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Abstract

In previous publications, qualitative agreement between studies of surface plasmon excitations

in nanoparticles by near field light scattering and electron energy-loss spectroscopy (EELS) has

been found for experiments and simulations. Here, we present a quantitative method for the

comparison of light scattering and EELS for surface plasmons in metal spheres. Defining the Fourier

transform of the modal component of the scattered electric field along the equivalent electron

trajectory enables a direct evaluation of the relative weighting factor for light- and electron-excited

surface plasmon modes. This common quantity for light scattering and EELS is examined for

size, composition, and trajectory dependencies, facilitating the analysis of key differences between

light and electron excitation. A single functional dependence on Drude model plasmon energies

is identified to explain the relative modal weighting factors for light scattering and EELS. This

method represents an important step toward the complete spectral and spatial reconstruction of

EELS maps from near field light scattering calculations.
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I. INTRODUCTION

Investigations of the optical modes of plasmonic nanostructures by electron energy-loss

spectroscopy (EELS) in the transmission electron microscope (TEM) have been realized

recently following instrumental developments in electron beam monochromation1–3 and a

growing interest in developing plasmonic nanostructures for such applications as sensing

and spectroscopy,4,5 solar energy conversion and storage,6,7 lighting,8,9 catalysis,10,11 and

nanophotonic devices.12,13 EELS in the TEM allows for the examination of plasmonic modes

at nanometer resolution, well below the diffraction limit of visible light. As such, the infor-

mation content of EELS signals recorded in the TEM corresponds to a near field response of

plasmonic nanostructures. Since it is likewise a near field response that enables the unique

light scattering (LS) behavior of plasmonic technologies, EELS is seemingly well-suited to

the study of plasmonic nanostructures.

However, EELS spectra and maps do not capture the same information as in LS, due to

differences in plasmon excitations by the evanescent field of a swift electron and the time-

varying dipolar field of light. Several types of dark modes excited by electron beams have

been reported that are not generally accessible with light excitation.14–16 For those modes

that are excited both by electrons and light, a number of approaches for the qualitative

comparison of LS simulations and experimental and simulated EELS signals have been

reported. Commonly, the modulus squared of the electric field, |E|2, or its component along

the electron trajectory, |Ez|2, is plotted at a plane some distance above the particle.17,18

Alternatively, far field LS spectra and |E| have been compared to EELS19,20 although far

field spectra are known to exhibit energy offsets in peak maxima in comparison with the near

field response.21 Several strategies have been applied including multiple light polarizations in

the calculation of |Ez|2 in order to reproduce EELS signals.17,22,23 Many of these approaches

yield satisfactory qualitative comparisons between plasmon modes observed in EELS and

LS near fields. Correspondence between EELS and potential at a plane above the particle

has also been reported.24 For translationally symmetric or thin particles, the electromagnetic

local density of states (EMLDOS) at a plane some distance above the particle has in fact been

demonstrated to correspond well to the EELS signal.25 The comparison with the EMLDOS

is not universal, though, and several distinctions between the EMLDOS and EELS signals

have been reported.24
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Moreover, comparisons with |Ez|2 and the EMLDOS do not convey the interaction of

the electron beam and the particle. These comparisons are plotted typically at a plane

some distance from the particle, and do not directly represent the trajectory of the electron.

Recent advances in the simulation of plasmon EELS have elaborated the electron-excited

near field response26–28 and identified similarities in light- and electron-induced fields.29

However, a quantitative tool for directly relating EELS and LS of plasmonic nanoparticles

has not yet been reported.

As a means for understanding EELS and scanning near field optical microscopy (SNOM)

signals, Boudarham and Kociak recently reported on modal decompositions of the induced

charge density, potential, and electric field in the non-retarded limit.30 The modal decom-

position approach offers general expressions for distinguishing the interaction recorded in

these two different microscopies and has been applied to simulating the EELS and SNOM

signals for plasmonic nanorods.30 The EMLDOS has also been compared at a plane above

the particle,30 consistent with previous work.25 The correspondence of EELS probabilities

to decomposed modal field or potential contributions30 further underscores challenges in

comparing total fields or total potentials for EELS and LS.

Here, we demonstrate the tenability of extending the modal decomposition approach to

comparing LS to EELS for isolated spheres. Boudarham and Kociak define the EELS signal

for non-penetrating electron trajectories in terms of the Fourier transform of the modal

electric field along the trajectory.30 Using fully relativistic and retarded expressions for the

EELS probability and LS near a sphere, we now present a comparison of EELS and LS

within this suggested formalism of a Fourier transform of the modal scattered field along

the direction of propagation. Following comparison of the analytical solutions for EELS and

LS, the systematic dependencies on composition, size, and impact parameter are examined.

The success of this approach represents an initial step in relating LS and EELS signals in a

quantitative manner.

II. SURFACE PLASMON MODES OF A SPHERE

The energy loss of a swift electron ∆E due to surface plasmon excitation may be described

as the work done on the electron by the induced or scattered electric field acting back on
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the electron.31,32 This relationship establishes a connection to the loss probability ΓEELS:

∆E =

∞∫
−∞

dtqe(v · Esca [r(t), t ]) =

∞∫
0

dωh̄ωΓEELS(ω), (1)

where the electron has charge qe, traveling with constant velocity v along a straight line

trajectory r = (R0, z), and Esca is the scattered field. Given Esca [r, ω] = Esca [r, ω]∗ this

expression can be further simplified by Fourier transformation of Esca [r, t] to yield

ΓEELS(ω) =
qe
πh̄ω

∞∫
−∞

dt<
{
e−iωt (v · Esca [r(t), ω])

}
. (2)

Following Zabala and Rivacoba,33 in the frequency domain the surface plasmon energy-loss

probability Γsurf in the non-retarded case can in turn be written as

Γsurf (R0, ω) = − 1

π

∞∫
−∞

dz

∞∫
−∞

dz′=
{
ρ(R0, z, ω)∗Gsurf (R0, z,R0, z

′, ω)ρ(R0, z
′, ω)

}
, (3)

where ρ is the charge distribution of the electron beam, Gsurf is the scalar Green’s function,

and R0 = (x, y). The charge distribution of the electron beam is commonly given as

ρ(R0, z, t) = −qeδ(R−R0)δ(z − vt) and its Fourier transform is24,30

ρ(R0, z, ω) = −qeδ(R−R0)
eizω/v

v
. (4)

By using a modal decomposition of the induced potential, Boudarham and Kociak have

demonstrated that for non-penetrating electron trajectories, the energy-loss probability in

terms of potential φ becomes30

Γsurf
(
R0,

ω

v

)
= − 1

πv2

∑
l

=
{
gl(ω)− 1

ε2(ω)

} ∣∣∣φsurf, l(R0,
ω

v
)
∣∣∣2 , (5)

where gl(ω) are modal weighting factors and ε2(ω) is the dielectric function of the medium

surrounding the particle. The corresponding electric field and its Fourier transform are

Esurf, l
z (R0, z) = − ∂

∂z
φsurf, l(R0, z) (6)

Esurf, l
z

(
R0,

ω

v

)
= −iω

v
φsurf, l(R0,

ω

v
). (7)

Consequently, the total EELS probability due to surface plasmon excitation is

ΓEELS (R0, ω) =
1

πω2

∑
l

={−gl(ω)}
∣∣∣Esurf, l

z (R0,
ω

v
)
∣∣∣2 . (8)
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For simple geometries including spheres and infinite cylinders, analytical solutions to the

Poisson equation have been reported previously and likewise consist of a sum over modes.

In the case of a sphere, the electron energy-loss probability for non-penetrating trajectories

is given by34,35

ΓEELS(b, ω) =
4a

πv2

∞∑
l=1

l∑
m=0

2− δm0

(l +m)!(l −m)!
={αl(ω)}

[ωa
v

]2l
K2
m

(
ωb

v

)
, (9)

where Km is a modified Bessel function of the second kind, δm0 is the Kronecker delta

function, a is the sphere radius, b is the impact parameter as illustrated in Fig. 1, and

αl(ω) are sphere response functions defined in terms of the complex dielectric function of

the particle, ε, by

αl(ω) =
l(1− ε)
lε+ l + 1

. (10)

A similar modal sum describes the fully relativistic and retarded solution to Maxwell’s

equations for external electron excitation.32,36 Following the notation in Ref. 36, we define

the EELS probability as

ΓEELS(b, ω) =
1

ω

∞∑
l=1

l∑
m=−l

[
CEELS, a
lm ={ial}+ CEELS, b

lm ={ibl}
]
, (11)

where al and bl are the electric and magnetic Mie expansion coefficients, respectively, given

as

al =
εjl(x2)[x1jl(x1)]

′ − jl(x1)[x2jl(x2)]′

ε[x1h
(1)
l (x1)]′jl(x2)− h(1)l (x1)[x2jl(x2)]′

(12)

bl =
jl(x2)[x1jl(x1)]

′ − jl(x1)[x2jl(x2)]′

[x1h
(1)
l (x1)]′jl(x2)− h(1)l (x1)[x2jl(x2)]′

. (13)

Here x1 = ka, x2 = ka
√
ε, k = 2π/λ is the wavenumber, and jl and h

(1)
l are spherical

Bessel functions and spherical Hankel functions, respectively. Primes denote derivatives

with respect to the argument x1 or x2. The EELS excitation introduces coefficients CEELS, a

and CEELS, b given as

CEELS, a
lm = K2

m

(
ωb

vγ

)
1

l(l + 1)
|2mNlm|2 (14)

CEELS, b
lm = K2

m

(
ωb

vγ

)
1

l(l + 1)

∣∣∣∣ cvγMlm

∣∣∣∣2 , (15)
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where γ is the Lorentz contraction factor, γ = 1/
√

1− v2/c2, and Nlm and Mlm are given

in terms of Gegenbauer polynomials Gu
n:

Nlm =

√
(2l + 1)

π

(l − |m|)!
(l + |m|)!

(2|m| − 1)!!

(vγ/c)|m|
G
|m|+1/2
l−|m|

( c
v

)
, (16)

Mlm = Nlm+1

√
(l +m+ 1)(l −m) +Nlm−1

√
(l −m+ 1)(l +m) . (17)

The retarded expression for the EELS probability is given in terms of the same Mie

expansion coefficients as the scattered field resulting from a plane wave incident on a sphere.

The decomposition in both EELS and LS analytical expressions is therefore defined over the

same modes. Specifically, the z-component of the electric field induced by a plane wave of

light can be written in spherical coordinates (r, θ, φ) as37

Ez(r, θ, φ, ω) =
∞∑
l=1

[
CLS, a
l ial + CLS, b

l bl

]
, (18)

where al and bl are again the Mie expansion coefficients given in Eq. 12-13 and the corre-

sponding light scattering coefficients CLS, a and CLS, b are given by

CLS, a
l = El

sin θ cosφ

kr

[
l(l + 1)h

(1)
l (kr)πl cos θ − ξ′lτl

]
(19)

CLS, b
l = El

sin θ cosφ

kr
ξlπl, (20)

where the modal field coefficient derived from the expansion of a plane wave in spherical

harmonics, El, and the Ricatti-Bessel function ξl are given by

El =
ilE0(2l + 1)

l(l + 1)
(21)

ξl = krh
(1)
l (kr). (22)

Here E0 is the amplitude of the incident plane wave. The angular functions πl and τl are

given by the initial values and recurrence relations:

π0 = 0 (23)

π1 = 1 (24)

πl =
2l − 1

l − 1
(cos θ)πl−1 −

l

l − 1
πl−2 (25)

τl = l(cos θ)πl − (l + 1)πl−1. (26)

In order to directly compare LS and EELS, the LS near field can be brought into a form

compatible with the EELS probability. Because the electron probes along its trajectory and,
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more precisely, loses energy with a probability proportional to the Fourier transform of the

electric field (Eq. 8), a new quantity can be defined to translate the LS near field into a form

analogous to the EELS probability. This quantity will be referred to here likewise as a prob-

ability for the purpose of comparison with the EELS probability. It does not itself represent

a physical probability in LS but provides a convenient means for quantitatively comparing

the distinct excitation signals. The transformed LS probability is defined by inserting the

LS electric field for a particular mode l into the equation for the EELS probability given in

terms of electric field (Eq. 8):

ΓLSl =
1

πω2

∣∣∣∣∣∣
∞∫

−∞

dze−iωz/vELS, l
z (R0, z, ω)

∣∣∣∣∣∣
2

. (27)

Here, Eq. 8 has been rewritten in the form:

ΓEELSl = 1
πω2={−gl(ω)}

∣∣∣∣ ∞∫
−∞

dze−iωz/vEEELS, l
z (R0, z)

∣∣∣∣2 (28a)

= 1
πω2

∣∣∣∣ ∞∫
−∞

dze−iωz/v[={−gl(ω)}]1/2EEELS, l
z (R0, z)

∣∣∣∣2 (28b)

= 1
πω2

∣∣∣∣ ∞∫
−∞

dze−iωz/vEEELS, l
z (R0, z, ω)

∣∣∣∣2 , (28c)

where

EEELS, l
z (R0, z, ω) = [={−gl(ω)}]1/2EEELS, l

z (R0, z). (29)

The definition of the transformed LS probability in Eq. 27 is directly comparable with

Eq. 28c, distinguished by the respective LS or EELS field E l
z(R0, z, ω). Insertion of the

analytical solution to Maxwell’s equations for the LS field of a sphere for a particular mode

l (Eq. 18) gives

ΓLSl =
1

ω2

∣∣∣∣∣∣
∞∫

−∞

dze−iωz/v
[
CLS, a
l ial + CLS, b

l bl

]∣∣∣∣∣∣
2

. (30)

A change from the spherical coordinates (r, θ, φ, ω) of Eq. 18 to Cartesian coordinates

(R0, z, ω) is implicit in the symbolic notation in Eq. 30.

Further, the analytical EELS probability given by Eq. 11 is substituted for the expression

for the EELS probability in terms of electric field given in Eq. 8 or the equivalent Eq. 28c.
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For a particular mode l, the transformed LS and EELS probabilities are then given as:

ΓLSl (b, ω) = ω−2
∣∣∣Fω/v {CLS, a

l

}
ial + Fω/v

{
CLS, b
l

}
bl

∣∣∣2 , (31)

ΓEELSl (b, ω) = ω−1
l∑

m=−l

[
CEELS, a
lm ={ial}+ CEELS, b

lm ={ibl}
]
. (32)

Here Fω/v denotes the Fourier transform with respect to z as given in Eq. 27-30. In the

approximation that electric modes dominate, which is true for plasmonic metals commonly

investigated by EELS and LS, the magnetic terms may be eliminated resulting in the com-

parison:

ΓLSl (b, ω) = χLSl |ial|
2 , (33)

ΓEELSl (b, ω) = χEELSl ={ial}, (34)

where now the coefficients are rewritten in the form:

χLSl =
1

ω2

∣∣∣Fω/v {CLS, a
l

}∣∣∣2 (35)

χEELSl =
1

ω

l∑
m=−l

CEELS, a
lm . (36)

For both EELS and transformed LS probabilities the modal maxima are given by the zeros

of the denominator of the Mie expansion coefficient.38 For the case of surface plasmons in

metals, where the dielectric function is dominated by a negative real part, ={ial} ≈ |ial| and

consequently the same modes appear in transformed LS and EELS probabilities. The Mie

expansion coefficients in fact give modes defined only by the particle geometry, as dictated

by the sphere radius, and composition, given by the dielectric function. The remaining terms

determine the relative weight of each mode but depend only on the physical parameters of

the excitation, the impact parameter and velocity.

The modes given by the Mie expansion coefficients are not identical to the eigenmodes

proposed by Boudarham and Kociak as the geometric eigenmodes proposed in the non-

retarded case are independent of composition and size.30 However, the fundamental modes

of a sphere determined by solutions to Maxwell’s equations are required in order to account

for sizeable retardation effects,36 and these modes provide the best analogy to the non-

retarded modes determined from solutions to the Poisson equation.30
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III. COMPUTATIONAL METHODS

In order to evaluate the outlined comparison of EELS and LS and to examine the roles of

composition, size, and impact parameter, Eq. 31-32 were computed numerically. Eq. 32 was

calculated using a Matlab function implementation following Ref. 32 and 36. Difficulties in

evaluating the Fourier transform of spherical terms in Eq. 31 were readily avoided as the

transformation was approximated by numerical evaluation of discretized Mie light scattering

near field calculations. Such LS calculations were performed using near field Mie scattering

codes adapted from MatScat,39 a publicly available Matlab project based on programs by

Bohren and Huffman.37 For comparison to EELS, the near field was transformed according to

Eq. 30-31. Convergence of the definite integrals used to approximate the Fourier transform

in Eq. 30 was confirmed for all presented calculations. Integration limits of ±8a and a step

size dz ≈ ∆z = 0.04a were typically sufficient. The decay of the scattered electric field (Eq.

27) away from the sphere surface predominantly determined convergence requirements. For

example, for a 100 nm Al sphere and l = 1, <{Ez} and ={Ez} at the limits of integration

were each < 2% of the maximal values. Consequently, the integrand contributed minimally

beyond these limits. Evaluation of extended integration limits and finer step sizes yielded

peaks with energy positions consistent within the energy step size of 0.01 eV and absolute

intensities within 6% at b = 1.1a. For both LS and EELS, modes l ≤ 15 were calculated to

adequately represent the total EELS probability.36

For LS calculations, the polarization of the plane wave was selected to coincide with the

predominant electric field direction toward the electron in a corresponding EELS configura-

tion. Comparisons of LS and EELS induced fields have previously demonstrated the validity

of such selection of the light polarization.29 In both LS and EELS calculations, Drude model

dielectric functions of the form

ε(ω) = 1− ω2
P

ω(ω + iΓ)
(37)

were used to model the response of plasmonic metal spheres. Here ωP is the plasmon

frequency and Γ is an internal damping parameter.
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IV. RESULTS

Figure 2 presents a demonstration of the precise match between individual modes in

EELS and transformed LS for the case of an Al sphere (10 nm diameter, b = 1.1a). In

each case, LS modes have been scaled to the maximum in the respective EELS mode and

normalized to the peak in the EELS probability Γmax. The total EELS probability is shown

for reference. Individual transformed LS and EELS modes are closely matched in position,

line width, and line shape.

The well-matched modal characters recovered from transformed LS are not represented

in the more common comparison of EELS with |E|2 or |Ez|2 at a plane above the particle.

Figure 3(a)-(c) illustrates the key difficulty in comparing EELS signals to |Ez|2 at a plane

above a sphere for a 100 nm diameter Al sphere (b = 1.1a), a case where differences are

pronounced. The line shape is distorted as a function of energy, and moreover, the peak

position is not a constant function of distance above the particle. In Fig. 3(c), transformed

LS recovers the EELS line shape (Fig. 3(b)) and yields a single peak position. Selection of

a plane above a particle for comparison with point dipole excitation has been shown to bear

qualitative similarity to EELS for potential and fields because the spatial decays have similar

functional forms to the LDOS.24,30 The selection of a particular plane, however, cannot be

optimized24 and comparisons are therefore qualitative only. For plane wave light excitation,

qualitative analogy between the field at a plane near the particle and EELS may be possible

but does not provide a method for consistent quantitative comparison with EELS.

An alternative simple comparison of LS to EELS is the projection of a physical property

along the trajectory. In the limit of small ωz/v, the Fourier transform in Eq. 30 approaches

an integral along the trajectory. Figure 4 presents an evaluation of this approximation for

(a) electric field and (b) electric potential. Possible approximations are given explicitly as

Γl ≈

∣∣∣∣∣∣
∞∫

−∞

dzEl
z(R0, z)

∣∣∣∣∣∣
2

, (38)

Γl ≈
1

ω2

∣∣∣∣∣∣
∞∫

−∞

dzEl
z(R0, z)

∣∣∣∣∣∣
2

, (39)
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and

Γl ≈

∣∣∣∣∣∣
∞∫

−∞

dzφl(R0, z)

∣∣∣∣∣∣
2

, (40)

where Eq. 38 gives a simple projection of the electric field, Eq. 39 is a modified projection of

the electric field following Eq. 8, and Eq. 40 is a projection of electric potential. The Fourier

transforms in terms of electric field and potential are given in Eq. 5-7. Figure 4(a) presents

the projected electric field along the trajectory for modes l = 1 − 3. The projection of Ez

is catastrophic particularly for odd modes (l = 2n + 1, n = 0, 1, 2, . . .). These odd modes

consist of an odd number of nodes in the electric field and consequently have nearly equal

contributions of opposite sign above and below the plane of the sphere. Even modes are not

as affected because the associated fields are dominated by the field at the plane containing

the center of the sphere. The modal Fourier transformation avoids these artifacts.

Figure 4(b) highlights the superior approximation of projecting the electric potential along

the trajectory. For both even and odd modes, the integrated potential along the trajectory

yields signals very similar to EELS or the Fourier transform of potential. Nevertheless, the

Fourier transform of the potential along the trajectory yields greater accuracy in comparing

LS and EELS.

By transforming LS for comparison with EELS, not only do individual modes correspond

to those observed in EELS, but the relative weight of transformed LS modes varies smoothly

and systematically for variation in composition, sphere size, and impact parameter. Figure

5(a) presents composition-dependent variation in the relative weighting of transformed LS

modes and EELS modes. The relative weights of modes as a function of the mode number

l decay approximately exponentially. Fitting of the mode number dependence for several

metals modeled by Drude dielectric functions revealed a consistent correlation between the

rate of decay and the plasmon energy ωP . Functions of the form (const) e−α l were used

for fitting as consistent estimators of the rate of decay. The exact underlying functional

form of the relative weighting factors may differ but the decay rates are captured well using

exponential functions. Drude model parameters for Al, Ag, Na, and Cu followed Ref. 32

and 40. Additional hypothetical dielectric functions were examined to evaluate trends in

ωP .

For both 5 nm and 50 nm diameter spheres, the rate of decay varies monotonically and

as a single, consistent function of ωP b/c [see Fig. 5(b)]. As ωP b/c tends toward zero, the
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rate of decay increases. At higher ωP b/c, the rate of decay falls off gradually. The functional

form matches the anticipated ratio of coefficients χl given by Eq. 35-36, which determine

energy (h̄ω) and impact parameter (b) dependencies for each mode (see also Fig. 8 and Sec.

V).

The size dependence of EELS and transformed LS is examined separately in Fig. 6 for

Al spheres 10-300 nm in diameter (b = a following Ref. 35). Figure 6(a) depicts the size-

dependent red-shifting of modes due to retardation. The red-shifting of modes follows the

same functional form for EELS and transformed LS. The slight red-shifting apparent in

EELS at the high energy accumulation point for large spheres (Fig. 6(a), left) is due to

incomplete modeling of the total EELS probability by the cutoff established at l = 15. For

transformed LS (Fig. 6, center and right), the signal is plotted as ΓLS/a3 to adjust for the

increasing excited volume for LS as a function of sphere size. Whereas the excited volume

for EELS is a function of the electron velocity,32 the excited volume in LS increases with

sphere size because the plane wave is of constant magnitude throughout the sphere.

Figure 6(b)-(d) details the contribution of each mode as a function of reduced radius,

aωl/v. The fully retarded EELS probability closely follows the trends reported for the non-

retarded case.35 Here ωl = ωP
√
l/(2l + 1) as for the non-retarded expression given in Eq.

9.35 The EELS modes are maximally excited at values of aωl/v ≈ l. Due to the noted

increase in excited volume for LS, the transformed LS modes all increase monotonically as

a function of aωl/v. As a simple, qualitative correction, adjustment by the sphere volume

yields the size dependence for transformed LS in Fig. 6(d). Once corrected for the excited

volume, the size dependence resembles the functional form of the EELS probability in Fig.

6(b). The correspondence is not exact because the correction for the excited volume is a

coarse approximation but does, however, point to the key difference in excited volume when

comparing transformed LS and EELS.

This distinction in the nature of surface plasmon mode excitation in transformed LS and

EELS is borne out further by trends in impact parameter dependence (see Fig. 7). For 10

nm diameter Al spheres, the normalized l = 1 mode follows the identical impact parameter

dependence for transformed LS and EELS [see Fig. 7(a)]. The l = 2 mode is only weakly

excited in LS and is near zero for a 10 nm diameter sphere. For 100 nm diameter Al spheres

[see Fig. 7(b)], the impact parameter dependence of the l = 1 mode differs in transformed

LS and EELS. The transformed LS signal falls off more gradually than the EELS signal.
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The l = 2 mode is again relatively weakly excited.

The difference in impact parameter dependence for 100 nm diameter spheres can be

understood by examining the variation of relative impact parameter (b/a) dependence with

size, presented in Fig. 7(c). In transformed LS, the relative impact parameter dependence

is identical regardless of size. In EELS, the rate of decay with increasing relative impact

parameter is greater for 100 nm spheres than for 10 nm spheres. This trend can be explained

by the difference in the excited volume for LS and EELS. For LS, the excitation is identical

for relative impact parameters for any size. For EELS, the excited volume in larger spheres

is smaller for the same relative impact parameters because the absolute impact parameter

places the electron trajectory further from the sphere. This analysis suggests comparisons of

LS and EELS are more straightforward for small spheres. The comparison is also viable for

larger spheres, but the adjustment for the systematic variation in impact parameter must

be taken into account.

The dependencies on sphere size and impact parameter for electron excitation have been

noted in analyses of EELS of surface plasmons for many years,34,41 and the corresponding

variations in the comparison with LS are therefore unsuprising. However, previous methods

for comparing LS have not provided a single metric ΓLS for quantitative comparison. The

presented method allows for scaling each mode in LS to the corresponding EELS signal for

a particular set of physical parameters. Cumulatively, the trends in composition, size, and

impact parameter establish the parameter space for the quantitative comparison of LS and

EELS.

V. DISCUSSION: LIMITATIONS AND APPLICATIONS

Several characteristics of EELS and transformed LS of surface plasmons require careful

consideration for broader application of the comparison, including the functional forms of

the energy, spatial, and velocity dependent coefficients χLSl and χEELSl in Eq. 35-36 and the

role of the direction of light polarization relative to the excited particle.

For large spheres, the large red-shifts due to retardation place the modes given by the Mie

expansion coefficients in spectral regions that also exhibit large gradients in the coefficients

χLSl and χEELSl . Figure 8 plots the energy dependence of the l = 1 coefficients for an

impact parameter b = 30 nm and an electron velocity corresponding to 300 kV. Only the

13



Bessel function corresponding to m = l is included in χEELSl for simplicity as it is the main

contribution to the coefficient.42 Both EELS and transformed LS coefficients tend toward

large values at low energies and approach zero at high energies. For broadened and red-

shifted plasmon modes, the product of the coefficient χl and the Mie coefficient results in

a shift of the modal maximum. This shift is readily understood by considering the effect

of the coefficient χl on the modal peak given by the Mie coefficients: a maximum will

occur for a particular mode where the derivative of the modal probability is zero. Without

considering the coefficient χl, these maxima are given by the zeros of the denominator of

the Mie coefficients38 (see also Sec. II). For simplicity of notation these peaks in the Mie

coefficients will be labeled here as µl. Given the positive values of χl and µl, the product

of the the coefficient χl and a peak µl requires the respective derivatives to be of opposite

sign: 0 = [χlµl]
′ = χlµ

′
l + χ′lµl. The negative slope of the coefficient χl (Fig. 8) results in a

shift of the modal peak maximum to lower energies where the slope of µl is positive.

This shift is problematic in the case of comparing plasmon EELS and transformed LS

probabilities in that the magnitude of the shift is not consistent between EELS and LS.

Moreover, this shift is not consistent for EELS signals recorded at different electron veloc-

ities. For slower electrons, the lowest energy modes are red-shifted further compared to

high velocity electrons. In the limit as the electron velocity approaches the speed of light,

however, the transformed LS modal peak occurs at lower energy than the peak in EELS.

The coefficients χLSl and χEELSl also depend on the impact parameter, contributing to the

differences noted in Fig. 7. The energy-offset induced by the EELS and transformed LS co-

efficients remains a predictable and systematic modification of the underlying modes defined

by the Mie coefficients and determined only by composition and geometry. In the possible

application of this method to comparing EELS and LS in other geometries, the velocity, spa-

tial, and energy dependence of modes will necessarily have to be assessed separately. The

singular trend in relative probabilties in Fig. 5(b) demonstrates the plausible comparison of

LS and EELS even for sphere sizes (ca. 50 nm) with non-zero energy offsets.

The polarization of the incident light wave also plays an important role in comparing

LS and EELS. In the case of the sphere, the symmetry of the particle allows for a simple

approximation that the predominant contribution to the electron excitation is due to electric

field components parallel to the shortest distance from the center of the sphere to the electron

trajectory. This approximation adequately resembles the electric field of a polarized plane
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wave for impact parameters coincident with the axis of polarization. Figure 9(a) illustrates

these geometries. The expression for the z-component of the electric field outlined in Eq. 18-

26 does not specify a particular subset of trajectories. The selection of trajectories coincident

with the polarization of the field matches the most physically appropriate configuration and

yields consistent comparisons for sphere composition, size, and impact parameter.

The critical distinction between the fields near an electron and those of a polarized plane

wave is the spatial variance or invariance of the polarization. Near an electron, the field

polarizations vary significantly in (x, y, z) (see Fig. 9). In the case of a plane wave, the

polarization is invariant with respect to coordinate. Notably, the spatial variance of the

field near an electron is not identical to a superposition of multiple polarizations. The

superposition of two antiparallel polarizations of light, for example, would in fact cancel,

whereas the antiparallel field polarizations near an electron do not coincide in space. Such

spatial separation of field polarization can be used to model non-dipole modes in LS,43 but

is an artificial computational construct and does not model LS excitations. Consequently, a

single polarization or set of polarizations must be selected in LS for comparison with EELS.

The presented method enables various choices in principle, possibly selections corresponding

to polarizations in experimental or application configurations. Transformed LS then gives

ΓLS for optically accessible modes. Here, we note that for external electron trajectories,

there exists a single spatially invariant component of the electric field interacting with the

metal sphere. The corresponding plane wave polarization parallel to this field component is

depicted in Fig. 9(a).

For comparing the entire signal recorded in an EELS map, the polarization of the LS

electric field must be rotated to match the radial excitation condition. Figure 9(b)-(c)

presents a calculated EELS map for a 10 nm Al sphere and the corresponding matching

transformed LS map accounting for 360◦ polarization rotation, each at the energy of the peak

in the l = 1 mode. For the case of a sphere, such a polarization correction is computationally

trivial as all radial lines are equivalent by symmetry but serves to demonstrate an approach to

the issue of light polarization. Given the description of the relative weighting factors outlined

in Sec. IV, each point in the entire data cube ΓLS(R0, ω) can be scaled quantitatively to

the EELS signal.

The consideration of polarization in relating EELS and LS plasmon responses is critical

for connecting observations in EELS to plasmonic devices and technologies driven by light
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excitation. EELS fails to reproduce the polarization dependent excitation of plasmonic

particles and prospective device components in a straight-forward manner,23 and so including

fair polarization comparisons with LS will prove important in extending transformed LS

comparisons to more complex geometries. Even in the case of a sphere, where polarization

dependencies in LS are minimal, EELS mapping does not reveal the dipolar quality of

the l = 1 mode (see Fig. 9). Accounting for the opposing fields near an electron may be

necessary for appropriate transformation of LS for comparison with EELS in geometries that

give rise to plasmonic hot spots in LS but are not directly detected by EELS (e.g., particle

dimers).17,24,44 Several approaches to symmetry breaking to make such modes accesible to

light have been reported.14,43 For many geometries and electron trajectories, the scattered

electric fields for LS and EELS will be similar,29 encouraging the comparison of transformed

LS and EELS in other nanoparticle shapes.

Moreover, the direct comparison of LS and EELS will allow for clear distinction between

bright and dark modes. Non-dipole modes, while generally considered dark, are excited by

light when retardation effects are accounted for, as in the case of the sphere, or by substrate-

induced symmetry breaking.43 Other dark modes such as disk breathing modes15 and toroidal

modes16 depend uniquely on the spatially variant field polarization of an electron beam and

cannot be excited readily by a plane wave. The presented method, by providing a direct

comparison of LS and EELS, enables the separation of the origins of such dark and bright

modes.

Geometries of reduced symmetry present challenges not only due to the additional LS

polarization considerations, but also due to the absence of analytical modal decompositions

of the electric field. Semi-analytical approaches such as T-matrix methods27,45 may present

an alternative for spheroidal geometries. Small particles exhibiting predominantly dipolar

excitations may be adequately compared without explicit modal decomposition of the field

given sufficient resolution of the electric field contributions in the energy dimension. The

successful application of non-retarded expressions (Eq. 8) for the analysis of LS and EELS

by modal decomposition may invite similar approaches to the comparison of LS and EELS

using total field methods where analytical modal decompositions are not possible. An anal-

ogous method of comparison might insert an LS field into the general expression for EELS

probability (Eq. 2). Such a comparison has not been explored here in favor of LS and EELS

comparisons for each mode. The modal decomposition approach is not limited to particular
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geometries and suggests that geometric modes underpin surface plasmon excitation proba-

bilities generally for various excitations.30 A total field approach would allow for comparison

of LS and EELS using discrete dipole approximation methods.28,29,46 Quasistatic eigenmode

decompositions outlined in work by Boudarham and Kociak30 and implemented using the

boundary element method26,32,47 may also hold promise for modal decomposition compar-

isons in other geometries. The success of numerical evaluation of the Fourier transform of the

electric field along a trajectory for spheres supports the extension of the approach to other

discretized methods. Work on developing transformed LS comparisons for less symmetric

geometries is underway in our group.

VI. CONCLUSIONS

Surface plasmon resonances probed by EELS have been compared directly to excitations

by light by performing a modal decomposition and Fourier transformation of the compo-

nent of the electric field or potential along the trajectory. This method offers quantitative

relationships between surface plasmon modes excited by electrons and light. Across a wide

range of plasmon energies ωP , the relative weighting of modes in EELS and transformed

LS is described by a single function. For small spheres, the approximation of the Fourier

transform as a projection of potential may also serve to compare LS and EELS.

In comparing EELS and transformed LS, the excited volume for an electron or a plane

wave gave rise to key distinctions in relative weighting of surface plasmon modes. The com-

parison of transformed LS and EELS is simple in the case of small spheres where the excited

volume is similar. For large spheres, the excited volume increases for LS but proportion-

ally decreases for EELS. The variation in excited volume for electron excitation is further

manifest in variation in the impact parameter dependence of EELS with size.

As a demonstration of the comparison of polarized plane wave illumination and EELS,

transformed LS mapping of a sphere outlined requirements for evaluating polarization and

selecting trajectories particular to the particle geometry. Tenable methods for the compar-

ison of LS and EELS simulations and experimental data will allow for enhanced validation

and assessment of the technologically-relevant LS behaviour of plasmonic nanoparticles by

EELS. Further application of this direct link between LS and EELS may enable the estima-

tion of such properties as the near field enhancement directly from EELS data.
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18



Abajo, Nano Lett. 9, 399 (2009).

15 F.-P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, Nano

Lett. 12, 5780 (2012).
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FIG. 1. (Color online) Illustration of the definition of the radius, a, and impact parameter, b, for

electron (left) and plane wave (right) excitation of a plasmonic metal nanosphere.

l = 1 l = 2

l = 3 l = 4

 

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Energy /eV

Γ
l 
/Γ

 m
a
x

 

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

 

 

Energy /eV

 Γ
l

LS

 Γ
l

EELS

 ΓEELS

 

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Energy /eV

Γ
l 
/Γ

 m
a
x

 

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

Energy /eV

FIG. 2. (Color online) Normalized modes for l = 1−4 calculated by the transformed LS probability

ΓLSl (solid black, Eq. 30) and the analytical EELS probability ΓEELSl (solid red, Eq. 11) for a 10

nm diameter Al sphere modeled with a Drude dielectric function parameterized according to h̄ωP

= 15 eV, h̄Γ = 0.5 eV (following Ref. 32). The total EELS probability ΓEELS (dashed blue) is

also shown for reference. Impact parameter b = 1.1a.
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FIG. 3. (Color online) (a) The electric field intensity |Ez|2 for mode l = 1 plotted for planes 0

nm to 150 nm above a 100 nm diameter Al sphere (increments of 10 nm shown). The heights are

given from the plane containing the uppermost point of the particle. (b) The corresponding EELS

and (c) transformed LS probabilities for the dipolar mode (l = 1) are presented for comparison.

Impact parameter b = 1.1a.
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FIG. 4. (Color online) Comparison of EELS and transformed LS to alternative integrals of (a)

field Ez and (b) potential φ for modes l = 1 − 3 for a 10 nm Al sphere. Comparisons are plotted

as Γl normalized to the peak value Γmaxl . (a) (1) projection of Ez given by Eq. 38 (2) projection

adjusted by ω−2 given by Eq. 39. The transformed LS and EELS modes follow Eq. 30 and

Eq. 11, respectively. (b) Projection of φ given by Eq. 40, transformed LS calculated from the

Fourier transform of the electric potential, and the analytical EELS probability. Impact parameter

b = 1.1a.
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FIG. 5. (Color online) (a) Ratios of transformed LS and EELS peak values Γmax for modes

l = 1 − 15 for 5 nm diameter spheres of Al, Ag, Na, and Cu and additional hypothetical metals

modeled by Drude dielectric functions. Metals were parameterized according to Ref. 32, 40. M3

and M1 refer to metals modeled with h̄ωP = 3 eV and h̄ωP = 1 eV, respectively, and h̄Γ = 0.1 eV.

(b) The exponent α for the rate of decay in terms of the plasmon energy, ωP , for 5 nm and 50 nm

diameter spheres (b = 1.1a). Modes l = 1− 6 were used for fitting to avoid numerical imprecision

in higher order modes due to their low excitation probability.
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FIG. 6. (Color online) (a) Size dependence of (left) EELS and (center) volume-adjusted transformed

LS for 10-300 nm diameter Al spheres. The size dependence of volume-adjusted transformed LS

modes l > 1 (right) is re-plotted separately. Probabilities are plotted on a logarithmic color scale.

(b) EELS probability, (c) transformed LS, and (d) volume-adjusted transformed LS for modes

l = 1−6 as a function of reduced radius aωl/v. In (c) the transformed LS modal Γl is replotted on

a logarithmic scale to visualize the low intensity modes (inset). Impact parameter set to grazing

incidence such that b = a following Ref. 35.
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FIG. 7. (Color online) Impact parameter dependence of modal probability maximum Γmax for

transformed LS (blue) and EELS (red) for (a) 10 nm, (b) 100 diameter Al spheres. The maxima

in the transformed LS probability Γmax were normalized to the maximum in the EELS probability

at the surface of the sphere (b = a) for the l = 1 mode (Γdip). (c) Relative impact parameter

dependence of l = 1 probability for 10 nm (green) and 100 nm (black) Al spheres for transformed

LS and EELS.
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FIG. 9. (Color online) (a) Diagrams illustrating the electric field directions for (left) EELS and

(center) LS. The direction of the electron and corresponding light propagation is into the page.

To account for the position dependence of EELS excitation, the field polarization is rotated for

calculating transformed LS probabilities (right). Maps of the dipolar (l = 1) surface plasmon

excitation for external trajectories in (b) EELS and (c) transformed LS for a 10 nm diameter Al

sphere. Scale bars are 5 nm.

27


