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Abstract

I explicitly calculate the anomalous dimensions and splitting functions governing the Q2 evolu-

tion of the parton densities and structure functions which result from the running coupling BFKL

equation at LO, i.e. I perform a resummation in powers of ln(1/x) and in powers of β0 simultane-

ously. This is extended as far as possible to NLO. These are expressed in an exact, perturbatively

calculable analytic form, up to small power-suppressed contributions which may also be modelled

to very good accuracy by analytic expressions. Infrared renormalons, while in principle present in

a solution in terms of powers in αs(Q
2), are ultimately avoided. The few higher twist contribu-

tions which are directly calculable are extremely small. The splitting functions are very different

from those obtained from the fixed coupling equation, with weaker power-like growth ∼ x−0.25,

which does not set in until extremely small x indeed. The NLO BFKL corrections to the splitting

functions are moderate, both for the form of the asymptotic power-like behaviour and more impor-

tantly for the range of x relevant for collider physics. Hence, a stable perturbative expansion and

predictive power at small x are obtained.
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1. Introduction.

Small x physics has been a particularly active area of particle physics research in the past few

years, driven largely by the first data for x < 0.005 being obtained by the HERA experiments [1]

[2]. However, as well as the need to describe this HERA data correctly, it will also be extremely

important to understand the correct way of calculating physics at small x in order to interpret the

results coming from the LHC in a truly quantitative manner. For example, for the production of a

particle of mass ∼ 100GeV the typical value of x probed (at central rapidity) is 0.005, but values

up to two orders of magnitude in either direction will also have an almost equally large influence.2

The potential complication at small x is that the splitting functions and coefficient functions

governing the evolution of parton distributions and their conversion to physical quantities have

terms in their perturbative expansions which behave like αn
s lnm(1/x), where m can reach up to

n − 1. Therefore, as the power of the coupling increases the powers of ξ = ln(1/x) also increase,

and rapid perturbative convergence is not really guaranteed if ξ >∼ 1/αs i.e. ∼ 5. This problem

is not really diminished at the LHC, where the coupling is likely to be smaller than at HERA,

since the parton distributions to be used will be those measured at HERA at much lower scales

and evolved up to LHC scales. This question of large ln(1/x) terms is in principle addressed by

the BFKL equation [4], which is an integral equation for the unintegrated 4-point gluon Green’s

function in the high energy limit. This sums the leading high-energy, or in the DIS case, small-x

behaviour, which is dominated by the gluon, and thus allows the extraction of leading ln(1/x) terms

for relevant quantities, such as splitting functions.

Hence, a major point of debate of the past decade has been whether the standard DGLAP

approach based on renormalization group equations and conventionally ordered simply in powers

of αs(Q
2), or the BFKL equation, which sums leading logarithms in (1/x), is most effective way

of dealing with small x physics (most particularly structure functions), and/or whether the two

approaches need to be combined in some way, and if so, how? While the conventional DGLAP

approach has been relatively successful, it does have some significant problems (which are often

overlooked): a valence-like, or even negative input gluon leading to a strange low-Q2 FL(x,Q2);

undershooting of the data systematically for x ∼ 0.01 at the highest Q2 when a global fit is

performed; and apparent instability at small x order-by-order in αs up to NLLO [5].3

Nevertheless, the BFKL equation did not seem to help these problems. The original LO

BFKL prediction of a behaviour of the form x−λ for structure functions and splitting functions

at small x, with λ ∼ 0.5, was clearly ruled out long ago. A combination of the two approaches,

using the BFKL equation to supplement the Altarelli-Parisi splitting functions with higher terms

2 For an illustration of the x and Q2 of parton distributions sampled at the LHC see fig. 1 of [3].
3 Of course the full NNLO splitting functions are not known, but good estimates are available [6] based

on calculation of moments in [7].
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of the form αn+1
s lnn(1/x) was originally successful (so long as one avoided factorization scheme

ambiguities by working in physical quantities) [8], but this success is not possible to sustain with

the most recent data [9][10]. Moreover, the subject was thrown into confusion by the calculation

of the NLO correction to the BFKL equation [11][12]. The results of this calculation were not very

encouraging. Ignoring the running of the coupling at NLO, i.e. proceeding with the same sort of

calculations as at LO but including the scale-independent NLO correction to the kernel, one obtains

the “intercept” for the splitting function power-like behaviour, x−λ, shifted from λ = 4 ln 2ᾱs to

λ = 4 ln 2ᾱs(1 − 6.5ᾱs). This is clearly a huge correction, and implies the breakdown of the

perturbative expansion for this quantity. More serious than this intercept is the power series for

the splitting function, which may be calculated even taking into account the renormalization and

scale dependence introduced at NLO. Expanding this out formally to NLO in ln(1/x) one finds that

it is is dominated by the NLO corrections at all values of x below about x = 0.01. For example,

using the formulae in [11] the first few terms in the power series for P (x) go like

xP (x,Q2) =ᾱs + 2.4ᾱ4
sξ

3/6 + 2.1ᾱ6
sξ

5/120 + · · ·

− ᾱs(0.43ᾱs + 1.6ᾱ2
sξ + 11.7ᾱ3

sξ
2/2 + 13.3ᾱ4

sξ
3/6 + 39.7ᾱ5

sξ
4/24 + 169.4ᾱ6

sξ
5/120 + · · ·),

(1.1)

where ξ = ln(1/x) and αs ≡ αs(Q
2). Clearly, the size of the coefficients more than compensates

for the extra power of αs(Q
2), particularly at low Q2 where the perturbative analysis of structure

function evolution often takes place.

Hence, this NLO correction left open the whole question of how to address the evolution of

structure functions at small x. There has been considerable progress on the stability of the solutions

to the BFKL equation in the intervening time. One major development was the observation that

the resummation of double logarithmic terms in the transverse momentum k2 is necessary in order

to eliminate collinear divergences. This renders the intercept of the BFKL equation stable [13], even

when ignoring the renormalization scale dependence. This initial idea has been further developed

in [14][15][16], where the effect of running coupling is also considered in these later papers. This

development is particularly important for the case of so-called “single scale” processes where both

ends of the gluon Green’s function are at high scales (not necessarily the same) where without this

collinear resummation, all calculations are badly behaved over the full range of energy, not just in

the asymptotic limit.

However, for the type of situation embodied by DIS, where one end of the gluon Green’s

function is at some low non-perturbative scale, the factorization theorem simplifies the problem.

Although the growth of the coupling at low scales actually renders the solution of the BFKL

equation formally divergent when the renormalization of the coupling is encountered, as realized

as long ago as [17] and studied in detail in [19], all the uncertainty and indeed all the effects of the

low Q2 region are absorbed into the overall normalization of the gluon, leaving the evolution and
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coefficient functions for hard scattering cross-sections calculable. However, these perturbatively

calculable quantities are affected by the running of the coupling, and it was argued in [20] that

the effective result was as if the usual LO BFKL splitting functions should be evaluated at an

x-dependent scale, which grows with decreasing x, due to increasing diffusion into the ultraviolet,

leading to a decrease in the coupling. Hence, the effect of running coupling totally transforms

the more simplistic LO BFKL results, making overall normalization of quantities incalculable,

but moderating the effect of those governing the evolution in Q2. This moderation of the LO

quantities also translated into a moderation of the effects of NLO corrections, leading to a much

improved stability of the perturbative expansion, even without recourse to the type of resummation

in [13]-[15]. Indeed, for this case of deep inelastic scattering further resummation of this type is

redundant. These modified BFKL contributions to the splitting functions, when combined with

the conventional LO-in-αs contributions, also led to improved fits compared to the usual DGLAP

approach [20] and a more sensible prediction for FL(x,Q2). This concept was put on a firmer

footing in [21] where an explicit calculation of the BFKL splitting functions in powers of β0αs(Q
2),

i.e. a resummation of running coupling contributions, was outlined, and it was seen that over a

wide range of the x − Q2 range (including the HERA range) the previous hypothesis was largely

correct, and precise results were also obtained outside this range.

The purpose of this paper is to explain in detail, and expand upon the results of this previous

letter, i.e. to present in full the calculation of splitting functions and coefficient functions for

deep inelastic scattering obtained from the BFKL equation (both LO and NLO) and incorporating

running coupling contributions to all orders. Explicitly, while the usual BFKL equation presents

an expression for these quantities which sums the leading power of ξ at each power in αs, I will

extend this by producing expressions which also include the leading power of β0 at each power of

αs(Q
2) and ξ, e.g.

xPgg(x,Q
2) =

∞
∑

n=1

n−1
∑

m=0

anmα
n
s (Q2)ξn−1−mβm

0 , (1.2)

though the formal divergence of the series will complicate this form a little. This presentation will

begin, in section 2, a brief review of the standard solution to the BFKL equation at LO, and then

a detailed presentation of the solution at LO with running coupling. This will result in a solution

for the gluon splitting function in an analytic form up to a small, unambiguous, correction of the

form Λ2/Q2 (which is not higher twist) which may be modelled by an analytic function to excellent

accuracy. Despite the integration over the infrared region when solving the running coupling BFKL

equation there is no ambiguity in this splitting function. Next, in section 3, will follow a discussion

of some possible higher twist contributions at small x. It is argued that these are may be much

smaller than generally supposed, though the possibility of some large power-suppressed corrections

(not necessarily higher twist) is left open. In section 4 I discuss the solution of the BFKL equation at

NLO, defining precisely what I mean by the “NLO BFKL splitting function”, and showing that the
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NLO corrections for the gluon splitting function are moderate. In section 5 I consider real physical

quantities, i.e the structure functions. Firstly, I calculate the quark-gluon splitting function and

coefficient functions, and then consider the rather more direct physical splitting functions [22]. I

also consider how far one can calculate to NLO, defining a “nearly NLO” physical splitting function

PLL(x,Q2). The stability of the perturbative expansion is examined in detail, and seen to be very

good. Finally, in section 6 phenomenology is briefly touched upon, and I present a summary and

my conclusions.

2. BFKL Equation at LO.

The BFKL equation for zero momentum transfer is an integral equation for the 4-point, trans-

verse momentum-dependent gluon Green’s function for forward scattering in the high energy limit,

f(k1, k2, αs, N), where N is the Mellin conjugate variable to energy. In the case of DIS the second

momentum k2 is put equal to some non-perturbative scale Q0, we let k1 = k, and N becomes

conjugate to x. In order to obtain a structure function we attach the non-perturbative bare gluon

distribution gB(N,Q2
0) to the non-perturbative end of the gluon Green’s function and convolute a

hard scattering cross-section h(Q2/k2, αs, N) to the perturbative end.

In this section I will illustrate the effect that introducing the running coupling into the BFKL

equation has. In order to do this I will first begin with a brief presentation of the fairly simple tra-

ditional case of fixed coupling before moving to the far more complicated case of running coupling.

As will be seen, the introduction of renormalization, and hence running of the coupling, which is

necessary except in the artificial model of no consideration beyond LO, completely changes not

only the detail of the information one is able to extract from the BFKL equation, but also what

type of information one is able to extract.

2.1. Fixed Coupling.

We simplify matters by working in moment space, i.e. defining the moment of a structure

function by

F(N,Q2) =

∫ 1

0

xN−1F (x,Q2)dx, (2.1)

and similarly for the parton distributions (scaled by x). Doing this the BFKL equation is

f(k2, ᾱs/N) = fI(k
2, Q2

0) +
ᾱs

N

∫ ∞

0

dq2

q2
K0(q

2, k2)f(q2), (2.2)

where f(k2, ᾱs/N) is the unintegrated gluon four-point function, fI(k
2, Q2

0) is the zeroth order

input, ᾱs = (3/π)αs, and the LO kernel is defined by

K0(q
2, k2)f(q2) = k2

(

f(q2) − f(k2)

| k2 − q2 |
+

f(k2)

(4q4 + k4)
1
2

)

. (2.3)
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It is convenient to define the input by fI(k
2, Q2

0) = δ(k2 − Q2
0). In fact in the leading twist

factorization theorem this is the unique definition, and Q2
0 is really just a regularization which we

let → 0 ultimately. Going beyond this approximation the dependence on Q2
0 tells us about the

higher twist due to the intrinsic transverse momentum of the gluon, and we will discuss this in

section 3. The “gluon structure function” is now given by

G(Q2, N) =

∫ Q2

0

dk2

k2
f(N, k2, Q2

0) × gB(N,Q2
0), (2.4)

where gB(N,Q2
0) is the bare gluon density in the proton which implicitly absorbs the collinear

divergences in f(k2). The BFKL equation is most easily solved by taking the Mellin transformation

to γ-space, i.e.

f̃(γ,N) =

∫ ∞

0

dk2(k2)−1−γf(k2, N), (2.5)

where it reduces to

f̃(γ,N) = f̃I(γ,Q
2
0) + (ᾱs/N)χ0(γ)f̃(γ,N), (2.6)

where f̃(γ,Q2
0) = exp(−γ ln(Q2

0)) and χ(γ) is the characteristic function

χ0(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ). (2.7)

A little simple manipulation leads to the expression

G(Q2, N) =
1

2πi

∫

1
2
+i∞

1
2
−i∞

dγ exp(γ ln(Q2/Q2
0))

gB(N,Q2
0)

γ(1 − (ᾱs/N)χ0(γ))
. (2.8)

This inverse transformation has a leading twist component given by the contribution of the leading

pole at 1 − (ᾱs/N)χ0(γ) = 0, and the solution is

G(Q2, N) =
1

−(ᾱs/N)γ0χ′
0(γ0)

(

Q2

Q2
0

)γ0

gB(N,Q2
0). (2.9)

The anomalous dimension γ0(ᾱs/N) may be transformed to x-space as a power series in ᾱs ln(1/x),

and has a branch point at N = λ = 4 ln 2ᾱs (at which γ → 1
2
) leading to asymptotic small x

behaviour for the splitting function

xP 0
gg(x, ᾱs) →

0.07ᾱsx
−λ.

(ᾱsξ)3/2
, (2.10)

In a similar fashion, assuming that the leading small x behaviour is dominated by the perturbative

physics rather than by gB(Q2
0, N), one can transform to x-space the normalization 1

−(ᾱs/N)γ0χ′

0
(γ0)

finding that this leads to a gluon normalization xg(x) ∝ ᾱsx−λ.

(ᾱsξ)1/2
.
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2.2. Running Coupling.

Beyond strict leading order it is impossible to ignore the running of the coupling. At NLO

ultraviolet regularization is required, resulting in a correction to the LO kernel of the form

−β0αs(µ
2
R) ln(k2/µ2

R)K0(q
2, k2), where µR is the renormalization scale which must now be in-

troduced. Hence, it is unrealistic to simply use the LO kernel without considering the influence

of such a correction. An obvious way in which to incorporate such a term is to simply use the

running coupling constant evaluated at the scale k2 in the previous LO BFKL equation. Since this,

or something similar, is unavoidably forced upon us at NLO, it seems sensible to consider the fixed

coupling LO BFKL equation as just a model which would apply in a conformally invariant world,

and more realistically to work with the BFKL equation with running coupling [23] [24] [17][18] from

the beginning. Doing this we obtain

f(k2, Q2
0, ᾱs(k

2)/N) = fI(k
2, Q2

0) +
ᾱs(k

2)

N

∫ ∞

0

dq2

q2
K0(q

2, k2)f(q2), (2.11)

where

αs = 1/(β0 ln(k2/Λ2)), (2.12)

β0 = (11 − 2Nf/3)/(4π), and Nf is the number of active flavours.

One can solve this equation in the same type of way as for the fixed coupling case, i.e. take

the Mellin transformation, but now with respect to (k2/Λ2). It is most convenient first to multiply

through by ln(k2/Λ2), in which case one obtains

df̃(γ,N)

dγ
=
df̃I(γ,Q

2
0)

dγ
−

1

β̄0N
χ(γ)f̃(γ,N), (2.13)

where β̄0 = (πβ0/3). Hence, the inclusion of the running coupling has completely changed the form

of our double Mellin space equation, turning it into a first order differential equation. This has a

profound effect on the form of the solutions. The equation may easily, if formally, be solved giving,

f̃(γ,N) = exp(−X0(γ)/(β̄0N))

∫

∞

γ

df̃I(γ̃, N,Q
2
0)

dγ̃
exp(X0(γ̃)/(β̄0N))dγ̃, (2.14)

where

X0(γ) =

∫ γ

1
2

χ0(γ̂)dγ̂ ≡

(

2ψ(1)(γ − 1
2
) − ln

(

Γ(γ)

Γ(1 − γ)

))

. (2.15)

X0(γ) → ln(γ) at γ = 0 and hence exp(−X0(γ)/(β̄0N)) has a branch point at γ = 0

(exp(−X0(γ)/(β̄0N)) → γ−1/β̄0N ) with similar branch points at all negative integers. It is eas-

iest to choose each of the cuts along the negative real axis. exp(X0(γ)/(β̄0N)) has similar branch

points at every positive integer, and it is easiest to choose these cuts along the positive real axis.

This means that the integral in (2.14) is ambiguous due to the available choice in avoiding the

cuts. This ambiguity can only really be removed by regulating the Landau pole in the definition of
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the coupling. However, this introduces model dependence, and also makes analytic progress rather

more difficult, so I simply accept this ambiguity for this function.4

In order to simplify (2.14), and introduce factorization we trivially rewrite it as

f̃(γ,N) = exp(−X0(γ)/(β̄0N))

[
∫ ∞

0

−

∫ γ

0

]

df̃I(γ̃, N,Q
2
0)

dγ̃
exp(X0(γ̃)/(β̄0N))dγ̃, (2.16)

In the region of γ = 0 the integrand in (2.16) is ∝ γ1/β̄0N , so the integral of this from 0 → γ is

∝ γ1+1/β̄0N . Hence, the leading singularity in the γ plane for exp(−X0(γ)/(β̄0N)), is cancelled

by the integral from 0 → γ of this integrand [18], and the new leading singularity is at γ = −1.

Since G(Q2, N) is obtained by an inverse Mellin transformation with respect to Q2/Λ2, the part

of (2.16) coming from the integral from 0 to γ will behave like Λ2/Q2 (actually Q2
0/λ

2 as we will

see later). Hence, disguarding this power-suppressed correction, which will be considered in some

detail in section 3, we keep only the first term in (2.16), obtaining for the gluon distribution

G(Q2, N) =
1

2πi

∫

1
2
+i∞

1
2−i∞

1

γ
exp(γ ln(Q2/Λ2) −X0(γ)/(β̄0N))dγ

×

∫

∞

0

exp(−γ̃ ln(Q2
0/Λ

2) +X0(γ̃)/(β̄0N))dγ̃ gB(Q2
0, N)

= GE(Q2, N)GI(Q
2
0, N)gB(Q2

0, N).

(2.17)

Therefore, we have factorization up to well-defined corrections of O(Q2
0/Q

2), which genuinely

do vanish as Q2
0 → 0 (see section 3). As mentioned, exp(X0(γ)/(β̄0N)), contains singularities at

all positive integers, and GI(Q
2
0, N) is not properly defined, since the integrand has singularities

lying along the line of integration. However, since this factor is independent of Q2, it does not

contribute at all to the evolution of the structure function. It is also divergent as Q2
0 → 0, and

as usual in the factorization theorem these divergences are implicitly cancelled by gB(Q2
0, N), and

we can imagine the ambiguity to be cancelled in the same manner. So the overall normalization

is incalculable, but there is a calculable function GE(Q2, N) whose form is determined by the

singularities of exp(−X0(γ)/(β̄0N)) in the γ plane. This also leads to a fundamental difference

between the cases of the fixed and running couplings. Whereas previously the leading singularity

was a pole at (ᾱs/N)χ(γ) = 1, i.e. at γ → 1
2

as N → 4 ln 2ᾱs, now the leading singularity is an

cut at γ = 0: there is no power-like behaviour in Q2. Similarly, the branch point in the N plane at

4 ln 2ᾱs has become an essential singularity at N = 0: there is no power-like behaviour in x in the

4 The problem due to the Landau pole is illustrated using an alternative method of solution in

[19]. In this paper the solution of the equation where the NLO coupling effect is left simply as

−β0αs(µ
2

R) ln(k2/µ2

R)K0(q
2, K2) rather than resummed is also considered. This does not improve the

situation, i.e. an ambiguity in the solution remains even in this case.
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evolution factor for the gluon. The introduction of the running of the coupling has changed the

character of the solution completely.

One can now proceed with the solution to the LO BFKL equation by acknowledging that the

only real information contained in GE(N,Q2) is on the evolution of the structure function, i.e.

defining
d ln G(N,Q2)

d ln(Q2)
=
d lnGE(N,Q2)

d ln(Q2)
≡ γgg(N,Q

2). (2.18)

GE(N,Q2) gives us an entirely perturbative effective anomalous dimension governing the evolution

of the gluon structure function. The usual technique for solving for GE(N,Q2) is to expand the

integrand in (2.17), about the saddle-point. This results in a contour of integration parallel to the

imaginary axis, with real part → 1
2

for the small x solutions, see fig. 1. Using this results in an

anomalous dimension

γgg(N,Q
2) = γ0(ᾱs(Q

2)/N) +
∞
∑

n=1

(−β0αs(Q
2))nγ̃n(ᾱs(Q

2)/N), (2.19)

i.e., the effective anomalous dimension is the naive leading-order result with coupling at scale

Q2 plus an infinite series of corrections in increasing powers of −β0αs(Q
2) [20]. However, each

of the γ̃(ᾱs(Q
2)/N) is singular at N = λ(Q2), and the power of the singularity increases with

increasing n. Hence, although the series for the resulting splitting function is in the small quantity

αs(Q
2)β0, the accompanying coefficients are progressively more singular as x → 0. The saddle-

point approximation is therefore not a reliable result as x→ 0 and explicit investigation reveals that

it is only really quantitatively useful when ᾱs(Q
2) ln(1/x) is so small that the effective anomalous

dimension is effectively the LO in αs part, xPgg(x) = ᾱs(Q
2)[20]. This translates into x >∼ 0.01

in the HERA range. Therefore the calculations of the anomalous dimension which rely on an

expansion about the saddle-point, i.e. the conventional expansion in decreasing powers of ln(1/x)

at fixed power of αs, leads to very inaccurate and misleading results for small x. This instability

is not surprising. If one examines the integrand along the saddle-point contour of integration one

finds that it is very different from the Gaussian form the saddle-point method assumes [20]. Also

this is an expansion obtained from approaching γ = 1
2

and in terms of functions of N which are

singular at N = λ(Q2), whereas we know that the full solution no longer sees these points as

anything special. In fact, the known singularity structure of the integrand implies that γ = 0 is

the point on which to concentrate.

This suggests an alternative method of solution for the anomalous dimension. In order to

concentrate on this leading singularity we may move the contour of integration to the left and

simultaneously use the property that the integrand dies away very quickly at infinity (for ℜeγ ≤ 1/2)

to close the contour so that it simply encloses the real axis for γ < 0 fig. 1. It is then useful to

express χ0(γ) in the form

χ0(γ) = 1/γ +

∞
∑

n=1

2ζ(2n+ 1)γ2n, (2.20)
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which is, however, only strictly valid only for |γ| < 1. Doing this we may write

X0(γ) = ln(γ) + γE +

∞
∑

n=1

2
ζ(2n+ 1)

2n+ 1
γ2n+1, (2.21)

and the integrand for GE(N,Q2) becomes

γ−1/(β̄0N)−1 exp

(

γt−
1

(β̄0N)
(γE +

∞
∑

n=1

anγ
2n+1)

)

, (2.22)

where t = ln(Q2/Λ2) and an = 2ζ(2n + 1)/(2n + 1). The contribution to the integral from

0 → −∞ + iǫ is now the same as that from −∞− iǫ→ 0 up to a phase factor, and we may write

GE(N, t) = − sin

(

π

(β̄0N)

)

exp

(

−
γE

(β̄0N)

)
∫ 0

−∞

γ−1/(β̄0N)−1 exp

(

γt−
1

(β̄0N)

∞
∑

n=1

anγ
2n+1

)

dγ,

(2.23)

where the integral has to be understood as an analytic continuation, since there are singularities

along the real axis, and strictly speaking the integrand is well defined only for γ > −1. Since the

factor of exp(γt) is present this latter point leads, in principle, to an error of order exp(−t), i.e.

O(Λ2/Q2) into the value of GE(N, t). This will be discussed in more detail below.

In order to evaluate the above integral it is convenient to let y = γt, resulting in

GE(N, t) = − sin

(

π

(β̄0N)

)

exp

(

−
γE

(β̄0N)

)

t1/(β̄0N)

∫ 0

−∞

y−1/(β̄0N)−1 exp(y) exp

(

−
1

(β̄0N)

∞
∑

n=1

an(y/t)2n+1

)

dy.

(2.24)

The latter exponential may be expanded as a power series in y/t and the each term in the integral

then precisely evaluated using the standard result that

(−1)nΓ(−1/(β̄0N) + n) =

∫ 0

−∞

y−1/(β̄0N)−1 exp(y)yndy. (2.25)

Hence, we may formally write

GE(N, t) = − sin

(

π

(β̄0N)

)

exp

(

−
γE

(β̄0N)

)

Γ(−1/(β̄0N))

t1/(β̄0N)

(

1 +

∞
∑

n=3

An(1/(β̄0N))t−n(−1)n Γ(−1/(β̄0N) + n)

Γ(−1/(β̄0N))

)

,

(2.26)

plus an error of O(Λ2/Q2). We note that we could have reached this final expression (2.26) in a

slightly more rigorous manner. After performing the expansion of X0(γ) in (2.21) we could have

produced a well-defined integral in (2.23)by taking the lower limit of integration to be −1 + ǫ so

that the expansion is valid over the region of integration. This would mean that there is region of
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integration γ ≤ −1 absent, which due to the factor of exp(γt) would mean a missing contribution of

O(Λ2/Q2). This new limit of integration would result in the lower limit of −t in (2.24) and (2.25)

and consequently we would obtain incomplete gamma functions γ(−1/(β̄0N) + n, t) rather than

Γ(−1/(β̄0N) + n). However, γ(−1/(β̄0N) + n, t) = Γ(−1/(β̄0N) + n) + O(Λ2/Q2), so disguarding

the contributions of O(Λ2/Q2) we regain (2.26), which is formally equivalent to (2.23), but we have

seen explicitly the origin of the intuitively obvious O(Λ2/Q2) corrections to (2.26).

The result (2.26) was first noted in [25], and was simplified by using the relationship that as

N → 0, (Γ(−1/(β̄0N) +n)/Γ(−1/(β̄0N))) → (−1/(β̄0N))n. However, it is important to notice the

more general result that for all N

(−1)n Γ(−1/(β̄0N) + n)

Γ(−1/(β̄0N))
= ∆n(−1/(β̄0N)), (2.27)

where

∆n(−1/(β̄0N)) =

n−1
∑

m=0

(−1)mdmn(β̄0N)−n+m, (2.28)

and dmn are positive coefficients and d0n = 1. Explicitly the first few ∆n(−1/(β̄0N)) are

∆1(−1/(β̄0N)) =

(

1

(β̄0N)

)

∆2(−1/(β̄0N)) =

(

1

(β̄0N)

)2

−

(

1

(β̄0N)

)

∆3(−1/(β̄0N)) =

(

1

(β̄0N)

)3

− 3

(

1

(β̄0N)

)2

+ 2

(

1

(β̄0N)

)

∆4(−1/(β̄0N)) =

(

1

(β̄0N)

)4

− 6

(

1

(β̄0N)

)3

+ 11

(

1

(β̄0N)

)2

− 6

(

1

(β̄0N)

)

∆5(−1/(β̄0N)) =

(

1

(β̄0N)

)5

− 10

(

1

(β̄0N)

)4

+ 35

(

1

(β̄0N)

)3

− 50

(

1

(β̄0N)

)2

+ 24

(

1

(β̄0N)

)

.

(2.29)

These functions oscillate a great deal and only approach the asymptotic values of 1/(β̄0N)n at low

values of N which decrease with increasing n. The comparison of ∆4(−1/(β̄0N)) with 1/(β̄0N)4 is

shown in fig. 2, and illustrates this feature clearly.

Ignoring the common factor of − sin(π/(β̄0N))Γ(−1/(β̄0N)) exp(−γE/(β̄0N)), which has no t

dependence, and is irrelevant for the calculation of the anomalous dimension,

GE(N, t) = t1/(β̄0N)

(

1 +

∞
∑

n=3

An(1/(β̄0N))t−n∆n(−1/(β̄0N))

)

(2.30)

where the An are simply calculable from the expansion of exp

(

−1/(β̄0N)
∑

∞

n=1 an(y/t)2n+1

)

.

The common factor of t1/(β̄0N) is the well-known double-leading-log result coming from just the
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LO αs(Q
2)/N part of the anomalous dimension. Multiplying this we have an expansion as a power

series in 1/t or equivalently in αs(Q
2). In fact

t−n∆n(−1/(β̄0N)) = (ᾱs(Q
2)/N)n

n−1
∑

m=0

dmn(−β0αs(Q
2))m(ᾱs(Q

2)/N)−m. (2.31)

This explicitly demonstrates that we obtain a set of running coupling corrections to a LO result,

i.e. in solving the BFKL equation we are now obtaining not only the leading power in 1/N

(corresponding to the leading power of ln(1/x)) at each order in αs(Q
2), but we also obtain the

leading power in β0 at each power of αs(Q
2) and 1/N . Substituting this type of expansion into

(2.30), putting the resulting expression for GE(N, t) in (2.18) and expanding in inverse powers of t,

one obtains an expression for the anomalous dimension as a power series in αs(Q
2), where at each

order we have the leading divergence in 1/N plus a sum of running coupling correction type terms.

With a little work one may regain the whole leading γ0(αs(Q
2)/N) (though it is necessary to keep

some subleading terms in the ∆n to do this), along with a tower of terms which are subleading

in powers of β0αs(Q
2) to this leading anomalous dimension – one obtains all the corrections to

this naive LO anomalous dimension due to the running of the coupling, i.e. the whole of (2.19) is

regained, but ordered in powers of αs(Q
2) rather than in β0αs(Q

2).

The general features of this full, running coupling BFKL gluon Green’s function and consequent

anomalous dimension may be appreciated quite easily. The important fact to note is that although

the ∆n(−1/(β̄0N))) → (1/(β̄0N))n as N → 0, the function oscillates a great deal with 1/(β̄0N),

and remains much smaller in magnitude than this asymptotic form until very small N , roughly

until 1/N > n. This coupled with the accompanying factor of t−n means that for reasonable t, i.e

t >∼ 4 − 5 (Q2 >∼ 1GeV2), only the first 5 or so terms in (2.30) make a significant contribution for

N > 0.25. Hence, to a very good approximation

GE(N, t) = t1/(β̄0N)

(

1 −
2ζ(3)

3(β̄0N)t3
∆3(−1/(β̄0N)) −

2ζ(5)

5(β̄0N)t5
∆5(−1/(β̄0N))

)

, (2.32)

and in fact the smallness of the coefficient makes even the t−5 term almost negligible in this case.

GE(N, t) initially grows as N falls due to the t1/(β̄0N) term. However, for N ∼ 0.6 the negative

contribution from the t−3 term starts to become significant and ultimately drives the gluon structure

function to negative values. The result is shown in fig. 3. dGE(N, t)/dt may simply be evaluated

also using (2.30), and shows the same general shape, but does not become negative until a slightly

lower value of N as also seen in fig. 3. Hence the anomalous dimension develops a leading pole at

a finite value of N , given by

t3 =
2ζ(3)

3(β̄0N)

(

1

(β̄0N)3
−

3

(β̄0N)2
+

2

(β̄0N)

)

. (2.33)
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This result is accurate to better than 10% even at Q2 ∼ 1GeV2, and is much better at higher Q2,

the right-hand-side receiving corrections formally of O(1/(t2β̄5
0N

5)), but which are numerically

small. The value of N for this leading pole is shown as a function of t in fig. 4, and for the sort of

values of t relevant at HERA is ∼ 0.25. Going to N < 0.25 higher order terms in (2.30) become

important, and the positive 1/((β̄0N)2t6)∆6(−1/(β̄0N)) term absent in (2.30) pulls GE(N, t) back

to positive values, and another pole, with opposite sign residue, appears in γgg(N, t). At even lower

N the analytic expression eventually breaks down, as discussed below, but numerical results show a

series of poles becoming closer together. Nevertheless, the position of the leading pole is essentially

determined by the first handful of terms in the power series in αs(Q
2) for GE(N, t), and hence so

is the asymptotic behaviour of the small x splitting function, i.e. Pgg(x, t) ∼ x−0.25. So we see

that the introduction of the running coupling has a dramatic effect on the singularity structure

of the LO BFKL anomalous dimension, turning the cut into a series of poles, and changing the

position of the rightmost singularity by a factor of ∼ 0.4. This result of the pole in the anomalous

dimension was previously proved in detail in [15] using numerical techniques and in the context

of the collinearly resummed NLO kernel, and also indicated here using an approximate analytical

solution first suggested in [24]. However, in this paper I particularly stress the quantitative result

of the huge modification of the naive LO BFKL anomalous dimension due to the running coupling

contributions alone. This is apparent over a wide range of N , and in fig. 5.a I show the anomalous

dimension as a function of N for all values right of the leading singularity. As one sees, it is much

closer to the simple αs(Q
2)/N expression than to the naive BFKL result.

Before going into more precise detail and more general situations there are two important

points I should address. These are the choice of the scale of the running coupling in (2.11) as k2

and the fact that the expansion of χ0(γ) in powers of γ is not convergent over the whole range of

the contour of integration. The former of these is the simpler, so firstly I shall address the choice

of scale. It was known in [26] that the correct scale seemed as if it were really the symmetric

choice (k − q)2, but that k2 could be used instead, leading to contribution to the NLO kernel

which is proportional to β0. In practice it is much easier to obtain analytic results using k2, and

this β0-dependent NLO term leads to a contribution to the Mellin transformation of the NLO

kernel, χ1(γ), of the form 1
2 β̄0(χ

2
0(γ) + χ′

0(γ)). Including this in the integrand for the expression

for GE(N, t) at NLO (to be discussed in detail in section 4) leads to a multiplicative contribution

of the form exp(1
2 (ln(χ0(γ)) +X0(γ))) ≡ fβ0(γ). This can be expanded as a power series which at

low orders is

fβ0(γ) = 1 + 1.60γ3 + 1.24γ5 − 0.163γ6 + 1.15γ7 + · · · . (2.34)

Including this additional factor in (2.23) modifies (2.32) to

GE(N, t) = t1/(β̄0N)

(

1 −
(2/3ζ(3) − 1.60(β̄0N))

(β̄0N)t3
∆3(−1/(β̄0N))

−
(2/5ζ(5) − 1.24(β̄0N))

(β̄0N)t5
∆5(−1/(β̄0N))

)

.

(2.35)
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For a given power of αs(Q
2) these new contributions produce terms a power of β̄0N up on the other

terms and hence, not surprisingly, result in additional running coupling corrections to the gluon

and anomalous dimension. However, the new terms in the series in powers of γ do not start until

third order and have rather small coefficients. The resulting change in the anomalous dimensions,

both for general values of N and for the position of the leading pole is very minor. Therefore, the

correction for my original “incorrect” choice of scale is very small. However, in principle it seems as

though the factor just considered should really be taken as part of the LO result since it just gives

running coupling corrections. I will adopt this convention and the LO anomalous dimensions and

splitting functions presented in this paper will explicitly contain the corrections from this factor,

and in fact the results already presented in fig. 3, fig. 4 and fig. 5 include these (very small) effects.

In principle one could sum the corrections needed due to the simple choice of k2 in the coupling,

rather than (k − q)2, by including contributions induced in the kernel at NNLO and beyond. In

practice, beyond NLO the change seems too tiny for one to be concerned.

I should also comment on the limit of applicability of the analytic expression (2.30). As noted,

it is obtained via a series expansion which is not valid over the whole contour of integration. This

is reflected in the error of O(Λ2/Q2) we discovered for this expression but also in the fact that

the overall magnitude of the ∆n(−1/(β̄0N)) actually increases like n! in general. This latter point

means that the series in (2.30) is actually asymptotic. It turns out that it contains both infrared

and ultraviolet renormalon contributions, and hence it must be truncated to obtain sensible results.

The greatest accuracy may be obtained from (2.30) by truncating the series at order n0 ∼ t, the

precise value depending on the size of the coefficients in the series expansion. For the LO gluon

these are small and one could use n0 ∼ 10, but from experience with other variables (see later)

and the desire to go down to Q2 ∼ 1GeV2, i.e. t ∼ 4 − 5, in practice I always use n0 = 5. (For

the LO gluon the contribution from n = 6 → 10 is practically negligible.) Using the truncated

expression for GE(N, t) in the manner already discussed, then results in an infinite series in αs(Q
2)

for γgg(N, t) which is convergent for any N right of the leading pole, but different to the real,

divergent series beyond 6th order in αS(Q2).

It is vital to note that although the formal expression for the gluon, and hence anomalous

dimension, as a power series in αs(Q
2) (2.30) contains infrared renormalons5, and hence has an

ambiguity of O(Λ2/Q2), the integral in (2.17), which properly defines the leading twist gluon and

anomalous dimension, does exist and produces well-defined results. The ambiguity of O(Λ2/Q2) in

(2.30) cancels with an ambiguity in the O(Λ2/Q2) correction to this power-series expansion which

5 In unphysical regularization schemes, such as MS, the anomalous dimensions are not expected to

contain renormalons (see section 3.4 of [27] for a discussion), these being confined to the coefficient functions

relating the parton distributions to physical quantities. However, by regularizing via a finite Q0, and

defining the gluon density as the bare density convoluted with the gluon Green’s function we have implicitly

chosen a more physically motivated factorization scheme which allows the presence of renormalons.
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we discovered in the derivation of (2.30). The accuracy of the (truncated) analytic expression can

be found by comparing with results obtained from evaluating (2.17) using numerical integration

along the contour shown in fig. 1. For the gluon structure function for N to the right of the

leading pole the analytic approximation to the anomalous dimension is found to be a fraction of a

percent for t = 6, and falls like exp(−t). Strictly speaking there is an exp(−t) contribution from

the correction to (2.30) (with the renormalon ambiguity removed) plus a 1/t7 correction due to

the truncation. However, 1/t7 is similar to exp(−t) in the range considered. Hence, we have a

power-like correction to the power series in αs(Q
2) obtained from the truncated expression which

is completely well-defined. This illustrates that the presence of infrared renormalons in a physical

quantity is not necessarily due to an inherent ambiguity in the quantity itself (due, for example,

to the Landau pole in the coupling) as is commonly thought, but rather due to the impossibility

of completely expressing the physical quantity as a power series in αs(Q
2) [28]. In truncating

the power-series expansion in (2.30) I simply choose to split the expression for the gluon as some

general function of N and Q2 into a perturbatively calculable part as a power-series in αs(Q
2) and

a remainder which is approximately of order O(Λ2/Q2). The point of truncation is then chosen

empirically so as to make this remainder term as small as possible. This seems to be the way to

obtain the most accurate analytic results. It is important to note that the remainder term, although

power-suppressed, is not in any way higher twist, since it is obtained from the leading twist part

of the solution to the BFKL equation.

Having got these two points out of the way we can now begin to discuss the quantitative

results of the running coupling BFKL equation. In order to investigate the real effect of the BFKL

anomalous dimension on structure function evolution it is necessary to calculate the BFKL splitting

function as a function of x. This is where an analytic expression for the anomalous dimension is

particularly useful. A series of numerically obtained values of γgg(N, t) allows an approximate

determination of P (x, t), but it is extremely difficult to be accurate, especially for the wildly

oscillating functions of 1/N which do in fact make up GE(N, t). However, I now have an explicit

series for γgg(N, t) in powers of αs(Q
2), obtained from the truncated expression for GE(N, t). The

N -dependent functions at each power of αs(Q
2) become larger at small N as the series progresses,

of course, and to reach small enough x more and more terms are needed. However, at a fixed value

of N there is no such growth, and the same is therefore true for fixed x. Hence, one only needs to

work to a finite order. Limiting oneself to x > 10−5 and t > 4.5, i.e. Q2 >∼ 1GeV2, the suppression

of the ∆n(−1/(β̄0N)) is quite significant and seventh order in αs(Q
2) is easily sufficient. This

results in a power-series contribution to the splitting function

xPLO
gg (ξ, αs(Q

2)) = ᾱs(Q
2) + ᾱ4

s(Q
2)

(

2.4
ξ3

3!
− 12.01β̄0

ξ2

2
+ 9.206β̄2

0ξ − 9.60β̄3
0

)

+ ᾱ6
s(Q

2)

(

2.08
ξ5

5!
− 26.95β̄0

ξ4

4!
+ 134.6β̄2

0

ξ3

3!
− 320.7β̄3

0

ξ2

2
+ 359.8β̄4

0ξ − 148.8β̄5
0

)

+ ᾱ7
s(Q

2)

(

1.92

β̄0

ξ7

7!
− 19.23

ξ6

6!
+ 78.94β̄0

ξ5

5!
− 169.2β̄2

0

ξ4

4!
+ 199.8β̄3

0

ξ3

3!
− 122.9β̄4

0

ξ2

2
+ 30.72β̄5

0ξ

)

.

(2.36)
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This contribution to the splitting function for t = 6 and is shown in fig. 6.a. Note that because

of the truncation of GE(N, t), beyond 6th order the expression for PLO
gg (ξ, αs(Q

2)) is not what one

would really get from the true power-series. In particular there are higher powers of ξ than strictly

allowed. Nevertheless, it represents a very accurate approximation to the full result whereas the

correct series would simply diverge.

We also have to consider the power-suppressed contribution. Although this is only calculated

numerically in N -space it is only a small correction of order 0.05% for γLO
gg (N, t) a t t = 6, and

can also be calculated for a wide variety of values of N and t without too much work. It can

then be modelled by an analytic function which may easily be converted to x-space. Hence,

I choose to calculate it for t = 4.5 (Q2 ∼ 1GeV2) and t = 6 (Q2 ∼ 6GeV2) and N -values

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2, 3, 5,∞. The lower t value is the lower limit at which we will

trust this LO perturbative result, and for t above 6 the power-suppressed effect is very small. The

N values go low enough to correspond safely to x > 0.00001 and are sufficient that very accurate

modeling can be done. The values are fit to a function of the form

a0 exp(−b0t) + exp(−t)

( 7
∑

n=1

an

(

αs(t)

αs(t = 4.5)

)bn 1

Nn

)

. (2.37)

Introducing further degrees of freedom beyond this does not seem to change the results. This

expression can then be trivially converted to x-space. Performing this procedure in the case of the

power-suppressed contributions to the LO gluon anomalous dimension I obtain the explicit result

4.92 exp(−1.62t)δ(1 − x) + exp(−t)

(

1.068

(

αs(t)

αs(4.5)

)1.98

+ 5.257

(

αs(t)

αs(4.5)

)3.06

ξ

− 18.73

(

αs(t)

αs(4.5)

)2.90
ξ2

2!
+ 21.56

(

αs(t)

αs(4.5)

)2.90
ξ3

3!
− 11.60

(

αs(t)

αs(4.5)

)2.79
ξ4

4!

+ 3.00

(

αs(t)

αs(4.5)

)2.55
ξ5

5!
− 0.301

(

αs(t)

αs(4.5)

)2.17
ξ6

6

)

.

(2.38)

This power-suppressed correction is shown along with the power-series part and the full LO splitting

function in fig. 6.a. Although the power-suppressed contribution in x space turns out to be a larger

fraction of the total than in N -space, it still only makes a very small correction to the evolution.

However, one notices than the logarithmic terms in (2.38) are such that it falls more quickly than

(Λ2/Q2), or alternatively, grows more quickly than this as Q2 falls. This may be due to the presence

of a significant (Λ4/Q4) term in practice.

The full LO splitting function is shown in fig. 6.b along with the purely order αs(Q
2) contribu-

tion and the naive BFKL splitting function. One sees that it is hugely suppressed compared with

the naive LO BFKL splitting function, and is even lower than the O(αs(Q
2)) contribution for x

between about 0.1 and 0.001. Finally I note that the LO running coupling BFKL equation has also
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been calculated in [29], but numerically, with coupling scale equal to (k−q)2, and with the coupling

frozen below a particular scale and Q0 taken to be a finite value. The results are displayed for high

t (where my power-series is essentially exact) and despite the above differences seem to be in very

good agreement with the results in [21] and this paper. The freezing of the coupling and the finite

Q0 introduce choice-dependent non-perturbative effects which become important at extremely low

values of x, which in general become lower as Q0 and the scale of freezing decrease. This seems

to support the results obtained by my method of formally factorizing the non-perturbative effects

into GI(Q
2
0, N) and extracting as much information as possible in an analytic model-independent

manner.

3. Higher Twist at Small x.

In this section I will show that as far as the information from the BFKL equation is concerned

calculable higher twist contributions are small. I will also suggest that some other powerlike cor-

rections at small x may perhaps be less significant than often claimed. As a first point I note that

it has been claimed that there are likely to be large infrared renormalon contributions to structure

functions at small x [30]. As shown in the previous section for the case of the gluon both infrared

and ultraviolet renormalons do show up in the solution to the BFKL equation if one insists upon

trying to express results entirely in terms as a power-series in αs(Q
2) and uses the whole of (2.30)

rather than truncating. Presumably these are an extension of the small x divergent contribution

to the renormalons in [30]. However, these renormalons are circumvented if one considers the full

solution to the Q2-dependent part of the BFKL equation. Precisely the same argument works for

the case of real structure functions, as will be shown explicitly in section 5. This is not to say that

there are not relatively large power-suppressed corrections to the (truncated) perturbative-series.

We have already seen a non-negligible contribution to PLO
gg (x,Q2), and the power-suppressed con-

tributions turn out to be larger for physical quantities. However, these contributions are calculable

and unambiguous. Hence, solution of the BFKL equation, which provides results more general than

a power series in αs(Q
2) avoids the renormalon ambiguity. This means that renormalons obtained

from unresummed (in ln(1/x)) calculations require not only a ln(1/x) resummation but also the

consideration of results beyond the power-series expansion. This implies they do not really tell us

anything truely quantitative about power corrections in practice.

Now let us consider genuine higher twist effects. Some of these are contained within the BFKL

equation, since if Q2
0 is allowed to be non-zero a series in powers of (Q2

0/Q
2) is obtained which

tells us about the higher twist contributions due to the intrinsic transverse momentum in the two-

gluon operator. This is the only information, however, and we learn nothing about the other three

contributions to next-to-leading twist (discussed, for example in [31]), in particular those due to the
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four-gluon operator and hence possible saturation effects. However, it is possible to obtain some

useful and interesting results.

Let us first consider the fixed coupling BFKL equation. When solving (2.8) it is straightforward

to also calculate the higher twist contributions by picking up the non-leading poles in γ. The easiest

way to proceed is to obtain G(Q2, x) by first taking the exact inverse Mellin transformation back

to x-space by picking up the simple pole at N = ᾱsχ0(γ) resulting in

xG(Q2, x) ∝
1

2πi

∫

1
2+i∞

1
2−i∞

dγ exp(γ ln(Q2/Q2
0)) exp(ξᾱsχ0(γ)). (3.1)

This can now accurately be evaluated in the asymptotic small x limit using the saddle-point tech-

nique, i.e. integrating along the contour determined by the condition (dχ0(γ)/dγ) = 0 which defines

γ0. At leading twist, 0 ≥ ℜeγ ≥ 1, γ0 = 1/2 and χ0(γ0) = 4 ln(2), leading to the usual power-like

growth at small x. However, looking for the solutions to (dχ0(γ)/dγ) = 0 for −1 ≥ ℜeγ ≥ 0, i.e.

examining the higher twist operator and its anomalous dimension, one finds

γHT
0 = −0.425 ± 0.474i χ0(γ

HT
0 ) = −2.64 ± 2.393i. (3.2)

Hence, the features of the saddle-point are completely different at next-to-leading twist. Not only

are there complex conjugate saddle-points leading to an oscillatory behaviour, but the real part of

χ0(γ
HT
0 ) is negative rather than positive. Inserting (3.2) into (3.1) one obtains

xGHT (Q2, x) ∝ x2.64ᾱs cos(2.393ᾱsξ), (3.3)

i.e. a valence-like gluon rather than one growing at small x. The corresponding higher twist

splitting function has the same general behaviour as the gluon as x→ 0.

One can also find the splitting function by solving 1−(ᾱs/N)χ0(γ) as a power-series in (ᾱs/N)

for the next-to-leading twist solution. This results in the explicit series

γHT
0 (ᾱs/N) + 1 =

(

ᾱs

N

)

− 2

(

ᾱs

N

)2

+ 2

(

ᾱs

N

)3

+ 4.4

(

ᾱs

N

)4

− 29.2

(

ᾱs

N

)5

+ 80.2

(

ᾱs

N

)6

− 90.6

(

ᾱs

N

)7

− 298

(

ᾱs

N

)8

+ 2084

(

ᾱs

N

)9

− 6446

(

ᾱs

N

)10

+ 9157

(

ᾱs

N

)11

+ 20919

(

ᾱs

N

)12

− 187924

(

ᾱs

N

)13

+ 666008

(

ᾱs

N

)14

− 1.2 × 106

(

ᾱs

N

)15

+ 1.3 × 106

(

ᾱs

N

)16

+ 1.9 × 107

(

ᾱs

N

)17

− 7.7 × 107

(

ᾱs

N

)18

− 1.7 × 108

(

ᾱs

N

)19

− 2.1 × 107

(

ᾱs

N

)20

− 2.0 × 109

(

ᾱs

N

)21

+ · · · ,

(3.4)
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which can be easily converted to x-space. The corresponding splitting function is plotted for ᾱs =

0.2 in fig. 7, and it clearly fits the expectation that xPHT
gg (x, ᾱs) ∼ x0.5 cos(0.5ξ) as x→ 0.6 Hence,

although the first term in the series is the same as at leading twist, and implies a growth at small x,

the summation of the series is extremely different, and the next-to-leading twist contributions from

the BFKL equation are not only suppressed by (Q2
0/Q

2), but also become negligible at small x. This

can also be shown to be true for the even higher twist contributions using the same techniques.

This highlights the danger of using low order terms in the series for the splitting functions to

estimate higher twist corrections, as in [31] - the summation of leading ln(1/x) terms may be very

important, in this case of the two-gluon operator leads to a complete change of conclusion on the

import of higher twist. Unfortunately, there is no knowledge at all of the corresponding series for

the four-gluon operators.

Given that the results from the fixed coupling BFKL equation were altered so dramatically

at leading twist by the inclusion of the running coupling, we should see what happens at higher

twist. As already mentioned, the higher twist contribution to the running coupling BFKL equation

is given by

GHT (Q2, N) =
1

2πi

∫ −ǫ+i∞

−ǫ−i∞

1

γ
exp(γ ln(Q2/Λ2) −X0(γ)/(β̄0N))dγ

×

∫ 0

γ

exp(−γ̃ ln(Q2
0/Λ

2) +X0(γ̃)/(β̄0N))dγ̃ gB(Q2
0, N),

(3.5)

where the contour in the first integral has been moved to the left since the leading singularity at

γ = 0 is eliminated by the second integral.

Let us consider first the case where t = ln(Q2/Λ2) ≫ t0 = ln(Q2
0/Λ

2), which would be the case

for deep inelastic scattering. Let us also, without justification for the moment, let the lower limit

on the second integral be a constant, k ∼ −1, so that we have factorization imposed. In this case

we can evaluate the two integrals separately. Both the integrals can be calculated accurately using

the saddle-point method. Thus, using the type of steps outlined in (4.1)–(4.5) of [20] one obtains

exp

(

∫ Q2

γHT
0 (ᾱs(q

2)/N)d ln q2
)

γHT
0 (ᾱs(Q2)/N)[−χ′

0(γ
HT
0 (ᾱs(Q2)/N))]

1
2

, (3.6)

for the first integral and

exp

(

−
∫ Q2

0 γHT
0 (ᾱs(q

2)/N)d ln q2
)

[−χ′
0(γ

HT
0 (ᾱs(Q2

0)/N))]
1
2

, (3.7)

6 Unfortunately, because of large cancellations, the first 21 terms in the series for xP HT
gg (x, ᾱs) are

needed for x ≥ 0.00001.
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for the second. It can be verified numerically that these expressions are indeed good approximations

to the precise results. Combining these we get the full next-to-leading twist gluon Green’s function.

exp

(

∫ Q2

Q2

0

γHT
0 (ᾱs(q

2)/N)d ln q2
)

γHT
0 (ᾱs(Q2)/N)[−χ′

0(γ
HT
0 (ᾱs(Q2)/N))]

1
2 [−χ′

0(γ
HT
0 (ᾱs(Q2

0)/N))]
1
2

. (3.8)

Hence, the anomalous dimension for the higher twist operator is simply that obtained for the fixed

coupling, but with the coupling constant allowed to run with the scale, while the normalization

is (roughly) the root of the fixed coupling normalization evaluated for αs(Q
2) multiplied by the

same for αs(Q
2
0). Hence, the result is much the same as for the fixed coupling case, with both the

splitting function and the normalization decreasing and oscillating as x→ 0.

It order to justify this conclusion it is only necessary to explain why we could assume the factor-

ization. To do this we note that the saddle-point for the first integrand is at t = (1/β̄0N)χ0(γ
HT
0 (t))

and similarly for the second integrand with t → t0. However, since t ≫ t0 γ
HT
0 (t0) is significantly

to the right of γHT
0 (t). The value of exp(−γ̃t0 + X0(γ̃)/(β̄0N)) along the real axis along with

γ̃ = γHT
0 (t0), γ

HT
0 (t) is shown in fig. 8. It is simple to rewrite (3.5) in the equivalent form

GHT (Q2, N) =
1

2πi

∫ γHT
0

(t)+i∞

γHT
0

(t)−i∞

1

γ
exp(γ ln(Q2/Λ2) −X0(γ)/(β̄0N))dγ

×

[
∫ 0

γHT
0

(t)

exp(−γ̃ ln(Q2
0/Λ

2) +X0(γ̃)/(β̄0N))dγ̃

+

∫ γHT
0

(t)

γ

exp(−γ̃ ln(Q2
0/Λ

2) +X0(γ̃)/(β̄0N))

]

dγ̃ gB(Q2
0, N).

(3.9)

Using fig. 8, and remembering that the saddle-point integral for the first integral is parallel to the

imaginary axis, and that the integrand very quickly decreases away from γHT
0 (t), we conclude that

the value of the second integral in the second line of (3.9) is negligible compared with the first.

Also noting from fig. 8 that there is little change if we alter the lower limit of the first integral in

the second line to k ∼ −1, we obtain the factorization assumed above. Hence, in this t ≫ t0 limit

we find that we obtain factorization of the next-to-leading twist solution and that as for the fixed

coupling case this is negligible as x→ 0.

Even if t0 approaches t the results can be shown to be similar by numerical calculation. For

example, in the extreme limit of t = t0 the first integral in the second line of (3.9) gives only

half the saddle-point contribution, but one can check that the previously negligible second integral

now gives a roughly equal contribution for all N . However, factorization is now clearly broken.

Detailed numerical investigation shows that for t0 not much smaller than t we can write the higher

twist contribution in the form (Q2
0/Q

2)f(Q2, Q2
0, N) where the total is a function of N which grows

slowly with N , approaching a constant as N → 0. This is consistent with the form xa cos(b ln(1/x))
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which we get for the factorized next-to-leading twist solution (the Mellin transformation of which

is (N + a)/((N + a)2 + b2)), and certainly confirms that the gluon Green’s function is falling as

x→ 0.

Therefore, the higher twist operators and their anomalous dimensions derived from either

the fixed coupling or running coupling BFKL equation are negligible at small x, and for these

higher twist contributions the use of the running coupling equation does not qualitatively change

anything. However, we are currently not able to say anything about the contributions from the

four-gluon operators, and hence about shadowing corrections etc., beyond relatively simple results,

e.g. anomalous dimensions in the small x limit at LO in αs. There have been various suggestions

that such shadowing corrections are large, but I feel that these estimates may well be severely

exaggerated by the use of the approximation of this LO in αs anomalous dimension, and also by

the fact that the even more restrictive double-leading logarithmic approximation is often used.

This often seriously overestimates the size of the anomalous dimensions, coefficient functions, and

also the gluon distribution. I hope I have demonstrated that for the evolution of the higher twist

two-gluon operator the LO-in-αs double-leading-log approximations is indeed totally misleading. It

is also interesting to note that a more complete calculation of the higher twist coefficient functions

for the evolution of F2(x,Q
2) due to the four-gluon operators [32] implies that the double leading

log approximation is a vast overestimate. Even using very small values of the screening length

(R = 2GeV−2 rather than the more usual R ∼ 10GeV−2) and the very large LO GRV gluon

distribution [33], it seems that the shadowing correction is almost negligible in the perturbative

HERA range. Saturation effects will no doubt eventually set in for low enough x and Q2, but

presently I feel the technology is not such as to predict where with any real accuracy. Certainly,

resummations in ln(1/x) tend to decrease the size of the gluon extracted from data, and this

combined with the above considerations suggests a much smaller saturation effect, and total higher

twist effect, than often supposed. Certainly the model-independent “rule of thumb” for strong

saturation contributions that dF2(x,Q
2)/d lnQ2 ≈ Q2σ(x) and hence d ln(F2(x,Q

2))/d lnQ2 ≈ 1

is not even closely approached for any HERA data with Q2 ≥ 1GeV2.

However, I note that in my examination of higher twist I have not examined the mixing between

leading twist and higher twist operators or included any nonperturbative contributions due to, for

example, the behaviour of the coupling constant at low scales. These two effects are related to

each other. Such questions have been considered for toy models in [15] and [29], and numerically

for the full LO running coupling BFKL equation [29]. These papers have considered the full

anomalous dimension defined by d ln(G(Q2, N))/dt, and the way this is affected by the higher twist

corrections, rather than just d ln(GHT (Q2, N))/dt considered above. They demonstrate that there

are potentially serious modifications to the leading twist anomalous dimension due to the higher

twist corrections introducing sensitivity to the form of the normalization factor GI(Q
2
0, N) which

depends on the regularization of the coupling at low scales and on the Q2
0 dependence. Depending
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on the assumptions about the nonperturbative physics, these contributions can be be important at

extremely small x, generally changing the precise form of the power-like behaviour, and for more

severe imposition of nonperturbative effects, i.e. letting them set in at higher scales, introducing a

completely different asymptotic behaviour. Unfortunately, within the framework of my paper the

formal divergence of GI(Q
2
0, N) makes a similar study impossible and, as mentioned at the end of

the previous section, I simply have to appeal to these alternative results, in particular the smallness

of x at which the power-suppressed modifications set in, in order to support the reliability of my

more formal calculations. However, I also note that the smallness of the higher twist operators and

their anomalous dimensions calculated in this section suggest that whilst these contributions from

non-perturbative sources only set in at low Q2 or very small x indeed it seems perfectly possible

that they will give a comparable, or even larger contribution at low x and low Q2 than the genuine

higher twist contributions.

4. NLO Corrections.

In section 2 I demonstrated that using αs(k
2) in the BFKL equation, as in (2.11), has a

profound effect on the form of the solution both for the normalization and for the anomalous

dimension. However, given the first conclusions regarding NLO corrections in the essentially fixed

coupling case, it is particularly necessary to check that the results presented are not severely

modified by the inclusion of the NLO kernel, i.e. that the perturbative calculations are stable. The

NLO kernel was presented in [11] and the way in which to solve at NLO with a running coupling

was presented in [14]. Writing the NLO equation as

f(k2, Q2
0) = fI(k

2, Q2
0) +

(

ᾱs(k
2)

N

)
∫ ∞

0

dq2

q2
(K0(q

2, k2) − αs(k
2)K1(q

2, k2))f(q2), (4.1)

and using just the one-loop expression for the coupling7 leads to a 2nd order differential equation

in γ-space

d2f̃(γ,N)

dγ2
=
d2f̃I(γ,Q

2
0)

dγ2
−

1

β̄0N

d(χ0(γ)f̃ (γ,N))

dγ
−

π

3β̄2
0N

χ1(γ)f̃(γ,N). (4.2)

This can be solved in a very similar way to LO, i.e. it factorizes into the same form as (2.17) with

Q2-dependent part given by

G1
E(N, t) =

1

2πi

∫

1
2
+i∞

1
2−i∞

1

γ
exp(γt−X1(γ,N)/(β̄0N))dγ. (4.3)

7 Using the full NLO expression for the running coupling would lead to a huge degree of complication,

and this has never been attempted. Since, so long as Λ is chosen appropriately, the one- and two-loop

couplings are very similar, I do not imagine any major errors in the results below.
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However, X1(γ,N) is rather more complicated than the previous X0(γ). It can still be expressed

in the form

X1(γ,N) =

∫ γ

1
2

χNLO(γ̂, N)dγ̂, (4.4)

but now χNLO(γ,N) can be written as a power series in N beginning at zeroth order with χ0(γ).

As seen in [14], though here ignoring resummations in N , the explicit form is

χNLO(γ,N) = χ0(γ) −N
χ1(γ)

χ0(γ)
+
N2

χ0

(

−

(

χ1(γ)

χ0(γ)

)2

− β0

(

χ1(γ)

χ0(γ)

)′)

+ · · · , (4.5)

where the currently unknown NNLO contribution to the kernel, χ2(γ), would also appear at order

N2 in principle.

As already discussed in section 2 there is a contribution to χ1(γ) from the β0-dependent terms

induced by an “incorrect” choice of the scale for the coupling – k2 rather than (k − q)2. Taking

this contribution to the term in (4.5) which is linear in N , and combining with the LO expression

we find the previously discussed result of only a minor change in the anomalous dimension and

splitting function extracted. Hence, the choice of αs(k
2) is reliable, and is easily corrected for.

In this section I consider the rest of the NLO correction to the kernel, which is much larger, and

henceforth I denote χ1(γ) as the NLO kernel with the β0-dependent part 1
2
β̄0(χ

2
0(γ)+χ

′
0(γ)) already

extracted, and include the multiplicative factor fβ0(γ) in the integrand in (4.3). This still leaves a

decision as to precisely what I take “the NLO calculation” to mean. There are various possibilities.

I could work at the level of the NLO correction to the kernel, and hence the BFKL equation, and

solve (4.1), producing the infinite series in (4.5). Alternatively, I could truncate χNLO(γ,N) in

(4.5) after the second term. However, doing this still leaves the question of whether to use the

whole of exp(1/β̄0

∫ γ
1
2

(χ1(γ̂)/χ0(γ̂))dγ̂) or just expand it out to first order in β̄−1
0 .

There are particular problems associated with all choices. If one solves using the full NLO

corrected kernel then there is an infinite series in powers of N to consider in (4.5), which turns out to

be important in practice (see below). Also, the gluon Green’s function and anomalous dimensions

obtained from this solution contain many subleading terms beyond just LO and NLO in ln(1/x)

(and running coupling type corrections to these), as is essentially obvious from looking at (4.1) -

iteration of f leads the last term producing NNLO then NNNLO and so on. Hence, this choice is

disguarded. If one instead truncates (4.5) at order N , one still generates a subset of higher order

terms beyond those one wishes, though it is possible to proceed in this case at least. One can see

the explicit form of the solution by substituting the truncated (4.5) into (4.3) and proceeding as in

section 2. The contribution to X1(γ,N) coming from the second term, −N(χ1(γ)/χ0(γ)), leads to

an expression of the same form as in (2.21), i.e.

X1(γ,N) = X0(γ) − clN ln(γ) −Nc0 −N

∞
∑

n=1

cnγ
n, (4.6)
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where the cn may be calculated easily by performing a power-series expansion of the known functions

of γ, i.e.

∞
∑

n=1

cnγ
n = 0.424γ + 0.805γ2 + 0.521γ3 + 2.290γ4 + 1.287γ5 + 2.980γ6 + · · · . (4.7)

Hence, the integrand for G1
E(N,Q2) becomes

γ−(1−clN)/(β̄0N)−1fβ0(γ) exp

(

γt−
1

(β̄0N)
(γE − c0N +

∞
∑

n=1

(anγ
2n+1 −Ncnγ

n))

)

. (4.8)

Performing precisely the same type of manipulations as in section 2 results in the expression

G1
E(N, t) = − sin

(

π(1 − clN)

(β̄0N)

)

Γ(−(1 − clN)/(β̄0N)) exp

(

−
γE − c0N

(β̄0N)

)

t(1−clN)/(β̄0N)

×

(

1 +
∑

n=1

∑

m=1

[(

1 + Ãn(1/(β̄0N))

)(

1 + Cm(1/β̄0)

)

− 1

]

t−n−m∆n+m

(

−(1 − clN)

(β̄0N)

))

,

(4.9)

where

1 +

∞
∑

m=1

Cm(1/β̄0)γ
m = exp

(

1

β̄0

∞
∑

n=1

cnγ
n

)

, (4.10)

and the Ã(1/(β̄0N)) include the contributions from fβ0(γ), i.e. are of the form in (2.35). The

factoring of the terms independent of t then results in the expression

G1
E(N, t) = t(1−clN)/(β̄0N)

(

1 +
∞
∑

n=1

∞
∑

m=1

[(

1 + Ãn(1/(β̄0N))

)

×

(

1 + Cm(1/β̄0)

)

− 1

]

t−n−m∆n+m

(

−(1 − clN)

(β̄0N)

))

.

(4.11)

There are two sources of corrections beyond NLO in ln(1/x), other than running coupling correc-

tions, in (4.11). Firstly, Cn(1/β̄0) can be expanded as a power series in 1/(β̄0). Only the first term

in this series is genuinely a NLO correction to the LO result. Terms of higher order lead to con-

tributions to the anomalous dimensions which are beyond NLO in ln(1/x) without compensating

factors of β0 which would enable them to be interpreted as running coupling corrections. Secondly,

when one expands terms of the form ((1 − clN)/(β̄0N))n which appear in the ∆n in (4.11), one

obtains a power-series of the form,

(

(1 − clN)

(β̄0N)

)n

=

(

1

(β̄0N)

)n[

1 − nclN +
n(n− 1)

2
(clN)2 + · · ·

]

. (4.12)

The second term in this series gives the NLO in ln(1/x) correction while the remainder give higher

corrections without compensating powers of β0. Therefore, both these power-series expansions, i.e

of the Cn in powers of 1/(β̄0), and the ∆n in powers of N should be stopped at first order in β̄−1
0
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or N , and the cross-terms coming from first-order in both expansions, which are of overall second

order, should be eliminated to obtain truly NLO results.8

Ultimately I define NLO by appealing to the perturbative form of the gluon Green’s func-

tion and anomalous dimension produced and hence by choosing the NLO definition such that the

Green’s function does receive only corrections which are no more than one power of αs(Q
2) (with-

out compensating factors of β0) down on the leading order one. This means using an expression

for the gluon Green’s function of the form

G1
E(N, t) = t(1−clN)/(β̄0N)

(

1 +

∞
∑

n=1

∞
∑

m=1

[(

1 + Ãn(1/(β̄0N))

)(

1 + cn/β̄0

)

− 1

]

t−n−m∆n+m(−1/(β̄0N)) −
cl
β̄0

∞
∑

n=1

Ãn(1/(β̄0N))t−n d∆n(−1/(β̄0N))

d(−1/(β̄0N))

)

,

(4.13)

where the cn/β̄0 are obtained by expanding the exponential expression exp(1/β̄0

(∫ γ
1
2

(χ1(γ̂)/χ0(γ̂)+

cl + c0
)

)dγ̂), out to just first order in 1/β̄0. Implicitly there is also a factor of

− sin

(

π(1−clN)

(β̄0N)

)

Γ

(

−(1−clN)

(β̄0N)

)

exp(−γE/(β̄0N) + c0/β̄0) which contributes to the normalization

in (4.13).

Now that we have this NLO expression for the gluon Green’s function it is necessary to make

one more decision regarding the definition of the anomalous dimension. This is obtained from

γLO+NLO(N, t) = (d ln(G1
E(N, t))/dt). However, strictly speaking, in order to obtain only NLO

contributions to the anomalous dimension (G1
E(N, t))−1 in this expression should be expanded only

to NLO. This leads to a formal problem already pointed out in section 6 of [20]. Using the whole

of (G1
E(N, t))−1 in the expression for the anomalous dimension we notice that the position of the

first zero is changed from that at LO, leading to a shift, in fact a decrease, in the leading pole for

the anomalous dimension, and hence in the power of leading behaviour of the splitting function

as x → 0. So the x → 0 behaviour of the splitting function becomes Pgg(x) = exp(λ0ξ − ∆λξ).

However, since ∆λ is due to NLO corrections, the strict NLO expansion is just Pgg(x) = exp(λ0ξ)−

∆λξ exp(λ0ξ). This definition does not explicitly retain the shift in the power-like behaviour, and

also leads to the NLO correction ultimately becoming larger than the LO result. Hence, I choose to

retain the whole of (G1
E(N, t))−1 in the definition of the NLO anomalous dimension, thus obtaining

8 Ignoring this requirement and using the whole of (4.11), it turns out that the resultant expression

is very badly behaved - blowing up at large N . This is almost entirely due to the higher-order terms in

the expansion of the ∆n. Using the full Cn(1/β̄0) does not change things much in practice. This large N

instability translates into huge corrections in the splitting function at large x. Presumably this instability

at large N and x is cured if one resums the whole series in (4.5). Including just the O(N2) term does seem

to improve matters.
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the full Pgg(x) = exp(λ0ξ−∆λξ) as x→ 0, even though in practice the choice makes little difference

at the values of x relevant to HERA.

So now I can use (4.13) to determine analytic expressions for the NLO gluon Green’s function

and anomalous dimension. However, the formal definition again results in a divergent power series,

and as at LO I really truncate the series in (4.13) at n0 = 5. This leaves the problem of calculating

the power-suppressed corrections. In order to do this it is necessary to have an exact definition

for G1
E(N, t) in the form of an inverse Mellin transformation, as in (4.3). This requires finding

the integral expression which would lead to (4.13) if a power-series expansion of the integrand is

performed. Unfortunately this is not that simple. The problem comes with the manner of treating

the −clN ln(γ) term in (4.6). In order to have the leading t(1−clN)/(β̄0N) factor in (4.13), and hence

obtain the correct expression for the O(αs(Q
2)) part of the anomalous dimension, it is necessary

to keep −clN ln(γ) in the exponential in the integrand, giving a factor γ−cl/β̄0 . Expanding out

exp(−cl ln(γ)/β̄0) to first order would lead to ln(t) contributions to the anomalous dimension.

However, keeping the full γ−cl/β̄0 factor results in the argument of the ∆n being −(1− clN)/(β̄0N)

as in (4.11). Hence, there is no simple way to generate only NLO corrections from this term. In

order to obtain an expression equivalent to (4.13) I choose to effectively put the known factor of

t(−clN/(β̄0N)) in by hand and to generate the derivatives of the ∆n within the integral with respect

to γ.

In order to see how to do this I consider the LO expressions (2.17) and (2.26). It is quite

simple to generate the first part of (4.13). All one needs do is insert the series expansion 1 +

1/(β̄0)
∑

∞

n=1 cnγ
n expanded to first order in 1/β̄0 into the integral representation, i.e.

G1,I
E (N, t) =

∫

C

γ−1/(β̄0N)−1fβ0(γ) exp

(

γt−
1

(β̄0N)

∞
∑

n=1

anγ
2n+1

)(

1 +
∑

m=0

(1/β̄0)cmγ
m

)

dγ,

(4.14)

where the integral is over the full, unspecified contour, and generates the t-independent factor

sin

(

−π
(β̄0N)

)

Γ

(

−1
(β̄0N)

)

, as well as the t-dependent parts explicitly in (4.13). On top of this one

must also insert the t−clN/(β̄0N) factor by hand. If one is also concerned with the N -dependent

normalization it is probably most consistent to also multiply by the factor

sin(π(1 − clN)/(β̄0N))Γ(−(1 − clN)/(β̄0N)) exp(−(γE − c0N)/(β̄0N))

sin(π/(β̄0N))Γ(−1/(β̄0N))
, (4.15)

in order to obtain the overall factor of

− sin((π(1 − clN)/(β̄0N))Γ(−(1 − clN)/(β̄0N)) exp

(

−γE + c0N

β̄0N

)

. (4.16)

Generating the second part of (4.13) is rather more complicated. One has to somehow modify

the integral representation so that the derivatives of the ∆n(−1/(β̄0N)) are obtained. To see how
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to do this we let 1/(β̄0N) = z, in which case the equivalence of (2.23) and (2.30) (ignoring the

divergence of the series) is
∫

C

γ−z−1 exp

(

γt− z

∞
∑

n=1

anγ
2n+1

)

dγ = − sin(πz)Γ(−z)tz
(

1 +

∞
∑

n=3

An(z)t−n∆(−z + n)

)

, (4.17)

where I have removed the trivial factor of exp(−γE/(β̄0N)) from each side. Differentiating both

sides with respect to z we obtain

−

∫

C

ln(γ)γ−z−1 exp

(

γt− z

∞
∑

n=1

anγ
2n+1

)

dγ

−

∫

C

γ−z−1
∞
∑

m=1

amγ
2m+1 exp

(

γt− z

∞
∑

n=1

anγ
2n+1

)

dγ

= Ψ(−z) sin(πz)Γ(−z)tz
(

1 +

∞
∑

n=3

An(z)t−n∆(−z + n)

)

− π cot(πz) sin(πz)Γ(−z)tz
(

1 +
∞
∑

n=3

An(z)t−n∆(−z + n)

)

− ln(t) sin(πz)Γ(−z)tz
(

1 +

∞
∑

n=3

An(z)t−n∆(−z + n)

)

− sin(πz)Γ(−z)tz
(

1 +

∞
∑

n=3

An(z)t−n d∆(−z + n)

dz

)

− sin(πz)Γ(−z)tz
( ∞

∑

n=3

dAn(z)

dz
t−n∆(−z + n)

)

.

(4.18)

The last term on each side are equivalent, and rearranging the rest we obtain an expression for a

series containing the derivatives of the ∆n(z) -

sin(πz)Γ(−z)tz
( ∞

∑

n=3

An(z)t−n d∆(−z + n)

dz

)

=

∫

C

ln(γ)γ−z−1 exp

(

γt− z
∞
∑

n=1

anγ
2n+1

)

dγ

+ (Ψ(−z) − π cot(πz) − ln t) sin(πz)Γ(−z)tz
(

1 +
∞
∑

n=3

An(z)t−n∆(−z + n)

)

,

(4.19)

which using (4.17) becomes

sin(πz)Γ(−z)tz
( ∞

∑

n=3

An(z)t−n d∆(−z + n)

dz

)

=

∫

C

[

ln(γ) − (Ψ(−z) − π cot(πz) − ln t)

]

γ−z−1 exp

(

γt− z
∞
∑

n=1

anγ
2n+1

)

dγ.

(4.20)

Therefore, the right-hand-side of (4.20), multiplied by −cl/(β̄0)t
(−clN/(β̄0N)), gives the second term

in (4.13) with some t-independent normalization which should be multiplied by (4.16) to be con-

sistent with the first term in the preceding paragraph. Thus, we have a prescription for the full
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calculation at NLO which is equivalent to the series expansion in (4.13), i.e

G1
E(N, t) ∝ t−cl/β̄0

∫

C

[

γ−1/(β̄0N)−1fβ0(γ) exp

(

γt−
1

(β̄0N)

∞
∑

n=1

anγ
2n+1

)(

1 +
∑

m=0

(1/β̄0)cmγ
m

)

−
cl
β̄0

[

ln(γt) − Ψ

(

−
1

β̄0N

)

+ π cot

(

π

β̄0N

)]

γ−(1/(β̄0N))−1fβ0(γ) exp

(

γt−
1

β̄0N

∞
∑

n=1

anγ
2n+1

)]

dγ,

(4.21)

and once again one should multiply by (4.16) to get the most suitable normalization. We can now

insert the above expression into γLO+NLO(N, t) = (d ln(G1
E(N, t))/dt) and evaluate numerically in

order to get the NLO anomalous dimension without recourse to the truncated series expansion.

We are now in a position to solve for the anomalous dimension and splitting function at NLO.

Unlike the case of fixed coupling, or the simplistic results of the saddle-point evaluation, the NLO

corrections to the LO anomalous dimension are under control. This is simply illustrated by the

positions of the leading pole in the anomalous dimensions which are shown in fig. 4, and one can see

that they change from about 0.25 for γgg(N, t) at LO to 0.17 at NLO, and that the Q2-dependence

reduces a little. However, as already noted at LO, the value of the intercepts has little to do with

physics at HERA – the power-like behaviour only really settling down for lower x, and this is even

more true at NLO. Being more particular one notices that the anomalous dimension γgg(N, t) over

a wide range of N shows only a relatively small change going from LO to NLO. This is shown in

fig. 5.b where the part of the NLO anomalous dimension at first order in αs(Q
2), i.e −0.935αs(Q

2),

is not included, since this should properly be included at LO in a combined leading order in αs(Q
2)

and αs(Q
2) ln(1/x) expansion scheme. Alternative definitions of NLO lead to very similar results

except at very high values of N , where less sophisticated definitions lead to blowing up at large N ,

as already mentioned. For this case of the gluon structure function the NLO correction is negative

except for very large N . I should also note that the power-like correction to the purely analytic

result is a larger proportion of the NLO correction than of the LO contribution, but would still be

almost impossible to spot if shown on fig. 5.b. The correction to the analytic value for the intercept

is about 7% at t = 6 however.

One can also make the transformation to x-space and calculate the NLO corrected splitting

function. Unfortunately, due to the increase in size of the cn coefficients compared to the an

(particularly the absence of zeros) and also to the factors of n invoked by differentiating the ∆n

in (4.11) the power-series in αs(Q
2) is much less convergent than at LO. In order to obtain an

expression which is reliable down to x = 0.00001 at Q2 = 1GeV2 it is necessary to go to 20th order

in αs(Q
2). Hence we can write the NLO correction to the splitting function as

xPNLO
gg (ξ, αs(Q

2)) = ᾱs(Q
2)

19
∑

n=1

mmax
∑

m=0

ᾱn
s (Q2)

(

Knm
ξmβ̄n−m−1

0

m!
+Knδβ̄

n
0 δ(1 − x)

)

, (4.22)
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where because we have truncated the series for the gluon structure function mmax can be greater

than the naive expectation of mmax = n − 1. The coefficients for the series are shown in table 1.

If one is only concerned with x > 0.0001 or Q2 > 4GeV2 then the series can be truncated at about

12th order.

As at LO we also have to model the N dependence of the power-suppressed correction by an

analytic function. Fortunately, exactly the same type of function is sufficient and we obtain the

power-suppressed NLO correction to the splitting function of the form

−2.86 exp(−1.02t)δ(1 − x) + exp(−t)

(

13.59

(

αs(t)

αs(4.5)

)0.88

− 29.61

(

αs(t)

αs(4.5)

)1.21

ξ

+ 39.76

(

αs(t)

αs(4.5)

)1.315
ξ2

2!
− 33.765

(

αs(t)

αs(4.5)

)1.48
ξ3

3!
+ 16.89

(

αs(t)

αs(4.5)

)1.77
ξ4

4!

− 4.479

(

αs(t)

αs(4.5)

)2.16
ξ5

5!
+ 0.4839

(

αs(t)

αs(4.5)

)2.63
ξ6

6

)

.

(4.23)

The full NLO correction xPNLO
gg (x) and its power-series and power-suppressed contributions

are shown in fig. 9.a, where the relatively unimportant terms ∝ δ(1 − x) are absent. As at LO the

power-suppressed correction is proportionally much larger in x-space than in moment space and

certainly needs to be considered at t = 6 and below. Also as at LO it tends to oppose the form of

the power-series expression, hence reducing the total NLO correction. The powers of αs in (4.23)

are slightly smaller than for LO, and hence the power-suppressed correction does not fall quite so

quickly with Q2.

The total NLO splitting function, i.e LO plus the NLO correction, is shown for t = 6 in

fig. 9.b, where the contributions ∝ δ(1−x) both from the O(αs(Q
2)) part and the running coupling

corrections to this are absent. The latter of these is a very small contribution. The NLO corrected

splitting function is clearly not qualitatively different from that at LO, though it is quite a lot

smaller at small x. Hence it seems as though by including the infinite series of running coupling

corrections the perturbative expansion of the BFKL splitting function has been stabilized. However,

the real importance of the NLO corrections as far as physics is concerned is the effect they have on

the evolution of the gluon structure function. This is demonstrated in fig. 10 where the evolution

of a suitable model for the structure function G(x,Q2), i.e. (1−x)6x−0.2, is shown both for the LO

running coupling splitting function, and for the NLO corrected one (all δ(1−x) contributions other

that at first order in αs(Q
2) one are included). Also shown is the evolution due just to the double-

leading-log term P (x) = ᾱs(Q
2)/x. As one sees, at this (fairly low) value of t, i.e. Q2 ∼ 6GeV2,

the evolution driven by the LO splitting function is very similar to that from the double-leading-log

contribution, and is even slightly smaller for x from 0.007 to 0.00001, corresponding to the dip in

the splitting function seen in fig. 6. Below this the growth of the splitting function increases the

evolution above the double-leading-log result. One also sees that the effect of the NLO corrections is
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certainly significant, and increases relatively with falling x, but it is clearly a correction rather than

the complete change in qualitative behaviour induced by the NLO corrections without resummation

of running coupling effects.

A further way often used to investigate the perturbative stability of a fixed order perturbative

calculation is to investigate the renormalization-scale dependence. This is often used fallaciously,

e.g. if one calculates Pgg(αs, x) to NLO in the standard perturbative expansion and then investi-

gates variation of renormalization scales one will never notice the influence of the terms at higher

orders in αs which are also of higher order in ln(1/x). This is symptomatic of the fact that the

expansion purely in powers of αs is not really a correct expansion scheme for splitting functions

(for a full discussion see [8]). However, once we have performed a resummation of large logarithms,

as here, renormalization-scale variation should be more reliable. The renormalization scheme de-

pendence may be investigated by letting

αs(Q
2) → αs(kQ

2) + β0 ln(k)α2
s(kQ

2) (4.24)

and in the LO part of the splitting function expanding out to first order in ln(k), whilst in the NLO

part using only the zeroth order, i.e. just letting αs(Q
2) → αs(kQ

2). In this case we must also use

a similar procedure for the power-suppressed corrections, i.e. these are really of the form (Λ2/µ2
R)

rather than (Λ2/Q2). The results for k = 0.5 and k = 2 are shown in fig. 11 for Q2 ∼ 6GeV2. As

with the NLO corrections to LO the variation is significant but leads only to a correction rather than

a qualitative change. This implies that the series expansion is stable, if not as rapidly converging

as one might ideally hope for.

Hence, the NLO corrections to the running coupling BFKL derived splitting function are well

under control, both in terms of the asymptotic power-like behaviour of the splitting functions

and in terms of the evolution in the range currently accessible to experiments. For deep-inelastic

scattering, or indeed any process where there is factorization of the infrared physics into the input

parton distributions, e.g. Drell-Yan scattering in proton-proton collisions, no further resummation

is necessary, or even useful, beyond the running coupling corrections. This in distinct contrast to

the case where both ends of the gluon ladder are associated with a hard scale. In this case the

conventional BFKL expansion is fundamentally flawed due to progressively higher order poles at

γ = 0 and γ = 1 (corresponding to large logs in the ratios of the two scales k2
1 and k2

2) as shown in

[13]. These large order poles need to be resummed, and without this resummation calculations are

badly behaved over the whole range of N (in fact explicit calculation shows that this is particularly

the case at large N). In the case of deep inelastic scattering the collinear factorization procedure

automatically orders the poles at γ = 0 correctly, and the above problem shows up in high order

poles at γ = 1 only. The anomalous dimension is totally dominated by the region very close to γ = 0,

as this paper shows, and is very insensitive to effects at γ = 1. Including the type of resummation in

[13][14] alters results from the NLO corrected case by only a very small amount, and is likely to be
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no more influential than the remaining NNLO effects for which it does not account. Resummation

of poles near γ = 1 would be essential if one attempted to obtain information about the input form

of the gluon, i.e. GI(Q
2
0, N). However, as well as the fact that Q2

0 is an essentially nonperturbative

scale, this type of calculation, along with the whole subject of single-scale processes, is also plagued

by the infrared ambiguity problem caused by behaviour of the coupling at low scales. A discussion

of such issues can be found in [15] and [29].

I close this section by noting that although the above results all look promising it is important

to realize that they are all in a sense ambiguous because they deal with a particular way of defining

the gluon parton distribution, which is a factorization scheme-dependent quantity. In this paper it

is defined in a manner which is natural from the point of view of the solution of the BFKL equation,

and which one may think of as perhaps a good “physical” definition of the gluon. However, it is

very different from, for example, the gluon defined in the MS scheme. In order to investigate the

real success of the approach in this paper it is necessary to look at the results for the real physical

quantities – the structure functions.

5. Small x Structure Functions.

One may define a real structure function by a simple extension of the above methods, i.e. by

including a hard scattering cross section at the top of the gluon ladder. This modifies (2.4) to

Fi(Q
2, N) = αs

∫

∞

0

dk2

k2
σi,g(k

2/Q2)f(N, k2, Q2
0)gB(N,Q2

0), (5.1)

where σi,g(k
2/Q2) is the cross-section for scattering of a virtual photon from a gluon with transverse

momentum k2. For the case of the longitudinal structure function this cross-section is well defined

even in the limit k2 → 0, but for F2(N,Q
2) the cross-section diverges like ln(Q2/k2) as k2 → 0

(for details see [34]). This demonstrates that for FL(x,Q2) the solution in the leading 1/N limit

factorizes neatly into the gluon distribution and a multiplicative coefficient function, while for

F2(N,Q
2) there is interference at this order between the coefficient function and the result of

solving the evolution equation including the anomalous dimension αsγ
0
qg(αs, N). In this latter case

it is simplest instead to differentiate with respect to ln(Q2) obtaining

dF2(Q
2, N)

d lnQ2
= αs

∫

∞

0

dk2

k2

dσi,g(k
2/Q2)

d lnQ2
f(N, k2, Q2

0)gB(N,Q2
0), (5.2)

where
dσi,g(k2/Q2)

d ln Q2 is finite as k2 → 0. In this case, if we work in an DIS-type scheme, i.e. one in

which the quark-gluon coefficient function vanishes beyond zeroth order, there is a simple factor-

ization between the anomalous dimension αsγ
0
qg(αs, N) and the gluon distribution.9

9 Note that in this article I ignore the mixing with the quark input distribution in general for simplicity.

However, it does implicitly appear in the NLO correction to the kernel, i.e. it is the NLO correction to the

anomalous dimension eigenvalue rather than to γgg which I use since this is the quantity directly calculated

in [11][12]. The contribution to this due to the quark mixing is very small in practice.
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In order to progress it is first necessary to consider the overall factor of αs in the above

expressions, and particularly its scale. One might think that it should be αs(k
2), and thus appear

within the integrals with respect to k2. However, this could only come about due to double

counting of diagrams, since the resummation of bubble diagrams required to make this equal to

αs(k
2) has already been performed in defining the coupling in the BFKL equation as αs(k

2). Q2

is the only remaining scale, so it must be the scale of this coupling. One can also justify this

by considering the fact that there is a NLO correction to the input of the BFKL equation of the

form −β0αs ln(Q2
0/µ

2
R)δ(k2 −Q2

0) (coming from bubbles in a gluon propagator). Introducing this

into calculations leads to multiplying each result by a factor (1−β0αs ln(Q2
0/µ

2
R)). This splits into

−β0αs ln(Q2/µ2
R)+β0αs ln(Q2/Q2

0), and the latter term is an infrared divergence which contributes

to the one-loop gluon-gluon splitting function while the second goes into making the overall factor

of αs have renormalization scale Q2.

Now removing the overall factor of αs(Q
2) (or in fact the normalization factor αs(Q

2)Nf/(3π))

from (5.1), and taking the Mellin transformation with respect to (Q2/Λ2) leads to the simple

expression

F̃i(γ,N) = hi,g(γ)G̃(γ,N). (5.3)

Thus we may solve for Fi(N, t) in exactly the same way as for G(N, t), obtaining exactly the same

divergent Q2-independent part and a Q2-dependent part given by solving

FE,i(N, t) =
1

2πi

∫

1
2
+i∞

1
2
−i∞

hi,g(γ)

γ
fβ0(γ) exp(γt−X0(γ)/(β̄0N))dγ. (5.4)

This may be evaluated numerically, using the same contour as for the gluon, or in order to find the

power-series solution we may proceed as with the gluon structure function by expanding the hi,g(γ)

(which were calculated in [34]) as a power series about γ = 0. For the two cases we discussed above

we have

hL,g(γ)f
β0(γ) = 1 − 0.33γ + 2.13γ2 + 0.67γ3 + 2.58γ4 + 2.99γ5 + 1.92γ6 + · · · , (5.5)

and

h2,g(γ)f
β0(γ) = 1 + 2.17γ + 2.30γ2 + 6.67γ3 + 7.05γ4 + 12.92γ5 + 15.47γ6 + · · · . (5.6)

It seems natural to absorb the (in some sense) NLO corrections from fβ0(γ) into the contributions

from the hi,g(γ) since they are of exactly the same form, whereas the other NLO corrections have

inverse powers of β0. Following the same steps as in section 2.2 then results in an expression

FE,i(N, t) = t1/(β̄0N)

(

1 +

n0
∑

n=1

Bi,n(1/(β̄0N))t−n∆n(−1/(β̄0N))

)

, (5.7)
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where the Bi,n(1/(β̄0N)) are now determined not only by the power series in γ obtained from the

expansion of X0(γ), but also from the expansion of hi,g(γ). In particular they now contain parts

at zeroth order in 1/(β̄0N).

Using these results it is now a simple matter to derive the longitudinal gluon coefficient function

at leading powers of ln(1/x) plus running coupling corrections and similarly for the quark-gluon

anomalous dimension, i.e.

CL,g(αs(Q
2), N) =

αs(Q
2)Nf

3π

FE,L(N, t)

GE(N, t)
, (5.8)

with obvious generalization to γqg(αs(Q
2), N). These moment space expressions may easily be

converted to x-space. Truncating the series for the structure functions and the gluon at n0 = 5

results in the perturbative series for xCL,g(αs(Q
2), x),

xCL,g(αs(Q
2), x) =

αs(Q
2)Nf

3π

[

δ(1 − x) − 0.33αs(Q
2) + 2.13α2

s(Q
2)

(

ξ − β̄0

)

+ α3
s(Q

2)
(

−0.933
ξ2

2!
+ 2.79β̄0ξ − 1.86β̄2

0

)

+ α4
s(Q

2)
(

2.32
ξ3

3!
− 14.69β̄0

ξ2

2!
+ 27.85β̄2

0ξ − 15.48β̄3
0

)

+ α5
s(Q

2)
(

8.41
ξ4

4!
− 54.45β̄0

ξ3

3!
+ 125.2β̄2

0

ξ2

2!
− 121.2β̄3

0ξ + 42.0β̄4
0

)

+ α6
s(Q

2)
(−0.89

β̄0

ξ6

6!
+ 7.76

ξ5

5!
− 27.53β̄0

ξ4

4!
+ 49.48β̄2

0

ξ3

3!
− 44.59β̄3

0

ξ2

2!
+ 15.77β̄4

0ξ
)

+ α7
s(Q

2)
(2.74

β̄0

ξ7

7!
− 33.41

ξ6

6!
+ 164.8β̄0

ξ5

5!
− 419.3β̄2

0

ξ4

4!
+ 577.2β̄3

0

ξ3

3!
− 404.9β̄4

0

ξ2

2!
+ 112.9β̄5

0ξ
)

+ α8
s(Q

2)
(6.48

β̄0

ξ8

8!
− 72.27

ξ7

7!
+ 335.7β0

ξ6

6!
− 838.2β̄2

0

ξ5

5!
+ 1210β̄3

0

ξ4

4!
− 1004β̄4

0

ξ3

3!

+ 441.7β̄5
0

ξ2

2!
− 79.05β̄6

0ξ
)

]

.

(5.9)

However, as for the gluon splitting function we have to calculate the power-suppressed correction

by evaluating the inverse Mellin transformations numerically. This is done in precisely the same

way as for the gluon, and results in the correction to xCL,g(αs(Q
2), x) of the form

αs(Q
2)Nf

3π

[

(−1.168 − 0.482t + 0.1106) exp(−t)δ(1 − x) + exp(−t)

(

−4.685

(

αs(t)

αs(4.5)

)−3.026

+ 34.25

(

αs(t)

αs(4.5)

)−0.875

ξ − 59.47

(

αs(t)

αs(4.5)

)0.074
ξ2

2!
+ 45.81

(

αs(t)

αs(4.5)

)0.78
ξ3

3!

− 17.94

(

αs(t)

αs(4.5)

)1.37
ξ4

4!
+ 3.365

(

αs(t)

αs(4.5)

)1.77
ξ5

5!
− 0.2942

(

αs(t)

αs(4.5)

)1.78
ξ6

6

)]

,

(5.10)

where in this case it was necessary to model the N → ∞, i.e. the δ(1−x) part with a slightly more

complicated form than previously. Both expressions have been shown in a form which is sufficient
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for Q2 > 1GeV2 and x > 0.00001. The full xCL,g(x, t) is shown in fig. 12 a. along with the two

contributions above. Note that the δ(1 − x) term at O(αs(Q
2)) in the power-series is obtained

from the inverse Mellin transformation of the limit as N → 0 of the full O(αs(Q
2)) coefficient

function and in the figure we replace it by the full O(αs(Q
2)) contribution, 6x2(1 − x), for ease of

presentation (it not being easy to represent the normalization of the δ(1 − x) term). The δ(1 − x)

term is simply missing from the power-suppressed part, though this is insignificant. We see that

the power-suppressed contribution is now a much larger fraction of the total than for the gluon,

though it does not increase as quickly with falling Q2. In fig. 12 b. we show xCL,g(x, t) along

with the O(αs(Q
2)) contribution and with the naive LO BFKL result in this factorization scheme,

which grows far more quickly than the resummed result.

Similarly we can calculate the perturbative series xPqg(αs(Q
2), x),

xPqg(αs(Q
2), x) =

αs(Q
2)Nf

3π

[

δ(1 − x) + 2.17αs(Q
2) + 2.30α2

s(Q
2)

(

ξ − β̄0

)

+ α3
s(Q

2)
(

5.07
ξ2

2!
− 15.21β̄0ξ + 10.14β̄2

0

)

+ α4
s(Q

2)
(

8.80
ξ3

3!
− 47.50β̄0

ξ2

2!
+ 81.02β̄2

0ξ − 42.30β̄3
0

)

+ α5
s(Q

2)
(

18.88
ξ4

4!
− 156.7β̄0

ξ3

3!
+ 478.0β̄2

0

ξ2

2!
− 620.4β̄3

0ξ + 280.3β̄4
0

)

+ α6
s(Q

2)
(4.95

β̄0

ξ6

6!
− 44.15

ξ̄5

5!
+ 159.9β̄1

0

ξ4

4!
− 293.4β̄2

0

ξ3

3!
+ 269.7β̄3

0

ξ2

2!
− 97.03β̄4

0ξ
)

+ α7
s(Q

2)
(7.98

β̄0

ξ7

7!
− 86.53

ξ6

6!
+ 385.6β̄0

ξ5

5!
− 899.9β̄2

0

ξ4

4!
+ 1153β̄3

0

ξ3

3!
− 764.0β̄4

0

ξ2

2!
+ 203.8β̄5

0ξ
)

+ α8
s(Q

2)
(17.15

β̄0

ξ8

8!
− 234.6

ξ̄7

7!
+ 1354β0

ξ6

6!
− 4263β̄2

0

ξ5

5!
+ 7882.9β̄3

0

ξ4

4!
− 8519β̄4

0

ξ3

3!

+ 4962β̄5
0

ξ2

2!
− 1199β̄6

0ξ
)

+ α9
s(Q

2)
(3.97

β̄2
0

ξ10

10!
−

51.57

β̄0

ξ9

9!
+ 269.5

ξ8

8!
− 647.5β̄0

ξ7

7!
+ 258.8β2

0

ξ6

6!
+ 2451β̄3

0

ξ5

5!

− 6962β̄4
0

ξ4

4!
+ 8473β̄5

0

ξ3

3!
− 5145β̄6

0

ξ2

2!
+ 1259β̄7

0ξ
)

]

.

(5.11)

and we have a power-suppressed contribution to xPqg(αs(Q
2), x) of the form

αs(Q
2)Nf

3π

[

12.86 exp(−1.521t)δ(1 − x) + exp(−t)

(

−14.31

(

αs(t)

αs(4.5)

)2.695

+ 36.297

(

αs(t)

αs(4.5)

)2.93

ξ

− 41.14

(

αs(t)

αs(4.5)

)3.03
ξ2

2!
+ 25.34

(

αs(t)

αs(4.5)

)3.20
ξ3

3!
− 9.096

(

αs(t)

αs(4.5)

)3.44
ξ4

4!

+ 1.85

(

αs(t)

αs(4.5)

)3.695
ξ5

5!
− 0.1693

(

αs(t)

αs(4.5)

)3.80
ξ6

6

)]

.

(5.12)
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The full xPqg(αs(Q
2), x) is shown in fig. 13 a. along with the two contributions above. As with

xCL,g(x, t) the δ(1 − x) term at O(αs(Q
2)) in the power-series is replaced by the full O(αs(Q

2))

contribution which is 1.5x(x2 + (1 − x)2). Again the δ(1 − x) term is missing from the power-

suppressed part, and again this is insignificant. In this case the power-suppressed part is tiny at

t = 6, though from the large powers of αs(Q
2) in (5.12) we see that it grows very quickly at lower

Q2. In fig. 13 b. we show xPqg(x, t) along with the O(αs(Q
2)) contribution and with the naive LO

BFKL result in this factorization scheme, which again grows far more quickly than the resummed

result.

These above results, along with the LO gluon splitting function, allow for a LO in ln(1/x) (with

running coupling corrections) calculation and analysis of structure functions. In previous papers

[8] I have strongly warned against the use of factorization-scheme dependent splitting functions

and coefficient functions within the ln(1/x) expansion. It is still true that it is always possible to

make huge redefinitions of the unphysical parton distributions by factorization scheme changes at

a given order (or even at all orders) but the changes invoked by transfer between the commonly

used schemes are diminished somewhat by the reduction of the size of the splitting functions and

coefficient functions by the inclusion of the running coupling effects. It is also true that many

of the changes invoked by factorization scheme changes are themselves due to running coupling

effects, and the resummation of these stabilizes the whole procedure a great deal. Hence, it is now

possible to work in terms of these unphysical quantities if one wishes, without potential disasters,

as long as the ordering of the expressions is done with particular care. Nevertheless, it is still very

convenient in some ways to eliminate the partons completely and work directly in terms of the

structure functions FL(x,Q2) and F2(x,Q
2) and the physical anomalous dimensions [22]. In fact

we can easily argue a case for improved stability. At LO the longitudinal coefficient function is

positive and quite large at small x, and hence FL(x,Q2) will be enhanced compared to the gluon

at small x. At NLO the gluon evolution is smaller than at LO. Hence, evolving down from a

given gluon at very high Q2 (where everything is simpler and more reliable) the NLO gluon will be

larger at small Q2 than the LO gluon. However, we expect the NLO corrections to CL,g(x,Q
2) to

be negative, and thus counteract this increase in the NLO gluon in the calculation of FL(x,Q2).

Hence FL(x,Q2) is (probably) a more stable perturbative quantity at small x than G(x,Q2).
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The physical anomalous dimension which is most closely related to the gluon anomalous di-

mension is

ΓLL(N, t) =
d ln(FL(N, t))

dt
. (5.13)

Ignoring the mixing with the quark sector this is given in terms of the parton related quantities by

ΓLL(N, t) = γgg(N, t) +
d ln(CL,g(N, t))

dt
, (5.14)

where I will use the convention of ignoring the overall power of αs(Q
2) in the coefficient function

which would just result in a single contribution of −β0α
2
s(Q

2) to (5.14). Using the LO γgg(N, t)

plus running coupling corrections, and similarly for CL,g(N, t) we see that the latter gives entirely

running coupling corrections, and the total is the LO γgg(N, t) with an extended set of running

coupling corrections. This total expression could be calculated from the γgg(N, t) and CL,g(N, t)

already calculated, but part of the advantage in using physical anomalous dimensions is that it

reduces the number of perturbative quantities governing the structure function evolution, i.e. the

four splitting functions and four coefficient functions used to define F2(x,Q
2) and FL(x,Q2) are

reduced to four truly independent physical splitting functions. Hence, we notice that using (5.4)

for the longitudinal structure function we can calculate ΓLL(N, t) and PLL(x, t) directly, rather

than from (5.14). Of course, the two definitions are equivalent, but the latter allows a single

power-suppressed correction to be calculated rather than having to combine those for γgg(N, t)

and CL,g(N, t) and thus the potential error is minimized. The asymptotic power-like behaviour

for PLO
LL (x, t) is not identical to that of PLO

gg (x, t) and is shown in fig. 4. The difference is only

relatively minor, but one sees that the power-like growth for FL(x,Q2) is slightly smaller than for

the gluon, and is also slightly less Q2-dependent. The result for the LO in ln(1/x) power-series

solution xPLO
LL (αs(Q

2), x) is unfortunately a little less convergent than the previous LO quantities,

due to large coefficients generated in taking the derivative with respect to t of the expression for

FL(N, t) (or of CL,g(N, t)). Hence, in order to obtain an expression which is sufficiently accurate

for Q2 > 1GeV2 and x > 0.00001 we need to go to about 12th order. This results in the explicit
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expression

xPLO
LL (αs(Q

2), x) = ᾱs(Q
2) + 0.333α2

s(Q2)β̄0 + α3
s(Q

2)
(

−4.157β̄0ξ + 4.266β̄2
0

)

+ α4
s(Q

2)
(

2.4
ξ3

3!
− 11.29β̄0

ξ2

2!
+ 12.94β̄2

0ξ − 4.02β̄3
0

)

+ α5
s(Q

2)
(

0.121β̄0
ξ3

3!
+ 37.85β̄2

0

ξ2

2!
− 99.88β̄3

0ξ + 61.92β̄4
0

)

+ α6
s(Q

2)
(

2
ξ5

5!
− 75.14β̄0

ξ4

4!
+ 454.7β̄2

0

ξ3

3!
− 1034β̄3

0

ξ2

2!
+ 1011β̄4

0ξ − 358.8β̄5
0

)

+ α7
s(Q

2)
(1.92

β̄0

ξ7

7!
− 13.94

ξ6

6!
+ 23.68β̄0

ξ5

5!
− 39.48β̄2

0

ξ4

4!
+ 121.9β̄3

0

ξ3

3!
− 155.2β̄4

0

ξ2

2!
+ 61.14β̄5

0ξ
)

+ α8
s(Q

2)
(

−16.91
ξ7

7!
+ 348.8β0

ξ6

6!
− 2087β̄2

0

ξ5

5!
+ 5522β̄3

0

ξ4

4!
− 7305β̄4

0

ξ3

3!
+ 4754β̄5

0

ξ2

2!
− 1215β̄6

0ξ
)

+ α9
s(Q

2)
(2.56

β̄0

ξ9

9!
− 119.5

ξ8

8!
+ 1173β̄0

ξ7

7!
− 5052β2

0

ξ6

6!
+ 12044β̄3

0

ξ5

5!
− 17444β̄4

0

ξ4

4!

+ 15528β̄5
0

ξ3

3!
− 7859β̄6

0

ξ2

2!
+ 1728β̄7

0ξ
)

+ α10
s (Q2)

(1.536

β̄2
0

ξ11

11!
−

16.73

β̄0

ξ10

10!
+ 83.37

ξ9

9!
− 492.2β̄0

ξ8

8!
+ 1559β̄2

0

ξ7

7!
+ 2043β3

0

ξ6

6!
− 24427β̄4

0

ξ5

5!

+ 61280β̄5
0

ξ4

4!
− 72753β̄6

0

ξ3

3!
+ 42720β̄7

0

ξ2

2!
− 9998β̄8

0ξ
)

+ α11
s (Q2)

(

−
18.53

β̄0

ξ11

11!
+ 444.0

ξ10

10!
− 2988β̄0

ξ9

9!
+ 5290β̄2

0

ξ8

8!
− 22253β̄3

0

ξ7

7!
− 135896β4

0

ξ6

6!

+ 321404β̄5
0

ξ5

5!
− 425485β̄6

0

ξ4

4!
+ 330620β̄7

0

ξ3

3!
− 141370β̄8

0

ξ2

2!
+ 25747β̄9

0 ξ
)

+ α12
s (Q2)

(2.82

β̄2
0

ξ13

13!
−

141.7

β̄0

ξ12

12!
+ 1757

ξ11

11!
− 10347β̄0

ξ10

10!
+ 39345β̄2

0

ξ9

9!
− 119096β̄3

0

ξ8

8!

+ 295058β̄4
0

ξ7

7!
− 538834β5

0

ξ6

6!
+ 658339β̄6

0

ξ5

5!
− 499685β̄7

0

ξ4

4!
+ 211914β̄8

0

ξ3

3!
− 38311β̄9

0

ξ2

2!

)

.

(5.15)

The power-suppressed correction is calculated in the usual manner and is of the form

36.57 exp(−1.75t)δ(1 − x) + exp(−t)

(

4.626

(

αs(t)

αs(4.5)

)−2.78

− 37.84

(

αs(t)

αs(4.5)

)−0.58

ξ

+ 67.22

(

αs(t)

αs(4.5)

)0
ξ2

2!
− 51.30

(

αs(t)

αs(4.5)

)0.17
ξ3

3!
+ 18.82

(

αs(t)

αs(4.5)

)−0.01
ξ4

4!

− 3.136

(

αs(t)

αs(4.5)

)−0.69
ξ5

5!
+ 0.1706

(

αs(t)

αs(4.5)

)−2.27
ξ6

6

)

.

(5.16)

The anomalous dimension ΓLO
LL (N, t) is plotted in fig. 14.a. Until N is very small it is similar

to γLO
gg (N, t) and both are close to the common αs(Q

2)/N contribution, though ΓLO
LL (N, t) is a

little larger at large N . However, at lower N ΓLO
LL (N, t) dips below the others before eventually
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rising above αs(Q
2)/N but staying below γLO

gg (N, t). Clearly the effect of the additional coefficient

function, and hence additional running coupling corrections, is to make ΓLL(N, t) dip significantly

below the O(αs(Q
2)) contribution ᾱs(Q

2)/N for a region and to reduce the value of the intercept

compared to the gluon structure function. The effective splitting function xPLO
LL (x, t) is shown

in fig. 15. In fig. 15.a we see that the power-suppressed contribution is larger for xPLO
LL (x, t)

than it was for xPLO
gg (x, t). In fig. 15.b we see the outcome of the comparison of the anomalous

dimensions for FL and the gluon. xPLO
LL (x, t) starts a little higher at x = 0 and the dip below the

O(αs(Q
2)) part is considerably more pronounced than for xPLO

gg (x, t). Also, going to x ∼ 10−5,

we see that the splitting function dips again, showing that the subleading poles in the anomalous

dimension may have large residues compared to the leading pole, and that the increase in xPLO
LL (x)

with decreasing x is not monotonic. This corresponds to the significant fall of ΓLL(N, t) below

ᾱs(Q
2)/N at N ∼ 0.6. The eventual rise of ΓLL(N, t) guarantees that the splitting function will

eventually rise again with the calculated intercept, i.e. like x−0.23, at even smaller x. However,

for t = 6 this asymptotic power behaviour does not set in until x < 10−10 and in the region of

x ∼ 10−7 xPLO
LL (x) even becomes slightly negative. For higher t even smaller x is required, e.g.

t = 8 (Q2 ≈ 30GeV2) needs x to become as low as 10−13 before the power-like behaviour sets in,

though the size of the dip before this is smaller than for t = 6. This illustrates very clearly that as

far as phenomenology at HERA, or any foreseeable collider, is concerned the value of the intercept

for the anomalous dimension is simply not relevant to the evolution of structure functions. Indeed,

it is very possible that before the power-like behaviour has set it unitarization effects have already

become important. For collider phenomenology it is the splitting functions over the relevant x and

Q2 range which one needs, and this requires the sort of detailed calculation in this paper.

One can follow exactly the same procedure for the other important physical anomalous dimen-

sion defined by

∂F2(N,Q
2)

∂ lnQ2
= Γ2L(Q2, N)FL(N,Q2), (5.17)

simply by using the LO expressions for dF2(N,Q2)
d ln Q2 and FL(N, t). The power-like behaviour as x→ 0

is governed by the poles in F(N, t) as in the previous case, so the position of the intercepts is

identical. The power-series expression requires the first 10 powers in order to be valid over the
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required range of x and Q2, so I write it as

xPLO
2L (αs(Q

2), x) =

[

δ(1 − x) + 2.5αs(Q
2) + α2

s(Q
2)

(

ξ − 0.167β̄0

)

+ α3
s(Q

2)
(ξ2

2!
− 12.72β̄0ξ + 12.0β̄2

0

)

+ α4
s(Q

2)
(
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ξ3

3!
− 41.41β̄0

ξ2

2!
+ 61.42β̄2

0ξ − 26.82β̄3
0

)

+ α5
s(Q

2)
(

5.78
ξ4

4!
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ξ3

3!
+ 253.0β̄2

0

ξ2
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− 444.1β̄3
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0

)

+ α6
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β̄0

ξ6
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ξ5
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0
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0
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0ξ
)

+ α7
s(Q

2)
(9.348
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ξ7
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ξ6
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+ 591.4β̄0

ξ5

5!
− 1701β̄2

0

ξ4

4!
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0

ξ3
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− 2315β̄4

0

ξ2
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+ 741.5β̄5

0ξ
)

+ α8
s(Q

2)
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ξ8

8!
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ξ7
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+ 70.68β0

ξ6
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0

ξ5
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+ 6623β̄3

0

ξ4

4!
− 9500β̄4

0

ξ3

3!
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0

ξ2
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− 1596β̄6

0ξ
)

+ α9
s(Q

2)
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β̄2
0

ξ10
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−
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ξ7
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+ 450.0β2

0

ξ6
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+ 9410β̄3

0

ξ5
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− 26327β̄4
0

ξ4
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+ 33805β̄5

0

ξ3
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+ α10
s (Q2)

(7.478

β̄2
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β̄0

ξ10
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ξ9
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ξ8

8!
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0

ξ7

7!
− 5511β̄3

0

ξ6

6!
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0

ξ5

5!
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0
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4!
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0

ξ3

3!
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0
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2!
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0 ξ
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]

.

(5.18)

The power-suppressed correction is

(3.558 + 0.4216t − 0.1542t2) exp(−t)δ(1 − x) + exp(−t)

(

72.17

(

αs(t)

αs(4.5)

)0.93

x

− 78.03

(

αs(t)

αs(4.5)

)1.66

+ 56.85

(

αs(t)

αs(4.5)

)2.66

ξ − 24.16

(

αs(t)

αs(4.5)

)0.58
ξ2

2!

+ 13.50

(

αs(t)

αs(4.5)

)2.50
ξ3

3!
− 10.32

(

αs(t)

αs(4.5)

)−2.27
ξ4

4!
+ 3.918

(

αs(t)

αs(4.5)

)−1.584
ξ5

5!

− 0.5141

(

αs(t)

αs(4.5)

)−1.05
ξ6

6!

)

,

(5.19)

where it is necessary to introduce a term ∝ x in order to get a good description at high N . The

full xP2L(x, t) is shown in fig. 16. a along with the two contributions above. The δ(1 − x) term is

replaced in the power series by the x-dependence in the O(αs(Q
2)) quark-gluon splitting function,

i.e. x(x2 +(1−x)2), normalized by 1.5 to give the correct N → 0 limit. This corresponds to a slight

modification of the usual physical anomalous dimension in terms of the O(αs(Q
2)) longitudinal

gluon coefficient function, but may be viewed as an analytic function with the correct N → 0 limit
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which aids presentation here.10 The δ(1 − x) terms in the power-suppressed contribution are very

small, and are simply left out. In fig. 16.b we see xP2L(x, t) plotted as a function of x along with

the naive LO BFKL calculation with coupling αS(Q2), and in order to illustrate the contribution

of the higher-order terms, also the zeroth order contribution 1.5x(x2 +(1−x)2). As with PLL(x, t)

one can see that P2L(x, t) has a dip at small x before the eventual power-like growth sets in, again

only for x < 1010, and as with all calculated quantities the running coupling corrections severely

diminish the strength of the small x growth.

We can also try to investigate the effect of NLO corrections on physical quantities. In terms

of partons the only known NLO correction is that to the gluon splitting function – there is simply

no information on the NLO corrections to coefficient functions or the quark splitting functions. In

terms of the physical anomalous dimensions, similarly there is no real information for Γ2L(N, t),

but the situation is better for ΓLL(N, t). Let us look at the expression in terms of the partonic

quantities (5.14), for the moment in the leading ln(1/x) expansion without resummed running

coupling corrections. At LO in 1/N , ΓLO
LL (N, t) is equal to γLO

gg (N, t) since the differentiation of

the log of the coefficient function with respect to t automatically introduces an extra factor of

β0αs(Q
2). At NLO in 1/N ΓNLO

LL (N, t) picks up a contribution from γNLO
gg (N, t) which is (largely)

independent of the running coupling, and the contribution from the derivative of the LO coefficient

function, which is entirely running coupling dependent. Hence, by knowing γNLO
gg (N, t) we know

the whole of ΓNLO
LL (N, t) before resuming running coupling corrections. Hence, we might hope that

using an expression of the form (5.4), but corrected in the way described in the previous section

for the NLO corrections to the kernel, we might calculate the full NLO, running coupling corrected

BFKL expression for ΓLL(N, t). Unfortunately, this is not quite the case. This can be appreciated

by again using (5.14). When solving this NLO corrected expression for FE,L(N, t) one includes all

the running coupling corrections to γNLO
gg (N, t) just by the manner of solving the equation. But

without knowing the NLO correction to the coefficient function one misses a whole series of terms of

the form αs(Q
2)(β̄0αs(Q

2))nf(ᾱs(Q
2)/N) which would come form the

d ln(CL,g(N,t))
dt term.11 Thus,

we do not yet know the full running coupling corrections to the NLO contribution to ΓLL(N, t).

I will proceed to calculate the “NLO” corrected ΓLL(N, t) on the assumption that since the

resummation of the running coupling corrections stabilizes the perturbative expansion the missing

10 This modification to the physical splitting function will be discussed in a future paper.
11 Some of these are automatically generated by using the NLO kernel in our solution, but the full set

requires also the NLO correction to the hard scattering cross-section which will lead to NLO corrections to

hL,g(γ).
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running coupling corrections will not lead to anything other than minor corrections. It is straight-

forward to generalize the results of section 4 to the case of the physical quantity. Essentially we

just replace (4.21) by

F1
E,L(N, t) ∝ t−cl/β̄0

∫

C

[

γ−1/(β̄0N)−1hL,g(γ)f
β0(γ) exp

(

γt−
1

(β̄0N)

∞
∑

n=1

anγ
2n+1

)(

1 +
∑

m=0

(1/β̄0)cmγ
m

)

−
cl
β̄0

[

ln(γt) − Ψ

(

−
1

β̄0N

)

+ π cot

(

π

β̄0N

)]

γ−(1/(β̄0N))−1hL,g(γ)f
β0(γ) exp

(

γt−
1

β̄0N

∞
∑

n=1

anγ
2n+1

)]

dγ,

(5.20)

where we are currently missing a further term of the form

−Nt−cl/β̄0

∫

C

γ−1/(β̄0N)−1δhL,g(γ, β̄0N)fβ0(γ) exp

(

γt−
1

(β̄0N)

∞
∑

n=1

anγ
2n+1

)

. (5.21)

Using (5.20) we can calculate both the power-series and power-suppressed NLO contributions to

ΓLL(N, t) and hence PLL(x, t). The LO +“NLO” values of the intercept for the asymptotic power-

like behaviour are shown in fig. 4. These lie very slightly below the LO+NLO intercepts for the

gluon, and hint at perhaps a more rapid convergence for the physical FL than for the gluon.

However, we would expect the missing contributions to lower the intercept a little more. The

“NLO” corrected anomalous dimension ΓLO+NLO
LL (N, t) is shown as a function of N for t = 6 in

fig. 14.b. It is very similar to that at LO until very low N where the difference in the leading

intercept starts to become apparent.

As for the NLO correction to xPgg(x, t) the power-series is not very convergent an to work all

the way down to Q2 = 1GeV2 and x = 0.00001 we again need the first 20 or so terms. Hence the

power-series contribution is

xPNLO
LL (αs(Q

2), x) = ᾱs(Q
2)

19
∑

n=1

mmax
∑

m=0

ᾱn
s (Q2)

(

Knm
ξmβ̄n−m−1

0

m!
+Knδβ̄

n
0 δ(1 − x)

)

, (5.22)

where the coefficients are listed in table 2. The power-suppressed contribution is

(−0.183 exp(−0.51t)δ(1 − x) + exp(−t)

(

31.90

(

αs(t)

αs(4.5)

)−0.274

− 80.22

(

αs(t)

αs(4.5)

)0.346

ξ

+ 56.67

(

αs(t)

αs(4.5)

)0.60
ξ2

2!
+ 9.017

(

αs(t)

αs(4.5)

)3.15
ξ3

3!
− 25.925

(

αs(t)

αs(4.5)

)1.715
ξ4

4!

+ 10.28

(

αs(t)

αs(4.5)

)1.875
ξ5

5!
− 1.298

(

αs(t)

αs(4.5)

)2.09
ξ6

6

)

.

(5.23)

The NLO correction to the splitting function xPNLO
LL (x, t) is shown, minus the contributions ∝

δ(1−x), in fig. 17.a. Clearly there is a very large cancellation between the power-series and power-

suppressed contributions resulting in a relatively small total NLO correction. We can see that
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unlike for the the gluon this NLO correction is actually positive in some regions of x, rather than

everywhere negative. We also see from fig. 17.b that the NLO splitting function is quite similar to

the LO splitting function over the whole x range.

However, as with the gluon, the real test of perturbative stability is the evolution of the

structure function itself. This is shown in fig. 18 where the evolution of a model for the structure

function FL(x,Q2), i.e. (1−x)6x−0.2, is shown both for the LO running coupling splitting function,

and for the “NLO” corrected one (all δ(1− x) contributions other that at first order in αs(Q
2) are

included). Also shown is the evolution due just to the double-leading-log term P (x) = ᾱs(Q
2)/x.

Compared to the evolution of the gluon shown in the previous section we see that the additional

running coupling contributions due to the t-derivative of the coefficient function have slowed the

LO evolution below that of the double-leading-log result over the whole range of x (except very

high x), and this will only cease to be true at very small x indeed, when the power-like growth

of the physical splitting function finally sets in. In this case, however, the difference between

LO and LO+“NLO” is much smaller than for the gluon, and the perturbative expansion seems

very stable indeed. As with the NLO corrections to the intercepts this might be a sign that the

expansion converges more quickly for the physical structure functions than for the unphysical gluon

structure function. However, as a note of caution, the missing contributions at NLO are likely to be

negative in general, and this difference between LO and NLO evolution will probably be increased

a little. In fact it is desirable for these missing contributions to be non-negligible. Whilst if we

decrease t to 4.5, i.e. Q2 ∼ 1GeV2, at NLO everything remains relatively stable for the gluon, the

physical splitting function starts to develop extreme behaviour at this low scale – the minimum at

x ∼ 0.01 becomes much lower and the peak at x ∼ 0.0001 becomes very much higher. This trend

is illustrated in fig. 11 b. which shows the renormalization scale dependence of PLO+NLO
LL (x, t)

for t = 6. Clearly there is very good stability for an increase in scale, but it is not so good for a

decrease in scale (though since the splitting function oscillates, the variation washes out to a large

extent when evolution is calculated). There is very good stability in both directions if one examines

the variation for a slightly higher t, say t = 8 (Q2 ∼ 30GeV2). This instability in the physical

splitting function results in instabilities in the evolution at t = 4.5, even though it appeared to be

very stable at t = 6. Hopefully, the inclusion of the missing terms will help stabilize this evolution,

though it may simply be a sign that at this low Q2 some non-perturbative contribution is becoming

essential.

6. Conclusions.

In this paper I have shown that it is possible to obtain analytic solutions to the LO running

coupling BFKL equation for the Q2-dependent parts of the gluon structure function and for the real

physical structure functions F2(x,Q
2) and FL(x,Q2). This results in a resummation of the leading
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ln(1/x) terms at each power in αs(Q
2) and also of the leading powers in β0 at each power of αs(Q

2)

and ln(1/x). However, the Q2
0-dependent gluon input is plagued by contamination from infrared

nonperturbative physics, and has an inherent ambiguity of O(Λ2/Q2
0). The analytic expressions

may be expressed in form of a power-series in αs(Q
2). In practice the main features of the solution

are almost completely determined by only the first handful (∼ 5) of terms in the expansion, in

complete contrast with the case of fixed coupling, where an all orders summation is needed. In fact

the perturbative series for the structure functions is not convergent, and the analytic expression

is most accurately obtained by this truncation. The small remainder, which roughly speaking

is suppressed by powers of (Λ2/Q2), may be calculated from the difference between a numerical

solution with the analytic solution, and then modelled by an analytic expression of Q2 and N ,

which may easily be transformed to x-space. There are two points to note here. Firstly, this power-

suppressed condition is both well-defined and is nothing to do with higher twist operators. Even

though there are infrared (and ultraviolet) renormalons in the untruncated perturbative expansion,

they only appear due to the impossibility of expressing the Q2-dependent part of the the structure

functions as a power series in αs(Q
2), not because of some inherent ambiguity at leading twist

as is often the case with renormalons. Hence, they are circumvented completely by this manner

of calculation. Secondly, this procedure of an analytic calculation as a truncated power series

plus a numerical calculation of the power-suppressed part, which is then modelled, seems to allow

for the most accurate determination of x-space quantities. Transformation of numerical moment

space expressions to x-space are subject to errors, and the magnification of the power-suppressed

contributions in x-space, compared to moment space, seen in this paper highlights the potential

effect of small errors in moment space when ultimately working in x-space. Hence, obtaining as

accurate an analytic moment space expression as possible is vital in ultimately obtaining good

accuracy for splitting functions and the evolution of structure functions.

It is also demonstrated that there are well-defined, calculable higher-twist contributions due

to the transverse degrees of freedom of the two-gluon operator. However, both the normalization

and splitting functions of these genuinely higher twist operators decrease quickly as x→ 0 (roughly

like x0.5 cos(0.5 ln(1/x))) when the small x resummation is performed. Unlike leading twist, this

is largely insensitive to the running coupling corrections. This result is only apparent from resum-

mation, and a fixed (small) order in αs(Q
2), particularly first order only, gives very misleading

results. Hence, this one form of higher twist does not lead to any sizable correction at all at small

x and Q2. It is possible that this unambiguous, small-x vanishing higher-twist contribution to the

two-gluon operator is responsible for the absence of a genuine ambiguity in the leading twist anoma-

lous dimensions. However, I note that this paper has nothing to say about the size of shadowing

corrections coming from four gluon operators, except to point out that the double-leading-log type

calculations often performed are likely to lead to huge overestimations. Neither does it consider the
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power-suppressed corrections due to nonperturbative effects which mix with higher twist, leading

to mixing with leading twist, and may well be important at extremely small x [15][29].

The calculated expressions for leading twist structure functions may be used to produce LO

expressions for the splitting functions and coefficient functions for physical processes, and also the

physical splitting functions which allow one to work directly in terms of physical quantities. My

results prove that the effect of the running of the coupling is to weaken the asymptotic power-

like growth of the splitting functions severely compared to the naive BFKL results, and even to

lower the splitting function below the αs(Q
2)/x contribution for 0.001 >∼ x >∼ 0.2. It is also noted

that the asymptotic behaviour of the form x−λ is often not approached even approximately until

x << 0.00001, with the required x decreasing with increasing Q2, and is therefore by no means a

good indicator of physics at present or future colliders. In fact it is very likely that unitarization

will stop this true power-like behaviour ever being seen. Rather than the intercept, the detailed

expressions for the splitting functions and coefficient functions are needed in order to really calculate

the evolution at realistic values of x.

The procedure can also be extended to NLO without any real modification, though there is

some ambiguity in precisely what the best definition of NLO is.12 The choice is made so that

the expressions for the structure functions are genuinely only a single power of αs(Q
2) down on

LO, up to β0αs(Q
2) corrections, but in γ(N, t) = d ln(G(N, t))/dt the full NLO expression for

(G(N, t))−1 is used, rather than truncating its expansion at NLO, and hence the full NLO correction

to the intercept is obtained. This has little effect until extremely small x. Unlike leading ln(1/x)

calculations without resummation of running coupling effects the NLO correction to the gluon

splitting function here is moderate, both for the value of the intercept and for the exact size of the

splitting function and the evolution of gluon structure function for x > 10−5. Hence, this running

coupling resummation does a great deal to stabilize the perturbative series. Unfortunately it is

not yet possible to calculate the complete NLO correction to any real physical quantity, though

one may come close for PLL(x, t), the splitting function governing the evolution of the longitudinal

structure function in terms of itself, which is very similar to Pgg(x, t). In this case only a subset of

the running coupling corrections to the NLO in ln(1/x) part are still unknown. For FL the stability

of the perturbative series looks even better than for the gluon as long as Q2 >∼ 4GeV2, but begins

to deteriorate below this, perhaps due to the missing corrections.

Let me also comment briefly on other methods which attempt to incorporate the NLO correc-

tions (and beyond) to the BFKL equation. Firstly I note that my previous conjecture that the effect

of the running coupling in the BFKL equation could be accounted for using an x-dependent scale

for the coupling [20], resulting in falling coupling for decreasing x, turns out to be essentially correct

12 The power-series expressions also become very complicated at NLO. It will probably ultimately be

more convenient to model them accurately with some simpler function of x and t similar to the manner in

which the power-suppressed contributions are treated at present.
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so long as the change in the scale of the coupling is moderate compared to the scale itself, though

it fails if this condition is not satisfied. In practice this condition is identical to that specifying that

diffusion in the fixed coupling BFKL equation is not too large, and therefore that the virtualities

sampled in the running coupling equation are not too far away from Q2. This results in the require-

ment that t3 >∼ 20 ln(1/x) [35]. This is true for all but the lowest x and Q2 at HERA. I also note

that my approach is completely consistent with that in [14][15], with both being built upon the

running coupling BFKL equation essentially introduced long ago [23][24][17][18] and generalized

beyond LO in [14]. The differences to this approach are that I ignore the collinear resummation

which is a central theme in this work, since as I stress it is an unnecessary complication in the

calculation of splitting functions - the running coupling effects being the most important and stabi-

lizing the calculation themselves; that I concentrate on solving very accurately and precisely for the

Q2-dependent part of the gluon and structure functions, obtaining splitting functions over the range

of x and Q2 relevant for a phenomenological treatment; and that I also ignore the complication of

a real regularization of the coupling in the infrared region (this latter point is also considered in

[36]). Hence, I obtain detailed accurate results for all splitting functions and coefficient functions

in closed form, but ignore contributions considered in these papers which are necessary if investi-

gating single-scale processes and/or potential nonperturbative effects (which may be important for

splitting functions at low Q2 and very small x [29]). There is less similarity with other approaches.

Even though that in [37] claims to in some sense be dealing with the scale appropriate for the

coupling in this problem, it has no overlap with the approach in this paper, and comments on this

approach can be found in [20]. Also there is no connection with the approach in [38] which adopts a

phenomenological approach to resummation beyond fixed orders in ln(1/x) in terms of the asymp-

totic power-like behaviour, which is a free parameter, and which consequently loses true predictive

power for the evolution at small x. Finally, there also seems to be no overlap with the approach in

the first part of [39] which incorporates subleading effects via a kinematic constraint while solving

the BFKL equation - resulting in an anomalous dimension which includes a resummation of some

subset of higher order contributions, none of which is concerned with the running of the coupling,

but which stabilizes the calculation. (The latter part of [39] also includes a running coupling and

infrared regularization, but concentrates on the normalization rather than the evolution.) In this

sense it has some similarities to the resummation of collinear logs in [13], which also stabilizes

results even with fixed coupling (and which is essential in single scale processes). Hence, there

appear to be a number of ways in which the apparent poor convergence of the perturbative series

at small x can be improved. However, since one must ultimately deal with the contribution of the

running coupling in all perturbative QCD calculations I prefer to concentrate on this feature and

consider just the resulting β0 resummation combined with the ln(1/x) resummation, which results

in explicit results in terms of an ordered power-series in the well-defined quantities αs(Q
2), ln(1/x)

and β0. This stabilizes the small x expansion without consideration of these other effects, indeed
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it leads to the most divergent terms as x → 0 [20] and alters the complete singularity structure,

and moreover is easy to directly incorporate into the usual calculation of partons and structure

functions in terms of the coefficient functions and splitting functions.

It will, of course, be interesting to examine the effect of incorporating my resummed corrections

to splitting function in a global fit to structure function and related data. Such an analysis will

also need to include a precise explanation of how the small x relevant expansions derived in this

paper must be combined with the normal order-by-order in αs(Q
2) expansion, and potentially large

ln(1 − x) expansions. Full details of such a fit, and the complete procedure used, will appear in a

future paper which awaits the release of new data from a number of experimental collaborations.

From the analysis of presently published data it is clear that the quality of such a fit is improved

by inclusion of these small x resummed corrections13, and that the predicted FL(x,Q2) is smaller

than that form a NLO-in-αs(Q
2) fit, but much more regular in shape at low Q2 than that seen in

[5].14 This can be seen as a solution to the lack of convergence of FL(x,Q2) apparent as one goes

from LO to NLO to NLO in the conventional expansion scheme which is seen in [5].

Hence, I conclude by claiming that this paper outlines a method for including the most complete

resummation of splitting functions (and coefficient functions) which is needed at small x, and

satisfies the theoretical requirements of stability of the perturbative expansion and the minimum

of model dependence as well as the more practical considerations of being in a closed form which is

easy to implement. It will prove useful in an analysis of structure function data, and in a prediction

of related quantities relevant for the Tevatron and the LHC. However, at present it only really exists

at LO (and not even that for many quantities), and for full implementation the calculation of the

NLO impact factors within the BFKL framework is urgently needed. Once this is done, a truly full

NLO analysis of structure functions, which will be equally valid over the full perturbative range

will be possible.
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Table 1.

The coefficients Knm in

xPNLO
gg (ξ, αs(Q

2)) = ᾱs(Q
2)

19
∑

n=1

mmax
∑

m=1

ᾱn
s (Q2)

(

Knm
ξmβ̄n−m

0

m!
+Knδβ̄

n
0 δ(1 − x)

)

. (6.1)

n m = 5 m = 4 m = 3 m = 2 m = 1 m = 0

m = 11 m = 10 m = 9 m = 8 m = 7 m = 6

m = 17 m = 16 m = 15 m = 14 m = 13 m = 12

m = 23 m = 22 m = 21 m = 20 m = 19 m = 18

1 -0.4236

2 -1.354 1.611

3 -7.000 30.22 -34.63

4 -5.686 46.92 -103.2 63.85

5 -16.14 193.5 -797.2 1373 -918.0

6 186.0 -971.0 2518 -3323 2045 -458.9

-14.35

7 -1386 5051 -9865 10113 -4281 709.2

-10.60 192.0

8 21431 -59800 99225 -95325 49058 -11483

-24.48 511.5 -4497

9 70532 -46099 -25896 59631 -29684 2798

-17.21 349.4 -3100 15284 -44034

10 -126387 -261087 735693 -761882 373984 -77690

-12.01 326.1 -3758 23801 -88010 179647

11 8688676 -9665206 6981022 -3087487 771318 -102010

1117.6 -15044 119789 -620744 2179220 -5256680

-37.57

12 -1.621×107 1.864×107 -1.288×107 5044618 -962638 64963

46536 -211318 563130 -547416 -1766356 8225690

-18.36 506.4 -6353

13 1.139×108 - 1.236×108 8.576×107 -3.677×107 9106782 -1186015

-400076 1467162 -2855626 -645255 2.136×107 -6.623×107

-12.58 453.6 -7298 68149

14 4.425 ×108 -2.089×108 6.225×107 -1.129×107 2061380 -386008

1.425×107 -5.541×107 +1.589×108 -3.345×108 5.135×108 -5.625×108

-46.85 180.1 -32842 359398 -2678626

15 -7.723×108 1.340×108 1.391×108 -1.075×108 3.170×107 -4331143

-1.146×107 1.108×108 -4.028×108 9.069×108 -1.361×109 1.339×109

639.2 -103283 101509 -640342 2523533 -4527424

-18.33
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n m = 5 m = 4 m = 3 m = 2 m = 1 m = 0

m = 11 m = 10 m = 9 m = 8 m = 7 m = 6

m = 17 m = 16 m = 15 m = 14 m = 13 m = 12

m = 23 m = 22 m = 21 m = 20 m = 19 m = 18

16 1.403×1010 -8.066×109 3.172×109 -8.188×108 1.324×108 -1.227×107

2.987×109 -1.490×109 4.598×109 -9.865×109 1.529×1010 -1.724×1010

-11408 137101 -1076349 5431540 -1.481×107 -9014694

-12.37 552.7

17 -1.108×1010 7.809×109 -3.096×109 6.807×108 -7.184×107 1672556

9.306×109 -1.676×1010 2.172×1010 -1.824×1010 6.057×109 6.571×109

803905 -7783462 5.544×107 -2.982×108 1.227×109 -3.869×109

-57.64 2645 -58085

18 7.129×1010 -4.890×1010 2.107×1010 -5.733×109 9.531×108 -8.884×107

-3.690×1010 6.574×1010 -8.024×1011 5.604×1010 3.195×109 -5.773×1010

7633219 -2.006×107 -4.467×107 7.555×108 -4.185×109 1.480×1010

-17.59 741.8 -14788 180754 -1460081

19 4.467×1011 -1.573×1011 3.986×1010 -7.340×109 9.737×108 -8.398×107

4.962×1011 -9.477×1011 1.402×1012 -1.602×1012 1.399×1012 -9.198×1011

-4.778×107 -6.248×107 1.948×109 -1.372×1010 6.153×1010 -2.005×1011

-11.75 620.5 -15217 225792 -2200274 1.398×107

The series for the part proportional to δ(1 − x) is more convergent in αs(Q
2) and for all

Q2 >∼ 1GeV2 is given accurately by

ᾱs(Q
2)δ(1 − x)

[

9.0(β̄0ᾱs(Q
2))3 + 139.5(β̄0ᾱs(Q

2))5 + 38.88(β̄0ᾱs(Q
2))6 + 964.2(β̄0ᾱs(Q

2))8

+ 167.0(β̄0ᾱs(Q
2))9 + 5605(β̄0ᾱs(Q

2))10
]

.

(6.2)
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Table 2.

The coefficients Knm in

xPNLO
LL (ξ, αs(Q

2)) = ᾱs(Q
2)

19
∑

n=1

mmax
∑

m=1

ᾱn
s (Q2)

(

Knm
ξmβ̄n−m

0

m!
+Knδβ̄

n
0 δ(1 − x)

)

. (6.3)

n m = 5 m = 4 m = 3 m = 2 m = 1 m = 0

m = 11 m = 10 m = 9 m = 8 m = 7 m = 6

m = 17 m = 16 m = 15 m = 14 m = 13 m = 12

m = 23 m = 22 m = 21 m = 20 m = 19 m = 18

1 -0.4236

2 -1.354 9.494

3 -7.040 25.89 -29.49

4 -5.672 63.20 -222.22 251.90

5 -15.84 310.8 -1504 2766 -1964

6 243.4 -1444 4540 -7293 5206 -1100

-17.45

7 -5265 24975 -61945 82368 -55633 16210

-19.57 521.2

8 27358 -84630 162654 -187932 116668 -31108

-6.545 448.6 -5158

9 215634 -122925 -266550 550451 -383797 100196

-20.94 468.9 -5027 31574 -114142

10 -1552522 1019004 567195 -1582395 1103037 -286332

-22.36 814.7 -12094 91607 -396924 1031187

11 3.965×107 -5.343×107 4.627×107 -2.425×107 7013331 -1016798

1291 -23513 232273 -1492972 6537249 -1.956×107

-20.00

12 -2.424×108 2.970×108 -1.702×108 1.214×108 -3.553×107 5390954

60402 -153923 -952951 1.057×107 -4.805×107 1.328×108

-22.33 641 -8519

13 -1.514×108 - 7.7974×107 1.993×108 -1.426×108 4.814×107 -7741384

-2256260 1.199×107 -4.586×107 1.252×108 -2.356×108 2.796×108

-23.25 1171 -25002 296133

14 4.934 ×109 -2.902×109 9.784×108 -1.227×108 -1.883×107 6764209

5.595×107 -2.675×108 9.236×108 -2.317×109 4.213×109 -5.475×109

-33.40 2462 -61331 876031 -8361477

15 -2.576×1010 1.702×1010 -7.397×109 1.968×109 -2.961×108 2.201×107

-3.263×108 1.473×109 -4.775×109 1.147×1010 -2.052×1010 2.708×1010

781.7 -12818 114646 -395405 -2857628 4.706×107

-22.34
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n m = 5 m = 4 m = 3 m = 2 m = 1 m = 0

m = 11 m = 10 m = 9 m = 8 m = 7 m = 6

m = 17 m = 16 m = 15 m = 14 m = 13 m = 12

m = 23 m = 22 m = 21 m = 20 m = 19 m = 18

16 1.725×1011 -1.209×1011 5.738×1010 -1.764×1010 3.314×109 -3.434×108

-1.550×109 -7.835×108 1.583×1010 -5.601×109 1.187×1011 -1.710×1011

-40001 623658 -6411756 4.638×107 -2.376×108 8.205×108

-2.90 1464

17 -3.968×1011 3.104×1011 -1.572×1011 5.059×1010 -9.869×109 1.057×109

5.446×1010 -1.036×1011 1.304×1011 -6.795×1010 1.099×1011 3.145×1011

1959861 -2.351×107 2.013×108 -1.264×109 5.914×109 -2.077×1010

-45.09 3674 -110727

18 -2.261×1012 8.240×1011 -1.747×1011 1.319×1010 2.293×109 -5.601×108

-8.652×1011 2.018×1012 -3.648×1012 5.066×1012 -5.319×1012 4.119×1012

-1.287×107 2.343×108 -1.611×109 1.497×1010 -7.492×1010 2.888×1011

-21.44 885.6 -171708 177961 -514627

19 1.562×1013 -6.662×1012 1.980×1012 -3.942×1011 4.967×1010 -3.565×109

5.886×1012 -1.334×1013 2.338×1013 -3.179×1013 3.328×1013 -2.645×1013

-6.036×108 1.710×109 4.335×109 -7.920×1010 4.895×1011 -1.982×1012

-21.75 1680 -54959 1031287 -1.271×107 1.077×108

The series for the part proportional to δ(1 − x) is more convergent in αs(Q
2) and for all

Q2 >∼ 1GeV2 is given accurately by

ᾱs(Q
2)δ(1 − x)

[

−0.3094(β̄0ᾱs(Q
2)) − 3.856(β̄0ᾱs(Q

2))2 + 6.376(β̄0ᾱs(Q
2))3 − 50.36(β̄0ᾱs(Q

2))4

+ 340.0(β̄0ᾱs(Q
2))5 + 55.51(β̄0ᾱs(Q

2))6 − 1600(β̄0ᾱs(Q
2))7 + 2838(β̄0ᾱs(Q

2))8 − 8457(β̄0ᾱs(Q
2))9

+ 24526(β̄0ᾱs(Q
2))10 + 57602(β̄0ᾱs(Q

2))11 − 325984(β̄0ᾱs(Q
2))12 + 477536(β̄0ᾱs(Q

2))13
]

.

(6.4)

49



Figure Captions

Fig. 1. The branch points and cuts associated with exp(−X0(γ)/(β̄0N)) and the saddle-point

contour, the Gamma-function contour and the numerical integration contour.

Fig. 2. The expression ∆4(−1/(β̄0N)) as a function of N compared to 1/(β̄0N)4.

Fig. 3. The Q2-dependent part of the gluon structure function, GE(N, t), and of dGE(N, t)/dt

as a function of N for t = 6 (Q2 ∼ 6GeV2). The Q2-independent factor of

− sin(π/(β̄0N))Γ(−1/(β̄0N)) exp(−γE/(β̄0N)) is included in both in order to produce

a smoother N -dependent normalization of the functions.

Fig. 4. The positions of the leading poles in the anomalous dimensions for the gluon structure

function at LO and NLO, and for FL at LO and NLO.

Fig. 5. a. The anomalous dimension for the gluon structure function at LO plotted as a function

of N for t = 6 (Q2 ∼ 6GeV2). Also shown is the O(αs(Q
2)) contribution ᾱs(Q

2)/N , and

the full naive LO BFKL anomalous dimension. b. The anomalous dimensions for the

gluon at LO and at NLO plotted as functions of N for t = 6.

Fig. 6. a. The splitting function xPLO
gg (x) and its power series and power-suppressed contributions

plotted as functions of x for t = 6. b. The splitting function xPLO
gg (x) plotted as a function

of x for t = 6 (Q2 ∼ 6GeV2). Also shown is the O(αs(Q
2)) contribution ᾱs(Q

2), and the

naive LO BFKL splitting function with coupling αs(Q
2).

Fig. 7. The next-to-leading twist splitting function for ᾱs = 0.2.

Fig. 8. The value of exp(−γ̃t0 +X0(γ̃)/(β̄0N)), along the real axis for N = 0.4 and t0 = 2, along

with γ̃ = γHT
0 (t0), γ

HT
0 (t) for t≫ t0.

Fig. 9. a. The splitting function xPNLO
gg (x) and its power-series and power-suppressed contribu-

tions plotted as functions of x for t = 6. b. The splitting functions xPLO+NLO
gg (x) plotted

as a function of x for t = 6 (Q2 ∼ 6GeV2). Also shown is the O(αs(Q
2)) contribution

ᾱs(Q
2), and the LO contribution xPLO

gg (x).

Fig. 10. The values of dG(x,Q2)/d lnQ2, for G(x,Q2) = x−0.2(1 − x)6, due to the LO splitting

function PLO
gg (x) and the LO+NLO splitting function PLO+NLO

gg (x), plotted as functions of

x for t = 6 (Q2 ∼ 6GeV2). Also shown is the evolution due to the O(αs(Q
2)) contribution

P (x) = ᾱs(Q
2)/x.

Fig. 11. a. The renormalization scale variation of the LO+NLO splitting function PLO+NLO
gg .

Shown are the three choices of scale Q2, 0.5Q2 and 2Q2 for t = 6, i.e. Q2 ∼ 6GeV2. b.

The same for the LO+NLO physical splitting function PLO+NLO
LL .

Fig. 12. a. The full leading ln(1/x) plus running coupling corrections coefficient function

xCL,g(x, t) plotted as a function of x for t = 6 and Nf = 4. Also shown are the con-

tributions from the power-series and the power-suppressed part. Note that the term

∝ δ(1 − x) in the power-series is replaced by the full O(αs(Q
2)) contribution 6x2(1 − x),

and the terms ∝ δ(1 − x) in the power-suppressed part are absent. b. xCLO
L,g(x, t) plotted
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as a function of x for t = 6 and Nf = 4. Also shown is the coefficient function obtained

from the naive LO BFKL calculation, and the contribution at O(αs(Q
2)) alone.

Fig. 13. a. The full leading ln(1/x) plus running coupling corrections coefficient function xPqg(x, t)

plotted as a function of x for t = 6 and Nf = 4. Also shown are the contributions from

the power-series and the power-suppressed part. Note that the term ∝ δ(1 − x) in the

power-series is replaced by the full O(αs(Q
2)) contribution 1.5x(x2 + (1 − x)2), and the

terms ∝ δ(1 − x) in the power-suppressed part are absent. b. xPLO
qg (x, t) plotted as a

function of x for t = 6 and Nf = 4. Also shown is the coefficient function obtained from

the naive LO BFKL calculation, and the contribution at O(αs(Q
2)) alone.

Fig. 14. a. The anomalous dimensions for the gluon structure function at LO and for FL(N, t)

at LO plotted as functions of N for t = 6. Also shown is the O(αs(Q
2)) contribution

common to each. b. The anomalous dimensions for FL(N, t) at LO and “NLO” plotted

as functions of N for t = 6.

Fig. 15. a. The splitting functions xPLO
LL (x) and its power series and power-suppressed contribu-

tions plotted as a function of x for t = 6. b. The splitting function xPLO
LL (x) plotted

as a function of x for t = 6 (Q2 ∼ 6GeV2). Also shown is the O(αs(Q
2)) contribution

ᾱs(Q
2), the gluon splitting function PLO

gg (x) and the naive LO BFKL splitting function

with coupling αs(Q
2).

Fig. 16. a. The full leading ln(1/x) plus running coupling corrections physical splitting function

xP2L(x, t) plotted as a function of x for t = 6. Also shown are the contributions from

the power-series and the power-suppressed part. In the power-series the part ∝ δ(1 − x)

is replaced by 1.5x(x2 + (1 − x)2) while in the power-suppressed part this contribution

is simply absent. b. The physical splitting function xP2L(x, t) plotted as a function of

x for t = 6 along with the physical splitting function obtained from the naive LO BFKL

calculation with coupling αs(Q
2) and the zeroth order contribution.

Fig. 17. a. The splitting functions xPNLO
LL (x) and its power series and power-suppressed contribu-

tions plotted as functions of x for t = 6. b. The splitting function xPLO+NLO
LL (x) plotted

as a function of x for t = 6 (Q2 ∼ 6GeV2). Also shown is the O(αs(Q
2)) contribution

ᾱs(Q
2), and the LO contribution xPLO

LL (x).

Fig. 18. The values of dFL(x,Q2)/d lnQ2, for FL(x,Q2) = x−0.2(1 − x)6, due to the LO splitting

functions PLO
LL (x) and the LO+NLO splitting function PLO+NLO

LL (x), plotted as a func-

tion of x for t = 6 (Q2 ∼ 6GeV2). Also shown is the evolution due to the O(αs(Q
2))

contribution P (x) = ᾱs(Q
2)/x.
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LO Longitudinal Coefficient Function
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Comparison of ∆4(1/β
–

0N) and 1/(β
–

0N)4
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Evolution of FL, ln(Q2/Λ2)=6, FL=(1-x)6x-0.2
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 NLO Physical Splitting Function
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Comparison of Anomalous Dimensions
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Comparison of Physical Anomalous Dimensions
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Evolution of G(x,t), ln(Q2/Λ2)=6, G(x)=(1-x)6x-0.2
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Q2-dependent gluon and its lnQ2-derivative
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Next-to-Leading Twist Gluon Splitting Function
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exp(-γt0+X0/(β
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Comparison of Intercepts
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LO Splitting Function P2L
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LO Longitudinal Splitting Function
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LO Gluon Splitting Function
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NLO Gluon Splitting Function
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LO Quark-Gluon Splitting Function
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Renormalization Scale Variation
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