33 36
0

2

4

Figure 2.3: Real part of the non-dimensional most-unstable direct global mode at high

resolution.

be explored, but at present it provides a useful means of comparing the adjoint mode

structure throughout the domain.

The discrepancy between the mid-res and high-res results for both the continuous-

adjoint (figure 2.7) and discrete-adjoint (figure 2.6) is quite small, but the discrep-

ancy between the continuous-adjoint and discrete-adjoint results is more significant. In

fact the high-res discrete-adjoint mode shape closely resembles the low-res continuous-

adjoint mode shape, which suggests the continuous-adjoint global mode is slightly more

accurate. The trends shown by the discrete- and continuous-adjoint mode shapes with

increasing resolution suggest that further increases may lead to convergence, but this

is prohibitively expensive for the length of domain required.
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Figure 2.4: Real part of the non-dimensional most-unstable discrete-adjoint global mode

at high resolution (volume distribution corrected). Blue regions correspond to minimum

values, dark-red regions correspond to maximum values.
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Figure 2.5: Real part of the non-dimensional most-unstable continuous-adjoint global

mode at high resolution.
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Figure 2.6: Absolute value of the non-dimensional discrete-adjoint global mode mul-

tiplied by the direct global mode at every grid point (volume distribution corrected).

Blue regions correspond to minimum values, dark-red regions correspond to maximum

values.
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Figure 2.7: Absolute value of the non-dimensional continuous-adjoint global mode mul-

tiplied by the direct global mode at every grid point. Blue regions correspond to

minimum values, dark-red regions correspond to maximum values.
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2.7 Conclusions

The primary goal of the work contained in this chapter was to develop the capability

of calculating adjoint global modes for variable density shear flows using a low-Mach-

number formulation of the Navier–Stokes equations. Although this capability exists

for the incompressible and fully-compressible Navier–Stokes equations, it has not, up

until now, existed for the low-Mach-number Navier–Stokes equations. The low-Mach-

number formulation can be easily extended to include reaction and there is no need to

resolve acoustic length scales, which makes this work a good first step towards creating

sensitivity maps for variable-density reacting shear flows.

Due to the treatment of density, the formation of the adjoint equations for the

low-Mach-number equations is more complex than for the incompressible or fully-

compressible equations. By careful rearrangement of the linear equations, a set of

adjoint equations has been derived that can be solved with a similar algorithm. This

is essential for the accuracy of the continuous-adjoint solution.

To implement the discrete-adjoint algorithm, a matrix representation method was

constructed that expands and contracts the state vector. This method was successfully

applied to the entire code and provides an efficient framework to calculate the matrix

transpose for a wide range of algorithmic structures, whilst maintaining programming

efficiency.

In carrying out the primary investigation, a secondary investigation showed the

differences between the continuous-adjoint and discrete-adjoint approaches. It seems

that a detailed comparison of the discrete- and continuous-adjoint approaches has not

been made before for the calculation of adjoint global modes. The discrete-adjoint

approach was formulated in such a way that gives a rigorous relationship between the

discrete- and continuous-adjoint global modes and eigenvalues. A direct comparison

could then be made between the two.

The small discrepancies between the physically relevant results of the two ap-

proaches support the notion that they are theoretically equivalent. While there is

a discrepancy of 1.5% between the continuous-adjoint eigenvalue and direct eigenvalue

of the most-unstable mode, the continuous-adjoint mode shape is arguably more accu-

rate than the physical part of discrete-adjoint mode shape. The discrete-adjoint mode

shape contained strong nonphysical behaviour near the inlet. This reduced with in-

creased resolution, but did not disappear completely in the high resolution case. The
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continuous-adjoint numerical scheme requires therefore less resolution and usually con-

verged more quickly than the discrete-adjoint numerical scheme. This, however, is offset

by the much harder debugging process and the lack of a reliable test for each procedure

in the code.



CHAPTER 3

Jet diffusion flames

3.1 Introduction

The hot jet in chapter 2 is extended to include chemical reaction. The result is a diffu-

sion flame and the particular case considered is that of a lifted diffusion flame as studied

by Nichols (2005), Nichols & Schmid (2008) and Nichols et al. (2009), who carried out

DNS and local analyses to investigate the nature of the self-sustained oscillations that

occur in low-density lifted flames.

Lifted diffusion flames are only a small subgroup of the much wider class of diffusion

flames, which have been subjected to numerous theoretical, numerical and experimental

studies. Kimura (1965) and Toong et al. (1965) carried out early experimental studies

into diffusion flame instabilities, which were followed by the theoretical work of Buck-

master (1986). The effect of buoyancy on the instability of diffusion flames has been

studied experimentally and theoretically by Lingens et al. (1996), and numerically by

Sato et al. (2002). The studies all show that the amount of gravitational acceleration

has a significant effect on the instability of the flow, with buoyancy promoting absolute

instability. Sripakagorn et al. (2004) carried out a DNS study into the extinction and

re-ignition in diffusion flames. Of greater interest to the present study are the inves-

tigations by Maxworthy (1999) and Juniper et al. (2009). Maxworthy experimentally

investigates axisymmetric global oscillations in propane diffusion flames and observes

the effects of various external modifications. Juniper et al. carry out an experimental

and numerical study into the effects of external forcing of self-excited round jet diffusion

flames.

In a flame, the heat release due to reaction causes local expansion and a reduction
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in density in the surrounding fluid. This has significant effects on the hydrodynamic

stability of low-density lifted flames. Including heat release from reaction is therefore a

necessary and vital next step towards understanding the dynamics of real fuel injectors

and combustion chambers.

3.2 Governing equations

The low-Mach-number equations for hot jets are now extended to look at reacting jets.

The purpose of this extension is to look at the effect of heat release due to reaction on the

stability properties of the jet and, ultimately, to extend adjoint techniques to reacting

flows. At this stage, a one-step chemistry model is used with an Arrhenius reaction

term. This is sufficient to model the heat release, but avoids the extra complication

of multi-step chemistry. (To include multi-step chemistry into the low-Mach-number

equations, see Najm et al. 1998.) It is also not necessary to model reaction at physical

flame length scales, as long as the modelled length scales are small compared to those

of the fluid instability.

The problem considered in this analysis is that of a light gaseous fuel exiting through

a hole in a wall into an oxidizer. The fuel is at the ambient temperature of the oxidizer

at the jet exit and the value of S1 (the ambient to jet density ratio) is therefore due only

to the difference in the densities of the two species. Definitions of new non-dimensional

variables and parameters are given in table 3.1. The nonlinear reacting equations,

derived by Nichols & Schmid (2008), are
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Dρ

Dt
+ ρ(∇ · u) = 0, (3.1a)

∂ (ρu)

∂t
+ ∇p(1) − ∇ ·

(
1

S1Re
τ − ρuu

)
+ Ri (1 − ρ) ĝ = 0, (3.1b)

ρ
DZ

Dt
−

1

S1ReSc
∇2Z = 0, (3.1c)

ρ
DT

Dt
−

1

S1RePr
∇2T = Daρ3ω, (3.1d)

ρ ((S1 − 1)Z + 1) ((S2 − 1)T + 1) = p(0), (3.1e)

∇p(0) = 0, (3.1f)
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[
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2
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T

s + 1

)(
1 − Z −

sT
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)
− κT 2

}
exp

[
−β (1 − T )

1 − α (1 − T )

]
.

Equation (3.1c) describes the convection of mass between the jet and the surround-

ings and is similar in form to the energy equation for the hot jet. The mixture fraction

Z is equivalent to the conserved mass fraction of fuel and has therefore a value 1 for

pure fuel and 0 for pure oxidizer. Due to species conservation, after a certain amount

of reaction has taken place, Z represents the mass fraction of fuel not yet reacted, YF ,

plus the mass fraction of fuel contained in the product of reaction. If YO is the mass

fraction of oxidizer not yet reacted and YP is the mass fraction of reaction product,

then YF + YO + YP = 1 and (1 − Z) represents the mass fraction of oxidizer not yet

reacted plus the mass fraction of oxidizer contained in the product of reaction. The

mass fractions of fuel and oxidizer contained in the product of reaction are Yp/(1 + s)

and sYP /(1 + s) respectively, where s is the mass stoichiometric ratio. The Schmidt

number Sc expresses the ratio of momentum diffusivity to mass diffusivity, where the

product of the local density ρ̃ and local diffusivity DZ is assumed to be uniform and

constant. The similarity between equation (3.1c) and equation (2.1c) for the hot jet is

intuitive given that the mixing of a hot jet with cold surroundings is physically similar

to the mixing of two species, e.g. a helium jet in air.

The energy equation (3.1d) describes the evolution of a new reduced temperature

based on the constant pressure adiabatic flame temperature T̃f , which is the tempera-

ture reached with complete combustion at constant pressure with no heat loss to the

surroundings. Formally T̃f ≡ T̃0 + ∆h̃P /cp, where T̃0 and cp are the ambient tempera-
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Reference quantities:

Diffusivity of Z (m2 s−1): DZ

Fuel mass fraction: YF

Oxidizer mass fraction: YO

Product mass fraction: YP

Adiabatic flame temperature (K): T̃f

Activation temperature (K): T̃a

Reaction pre-exponential factor (s−1): A

Mass stoichiometric ratio: s

Reversible chemistry equilibrium constant: κ

Non-dimensional variables:

Mixture fraction: Z ≡ YF + YP / (1 + s)

Temperature: T ≡
(
T̃ − T̃0

)
/
(
T̃f − T̃0

)

Non-dimensional parameters:

Schmidt number: Sc ≡ µ/ (ρ̃DZ)

Damköhler number: Da ≡ Ad̃j/ũj

Heat release parameter: α ≡
(
T̃f − T̃0

)
/T̃f

Zeldovich number: β ≡ αT̃a/T̃f

Temperature ratio: S2 ≡ T̃f/T̃0

Table 3.1: Additional non-dimensionalized variables and parameters for reacting jets.

ture and specific heat capacity defined in table 3.1 and ∆h̃P is the enthalpy released per

unit mass of product produced. In forming (3.1d), ∆h̃P has been non-dimensionalized

with cp

(
T̃f − T̃0

)
and becomes therefore a factor of unity in front of the reaction rate

term Daρ3ω. This form is slightly different to that stated in Nichols & Schmid (2008),

where ρ2 is used instead of ρ3. The ρ3 form is used in this work because it matches

the actual code used in Nichols & Schmid (2008). Given the simplifying assumptions

present, a valid argument can be made for either form and both have a physically sim-

ilar effect on the flow. Daρ3ω is the non-dimensional mass of product produced per

unit volume per unit time but, given the non-dimensional enthalpy released per unit

mass of product produced is unity, Daρ3ω is equivalent to the non-dimensional enthalpy

released per unit volume per unit time or the non-dimensional rate of reaction. The
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Damköhler number Da expresses a ratio of the rate of production of reaction product

to the rate of fluid convection. The form of ω comes from an Arrhenius law for a sim-

ple one-step chemical reaction that assumes one mole of fuel and one mole of oxidizer

combine to make two moles of product (for further details see Poinsot & Veynante,

2005).

Assuming Pr = Sc, the energy equation (3.1d) takes an identical form to the con-

servation equation for the mass fraction of reaction product YP . Using the same initial

and boundary conditions for YP and T ensures YP is equivalent to T . The variables

T and Z can therefore be used to get the mass fractions of unreacted fuel, unreacted

oxidizer, and reaction product everywhere in the domain by

YF ≡ Z −
T

(1 + s)
, (3.2)

YO ≡ 1 − Z −
sT

(1 + s)
, (3.3)

YP ≡ T. (3.4)

The state equation, (3.1e), has been altered to include the effects of both species

and temperature on density. S2 is defined as the ratio of T̃f to T̃0, which, at constant

Z, is equivalent to the ratio of density at temperature T̃0 to density at temperature T̃f .

The base flow is a steady solution to (3.1) and satisfies

∇ · (m̄) = 0, (3.5a)

∇p̄(1) − ∇ ·

(
1

S1Re
τ̄ − ρ̄ūū

)
+ Ri (1 − ρ̄) ĝ = 0, (3.5b)

m̄ · ∇Z̄ −
1

S1ReSc
∇2Z̄ = 0, (3.5c)

m̄ · ∇T̄ −
1

S1RePr
∇2T̄ = Daρ̄3ω̄, (3.5d)

ρ̄
(
(S1 − 1) Z̄ + 1

) (
(S2 − 1) T̄ + 1

)
= 1, (3.5e)

τ̄ ≡
[
∇ū + (∇ū)T

]
−

2

3
(∇ · ū) I,

ω̄ ≡

{(
Z̄ −

T̄

s + 1

)(
1 − Z̄ −

sT̄

s + 1

)
− κT̄ 2

}
exp

[
−β
(
1 − T̄

)

1 − α
(
1 − T̄

)
]

,

m̄ ≡ ρ̄ū,

where it is again assumed that p(1) = 1.
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The nonlinear equations (3.1) are linearized about the base flow to form

∂ρ′

∂t
+ ∇ · m′ = 0, (3.6a)

∂m′

∂t
+ ∇ ·

(
ρ̄ūu′ + ρ̄u′ū + ρ′ūū

)
+ ∇p′ −

1

S1Re
∇ · τ ′ − Riρ′ĝ = 0, (3.6b)

ρ̄
∂Z ′

∂t
+ ρ̄ū · ∇Z ′ + m′

· ∇Z̄ −
1

S1ReSc
∇2Z ′ = 0, (3.6c)

ρ̄
∂T ′

∂t
+ ρ̄ū · ∇T ′ + m′

· ∇T̄ −
1

S1RePr
∇2T ′ = Da

(
ρ̄3ω′ + 3ρ′ρ̄2ω̄

)
, (3.6d)

ρ′

ρ̄
+

(S1 − 1)Z ′

(
(S1 − 1) Z̄ + 1

) +
(S2 − 1)T ′

(
(S2 − 1) T̄ + 1

) = 0, (3.6e)

τ ′ ≡
[
∇u′ +

(
∇u′

)T ]
−

2

3

(
∇ · u′

)
I,

ω′ ≡

{(
1 − 2Z̄ −

s − 1

s + 1
T̄

)
Z ′ +

(
2T̄

(
s

(s + 1)2
− κ

)
−

1 + (s − 1) Z̄

s + 1

)
T ′ . . .

+

[(
Z̄ −

T̄

s + 1

)(
1 − Z̄ −

sT̄

s + 1

)
− κT̄ 2

]
βT ′

(
1 − α

(
1 − T̄

))2

}
exp

[
−β
(
1 − T̄

)

1 − α
(
1 − T̄

)
]

,

m′ ≡ ρ̄u′ + ūρ′.

The exponential part of ω is linearized by taking a binomial expansion of the denomi-

nator inside the exponential and then taking a power series expansion of the exponential

itself. It is worth pointing out that the exponential in the reaction rate term makes the

linearized reaction rate term very sensitive to T̄ .

3.3 Adjoint equations

Removing primes for clarity and following a similar method to the one used for the

non-reacting case, the linear equations (3.6) are rearranged in the form
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K̄1

(
m̄i

∂T

∂xi
−

1

S1RePr

∂
2T

∂xi
2 − Daρ̄2

(
ρ̄K̄ZZ + ρ̄K̄T T + 3ω̄ρ

))
. . .

+ K̄2

(
m̄i

∂Z

∂xi
−

1

S1ReSc

∂
2Z

∂xi
2

)
+

∂

∂xi

(
mi

ρ̄

)
= 0,

(3.7a)

∂mi

∂t
+

∂

∂xj

(
m̄jmi

ρ̄
+

mjm̄i

ρ̄
−

ρm̄jm̄i

ρ̄2

)
+

∂p

∂xi
. . .

−
1

S1Re

(
∂

2

∂xj
2

(
mi

ρ̄
−

ρm̄i

ρ̄2

)
+

1

3

∂
2

∂xj∂xi

(
mj

ρ̄
−

ρm̄j

ρ̄2

))
− Riρĝi = 0,

(3.7b)

∂Z

∂t
+

m̄i

ρ̄

∂Z

∂xi
+

mi

ρ̄

∂Z̄

∂xi
−

1

S1ReScρ̄

∂
2Z

∂xi
2 = 0, (3.7c)

∂T

∂t
+

m̄i

ρ̄

∂T

∂xi
+

mi

ρ̄

∂T̄

∂xi
−

1

S1RePr ρ̄

∂
2T

∂xi
2 − Daρ̄

(
ρ̄K̄ZZ + ρ̄K̄T T + 3ω̄ρ

)
= 0, (3.7d)

ρ

ρ̄2
+ K̄1T + K̄2Z = 0, (3.7e)

where K̄1, K̄2, K̄Z and K̄T are constant scalar fields given by

K̄1 ≡ (S2 − 1)
(
(S1 − 1) Z̄ + 1

)
, (3.8)

K̄2 ≡ (S1 − 1)
(
(S2 − 1) T̄ + 1

)
, (3.9)

K̄Z ≡

(
1 − 2Z̄ −

s − 1

s + 1
T̄

)
exp

[
−β
(
1 − T̄

)

1 − α
(
1 − T̄

)
]

, (3.10)

K̄T ≡

{[(
Z̄ −

T̄

s + 1

)(
1 − Z̄ −

sT̄

s + 1

)
− κT̄ 2

]
β

(
1 − α

(
1 − T̄

))2 . . .

+ 2T̄

(
s

(s + 1)2
− κ

)
−

1 + (s − 1) Z̄

s + 1

}
exp

[
−β
(
1 − T̄

)

1 − α
(
1 − T̄

)
]

.

(3.11)

In a similar way to the non-reacting system of equations, the term containing mi in
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(3.7a) has been formed by using (3.5c):

K̄1mi
∂T̄

∂xi
+ K̄2mi

∂Z̄

∂xi
+

1

ρ̄

∂mi

∂xi

= (S2 − 1)
(
(S1 − 1) Z̄ + 1

)
mi

∂T̄

∂xi
. . .

+ (S1 − 1)
(
(S2 − 1) T̄ + 1

)
mi

∂Z̄

∂xi
+
(
(S1 − 1) Z̄ + 1

) (
(S2 − 1) T̄ + 1

) ∂mi

∂xi
,

=
(
(S1 − 1) Z̄ + 1

)
mi

∂

∂xi

(
(S2 − 1) T̄ + 1

)
. . .

+
(
(S2 − 1) T̄ + 1

)
mi

∂

∂xi

(
(S1 − 1) Z̄ + 1

)
+
(
(S1 − 1) Z̄ + 1

) (
(S2 − 1) T̄ + 1

) ∂mi

∂xi
,

=
∂

∂xi

(
mi

ρ̄

)
.

The set of direct reacting equations in the form of (3.7) provides the best known

rearrangement to produce a set of adjoint equations that are similar in form. The

rearrangement in (3.7) is also very similar to the best rearrangement found for the non-

reacting system (2.13). The corresponding adjoint equations, formed using the same

method as in the non-reacting case, are

∂m+
i

∂xi
= 0, (3.12a)

−
∂m+

i

∂t
−

m̄j

ρ̄

(
∂m+

i

∂xj
+

∂m+
j

∂xi

)
−

1

S1Reρ̄

(
∂

2m+
i

∂xj
2 +

1

3

∂
2m+

j

∂xj∂xi

)
. . .

−
1

ρ̄

∂p+

∂xi
+

T+

ρ̄

∂T̄

∂xi
+

Z+

ρ̄

∂Z̄

∂xi
= 0,

(3.12b)

−
∂Z+

∂t
− m̄i

∂

∂xi

(
Z+

ρ̄
+ K̄2p

+

)
−

1

S1ReSc

∂
2

∂xi
2

(
Z+

ρ̄
+ K̄2p

+

)
. . .

− Daρ̄3K̄Z

(
T+

ρ̄
+ K̄1p

+

)
+ K̄2ρ̂

+ = 0,

(3.12c)

−
∂T+

∂t
− m̄i

∂

∂xi

(
T+

ρ̄
+ K̄1p

+

)
−

1

S1RePr

∂
2

∂xi
2

(
T+

ρ̄
+ K̄1p

+

)
. . .

− Daρ̄3K̄T

(
T+

ρ̄
+ K̄1p

+

)
+ K̄1ρ̂

+ = 0,

(3.12d)

m̄im̄j
∂m+

i

∂xj
+ Ri ρ̄2m+

i ĝi +
m̄i

S1Re

(
∂

2m+
i

∂xj
2 +

1

3

∂
2m+

j

∂xj∂xi

)
. . .

− 3Daρ̄4ω̄

(
T+

ρ̄
+ K̄1p

+

)
+ ρ+ = 0.

(3.12e)
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3.4 Changes to the non-reacting code

Despite the extra variables and equations, only minimal changes were required to im-

plement the reacting system in the direct linear and discrete-adjoint codes. A nonlinear

code provided by Joseph Nichols was used for nonlinear time stepping and to compute

the base flow fields.

In the direct and discrete-adjoint codes the scalar fields Z and T are stored together

as a vector field. The time evolution algorithms for both fields are very similar and it

is possible to use the same subroutines, by just changing the input variables. This is

achieved by a simple loop changing the index of the of the vector field from 1 to 2 to

access Z and T . The new discrete-adjoint code follows the changes to the direct code

exactly. This results in linear and discrete-adjoint codes that can be switched between

non-reacting and reacting flows by changing the size of the vector field from 1 to 2

respectively.

Direct-linear and discrete-adjoint reacting codes have been developed. The discrete-

adjoint approach was chosen ahead of the continuous-adjoint approach due to the fewer

changes required and because it is easier to debug. The required resolution for react-

ing simulations is greater than that for non-reacting simulations in order to resolve

the smaller flame length scales. For the reacting simulations used in this work, the

resolution is approximately 1.6 times greater than that used in the high-resolution non-

reacting simulations. Given the reasonable comparison between the discrete-adjoint

and continuous-adjoint approaches in the high-resolution non-reacting case, it is as-

sumed that the hydrodynamics in the reacting adjoint modes are sufficiently resolved

using the discrete-adjoint method for the purpose of this work.

Field
Base flow Direct linear

x = 0 Xmax Rmax x = 0 Xmax Rmax

T h-D C h-D h-D C h-D

Z D C h-D h-D C h-D

Table 3.2: Boundary condition changes for the reacting jet. D→ Dirichlet,

h-D→ homogeneous Dirichlet, C→ convective.

Changes to the boundary conditions for the reacting case are given in table 3.2.

The base flow inlet boundary condition on temperature is now homogeneous Dirichlet
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and top-hat inlet profiles, formed from Michalke’s profile number two (Michalke, 1984),

are used for the base flow momentum and mixture fraction:

y(0, r) ≡
1

2

(
1 + tanh

(
1

4

d̃j

2θ

(
1

2r
− 2r

)))
, (3.13)

Z(0, r) = y(0, r), (3.14)

T (0, r) = 0 ⇒ ρ(0, r) =
1

(S1 − 1)Z(0, r) + 1
, (3.15)

mx(0, r) = ρ(0, r)
(
uc + (1 − uc) y(0, r)

)
. (3.16)

For the reacting base flow, the numerical simulation needs to be ignited. This

is achieved by using a Gaussian-shaped impulse of magnitude 1 at r = ±0.5 in the

temperature initial condition.

3.5 Code validation

The first check for the reacting code was to set the Damköhler number to zero and apply

the initial and boundary conditions used for the non-reacting results to the momentum

and temperature fields. Setting initial and boundary conditions on the mixture fraction

to zero then led to the non-reacting results being recovered.

Using the same conditions as Nichols & Schmid (2008), table 4.1 in chapter 4 com-

pares the eigenvalues of the direct global modes calculated in this chapter to results

from local analyses and the nonlinear global mode frequencies observed in the numerical

study of Nichols & Schmid (2008). The reacting case with liftoff height hl = 0.858 is

equivalent to the ‘marginally stable’ case in Nichols & Schmid (2008) with Da = 6×105.

The discrepancy between the frequency calculated by ARPACK and the frequency of

the nonlinear global mode is approximately 10%, which is a reasonable agreement. The

frequencies predicted by the local analyses in this case are significantly lower.

The discrete-adjoint code was continuously checked during the implementation and

debugging process by comparing q⊕(t1) · MNq(t2) to q(t2) ·
(
MH

)N
q⊕(t1), which

match to machine precision. The discrete-adjoint eigenvalues calculated by ARPACK

match the direct eigenvalues to the convergence tolerance specified.

The domain size, resolution and flow parameters are identical to those used by

Nichols & Schmid (2008). The resolution is also approximately 1.6 times that used in
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the high resolution non-reacting simulations.

Taking these checks into account, there is nothing to suggest the new reacting

codes are functioning incorrectly. All the checks have given plausible results for a linear

analysis and the discrepancies with the nonlinear results are reasonably small.

3.6 Results
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Figure 3.1: Non-dimensional reacting base flow.

The flow parameters used are the same as those used in the non-reacting results.

The extra parameters needed are set to those used by Nichols & Schmid (2008), these
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are: s = 2, κ = 0.01, Sc = 0.7, Da = 6 × 105, S2 = 6.0, α = 1 − 1/S2 = 0.833, β = 3.

The highly non-parallel nature of the lifted flame allows for a much shorter domain

than that used in the non-reacting case. The non-dimensional axial domain length is

10.0 and the non-dimensional domain diameter is 10.0. The grid size is 511 × 1025,

corresponding to radial × axial grid points (Nr×Nx), with time step ∆t = 0.0025. With

Da = 6× 105, this set up exactly matches that of the marginally stable (Da = 6× 105)

case in the nonlinear simulations of Nichols & Schmid.

A steady base flow (figure 3.1), calculated with selective frequency damping (Åkervik

et al., 2006), with an initial spark at x = 2 and r = ±0.5, converged to a liftoff height

hl = 0.858, which approximately matches that found in Nichols & Schmid (2008). The

small discrepancy is due to the definition of the flame base; in the present work this is

taken to be the position of the most upstream point of the T = 0.6 contour line.

The base flow fields in figure 3.1 show that a large change occurs in the spanwise

profiles between the pre-mixing zone and flame region for all fields. Nichols & Schmid

(2008) showed that a pocket of absolute instability exists in the pre-mixing zone and

that for sufficiently large liftoff heights this pocket of absolute instability leads to global

oscillations. This suggests that the instability develops in the pre-mixing zone and it is

likely therefore that the most sensitive region of the flow is also in the pre-mixing zone.

This topic is covered in greater depth in chapter 4.

A convention used throughout this work is that if the minimum/maximum values of

the figures are stated as ‘min’/‘max’, they also refer to the minimum/maximum values

of the data, whereas if they are stated as ‘figure min’/‘figure max’, they refer to the

figure values only and differ from the actual minimum/maximum values of the data. In

the modal figures, the minimum/maximum values have been set using the value with

larger magnitude so that the figure is centred on zero.

The real parts of the most-unstable direct and discrete-adjoint global modes are

given in figures 3.2, and 3.3. The discrete-adjoint mode has been multiplied by (DH)−1

(volume distribution corrected). The modes have been normalized so that 〈q̂, q̂〉 = 1

and 〈(DH)−1q̂⊕, (DH)−1q̂⊕〉 = 1. The eigenvalue corresponding to this mode is σ =

−0.0939+i 1.981. The small negative real part of this eigenvalue implies that the mode

is slowly decaying over time. The Strouhal number is St = Im(σ)/(2π) = 0.315, which

is within approximately 10% of the nonlinear Strouhal number (St = 0.284) observed

by Nichols & Schmid for the marginally stable case.

While the direct mode shape is most dominant in the flame (figure 3.2), the adjoint
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Figure 3.2: Real part of the non-dimensional reacting most-unstable direct global mode.

The ln(reaction rate) subfigure shows the natural logarithm of the right hand side

of (3.6d). The subfigure contains separate plots for the positive and negative parts

of the reaction rate with one superimposed onto the other. For the positive parts,

ln(reaction rate) + 7 is plotted for values between 0 and 10. For the negative parts,

− ln(−(reaction rate)) − 7 is potted for values between -10 and 0. The subfigure is

therefore centred on zero (green), which corresponds to a reaction rate with magnitude

less than exp(−7).
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mode shape is most dominant in the pre-mixing zone between the inlet and the flame

base (figure 3.3). The overlays of the momentum and mixture fraction fields in figure

3.4 are dominant in the pre-mixing zone. This implies that the adjoint mode structures

for these fields are small in the flame and grow rapidly in the pre-mixing zone and/or

that the direct mode structures have a significant component in the pre-mixing zone

despite the observed dominance in the flame.

The overlay of the temperature field, however, is dominant in the flame. This implies

that the direct mode structure is small in the pre-mixing zone and grows rapidly in the

flame, (which can be seen in figure 3.2 when compared to other fields) and/or that the

adjoint mode structure has a significant component in the flame despite the observed

dominance in the pre-mixing zone. This is likely to be due to the large amount of heat

release and sudden temperature rise in the flame.

The temperature itself does not directly affect the hydrodynamic instability. The

effect of the temperature on the hydrodynamic instability occurs through the effect of

temperature on the density. The exact form of the temperature field is therefore of

minimal interest when investigating the nature of the hydrodynamic instability. Figure

3.2 shows that while the temperature field has relatively minimal presence in the pre-

mixing zone, the density field has a structure of comparable magnitude to the rest of
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Figure 3.3: Real part of the non-dimensional reacting most-unstable discrete-adjoint

global mode (volume distribution corrected).
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Figure 3.4: Absolute value of the non-dimensional reacting most-unstable discrete-

adjoint global mode multiplied by the most-unstable direct global mode at every grid

point (volume distribution corrected).

the mode.

By varying the initial condition, other steady converged solutions were found. Mov-

ing the spark upstream to x = 0.9 and r = ±0.5 resulted in a steady converged solution

with liftoff height hl = 0.794, whereas using a converged solution for Da = 5 × 105

as the initial condition resulted in a steady converged solution with hl = 1.92. The

former of these two solutions is a steady and stable solution, with the most-unstable

eigenvalue σ = −0.0155 + i 0.226, whereas the latter is a steady but unstable solution,

with the most-unstable eigenvalue σ = 0.180 + i 1.345. The corresponding Strouhal

numbers are St = 0.036 and St = 0.213 respectively. The linear stability properties of

these base flows support the finding by Nichols & Schmid (2008) that if the flame base

moves sufficiently far upstream, the global instability will be suppressed.

When the steady but unstable solution (hl = 1.92) is used as an initial condition for

an unsteady nonlinear time evolution, the flow eventually converges to the hl = 0.858

steady solution. The fact that different steady solutions exist needs some further inves-

tigation, but for the present work it is not too important and provides some different

cases to investigate further how heat release can affect the underlying hydrodynamic

instability.
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The base flows with hl = 0.794 and hl = 1.92 are qualitatively similar to the one

shown in figure 3.1 for hl = 0.858. For the case with hl = 1.92 the spatial component

developing in the pre-mixing zone is more pronounced and is shown for the axial velocity

and density fields in figure 3.5. The adjoint mode structure and direct-adjoint overlay

structure are qualitatively similar throughout the domain for all three modes, with the

structures in the pre-mixing zone stretched to fill the different zone lengths.

The axial-momentum field of the discrete-adjoint mode for the hl = 1.92 case is

given in figure 3.6. The longer pre-mixing zone means that the adjoint mode shape is

affected less by the flame. Figure 3.6 compares favourably with the axial-momentum

field of the non-reacting continuous-adjoint mode in figure 2.5. The higher resolution

used for the reacting simulations has significantly reduced the nonphysical behaviour

that plagued the non-reacting discrete-adjoint mode in figure 2.4.
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Figure 3.5: Real part of the axial velocity and density most-unstable direct global mode

fields for the flame with liftoff height of 1.92.
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Figure 3.6: Real part of the axial-momentum most-unstable discrete-adjoint global

mode field for the flame with liftoff height of 1.92 (volume distribution corrected).
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3.7 Conclusions

The work contained in this chapter successfully calculates adjoint global modes for

a reacting shear flow. The reacting adjoint equations and reacting discrete-adjoint

numerical scheme follow closely that of the non-reacting case. Only minor changes were

needed therefore to the non-reacting code. The form of the linear equations is again

important for the derivation of the adjoint equations and some careful rearrangement

is required to ensure that the linear and adjoint equation sets are of similar form.

The choice of configuration near to the first bifurcation point of the lifted flame

yielded linear results that are close to the nonlinear results of Nichols & Schmid (2008).

The eigenvalue of the most unstable mode suggests that the flow is marginally stable

and gives a Strouhal number within 10% of the nonlinear Strouhal number observed by

Nichols & Schmid.

The most-unstable direct global mode is dominant in the flame region, whereas the

adjoint global mode is dominant in the pre-mixing zone. A superposition of the two

modes is dominant in the pre-mixing zone. These qualitative assessments, together

with the observation by Nichols & Schmid that as the flame base moves upstream the

global instability is suppressed, suggest that the spatial component of the direct mode

developing in the pre-mixing zone is driving the spatial component in the flame, and

that the pre-mixing zone is therefore the most sensitive region of the flow. The most

sensitive region of a flow is derived quantitatively in the next chapter.

Two alternative steady solutions were found with differing liftoff heights. The steady

but unstable alternative solution highlighted the role of the pre-mixing zone in the

global instability by showing greater direct-mode structure in the pre-mixing zone.

The greater pre-mixing zone length suggests the flame interferes with the underlying

non-reacting hydrodynamic instability less than for the marginally stable case. This is

supported by comparing the adjoint mode structure, which bears greater similarity to

the non-reacting case when the pre-mixing zone is larger.





CHAPTER 4

Sensitivity analysis

4.1 The physical meaning of adjoint global modes

The non-reacting and reacting linearized equations can be expressed in the same oper-

ational form of

∂q

∂t
− Lq = s, (4.1)

where L is the linear operator and s is a vector introducing source terms to the right

hand side of the linear equations. In the reacting case, the linearized term describing

the heat release due to reaction has been moved to the left hand side of the linearized

reacting energy equation (3.6d) and forms part of the linear operator L. For the non-

reacting and reacting cases, q and s take the following forms

Non-reacting: q =

[
m′

T ′

]
, s =

[
f ′

ϕ′/ρ̄

]
,

Reacting: q =




m′

T ′

Z ′


 , s =




f ′

ϕ′/ρ̄

0


 ,

(4.2)

where f ′ is the linearized, non-dimensional external applied force per unit volume and

ϕ′ is the linearized, non-dimensional rate of heat addition per unit volume. For the

following analysis, f ′ and ϕ′ are considered as open-loop source terms, i.e. they do not

have any dependence on the state vector q. The acoustic forcing used in Juniper et al.

(2009) and Schmid et al. (2010) are examples of open-loop forcing. Acoustic forcing can
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be modelled by a body force in the low-Mach-number equations in a similar way to the

reduced order model of acoustic forcing used by Moeck et al. (2009) in a finite-difference

zero-Mach-number solver for a Rijke tube.

The solution of the homogeneous problem can be divided into two parts: the discrete

eigenmodes and the continuous spectrum (Drazin & Reid, 1981; Huerre & Monkewitz,

1985; Hill, 1995). Including a particular solution, due to the source term on the right

hand side (Schmid, 2007), the full time dependent solution of (4.1) can be written as

q (x, r, t) = qs (x, r, t) + qd (x, r, t) + qcs (x, r, t) , (4.3)

q (x, r, 0) = q0 (x, r) , (4.4)

where qs, qd and qcs are the components of q arising from the source term, discrete

eigenmodes and the continuous spectrum respectively and q0 is the initial condition.

The source term s and, consequently, qs are assumed to be be harmonic and take the

forms

s (x, r, t) = ŝ (x, r) exp(σst), (4.5)

qs (x, r, t) = q̂s (x, r) exp(σst), (4.6)

where σs is complex and describes the growth/decay and the frequency of the source

term.

Writing qd (x, r, t) as a summation of all N discrete eigenmodes with coefficients βj ,

(4.3) becomes

q (x, r, t) = q̂s (x, r) exp(σst) +
N∑

j=1

βj q̂j (x, r) exp(σjt) + qcs (x, r, t) , (4.7)

with each eigenmode, j, satisfying

σj q̂j − Lq̂j = 0. (4.8)

Assuming that the discrete eigenmodes and continuous spectrum cover the whole

of the solution space, it is possible to project the spatial terms q̂s and q0, which vary

in space but not in time, onto them:
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q̂s =

N∑

j=1

αj q̂j + q̂s cs, (4.9)

q0 =
N∑

j=1

ζj q̂j + q̂0 cs, (4.10)

where q̂s cs and q̂0 cs are the projections of the source term and initial conditions

respectively onto the continuous spectrum. The coefficients αj can be found by first

substituting (4.6) and (4.5) into (4.1) and cancelling out the exponential terms:

σsq̂s − Lq̂s = ŝ. (4.11)

To proceed further it is necessary to define the inner product,

〈q1, q2〉 =
1

V

∫

V
qH

1 q2 dV, (4.12)

where qH
1 is the conjugate transpose of q1. Using the inner product, (4.11) is premul-

tiplied by the adjoint mode q̂+
k , corresponding to the discrete eigenmode k, to give

〈
q̂+

k , σsq̂s

〉
−
〈
q̂+

k , Lq̂s

〉
=
〈
q̂+

k , ŝ
〉
. (4.13)

Using the analyses of Salwen & Grosch (1981) and Hill (1995), the bi-orthogonality of

the discrete and continuum mode solutions implies

〈
q̂+

k , q̂j 6=k

〉
=
〈
q̂+

k , q̂s cs

〉
= 0. (4.14)

Substituting (4.9) and (4.8) into (4.13) and using (4.14) gives

〈
q̂+

k , σsαkq̂k

〉
−
〈
q̂+

k , σkαkq̂k

〉
=
〈
q̂+

k , ŝ
〉
. (4.15)

⇒ αk =
1

(σs − σk)

〈
q̂+

k , ŝ
〉

〈
q̂+

k , q̂k

〉 . (4.16)

The coefficients ζj can be found by first premultiplying (4.10) by the adjoint mode

q̂+
k . Then, using the bi-orthogonality condition (4.14), (4.10) can be rearranged to give

ζk =

〈
q̂+

k , q̂0

〉
〈
q̂+

k , q̂k

〉 . (4.17)

Applying the initial condition at t = 0 to (4.7) and then substituting in (4.9) and (4.10)

gives

βj = ζj − αj =

〈
q̂+

j , q̂0

〉
〈
q̂+

j , q̂j

〉 − 1(
σs − σj

)
〈
q̂+

j , ŝ
〉

〈
q̂+

j , q̂j

〉 . (4.18)
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Substituting (4.9), (4.17) and (4.18) into (4.7) gives

q (x, r, t) =
N∑

j=1

〈
q̂+

j , q̂0 exp(σjt) + ŝ
(exp(σst) − exp(σjt))

(σs − σj)

〉
q̂j (x, r)〈
q̂+

j , q̂j

〉

+ q̂s cs exp(σst) + qcs. (4.19)

Equation (4.19) can provide useful insights into the effects of q̂0, ŝ and σs on the

time evolution of the state vector and also into the role the adjoint global modes play

in quantifying these effects.

The source term is usually of fixed amplitude, which corresponds to Re(σs) = 0. For

a globally unstable flow, the eigenvalue of the most-unstable mode, σ1, has a positive

real component, which implies Re(σ1) > Re(σs). Under these conditions, in the limit

t → ∞, (4.19) reduces to

q (x, r, t) =

〈
q̂+

1 , q̂0 +
ŝ

(σ1 − σs)

〉
q̂1 (x, r)〈
q̂+

1 , q̂1

〉 exp(σ1t). (4.20)

Neglecting nonlinear effects for the moment, equation (4.20) shows that, in the

long time limit, the flow takes the form of the most-unstable direct global mode, q̂1,

growing exponentially according to Re(σ1) with a frequency of 2π Im(σ1). The flow

behaves therefore as an oscillator (Huerre & Monkewitz, 1990). The amplitude of the

global mode at a particular time depends on
〈
q̂+

1 , q̂0 + ŝ/ (σ1 − σs)
〉
. When q̂+

1 and

(q̂0 + ŝ/ (σ1 − σs)) are linearly dependent, the amplitude is at a maximum for a given

initial energy, source amplitude and source frequency. The sensitivity of the global-

mode amplitude to changes in the spatial distribution of the source term or initial

conditions is therefore q̂+
1 .

Comparing the form of q̂+
1 to the form of ŝ implies that the adjoint momentum is

the sensitivity to external force and the adjoint temperature is the sensitivity to a heat

source. With some extra algebraic manipulation, the analysis above can be extended to

include a linearized, non-dimensional, rate of mass addition per unit volume, ˆ̺, which

results in
〈
q̂+

k , ŝ
〉

being replaced with
〈
q̂+

k , ŝ
〉
+
〈(

p̂+
k /ρ̄

)
, ˆ̺
〉

in equations (4.13), (4.16)

and (4.18). The factor of 1/ρ̄ appears due to the way p+ was formed in the previous

chapter. The adjoint pressure divided by the base density is therefore the sensitivity

to mass injection.
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It is also possible to introduce a new term to the right hand side of (4.13) that

would allow the calculation of the sensitivity to boundary perturbations. A boundary

condition, q̂|
b

= q̂w (where |
b

denotes the part of q̂ located on the boundary and q̂w is

the desired boundary value), can be made to be part of the linear operator by including

it in the system of linearized equations. This extra equation is then multiplied by a new

adjoint variable, q̂+
w say, inside a boundary surface integral. This results in the surface

integral
∫
s q̂+H

w q̂|
b
ds being added to the boundary terms in (2.51), which allows q̂+

w to be

calculated. We also get
〈
q̂+

k , ŝ
〉

being replaced with
〈
q̂+

k , ŝ
〉
+
∫
s q̂+H

wk q̂wds in equations

(4.13), (4.16) and (4.18), which implies that the sensitivity to boundary perturbations is

q̂+
w . Due to the direct and adjoint perturbation boundary conditions in this work being

homogeneous Dirichlet or the boundary values being assumed to be zero, boundary

perturbations can not occur and the sensitivity to boundary perturbations is therefore

zero.

For a globally stable flow, Re(σ1) < 0 and therefore Re(σ1) < Re(σs). In the long

time limit (4.19) reduces to

q (x, r, t) =
N∑

j=1

〈
q̂+

j ,
ŝ

(σs − σj)

〉
q̂j (x, r)〈
q̂+

j , q̂j

〉 exp(σst) + q̂s cs exp(σst). (4.21)

Equation (4.21) implies that a global mode will develop at the the source frequency

σs, which is now an important factor in determining the form of the flow. The flow

behaves now as a spatial amplifier (Huerre & Monkewitz, 1990). If σs is close to an

eigenvalue, σk for example, then provided ŝ/ (σs − σk) is not orthogonal to q̂+
k , there

will be a strong component of q̂k in the flow. Provided σs is not near to the continuous

spectrum, the contribution of q̂s cs will be small. For σs ≈ σk, the amplitude of the

mode at a particular time depends most significantly on
〈
q̂+

k , ŝ/ (σk − σs)
〉
. When q̂+

k

and (ŝ/ (σk − σs)) are linearly dependent, the amplitude is at a maximum for a given

source amplitude and frequency. The sensitivity of the amplitude to changes in the

spatial distribution of the source term is now approximately q̂+
k .

In the theoretical limit of σs → σk and t → ∞, (4.19) reduces to

q (x, r, t) =
〈
q̂+

k , ŝ
〉 q̂k (x, r)〈

q̂+
k , q̂k

〉 t exp(σkt). (4.22)

The sensitivity of the modal amplitude to changes in the spatial distribution of the

source term is now precisely q̂+
k .
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Equations (4.20) and (4.21) support the conclusion by Chomaz (2005) that, in a

flow acting as an amplifier, the exponential decay of initial perturbations causes the

flow to respond to harmonic source terms, whereas in a flow acting as an oscillator

the exponential growth of initial perturbations overshadows the response to harmonic

source terms. As well as the exponential growth of the initial perturbations, equation

(4.20) shows that, for an oscillator-type flow, the structure of the source terms at t = 0

(from (4.5) s (x, r, 0) = ŝ (x, r)) also gets amplified exponentially. In some cases, if the

source is switched on early enough, this may drown the contribution from the initial

conditions.

4.1.1 Relation to previous results

For both the non-reacting and reacting flows considered in chapters 2 and 3, the largest

components of the most-unstable adjoint global mode are located near the inlet and near

to the shear layer. For an amplifier, this region is the region of maximum sensitivity

of the global mode amplitude to the spatial distribution of the source term. For an

oscillator, it is the region of maximum sensitivity of the global mode amplitude to the

spatial distribution of the initial conditions and initial source term structure. For the

lifted flame, the spatial structure of the adjoint global mode has low amplitude in the

flame region and grows rapidly in the pre-mixing zone, which suggests that the direct

global mode amplitude is relatively insensitive to external open-loop forcing and/or

heating applied locally in the flame region.

The time-asymptotic analysis above is only valid in the time window (if it exists)

from the onset of domination by the leading exponential term in (4.19) until the nonlin-

ear effects become significant. Chomaz (2005) points out that for a highly non-normal

linear global evolution operator, linear global mode theory is a poor indicator of fully

nonlinear behaviour. With increasingly parallel flows, the direct and adjoint eigenmode

separation increases due to the difference in sign of the corresponding advection terms,

and this increases the amount of non-normality.

The increase in non-normality is associated with the direct global modes becoming

less orthogonal to one another, which implies that the corresponding adjoint modes

become less orthogonal to one another as well. The vectors in each direct-adjoint

global mode pair become therefore more orthogonal to one another. This means that

the inner product
〈
q̂+

k , q̂k

〉
becomes smaller as non-normality increases, which increases
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the sensitivity.

For the most-unstable global modes calculated in the previous chapters,
〈
q̂+, q̂

〉
is

∼ 4 × 10−6 for the non-reacting case, ∼ 0.003 for the hl = 0.858 reacting case and

∼ 0.013 for the hl = 1.92 reacting case. The values for the reacting cases are much

larger than for the non-reacting case because of the highly non-parallel region at the

flame base, which reduces the separation between the adjoint and direct modes in the

pre-mixing zone. If just the pre-mixing zone is considered then
〈
q̂+, q̂

〉
is ∼ 0.02 for

hl = 0.858 and ∼ 0.04 for hl = 1.92, which suggests that a significant amount of the

non-normality is due to the long and weakly non-parallel flame region.

Moderate non-normality means that, in the vicinity of a bifurcation point, the

nonlinear saturation amplitude is less sensitive to changes in the bifurcation parameters

and a weakly nonlinear approach involving a Landau equation for the global mode

amplitude is valid (Chomaz, 2005). If the assumptions of the weakly nonlinear approach

are met, the theory shows that the physical interpretation of the adjoint global modes

given above is valid in the nonlinear regime. Giannetti & Luchini (2007) point out that,

for a cylinder wake, linear theory is unable to predict the real vortex-shedding frequency

in the unstable regime far from the stable-unstable bifurcation point at Re ≈ 47. As

non-normality increases the flow needs to be closer to the bifurcation point in order to

extend the interpretation of the adjoint modes to the fully nonlinear regime.

Extending the non-reacting results to the fully nonlinear regime is unlikely to give

a good comparison because of the high non-normality. For the reacting cases, however,

the non-normality is much less. The hl = 0.858 case is also close to the bifurcation point,

which suggests that the hl = 0.858 results have greater validity in the fully-nonlinear

regime. Comparing the Strouhal numbers calculated from the linear eigenvalues to the

nonlinear Strouhal numbers observed by Nichols & Schmid (2008) gives approximately

a 25% discrepancy for the non-reacting case and approximately a 10% discrepancy in

the reacting hl = 0.858 case.

4.2 Structural Sensitivity

Structural sensitivity refers to the sensitivity of an eigenvalue to changes in the govern-

ing linear operator. These changes can be due to changes in the governing parameters,

such as Re or Pr , due to changes in the base flow fields, or due to changes in a feed-

back mechanism if one exists. A feedback mechanism is fundamentally different to the
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open-loop source terms discussed in the previous section. In a feedback mechanism,

a feedback operator acts on the state vector and the mechanism depends therefore on

the state vector itself. Examples include drag from small cylinders or lift from small

aerofoils placed in the flow or sensor-actuator arrangements used in flow control appli-

cations.

If a feedback mechanism exists as a source term in the governing equations, the

feedback operator forms part of the linear governing operator. The following analysis

for a structural perturbation in the linear operator L, is therefore equally valid for a

structural perturbation in a feedback operator as well.

To find the structural sensitivity of the eigenvalue, σ, a similar analysis to that

of Giannetti & Luchini (2007) is performed. It is first necessary to introduce a small

perturbation to the linear operator L → L + εδL and consider the limit as ε → 0. A

perturbed linear operator results in a perturbed eigenvalue as well as perturbed direct

and adjoint eigenmodes: σ → σ +εδσ, q̂ → q̂ +εδq̂ and q̂+ → q̂+ +εδq̂+. Substituting

these perturbed quantities into equation (2.8) gives

〈
(q̂+ + εδq̂+), (σ + εδσ)(q̂ + εδq̂)

〉
−
〈
(q̂+ + εδq̂+), (L + εδL)(q̂ + εδq̂)

〉
= 0.

⇒
〈
q̂+, σq̂

〉
−
〈
q̂+, Lq̂

〉
+
〈
εδq̂+, σq̂

〉
−
〈
εδq̂+, Lq̂

〉
. . .

+
〈
q̂+, σ εδq̂

〉
−
〈
q̂+, L(εδq̂)

〉
+
〈
q̂+, εδσq̂

〉
−
〈
q̂+, εδLq̂

〉
+ O(ε2) = 0.

⇒
〈
q̂+ + εδq̂+, σq̂ − Lq̂

〉
+
〈
σ∗q̂+ − L+q̂+, εδq̂

〉
. . .

+ εδσ
〈
q̂+, q̂

〉
− ε

〈
q̂+, δLq̂

〉
+ O(ε2) = 0.

(4.23)

The first two terms in (4.23) can be eliminated using equations (2.6) and (2.11).

This step highlights the requirement to pre-multiply by the adjoint global and not an

arbitrary vector to obtain equation (2.8). Taking the limit ε → 0, the remaining terms

in (4.23) give

δσ =

〈
q̂+, δLq̂

〉
〈
q̂+, q̂

〉 . (4.24)

The sensitivity of the eigenvalue σ to a structural perturbation in L is denoted ∇Lσ

and is defined by

〈∇Lσ, δL〉 ≡ lim
ε→0

(
σ (L + εδL) − σ (L)

ε

)
. (4.25)
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The right hand side in (4.25) describes the change in σ due to a change in L and is

therefore equivalent to δσ in (4.24). Combining (4.24) and (4.25) gives

δσ = 〈∇Lσ, δL〉 , (4.26)

⇒ 〈∇Lσ, δL〉 =

〈
q̂+, δLq̂

〉
〈
q̂+, q̂

〉 . (4.27)

Depending on the application, the structural perturbation may be expressed in a form

that allows the direct mode q̂ to be shifted to the left hand side of the inner product

in (4.27). The sensitivity ∇Lσ can then be found on its own without the need for the

inner product.

4.3 Sensitivity to force feedback

It can be assumed that the self sustained oscillations of global modes arise from a

feedback mechanism that is inherent in the governing operator. Giannetti & Luchini

(2007) suggest the momentum of the fluid feeds back as a force and drives itself creating

the unstable global mode. To analyze the effect of this feedback mechanism on the

eigenvalue of the global mode it is necessary to artificially perturb it. In practice this

could be done by inserting an object in the flow that disrupts the feedback loop or using

a sensor-actuator feedback device. Following Giannetti & Luchini, we can perturb this

feedback mechanism by assuming the feedback force has the form GUm, where G

is the feedback gain and U is, for the axisymmetric case, a 2 × 2 unitary matrix that

represents a unitary transformation of the momentum vector, such as a rotation and/or

phase shift, where ‖Um‖ = ‖m‖. It is assumed that the feedback force vector at a

particular point is dependent only on the momentum vector at that point. The matrix

U and scalar G can vary throughout the domain and the force and momentum vectors

do not have to be linearly dependent.

To analyse the sensitivity of the eigenvalue it is necessary to substitute GUm for f

in (4.2) and set the rate of heat addition, ϕ, to zero. Defining a feedback operator Ff ,

which represents the force feedback as an operator acting on the state vector q, (4.1)

can be written as

∂q

∂t
− (L + Ff )q = 0. (4.28)
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Equation (4.28) is a homogeneous equation that has a different set of eigenvalues

and eigenvectors to (4.1) corresponding to the new operator (L+Ff ). We are interested

in non trivial solutions of (4.28) of the form

q (x, r, t) = q̂ (x, r) exp (σt) . (4.29)

Substituting (4.29) into (4.28), we can write the new system of equations in the form

σq̂ − (L + Ff )q̂ = 0. (4.30)

It is now possible to find the structural sensitivity of the eigenvalue, σ, to a change

in the feedback operator, δFf . Substituting Ff for L in (4.27) gives

〈
∇Ff

σ, δFf

〉
=

〈
q̂+, δFf q̂

〉
〈
q̂+, q̂

〉 =

〈
m̂+, δ(GU)m̂

〉
〈
q̂+, q̂

〉 . (4.31)

The inner product
〈
q̂+, δFf q̂

〉
has been reduced to

〈
m̂+, δ(GU)m̂

〉
by first expanding

〈
q̂+, δFf q̂

〉
to a summation of separate inner products (one for each field contained in

the state vector) and then noting that, for all fields except momentum, the separate

inner products are zero.

For the present study, we are interested in the case where the feedback operator is

perturbed from zero. It can be assumed therefore that U is fixed and that the gain is

perturbed from G = 0 to G = δG. This implies that δ(GU) = UδG. This also implies

that
〈
∇Ff

σ, δFf

〉
=
〈
∇Gσ, δG

〉
. From (4.31) this leads to

〈
∇Gσ, δG

〉
=

〈
m̂+, Um̂δG

〉
〈
q̂+, q̂

〉 ,

⇒
〈
∇Gσ, δG

〉
=

〈(
Um̂

)H
m̂+, δG

〉
〈
q̂+, q̂

〉 ,

⇒ ∇Gσ =

(
Um̂

)H
m̂+

〈
q̂+, q̂

〉 . (4.32)

Noting that ∇Gσ is a scalar field and using (4.26) and (4.12), the change in the eigen-

value due to a change in the feedback gain is

δσ =
1

V

∫

V
(∇Gσ)∗ δG dV. (4.33)
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The real and imaginary parts of (∇Gσ)∗ correspond to the sensitivities of the real

and imaginary parts of σ to changes in G. For instance, if G is increased in a region

where the real and imaginary parts of ∇Gσ are positive, then the modal growth rate will

increase and, if the imaginary part of σ is positive, the modal frequency will decrease

because of the conjugation.

The inner product 〈q̂+, q̂〉 is complex and has therefore a significant effect on the

real and imaginary parts of ∇Gσ. The arbitrary phase shifts introduced in the calcu-

lation of the complex values of the direct and adjoint global modes are cancelled out

in (4.32) between the momentum fields in the numerator and the inner product in the

denominator.

Equation (4.32) shows that, for a large sensitivity to the force-momentum coupling

at a particular point, it is necessary to have both a large value of the direct momentum,

to give a large feedback force, and a large value of the adjoint momentum to give a

good sensitivity to that force. Equation (4.32) also shows, however, that the linear

dependence between the feedback force vector (Um̂) and the adjoint momentum vector

m̂+ affects the sensitivity significantly, which emphasizes the importance of the unitary

transform represented by U .

If the coupling is constrained so that the feedback force is in the same direction as the

direct momentum vector and has no phase shift, then U becomes the identity matrix.

The resulting inner product, m̂Hm̂+, effectively projects the direct momentum vector

(feedback force vector) onto the adjoint momentum vector (force sensitivity vector).

If the direct and adjoint momentum vectors are linearly dependent there is a strong

feedback, but if they are orthogonal there is no feedback.

Treating (Um̂)H
m̂+ as an inner product, the Cauchy–Schwarz inequality gives

| (Um̂)H
m̂+| 6 ‖Um̂‖‖m̂+‖,

⇒ | (Um̂)H
m̂+| 6 ‖m̂‖‖m̂+‖, (4.34)

where | | is the absolute value of a complex number and ‖ ‖ is the l2-norm of the

momentum vector at each point in space. Using (4.34), the maximum absolute value

of the sensitivity of σ to changes in G at each spatial location is

|∇Gσ|max =
‖m̂‖‖m̂+‖∣∣〈q̂+, q̂

〉∣∣ . (4.35)
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Equation (4.35) is equivalent to equation (8.11) in Giannetti & Luchini (2007).

The spatial location where |∇Gσ|max is greatest is denoted by Giannetti & Luchini

(2007) as the instability core. For a globally oscillating flow, the instability core is

the region where the eigenvalue of the global mode is most sensitive to perturbations

in the inherent feedback mechanism driving the instability. The instability core plays

an important role in the origin and development of a global instability, which implies

that any mechanism that disrupts the perturbation dynamics and the base flow in the

vicinity of the instability core will have a large effect on the instability properties of the

global mode. This could partly explain the success achieved by Giannetti & Luchini

(2007) using the instability core to predict theoretically the experimental findings of

Strykowski & Sreenivasan (1990), despite not directly taking into account modifications

to the base flow caused by the presence of the control cylinder.

4.3.1 Results

The most-unstable global modes from chapters 2 and 3 are used to calculate ∇Gσ (with

U = I) and |∇Gσ|max for the hot jet (using the direct and continuous-adjoint global

modes) and for the lifted flames with liftoff heights hl = 0.858 and hl = 1.92 (using the

direct and volume-distribution-corrected discrete-adjoint global modes). These sensitiv-

ity maps are shown in figures 4.1, 4.2 and 4.3. A convention used throughout this work

is that if the minimum/maximum values of the figures are stated as ‘min’/‘max’, they

also refer to the minimum/maximum values of the data, whereas if they are stated as

‘figure min’/‘figure max’, they refer to the figure values only and differ from the actual

minimum/maximum values of the data. In the modal figures, the minimum/maximum

values have been set using the value with larger magnitude so that the figure is centred

on zero.

The instability core is located in the region where |∇Gσ|max is largest. |∇Gσ|max is

the sensitivity when U is such that the feedback force is aligned with and in phase with

the adjoint momentum vector, which is the direction and phase of greatest sensitivity.

The instability core is located at approximately x = 7, r = 0.5, for the non-reacting

case, at approximately x = 0.35, r = 0.58, for the hl = 0.858 case, and at approximately

x = 0.9, r = 0.58, for the hl = 1.92 case. This suggests that the feedback mechanism

driving the global mode is near the middle of the pre-mixing zone for the lifted flames,

but at a significant distance (7 jet diameters) downstream of the inlet for the hot jet.
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Figure 4.1: Sensitivity (∇Gσ) of the most-unstable eigenvalue (σ) to an increase the

force feedback gain (G) for the hot jet. For U = I the feedback force is aligned with

and in phase with the direct momentum vector. The real and imaginary parts of ∇Gσ

correspond to the sensitivity of the growth rate and frequency of the global mode.

The flame has therefore shifted the centre of the feedback mechanism upstream.

For U = I the feedback force is aligned with and in phase with the direct momentum

vector. ∇Gσ is the sensitivity of the eigenvalue σ to an increase in the feedback gain

G, which is initially zero. Re(∇Gσ) is the sensitivity of the growth rate (Re(σ)) of

the global mode and Im(∇Gσ) is the sensitivity of the frequency (Im(σ)) of the global

mode.

Considering equation (4.33), figures 4.1, 4.2 and 4.3 can be interpreted in terms of

the change in the growth rate and frequency of the global mode for a small localized

increase in the feedback gain G. For instance, if a sensor-actuator, providing a gain

such that
∫
V δG dV = 0.01, is placed at x = 7, r = 0.5, in the hot jet (figure 4.1),

(where Re(∇Gσ) = 6240 and Im(∇Gσ) = −1220) the growth rate (Re(σ)) will increase

by ∼ 82% and the Strouhal number will increase by ∼ 0.6%.

The non-reacting real and imaginary parts of ∇Gσ (figure 4.1) alternate in the

streamwise direction, whereas the reacting real and imaginary parts of ∇Gσ (figures

4.2 and 4.3) alternate in the spanwise direction. The absolute values of ∇Gσ, however,



76 Sensitivity analysis

Re(∇Gσ), U = I

min = −2900 (blue)
max = 2900 (dark-red)

x

r

0 1 2
0

0.5

1

1.5
Im(∇Gσ), U = I

min = −2600 (blue)
max = 2600 (dark-red)

x

r

0 1 2
0

0.5

1

1.5

|∇Gσ|, U = I

min = 0 (blue)
figure max = 4600 (dark-red)

x

r

0 1 2
0

0.5

1

1.5
|∇Gσ|max

min = 0 (blue)
max = 4600 (dark-red)

x

r

0 1 2
0

0.5

1

1.5

Figure 4.2: Sensitivity (∇Gσ) of the most-unstable eigenvalue (σ) to an increase the

force feedback gain (G) for the flame with liftoff height of 0.858. For U = I the

feedback force is aligned with and in phase with the direct momentum vector. The

real and imaginary parts of ∇Gσ correspond to the sensitivity of the growth rate and

frequency of the global mode.

do not alternate. Moving a small sensor-actuator along the alternating regions would

alternately enhance and suppress the growth rate of the global mode and alternately

increase and decrease the frequency. The magnitude of the change in the eigenvalue σ,

however, would vary slowly. The effect of a sensor-actuator on the stability properties

of the flow depends significantly therefore on its precise location.

The similarity between |∇Gσ| when U = I and |∇Gσ|max in figure 4.1, suggests that

the non-reacting direct and adjoint momentum vectors are almost linearly dependent at

each point in space. The same maximum value has been used in both subfigures in order

to make a direct comparison. The linear dependency is caused by the axial momentum

amplitude being an order of magnitude larger than the radial momentum amplitude in

the dominant region, which is shown in figure 2.7. The absolute value of ∇Gσ when

U = I for the flame with hl = 0.858 is similar in shape to |∇Gσ|max, but unlike the non-

reacting case the amplitude is significantly less. For the flame with hl = 1.92 the shape
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Figure 4.3: Sensitivity (∇Gσ) of the most-unstable eigenvalue (σ) to an increase the

force feedback gain (G) for the flame with liftoff height 1.92. For U = I the feedback

force is aligned with and in phase with the direct momentum vector. The real and

imaginary parts of ∇Gσ correspond to the sensitivity of the growth rate and frequency

of the global mode.

as well as the amplitude differ. The direct and adjoint momentum vectors are more

orthogonal for the reacting cases than for the non-reacting case, because the reacting

axial momentum amplitude is smaller compared to the radial momentum amplitude

in the dominant region (|mx| is approximately double |mr| for the hl = 0.858 case,

see figure 3.4). The force feedback from a small cylinder is aligned with the direct

momentum vector. The hot jet is therefore likely to be more sensitive to this feedback

force than the lifted flames because of the greater linear dependency of the direct and

adjoint momentum vectors.

4.4 Sensitivity to heat and drag from a hot wire

In this section it is assumed that the rate of heat addition per unit volume ϕ and

external force per unit volume f are due to a hot wire placed in the flow, that forms
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an axisymmetric ring centred on the centre of the jet. The overall rate of heat addition

Q̃ in Watts (W) is given by the dimensional convection equation

Q̃ = h̃Ã
(
T̃w − T̃l

)
, (4.36)

where Ã is the surface area of the wire in metres squared (m2), T̃w and T̃l are the

temperatures in Kelvin (K) of the wire and local fluid respectively and h̃ is the con-

vective heat transfer coefficient (W m−2 K−1). The dimensional rate of heat addition

per unit volume of fluid, ϕ̃ (Wm−3), is given by Q̃/L̃wd̃2
j , where L̃w is the length of

the wire (m) and d̃j is the diameter of the jet (m), which is the length scale used to

non-dimensionalize the fluid equations. Noting that Ã = π d̃wL̃w, where d̃w is the di-

ameter of the wire, and using the thermal conductivity of the fluid λ (W m−1 K−1), jet

temperature T̃j (K), ambient temperature T̃0 (K) and jet diameter d̃j (m), (4.36) can

be non-dimensionalised:

d̃2
j ϕ̃

λ
(
T̃j − T̃0

) = π

(
h̃d̃w

λ

)


(
T̃w − T̃0

)

(
T̃j − T̃0

) −

(
T̃l − T̃0

)

(
T̃j − T̃0

)


 , (4.37)

⇒ ϕ = πNu (Tw − Tl) , (4.38)

where the non-dimensional rate of heat addition per unit volume of fluid ϕ is defined

as d̃2
j ϕ̃/(λ(T̃j − T̃0)), the Nusselt number Nu is defined as h̃d̃w/λ, the non-dimensional

wire temperature Tw is defined as (T̃w − T̃0)/(T̃j − T̃0) and the non-dimensional local

fluid temperature Tl is defined as (T̃l − T̃0)/(T̃j − T̃0).

Assuming the Prandtl number of the fluid is constant, an empirical relationship

between the Nusselt number Nu and local Reynolds number of the wire Rew is given

by

Nu = cReη
w, (4.39)

where Rew ≡
ρ̃l‖ũl‖d̃w

µ
. (4.40)

For a hot wire in cross flow, the empirical values c and η are typically in the ranges 0.9-

1.0 and 0.30-0.36 respectively (White, 2008). The parameter µ is the dynamic viscosity

of the fluid, ρ̃l is the density of the fluid at the location of the hot wire (kg m−3)

and ‖ũl‖ is the l2-norm of the velocity vector at the location of the hot wire (m s−1).

Substituting (4.39) into (4.38) gives
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ϕ = πcReη
w (Tw − Tl) . (4.41)

The Reynolds number of the wire is not a fixed quantity because it varies with the

local density and velocity of the fluid. It is necessary to introduce the Reynolds number

of the jet into (4.41):

ϕ = πc

(
ρ̃l‖ũl‖d̃w

µ

)η (
ρ̃j

ρ̃0

µ

ρ̃j ũj d̃j

)η

(S1Re)η (Tw − Tl) , (4.42)

ϕ = (πc (S1Re)η)

(
d̃w

d̃j

)η (
ρ̃l‖ũl‖

ρ̃0ũj

)η

(Tw − Tl) , (4.43)

ϕ = cϕdη
w‖ml‖

η (Tw − Tl) , (4.44)

where ‖ml‖ is the l2-norm of the non-dimensional momentum vector at the location of

the hot wire, dw is the diameter of the wire non-dimensionalized with the jet diameter

and cϕ = πc (S1Re)η. ϕ is currently a point source located at the position of the wire.

Turning ϕ into a distributed source using the axisymmetric Dirac delta function at the

position of the wire, δ2(xw, rw)/(2π|rw|), gives

ϕ(x, r) = cϕdη
w‖m(x, r)‖η (Tw − T (x, r)) δ2(xw, rw)/(2π|rw|). (4.45)

Noting that

‖m‖ ≈ ‖m̄‖ +
m′ · m̄

‖m̄‖
,

for ‖m′‖ ≪ ‖m̄‖, equation (4.45) can be linearized:

ϕ̄ = cϕdη
w‖m̄‖η

(
Tw − T̄

)
δ2(xw, rw)/(2π|rw|), (4.46)

ϕ′ = cϕdη
w‖m̄‖η

((
Tw − T̄

)
η
m′ · m̄

‖m̄‖2
− T ′

)
δ2(xw, rw)/(2π|rw|). (4.47)

The drag force f̃ (N) acting on the flow from the wire is given by

f̃ = −
1

2
d̃2

wCDρ̃‖ũl‖ũl, (4.48)

where CD is the Rew dependent drag coefficient. For flow around a cylinder at low

Reynolds numbers (Rew < 1), CD is proportional to Re−1
w (for example see Munson

et al., 1998). Assuming the wire is thin compared to the jet implies that Rew is
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sufficiently small for CD to be replaced with b/Rew. Using this relation, (4.48) can

be non-dimensionalized

f̃

d̃2
j ρ̃0ũ2

j

= −

(
b

2S1Re

)(
d̃w

d̃j

)(
ũl

ũj

)
,

⇒ f = −cfdwul, (4.49)

where the non-dimensional drag force f is defined as f̃/(d̃2
j ρ̃0ũ

2
j ), cf ≡ b/(2S1Re) is a

positive constant, the non-dimensional wire diameter dw is defined as d̃w/d̃j , and the

non-dimensional local velocity ul is defined as ũl/ũj . Turning f from a point force to

a distributed force gives

f(x, r) = −cfdwu(x, r) δ2(xw, rw)/(2π|rw|). (4.50)

Linearizing (4.50) gives

f̄ = −cfdwū δ2(xw, rw)/(2π|rw|), (4.51)

f ′ = −cfdwu′ δ2(xw, rw)/(2π|rw|). (4.52)

The present work derives and calculates the sensitivity to unsteady perturbative

forcing. The theory for the sensitivity to steady forcing is given as an extension to this

work in chapter 5.

Substituting (4.47) and (4.52) into (4.1) and defining a feedback operator Fw, which

represents the action of (4.47) and (4.52) on the state vector q, (4.1) can be written as

∂q

∂t
− (L + Fw)q = 0. (4.53)

Equation (4.53) is a homogeneous equation that has a different set of eigenvalues

and eigenvectors to (4.1) corresponding to the new operator (L+Fw). We are interested

in non trivial solutions of (4.53) of the form

q (x, r, t) = q̂ (x, r) exp (σt) . (4.54)

Substituting (4.54) into (4.53), we can write the new system of equations in the form

σq̂ − (L + Fw)q̂ = 0. (4.55)
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It is now possible to find the structural sensitivity of the eigenvalue, σ, to a change in

the feedback operator, δFw. Substituting Fw for L in (4.27) gives

〈∇Fwσ, δFw〉 =

〈
q̂+, δFwq̂

〉
〈
q̂+, q̂

〉 . (4.56)

For the present study, we are interested in the case where the feedback operator

is perturbed from zero, which approximates the case where a hot wire is placed in an

otherwise unperturbed flow. Two physical causes for the change in Fw are considered,

one through a change in wire temperature, which implies 〈∇Fwσ, δFw〉 = 〈∇Twσ, δTw〉

and one through a change in wire diameter, which implies 〈∇Fwσ, δFw〉 = 〈∇dw
σ, δdw〉.

Considering first a change in wire temperature, the sensitivity of the eigenvalue is

〈∇Twσ, δTw〉 =

〈
T̂+, ρ̄−1cϕdη

w‖m̄‖ηη m̂·m̄
‖m̄‖2 δ2(xw, rw)(2π|rw|)

−1
δTw

〉

〈
q̂+, q̂

〉 , (4.57)

⇒ ∇Twσ =

(
cϕηdη

w‖m̄‖η

〈
q̂+, q̂

〉
)(

m̂ · m̄

ρ̄ ‖m̄‖2

δ2(xw, rw)

(2π|rw|)

)H

T̂+, (4.58)

δσ =
1

V

∫

V
(∇Twσ)∗ δTw dV,

⇒ δσ =
1

V

[(
cϕηdη

w‖m̄l‖
η

〈
q̂+, q̂

〉
)(

m̂l · m̄l

ρ̄l ‖m̄l‖2

)H

T̂+
l

]∗
δTw, (4.59)

where subscript l denotes the value of the field at the location of the hot wire. Real-

valued scalar quantities, such as constants and norms, are not changed by the Hermitian

operator and the operator has therefore been removed from this group. The extra ρ̄−1

has appeared in (4.57) due to the form of ŝ in (4.2).

Using a similar method to consider a change in the wire diameter, the sensitivity of
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the eigenvalue is

〈∇dw
σ, δdw〉 = −

〈
m̂+, cf û δ2(xw, rw)(2π|rw|)

−1
δdw

〉
〈
q̂+, q̂

〉 . . .

+

〈
T̂+, ρ̄−1cϕηdη−1

w ‖m̄‖η
((

Tw − T̄
)
η m̂·m̄
‖m̄‖2 − T̂

)
δ2(xw, rw)(2π|rw|)

−1
δdw

〉

〈
q̂+, q̂

〉 ,

⇒

∇dw
σ =

[(
cϕηdη

w‖m̄‖η

〈
q̂+, q̂

〉
)

1

dw

(((
Tw − T̄

)
η
m̂ · m̄

‖m̄‖2
− T̂

)
1

ρ̄

δ2(xw, rw)

(2π|rw|)

)H

T̂+ . . .

−

(
cf〈

q̂+, q̂
〉
)(

û
δ2(xw, rw)

(2π|rw|)

)H

m̂+

]
,

(4.60)

δσ =
1

V

∫

V
(∇dw

σ)∗ δdw dV,

⇒ δσ =
1

V

[(
cϕηdη

w‖m̄l‖
η

〈
q̂+, q̂

〉
)

1

dw

((
Tw − T̄l

)
η

ρ̄l

m̂l · m̄l

‖m̄l‖2
−

T̂l

ρ̄l

)H

T̂+
l . . .

−

(
cf〈

q̂+, q̂
〉
)

ûH
l m̂+

l

]∗
δdw.

(4.61)

By comparing the pre-multipliers for the adjoint momentum and adjoint temperature

in (4.61) it is possible to see which would have a greater effect on the eigenvalue when

a small change in dw occurs, the drag force or the heat addition. Equation (4.61) also

shows that if the diameter of the wire is increased in a region where the real part of

∇dw
σ is negative, the wire will suppress the instability.

4.4.1 Results

It is assumed that η = 0.33 and c = 1.0 (White, 2008), which gives cϕ = 58.3. To

investigate the sensitivity of the eigenvalue to a change in wire temperature, the non-

dimensional wire diameter, dw, is set to 10−4, implying the diameter of the wire is

104 times smaller than the diameter of the jet. For the flows concerned, the Reynolds

number based on the jet is 1000, which implies that, if the wire is placed in the jet,

Rew = 0.1 .

Using these values, the sensitivity of the most-unstable eigenvalue to an increase in

hot wire temperature (∇Twσ) is calculated at each point in the domain (using the same
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global modes that were used in section 4.3.1) and the resulting sensitivity maps for the

non-reacting and reacting cases are shown in figures 4.4, 4.5 and 4.6. A convention used

throughout this work is that if the minimum/maximum values of the figures are stated

as ‘min’/‘max’, they also refer to the minimum/maximum values of the data, whereas

if they are stated as ‘figure min’/‘figure max’, they refer to the figure values only and

differ from the actual minimum/maximum values of the data. In the modal figures,

the minimum/maximum values have been set using the value with larger magnitude so

that the figure is centred on zero.
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Figure 4.4: Sensitivity (∇Twσ) of the most-unstable eigenvalue (σ) to an increase in

hot wire temperature (Tw) for the hot jet. The real and imaginary parts of ∇Twσ

correspond to the sensitivity of the growth rate and frequency of the global mode.

From figure 9.21 in Munson et al. (1998), the parameter b in equation (4.4) for a

cylinder in cross flow is estimated to be approximately 6, which implies cf = 4.3×10−4.

To investigate the sensitivity of the eigenvalue to a change in wire diameter, the non-

dimensional wire temperature, Tw, is set to 0.5 and the resulting sensitivity maps are

shown in figures 4.7, 4.8 and 4.9. cf is approximately 5 orders of magnitude smaller

than cϕ, which implies the sensitivity due to the drag of the wire is significantly lower

than the sensitivity due to the heat release.

A cold wire placed in the flow can therefore be considered to have a negligible effect

on the eigenvalue. ∇Twσ represents therefore the sensitivity to a change in temperature

of an already-present cold wire. ∇dw
σ on the other hand represents the sensitivity of

placing an already-hot wire in an otherwise unperturbed flow. The real and imaginary
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Figure 4.5: Sensitivity (∇Twσ) of the most-unstable eigenvalue (σ) to an increase in hot

wire temperature (Tw) for the flame with liftoff height 0.858. The real and imaginary

parts of ∇Twσ correspond to the sensitivity of the growth rate and frequency of the

global mode.

parts of ∇Twσ and ∇dw
σ correspond to the sensitivities of the real and imaginary parts

of the eigenvalue σ. They correspond therefore to the sensitivities of the growth rate

and frequency of the global mode. For instance, switching on a hot wire located in a

positive (red) region of the real part of ∇Twσ in figures 4.4, 4.5 and 4.6 would increase

the modal growth rate. Switching on a hot wire located in a positive (red) region of

the imaginary part of ∇Twσ , however, would decrease the modal frequency, because

Im(σ) is positive and δσ depends on (∇Twσ)∗. For example, if a cold wire is located at

x = 0.3, r = 0.58, in the flame with hl = 0.858 (figure 4.5), (where Re(∇Twσ) = 12700

and Im(∇Twσ) = 8820) and is switched on to give a temperature rise of δTw = 0.01,

the growth rate (Re(σ)) will increase from −0.094 to +0.067 and the Strouhal number

will decrease by ∼ 6%. The hot wire will therefore cause the stable flow to become

globally unstable.

There is a large difference in the magnitudes of ∇Twσ and ∇dw
σ. This is because of

the relative magnitudes of Tw and dw. If percentage changes in Tw and dw were to be
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Figure 4.6: Sensitivity (∇Twσ) of the most-unstable eigenvalue (σ) to an increase in hot

wire temperature (Tw) for the flame with liftoff height 1.92. The real and imaginary

parts of ∇Twσ correspond to the sensitivity of the growth rate and frequency of the

global mode.

considered instead of absolute changes, the magnitudes of the sensitivity maps would

be of similar order.

For both reacting cases, the sensitivity to wire diameter is largest in the slim region

near the inner surface of the flame (figures 4.8 and 4.9), whereas the sensitivity to the

wire temperature is largest in the pre-mixing zone (figures 4.5 and 4.6). This is because

∇dw
σ depends on the direct temperature field, whereas ∇Twσ does not depend on the

direct temperature field, which explains the higher sensitivity to the wire diameter near

the flame.
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Figure 4.7: Sensitivity (∇dw
σ) of the most-unstable eigenvalue (σ) to an increase in hot

wire diameter (dw) for the hot jet.
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Figure 4.8: Sensitivity (∇dw
σ) of the most-unstable eigenvalue (σ) to an increase in hot

wire diameter (dw) for the flame with liftoff height 0.858.
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Figure 4.9: Sensitivity (∇dw
σ) of the most-unstable eigenvalue (σ) to an increase in

hot wire diameter (dw) for the flame with liftoff height 1.92. Blue regions correspond

to minimum values, dark-red regions correspond to maximum values.

4.5 Local analysis1

The base flows for the non-reacting and reacting (liftoff heights: hl = 0.858, hl =

1.92) cases are analysed with a local stability analysis (Huerre & Monkewitz, 1990).

The radial profiles of the density and axial velocity at each discrete axial location are

considered independently and are assumed to extend infinitely far up- and downstream.

Axisymmetric perturbations are assumed and are made up from normal modes of the

form ei(kx−ωt). These are substituted into the fully-compressible linearized Navier–

Stokes equations with the Mach number set to 0.01, to solve for the perturbation in

primitive variables (ux, ur, p, ρ, T ) (Correia Da Costa, 2009).

At each axial location these equations are discretized on a grid with a Chebyshev

distribution and a mapping is applied as in Khorrami et al. (1989). This leads to a

generalized matrix eigenvalue problem, which represents the dispersion relation for this

1The results contained in this section have been kindly provided by my supervisor,

Dr. Matthew Juniper.
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Figure 4.10: Absolute growth rates as a function of axial distance calculated by a local

analysis for the non-reacting (green), hl = 0.858 (red) and hl = 1.92 (blue) cases. The

solid lines correspond to the most dominant saddle and the dashed lines correspond a

secondary saddle.

axial location. This is solved for complex k and ω with Matlab’s function eig and the

valid k+/k− saddle points are found with Instaflow (Correia Da Costa, 2009), which

is a Matlab graphical user interface (GUI) that performs local stability analysis. This

gives the absolute growth rate (the growth rate at the saddle point) as a function of

downstream distance, which is shown in figure 4.10. Axial locations where Im(ω0) > 0

are absolutely unstable, whereas axial locations where Im(ω0) < 0 are convectively

unstable. The real-valued x-axis can be considered to be the real axis in a complex

x-plane. ω0 is therefore the value of ω on the real axis of the complex x-plane. With

the imaginary part of ω0 corresponding to the absolute growth, the real part of ω0

corresponds to the absolute frequency in radians per non-dimensional time unit and is

shown in figure 4.11.
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Figure 4.11: Absolute frequency as a function of axial distance calculated by a local

analysis for the non-reacting (green), hl = 0.858 (red) and hl = 1.92 (blue) cases. The

solid lines correspond to the most dominant saddle and the dashed lines correspond a

secondary saddle.

For both reacting cases, an absolutely unstable region occurs in the pre-mixing zone

and, near to the inlet, the corresponding growth rates and frequencies match closely

those of the non-reacting case. The pocket of absolute instability in the non-reacting

case extends to x = 3.9, which compares favourably to the value of 3.71 found by

Nichols & Schmid (2008). For the reacting cases, this pocket of absolute instability

extends only as far as the base of the flame. It was suggested by Nichols & Schmid

that this pocket of absolute instability determines the global stability of the flow and

as the pre-mixing zone, and associated absolutely unstable region, become shorter, the

global instability is suppressed. This matches the findings of this work, where the

hl = 1.92 case is globally unstable and the hl = 0.858 case is globally stable. The

growth rate of the global mode for the hl = 1.92 case, however, is approximately 4
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times the growth rate of the global mode of the hot jet (see table 4.1). In this case, the

flame has enhanced the global instability, despite suppressing the absolute instability

downstream of the flame base.

To extend this analysis, secondary k+/k− saddle points were sought for in the flame

region. In both reacting cases, a secondary saddle was found with a pocket of absolute

instability in the flame region, shown by the dashed lines in figure 4.10. For both

cases, this secondary absolutely unstable region is longer but weaker than the pocket

of absolute instability in the pre-mixing zone. Despite this long secondary absolutely

unstable region, the hl = 0.858 case is globally stable. This situation, where a long

region of slight absolute instability is globally stable, has been analysed by Pier (2010).

These observations indicate that, despite absolute instability existing in the flame

region, Nichols & Schmid were correct in assuming the pocket of absolute instability in

the pre-mixing zone determines the global stability of the flow. This implies that, for

the hl = 1.92 case in this work, the global mode arising from the absolutely unstable

region in the pre-mixing zone dominates the absolutely unstable region in the flame.

4.5.1 Wavemaker

The local analysis can be extended to give global information by identifying the position

of the wavemaker (Huerre & Monkewitz, 1990). The value of ω at the wavemaker

position is then taken to be the global value ωg, with the real and imaginary parts

corresponding to the frequency (2πSt) and growth rate of the global instability. ωg

can be compared directly to iσ, where σ is the most-unstable direct linear eigenvalue.

It is worth pointing out that the direct eigenvalues occur in complex-conjugate pairs

and by selecting the eigenvalue with negative imaginary part, Re(iσ) is positive, which

compares directly to Re(ωg).

The wavemaker location is found by extending ω0 into the complex x-plane and

finding the position of a global mode saddle point. The present analysis is complicated

by all the cases having greatest absolute instability at the inlet. To overcome this,

ω0 was padded with zeros in the upstream region: −1 < x < 0. A representation of

ω0(x) was found with a 5th-order polynomial interpolation, which was then used to

locate saddle points in the complex x-plane. As the number of polynomials used in

the interpolation is increased only one saddle point remains approximately stationary,

which is the one used as the position of the wavemaker. This method is in contrast to
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Case
Nonlinear Direct linear Local analysis: Local analysis

N&S: 2πSt eigenvalue: iσ ωg N&S: Re(ω0(0))

Non-reacting 1.332 1.10 + i 0.042 1.06 + i 0.20 1.06

hl = 0.858 1.784 1.98 − i 0.094 1.11 + i 0.25 1.06

hl = 1.92 / 1.35 + i 0.18 1.09 + i 0.23 /

Table 4.1: Comparison of ωg from a local analysis, direct linear eigenvalues and non-

linear global mode frequencies. The real parts of iσ and ωg correspond to the non-

dimensional frequency in radians per non-dimensional time unit and the imaginary

parts correspond to the growth rate of the global mode. N&S refers to the results of

Nichols & Schmid (2008).

that of Nichols & Schmid (2008), who compared the Re(ω0) at the inlet to the frequency

of the nonlinear global mode. Table 4.1 compares the values found with the wavemaker

approach to the results of Nichols & Schmid and to the eigenvalues of the most-unstable

direct linear global modes.

The differences between the linear eigenvalues and nonlinear frequencies are dis-

cussed in section 4.1.1. The discrepancies seen in table 4.1 between the local and global

results could be due to the inlet boundary. The local analysis is performed assuming

the flow extends infinitely up- and downstream, whereas the global analyses have a

homogeneous-Dirichlet inlet boundary for the perturbation fields.

Considering the second k+/k− saddle in the flame region, a second global mode

saddle point can be found corresponding to the longer but lower amplitude absolutely

unstable region in the flame. The global growth rates are Im(ωg2) = 0.0028 and

Im(ωg2) = 0.0020 for the hl = 0.858 and hl = 1.92 cases respectively. These values

are positive, which means that, according to the local analysis, the absolute instability

in the flame region alone is sufficient for global instability. The negative imaginary part

of iσ for the hl = 0.858 case contradicts this finding. In both cases Im(ωg2) is an order

of magnitude smaller than the maximum value of Im(ω0) in the flame region and two

orders of magnitude smaller than the value of Im(ωg) at the global mode saddle point

associated with the absolute instability in the pre-mixing zone. With values close to

zero, it is possible that a small discrepancy has shifted ωg2 from the stable half-plane

to the unstable half-plane.

It is claimed by Giannetti & Luchini (2007) that the instability core (see section

4.3) ‘takes account of the feedback which is at the origin of the self-excited oscillation
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Case
Wavemaker Instability core

axial location axial location

Non-reacting 0.83 7.0

hl = 0.858 0.30 0.35

hl = 1.92 0.42 0.90

Table 4.2: Comparison of wavemaker and instability core location.

and is therefore useful to locate the region of the flow which acts as a wavemaker’.

Table 4.2 compares the wavemaker locations to the instability core locations found in

section 4.3. For both reacting cases the instability core and wavemaker are located in

the absolutely unstable region in the pre-mixing zone. For hl = 0.858 the locations

match reasonably well. For the non-reacting case, however, the instability core lies

outside of the absolutely unstable region and differs significantly from the position of

the wavemaker.

The discrepancies seen in tables 4.1 and 4.2 highlight a current limitation in ex-

tending the local analysis to global instabilities. More investigation is needed into

determining the position of the wavemaker via a local analysis and into the relationship

between the wavemaker and the instability core defined by Giannetti & Luchini (2007).

4.6 Conclusions

The aim of this chapter is to provide sensitivity information for low-density jet flow

and in particular low-density reacting jet flow. By providing a physical meaning for

the adjoint global modes and calculating the sensitivity to an assumed feedback mech-

anism in the flow this aim has been met. In addition to this, the sensitivity to the

placement of a hot wire provides a physically realisable problem with which to compare

to experimental data and the local analysis provides greater insight into the underlying

hydrodynamic instability and interpretation of the sensitivity information.

The adjoint global mode gives the sensitivity of the amplitude of the direct global

mode to open-loop forcing and heating and, for the jet flows considered here, the adjoint

global modes show that the most sensitive region is near the flow inlet. This is supported

by findings from the local analysis that show the inlet to be the region of maximum

absolute instability. For the lifted flames the spatial structure of the adjoint global
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modes is of low amplitude in the flame and grows rapidly in the pre-mixing zone, which

shows that the modal amplitude is relatively insensitive to forcing or heating applied

locally in the flame.

The framework of Giannetti & Luchini (2007) has been successfully extended to

reacting flows with density variation. On comparison to a local analysis, however, the

instability core and wavemaker do not always coincide. This is in contrast to the sugges-

tion by Giannetti & Luchini that the instability core is an alternative way to calculate

the location of the wavemaker. The position of the instability core for the hot jet is,

in fact, outside of the absolutely unstable region, which questions the suggested link

between the two concepts. The instability core is, however, of fundamental interest and,

rather than see it as an alternative to the wavemaker, perhaps it should be considered

as additional information that improves our overall understanding of the hydrodynamic

instability.

In addition to the calculation of the instability core, the formulation used in this

work gives a more general framework for analyzing operator perturbations and feed-

back couplings, which was demonstrated by applying the same framework to look at the

sensitivity to the placement of a hot wire. The present framework also allows the sensi-

tivity of the growth rate and frequency of the global mode to be considered separately,

which has given some unexpected results. It appears that, while the magnitude of the

change in the eigenvalue varies on a long spatial length scale, the frequency and growth

rate vary on much shorter spatial length scales. This produces the situation where a

small change in location can result in changing from suppression to enhancement (or

vice-versa) of the instability.

A prevailing theme in all four analyses in this chapter is the importance of the pre-

mixing zone to the global instability of lifted flames. It is the region of greatest absolute

instability; the region that contains the wavemaker; the region where the amplitude of

the global mode is most sensitive to open-loop forcing; the region where the most-

unstable eigenvalue is most sensitive to a perturbation in the proposed hydrodynamic

force-momentum feedback coupling and the region where the most-unstable eigenvalue

is most sensitive to the heat release from a hot wire. This shows that, despite the

presence of reaction, the hydrodynamic instability due to the non-reacting shear layer

is the most influential part of the flow.





CHAPTER 5

Future work

5.1 Three spatial dimensions

The obvious next step is to extend the present work to three spatial dimensions. This

is especially important because of the non-normality of the governing operator. Al-

though the largest exponential growth is typically found for perturbations without a

spanwise dependence, transient amplification is often maximal for perturbations with

a spanwise dependence (Butler & Farrell, 1992; Trefethen et al., 1993; Schmid, 2007).

This challenges the common use of Squire’s theorem (Drazin & Reid, 1981) to justify

simplifying three-dimensional problems to two dimensions.

It has been found by Delbende et al. (1998) (carrying out a DNS study of the linear

impulse response of a parallel Batchelor vortex) and Olendraru et al. (1999) (using an

absolute/convective instability approach) that swirl strongly promotes absolute insta-

bility. A similar conclusion was made by Heaton et al. (2009), who applied DNS to in-

vestigate the spatially evolving Batchelor vortex. Including swirl is therefore important.

Initially, an axisymmetric base flow with swirl could be used with three-dimensional

perturbations.

The cylindrical domain in this work lends itself to using Fourier modes in the az-

imuthal direction and as a consequence the values of the fields in the code must become

complex. A useful property is that the Fourier modes are independent and can run

relatively easily on separate nodes of a high performance cluster. Provided there are

enough nodes available, the computational time to run three-dimensional calculations

will not increase significantly.
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5.2 Complex geometries

Complex geometry is required to model real fuel injectors. There are three possible

paths to follow: include immersed boundaries in the existing finite difference code, as

used by Giannetti & Luchini (2007); switch to an existing finite element code; or create

a finite element code from scratch using software such as Freefem++, as used by Meliga

(2008).

Freefem++ is a finite element partial differential equation (PDE) solver with built in

meshing and solution procedures. The user can implement their own PDEs, solution al-

gorithms and boundary conditions with relative ease compared to using a programming

language such as Fortran. This lends itself particularly well to implementing adjoint

equations and because the whole direct matrix is computed as part of the solution

procedure, a discrete-adjoint code can be easily obtained.

Immersed boundaries have been implemented successfully in finite difference codes

for a variety of different flow applications. A comprehensive review is given by Mittal &

Iaccarino (2005). Immersed boundaries allow for the use of regular centred differencing

across the whole domain, by either directly adjusting values near the boundaries (Fadlun

et al., 2000) or introducing an artificial force in the governing equations (Goldstein et al.,

1993), both of which can be set up to mimic a solid wall. This is especially useful for

flows with moving boundaries such as in the cylinders of piston engines (Fadlun et al.,

2000).

The direct adjustment of values near the boundary is used by Giannetti & Luchini

(2007) and is probably the more useful of the two types for this application. With

this method the domain is essentially split up into the live region (where the fluid is

flowing), a ghost region (a region around the boundary where flow values are adjusted

to give the correct boundary condition), and a dead region (inside the boundary where

the flow can be either left to its own devices or set to a constant value).

A 2nd-order finite difference scheme typically uses values at two grid points to

calculate a derivative. The ghost region needs to include therefore only one grid point

in order to be as accurate as the differencing scheme, i.e. in order to set the correct

boundary condition (Neumann or Dirichlet for example) only one grid point near the

boundary needs to be adjusted. As the order of the scheme increases more points

are used in the differencing scheme and the ghost region must get thicker in order to

maintain the correct boundary conditions. For the compact finite differencing currently
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used in this work this might be a problem, because the scheme is considered to have

spectral accuracy (see Goldstein et al., 1993, for the implementation of an immersed

boundary in a spectral code). Using toy models in Matlab, it was found that a ghost

region of 6 or 7 grid points is required to stop unwanted oscillations in the derivatives

near the boundary. This in turn restricts the maximum radius of curvature of the

boundary shape. For boundary profiles curving away from the fluid, including at least

6 or 7 grid points and avoiding overlap of the grid points makes sharp corners impossible

to achieve.

To implement a curved immersed boundary in the existing code would require a

wide ghost region and a significant amount of interpolation. This would be quite com-

plex and may be costly to implement at each time step. Alternatively the compact

difference scheme could be exchanged for a lower-order scheme, which would help with

the inclusion of an immersed boundary but would decrease the overall accuracy of the

code.

5.3 Turbulence

The flow inside combustion chambers in aircraft is turbulent. Simulating turbulence

with DNS is prohibitively expensive, so turbulence models would be a useful addition to

the current code. A discrete-adjoint version of the code with turbulence models could

be formed without too much extra difficulty and it should be possible to derive a set of

adjoint equations that include the turbulence models too.

5.4 Acoustic forcing

Using a similar approach to that of Moeck et al. (2009), acoustic forcing can be modelled

as a body force in the low-Mach-number equations. This is a specific type of open-loop

forcing and so the sensitivity of the modal amplitude to the location, structure and

frequency of the acoustic signal can be found. For reacting flow this is a thermoacoustic

problem and has particular relevance to combustion instability. Investigating the effects

of acoustic forcing in a three-dimensional reacting jet would be a useful step up from

the one-dimensional Rijke tube, which is the canonical thermoacoustics problem.
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5.5 Optimal spark position

The time-stepping codes could be used in optimization routines to find optimal initial

perturbations and optimal forcing or heating. Localization of the initial perturbations

or forcing can also be included. This is relatively easy to do, but a clear reason for doing

it must be found. A possible useful area might be to try to find optimal conditions

on the perturbation inlet boundary. This may be of use if transient effects from inlet

disturbances can alter the dynamics in combustion chambers.

A problem suited to optimal perturbation techniques is the optimal position to

place a spark to ignite the flow. To see how this could be tackled, a power iteration

optimization routine was set up to find the optimal initial temperature perturbation

distribution that leads to the maximum increases in thermal energy. No results are

included because this was carried out with linear theory, which is a poor approximation

for the heat release due to reaction when the temperature rises even by a small amount.

Nevertheless to show how optimal perturbations could be applied to the spark place-

ment problem, an unignited cold steady base flow was found and used for the linear

optimization routine. The reaction rate was artificially altered to encourage reaction.

The perturbations were evolved forward in time with the direct code, rescaled and lo-

calized to the temperature field, and then evolved backwards in time with the adjoint

code. They were then rescaled and localized to the temperature field again. The op-

timal perturbation is the eigenmode corresponding to the most-unstable eigenvalue of

this loop and was found with both power iteration and with ARPACK. The optimal

perturbation found favoured the region just outside the jet near the inlet, presumably

because the heat there gets entrained into the jet slowly.

This preliminary linear optimization provides a starting point for a nonlinear op-

timization similar to those performed by Zuccher et al. (2006) and Juniper (2011).

The starting condition would be a cold flow that would either be a steady solution of

the unignited nonlinear problem or a snapshot from a time evolution of an unignited

nonlinear global mode. The temperature starting condition would be the cold temper-

ature plus positive white noise. The flow would be evolved forward in time with the

fully-nonlinear operator and then backward in time with the adjoint of the nonlinear

operator. Because the adjoint of the nonlinear operator is actually linear the result can

be rescaled. The new temperature field would then replace the old temperature field in

the original cold starting condition and the loop repeated until convergence.
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5.6 Sensitivity of nonlinear global modes and secondary

instabilities

One of the main limitations of the linear sensitivity analysis is the restriction that the

flow must be near the first bifurcation point in order to extend the linear results into the

the fully-nonlinear regime (Chomaz, 2005). Luchini et al. (2008) and Giannetti et al.

(2010) extend the analysis of Giannetti & Luchini (2007) to include the sensitivity of

the nonlinear global mode and secondary instability of the cylinder wake. Fuel injectors

operate far from the first bifurcation point and well into the nonlinear regime, so the

current work should be extended to take this into account.

5.7 Dynamic modes

Dynamic mode decomposition is a new area of interest (Rowley et al., 2009; Schmid,

2010). It would be interesting to calculate dynamic modes for the fully-nonlinear flame.

Given that the direct linear eigenmodes have a set of corresponding adjoint modes and

the adjoint of a nonlinear operator is known to exist, it seems plausible that there could

be a set of adjoint modes that correspond to the set of direct dynamic modes. Luchini

et al. (2008) and Giannetti et al. (2010) calculate a set of adjoint Floquet modes that

exist on top of a time evolving base flow formed by the nonlinear global mode, but

these correspond to the linear direct Floquet modes of that base flow. Each dynamic

mode could be used as a time-evolving base flow and a set of direct and adjoint Floquet

modes could be found. It may be helpful to think of the nonlinear direct problem as

a time evolving matrix acting on a vector, where the matrix contains the vector itself.

The transpose of this matrix at each time instant gives a discrete-adjoint algorithm for

the nonlinear problem and might provide a clue to obtaining a set of adjoint modes

corresponding to the set of direct dynamic modes.

5.8 Sensitivity to steady source terms

As discussed in chapter 1, the sensitivity to steady source terms is likely to be more

useful for design applications. A steady force or heat source does not appear in the

linear perturbation equations. Instead they appear on the right hand side of the base

flow equations and alter the base flow fields, which in turn alter the eigenvalues and



100 Future work

global modes. The sensitivity of the eigenvalue to changes in the steady source terms

is therefore a structural sensitivity of the eigenvalue to changes in the linear operator

in (4.1). The extra complexity involved in calculating this sensitivity favours using

a Lagrange-multiplier approach similar to Marquet (2008) and Meliga (2008), who

calculated the sensitivity to steady forcing for the incompressible and fully compressible

cases respectively.

The sensitivity to arbitrary base flow modifications without connection to a steady

source has not been included as part of this analysis. The arbitrary choices made

when using the base flow equations to form the linear operator cause changes to the

sensitivity of the eigenvalue to particular base flow quantities. For example, if the

base flow state equation is used to replace T̄ everywhere in the direct equations with a

term containing ρ̄, then the eigenvalue will no longer have any dependence to arbitrary

changes in T̄ and the sensitivity of the eigenvalue to arbitrary changes in T̄ will change

from a non-zero value to zero. Specifying a sensitivity to a base flow modification alone

does not therefore yield a specific solution, which makes it difficult to extract a physical

meaning. The base flow fields are constrained by the base flow equations and arbitrary

changes can violate these constraints. Considering an arbitrary change in one quantity

may cause others to vary in an unclear way. To alter the base flow quantities without

violating constraints, it is necessary to change parameters in the base flow equations.

This means that when combined in the full analysis - of sensitivity to changes in the

steady source terms - the arbitrary choices made when using the base flow equations

to form the linear operator have no net effect and a specific solution can be found.

The Lagrangian formulation is usually considered as a method of solving constrained

optimization problems, but more generally it can be used to calculate total derivatives

of constrained functions. Consider the Lagrangian L as a function of variables x and y

and Lagrange multipliers α and β:

L(x, y, α, β) = f(x, y) − α g(x, y) − β h(x, y),

where g(x, y) and h(x, y) are constraints and f(x, y) is the function of interest. When

all constraints are obeyed, the Lagrangian and its derivatives are equal to the function

of interest and its derivatives. The total derivative of L with respect to x is given by

dL

dx
=

∂L

∂x
+

∂L

∂y

dy

dx
+

∂L

∂α

dα

dx
+

∂L

∂β

dβ

dx
.

Calculating the partial derivatives of L with respect to y, α and β and setting them to
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zero yields a set of values that ensures the total derivative with respect to x equals the

partial derivative with respect to x.

For the sensitivity of the eigenvalue to changes in the base flow, the function of

interest is the eigenvalue σ and the constraints are the linear equations (2.13) and base

flow equations (2.2) with Lagrange multipliers being the adjoint global mode fields and

adjoint base flow fields respectively. The Lagrangian for the non-reacting system is

therefore

L = σ −

〈
p̂+, (S1 − 1)

(
m̄i

∂T̂

∂xi
−

1

S1RePr

∂
2T̂

∂xi
2

)
+

∂

∂xi

(
m̂i

ρ̄

)〉
. . .

−

〈
m̂+

i , σm̂i +
∂

∂xj

(
m̄jm̂i

ρ̄
+

m̂jm̄i

ρ̄
−

ρ̂m̄jm̄i

ρ̄2

)
+

∂p̂

∂xi
. . .

−
1

S1Re

(
∂

2

∂xj
2

(
m̂i

ρ̄
−

ρ̂m̄i

ρ̄2

)
+

1

3

∂
2

∂xj∂xi

(
m̂j

ρ̄
−

ρ̂m̄j

ρ̄2

))
− Ri ρ̂ĝi

〉
. . .

−

〈
T̂+, σT̂ +

m̄i

ρ̄

∂T̂

∂xi
+

m̂i

ρ̄

∂T̄

∂xi
−

1

S1RePr

1

ρ̄

∂
2T̂

∂xi
2

〉
. . .

−

〈
ρ̂+,

ρ̂

ρ̄2
+ (S1 − 1) T̂

〉
. . .

−

〈
p̄+,

∂m̄i

∂xi
− ¯̺

〉
. . .

−

〈
m̄+

i ,
∂p̄

∂xi
+

∂

∂xj

(
m̄jm̄i

ρ̄

)
. . .

−
1

S1Re

(
∂

2

∂xj
2

(
m̄i

ρ̄

)
+

1

3

∂
2

∂xj∂xi

(
m̄j

ρ̄

))
+ Ri (1 − ρ̄) ĝi − f̄i

〉
. . .

−

〈
T̄+, m̄i

∂T̄

∂xi
−

1

S1RePr

∂
2T̄

∂xi
2 − ϕ̄

〉
. . .

−

〈
ρ̄+, ρ̄

(
(S1 − 1) T̄ + 1

)
− 1

〉
,

−

∫

S
(m̄+

w i)
∗ ( m̄i − m̄w i) + (T̄+

w )∗ ( T̄ − T̄w) dS

(5.1)

where ¯̺ is the steady, non-dimensional rate of mass addition per unit volume, f̄i is

the steady, non-dimensional external force per unit volume and ϕ̄ is the steady, non-

dimensional rate of heat addition per unit volume. The last term in (5.1) is the con-

straint of the base flow boundary conditions, m̄w i and T̄w, multiplied by the Lagrange

multipliers m̄+
w i and T̄+

w . Including the constraint imposed by the boundary conditions

allows for the sensitivity to wall forcing and heating (Meliga, 2008).
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The functional derivative of the Lagrangian with respect to the variable a is defined

as

〈∇aL, δa〉 = lim
ε→0

(
L (a + εδa) − L (a)

ε

)
. (5.2)

We are interested in the functional derivative of L with respect to ¯̺, f̄i and ϕ̄, but in

order for this derivative to be a total derivative, the functional derivatives with respect

to all the other variables must be calculated and set to zero. Using (5.2) to take the

functional derivatives with respect to the the adjoint global mode fields and adjoint

base flow fields gives back the linear and base flow equations, which, by definition, are

equal to zero. The functional derivatives with respect to the linear global mode fields

yield the adjoint equations, which when set to zero are solved to give the adjoint global

mode fields. The functional derivative with respect to σ gives

∇σL = 1 −
〈
m̂+

i , m̂i

〉
−
〈
T̂+, T̂

〉
= 0, (5.3)

⇒
〈
m̂+

i , m̂i

〉
+
〈
T̂+, T̂

〉
= 1, (5.4)

which provides a normalization condition for the adjoint global mode fields.

The functional derivative with respect to the base flow fields, p̄, m̄i, T̄ and ρ̄ requires

much more algebra. The fields are first grouped together and the vector q̄ and q̄ + εδq̄,

(containing p̄+εδp̄, m̄i +εδm̄i, T̄ +εδT̄ and ρ̄+εδρ̄) is substituted into (5.1). Equation

(5.1) is then linearized and multiple integrations by parts are performed to shift δp̄,

δm̄i, δT̄ and δρ̄ to the right hand sides of the separate inner products. The inner

products are then regrouped to give the functional derivatives with respect to p̄, m̄i, T̄

and ρ̄, which are set to zero. This gives

∂m̄+
i

∂xi
= 0, (5.5a)

−
m̄j

ρ̄

(
∂m̄+

i

∂xj
+

∂m̄+
j

∂xi

)
−

1

S1Reρ̄

(
∂

2m̄+
i

∂xj
2 +

1

3

∂
2m̄+

j

∂xj∂xi

)
−

∂p̄+

∂xi
+ T̄+ ∂T̄

∂xi
= f̄i

+
,

(5.5b)

−m̄i
∂T̄+

∂xi
−

1

S1RePr

∂
2T̄+

∂xi
2 + (S1 − 1) ρ̄+ = ϕ̄+, (5.5c)

m̄im̄j

ρ̄2

∂m̄+
i

∂xj
+ Rim̄+

i ĝi +
m̄i

S1Reρ̄2

(
∂

2m̄+
i

∂xj
2 +

1

3

∂
2m̄+

j

∂xj∂xi

)
+

ρ̄+

ρ̄2
= ¯̺+, (5.5d)



5.8 Sensitivity to steady source terms 103

with f̄+
i , ϕ̄+ and ¯̺+ defined as

f̄+
i ≡ − (S1 − 1) p̂+ ∂T̂ ∗

∂xi
+

(
m̂∗

j

ρ̄
−

ρ̂∗m̄j

ρ̄2

)(
∂m̂+

i

∂xj
+

∂m̂+
j

∂xi

)
. . .

−
ρ̂∗

S1Reρ̄2

(
∂

2m̂+
i

∂xj
2 +

1

3

∂
2m̂+

j

∂xj∂xi

)
−

T̂+

ρ̄

∂T̂ ∗

∂xi
,

(5.6a)

ϕ̄+ ≡
∂

∂xj

(
T̂+m̂∗

j

ρ̄

)
, (5.6b)

¯̺+ ≡ 2
ρ̂∗ρ̂+

ρ̄3
−

m̂∗
j

ρ̄

∂p̂+

∂xj
+

T̂+

ρ̄2

(
m̄j

∂T̂ ∗

∂xj
+ m̂∗

j

∂T̄

∂xj

)
. . .

−
T̂+

S1RePr ρ̄2

∂
2T̂ ∗

∂xj
2 −

(
m̄im̂

∗
j

ρ̄2
+

m̂∗
i m̄j

ρ̄2
−

2ρ̂∗m̄im̄j

ρ̄3

)
∂m̂+

i

∂xj
. . .

−
1

S1Re

(
m̂∗

i

ρ̄
−

2ρ̂∗m̄i

ρ̄3

)(
∂

2m̂+
i

∂xj
2 +

1

3

∂
2m̂+

j

∂xj∂xi

)
,

(5.6c)

where a∗ is the complex conjugate of a.

The integration by parts to form (5.5) gives rise to a number of boundary terms

similar to those in (2.50). Using the divergence theorem these can be transformed into

a surface integral. Setting this to zero will give the boundary conditions for the solution

of (5.5), but it is more useful to first combine it with the boundary constraint term in

(5.1), so that values for m̄+
w i and T̄+

w can be determined.

The system of equations (5.5) closely resembles the adjoint perturbation equations

with the time derivative terms removed and with source terms added on the right hand

side. If we substitute

p̄+ =
p+

ρ̄
, (5.7a)

m̄+
i = m+

i , (5.7b)

T̄+ =
T+

ρ̄
+ (S1 − 1) p+, (5.7c)

ρ̄+ = ρ+, (5.7d)

into (5.5) and multiply (5.5d) by ρ̄2, the homogeneous part of the new equations recovers

the exact from of the steady adjoint perturbation equations (2.15).

The source terms in (5.6) are functions only of the linear and adjoint global modes,

and the base flow fields. These terms can therefore be calculated using the results from

chapters 2 and 3, and then be used in the solution of (5.5). A possible solution procedure
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is to introduce the source terms f̄+
i , ϕ̄+ and ρ̄2 ¯̺+ into the continuous-adjoint code and

use selective frequency damping (Åkervik et al., 2006) to converge to a steady solution.

The adjoint base flow fields can then be found using (5.7). The continuous-adjoint code

has not been altered yet and so only the theory is presented in this thesis.

Now that we have set all these derivatives to zero, we can calculate the total deriva-

tive of L with respect to ¯̺, f̄ , ϕ̄, m̄w and T̄w by using the functional derivative in (5.2).

Applying (5.2) to each steady source term and the boundary conditions gives

〈∇ ¯̺L, δ ¯̺〉 =
〈
p̄+, δ ¯̺

〉
, (5.8a)

〈
∇f̄L, δf̄

〉
=
〈
m̄+, δf̄

〉
, (5.8b)

〈∇ϕ̄L, δϕ̄〉 =
〈
T̄+, δϕ̄

〉
, (5.8c)

∫

S
(∇m̄wL)H

δm̄w dS =

∫

S
(m̄+

w)H
δm̄w dS, (5.8d)

∫

S
(∇T̄w

L)∗ δT̄w dS =

∫

S
(T̄+

w )∗ δT̄w dS. (5.8e)

Remembering that L is equivalent to the constrained eigenvalue σ, the sensitivity of σ

to changes in ¯̺, f̄ , ϕ̄, m̄w and T̄w is

∇ ¯̺σ = p̄+, (5.9a)

∇f̄σ = m̄+, (5.9b)

∇ϕ̄σ = T̄+, (5.9c)

∇m̄wσ = m̄+
w , (5.9d)

∇T̄w
σ = T̄+

w . (5.9e)

The analysis presented here is for the non-reacting system, however a similar analysis

could be performed for the reacting system with only minor changes.



CHAPTER 6

Concluding remarks

The work presented in this thesis is part of a wider project that aims to calculate sen-

sitivity maps for real fuel injectors and it represents the initial steps in achieving this

goal. The main contribution of this work has been to apply the sensitivity analysis

techniques developed by Hill (1992) and Giannetti & Luchini (2007) for incompressible

flow behind a cylinder to low-density jet diffusion flames. This has enabled the calcula-

tion of sensitivity maps for the lifted flame, which describe the most sensitive regions to

open-loop forcing and heating, to perturbations in the hydrodynamic feedback coupling

that drives the global instability and to the placement of a hot wire into the flow.

These sensitivity analyses confirm the observation made in chapter 3 (based on the

spatial structure of the direct global mode) that the most sensitive area of the lifted

flame is in the pre-mixing zone. The sensitivity maps provide a quantitative assessment

of how perturbations in the pre-mixing zone of a lifted flame affect the hydrodynamic

stability and show in detail the areas within the pre-mixing zone that can enhance or

suppress the instability, or increase or decrease the global mode frequency.

Comparing the results of the lifted flame to the results of the hot jet highlights the

effect that the heat release from reaction has on the underlying hydrodynamics. In the

hot jet, the direct global mode is free to grow downstream until the slowly spreading

shear layer in the base flow can no longer support the frequency of oscillation. By

contrast the direct global mode in the flame can only grow a short distance downstream

before it is altered significantly by the thermal expansion at the base of the flame. A

different instability, driven by the instability arising in the pre-mixing zone, takes over

in the flame. This observation is supported well by the sensitivity and local analyses

in chapter 4.
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The framework developed to analyze the sensitivity to force feedback can be of much

more general use in the fluid dynamics community. Considering the feedback force as

a gain multiplying a unitary matrix separates the strength of the feedback from the

mechanism that causes it. The unitary matrix can be set up, for example, to mimic

drag from a cylinder or lift from an aerofoil or a specific sensor-actuator arrangement

for flow control.

The work presented here and the thoughts about future extensions in chapter 5

provide firm foundations on which to build a deeper understanding into the sensitivity

of hydrodynamic instabilities in variable-density and reacting shear flows. While sensi-

tivity of variable density shear flows has been covered by Meliga (2008) and Meliga &

Chomaz (2010) using the fully-compressible Navier–Stokes equations, the distinct area

of the low-Mach-number approximation and especially the inclusion of reaction has up

until now not been covered. By including reaction into the Navier–Stokes equations a

large forward step has been taken in applying these techniques to real fuel injectors.
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d’instabilités linéaires hydrodynamiques. Tech. Rep.. Department of Engineering,

University of Cambridge.

Cossu, C. & Chomaz, J.-M. 1997 Global measures of local convective instabilities.

Phys. Rev. Lett. 78 (23), 4387–4390.

Culick, F. E. C., Burnley, V. & Swenson, G. 1995 Pulsed instabilities in solid-

propellant rockets. J. Propul. Power 11 (4), 657–665.

Delbende, I. & Chomaz, J.-M. 1998 Nonlinear convective/absolute instabilities in

parallel two-dimensional wakes. Phys. Fluids 10 (11), 2724–2736.

Delbende, I., Chomaz, J.-M. & Huerre, P. 1998 Absolute/convective instabilities

in the Batchelor vortex: a numerical study of the linear impulse response. J. Fluid

Mech. 355, 229–254.

Drazin, P. & Reid, W. 1981 Hydrodynamic Stability . Cambridge University Press.



110 BIBLIOGRAPHY

Drazin, P. G. 1958 The stability of a shear layer in an unbounded heterogeneous

inviscid fluid. J. Fluid Mech. 14 (2), 214–224.

Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. C. 1994

Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys.

110, 82–102.

Ehrenstein, U. & Gallaire, F. 2005 On two-dimensional temporal modes in spa-

tially evolving open flows: the flat-plate boundary layer. J. Fluid Mech. 536, 209–218.

Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined

immersed-boundary finite-difference methods for three-dimensional complex flow sim-

ulations. J. Comput. Phys. 161, 35–60.

Fletcher, C. A. J. 1991 Computational techniques for fluid dynamics, 2nd edn., ,

vol. 1. Springer.
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