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Abstract

We calculate the order O(α2α3

s
) interference effect between the gluon fusion and weak

boson fusion processes allowed at the one-loop level in Higgs boson plus 2 jet production at
the LHC. The corresponding one-loop amplitudes, which have not been considered in the lit-
erature so far, are evaluated analytically using dimensional regularisation and the necessary
master integrals with massive propagators are reported. It is discussed in detail how vari-
ous mechanisms conspire to make this contribution numerically negligible for experimental
studies at the LHC.

1 Introduction

One of the main tasks for the experimental and theoretical programme in connection with the
CERN LHC is to investigate the mechanism of electro-weak symmetry breaking. Central to this
study would be the measurement of the couplings of any observed Higgs scalar to the electro-
weak bosons. This can be performed either by studying the decays H → ZZ,WW [1, 2] with
contributions from all production channels, or the production process pp → Hjj [3–5] through
weak boson fusion (WBF) [6], as shown in Fig. 1(a), with contributions from all identifiable decay
channels. The Higgs plus two jet signature also receives contributions from Higgs boson produc-
tion through gluon-fusion mediated through a top-loop, as illustrated in Fig. 1 (b). However,
the Higgs plus dijet-sample can be biased towards WBF by suppressing the gluon-fusion chan-
nel through a combination of cuts, requiring both well-separated jets (effectively suppressing
the largest component of gluon-initiated processes) and suppressing events with further central
jets (produced predominantly in the gluon-fusion channel, since here the two tagging jets are
colour-connected).

For the gluon fusion process, the first radiative corrections have been calculated within
QCD [7, 8] using the heavy top mass effective Lagrangian [9–11]. For the WBF, both the
radiative corrections within QCD [11–14] and the electro-weak sector [15] have been calculated.
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Figure 1: (a) The WBF process for Higgs production in the Standard Model and (b) the
equivalent gluon-fusion diagram mediated through a top-loop.

The radiative corrections to the WBF channel are small, 3% − 6%, and there is even partial
numerical cancellation between the QCD and electro-weak contributions. It would therefore
seem that the Higgs coupling to electro-weak bosons can be very cleanly studied with a Hjj-
sample.

Until recently, the irreducible contamination in the extraction of the ZZH-coupling from
interference between the gluon fusion and WBF processes was ignored in the literature. At
tree level, such interference is only allowed in amplitudes where the two quarks have the same
flavours, but their contribution is kinematically suppressed by the requirement of a t ↔ u-
channel crossing, as discussed in Ref. [16]. These interference terms were later also included in
the calculation reported in Ref. [15], where the full electroweak corrections have been calculated,
and which also took into account other crossing-suppressed one-loop amplitudes.

In the present paper we will report on the calculation of the processes allowed at the one-
loop level which do not suffer from the suppression stemming from the requirement of a t ↔ u-
crossing. As will be explained below, one finds at order O(α2α3

s) an interference term between
the gluon- and Z-induced amplitude which is not allowed at O(α2α2

s) by colour conservation.
The W -induced amplitudes are crossing-suppressed and therefore not taken into account. The
diagrams where the vector boson is in the s-channel can be safely neglected because they are
strongly suppressed by the WBF cuts.

Given that electroweak corrections to the WBF process, which are formally an order O(α)
correction to an O(α4) process, have been shown to be relevant for this important process [15],
simple power counting alone suggests that the size of the irreducible contamination due to the
discussed interference effect should be checked. We will elaborate below that arguments in the
literature which are based on simplified assumptions do not capture all effects found by doing
the full one-loop calculation.

In the following section we will briefly sketch the calculation before discussing our results in
section 3, which are summarized in the conclusions. The appendix contains an extensive list of
the master integrals needed for this calculation. Most of these integrals have not been reported
in the literature so far.
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Figure 2: Example of contributing one-loop interference terms: (a) MgZM∗
g and (b) MggM∗

Z .
There are four contributing topologies for each gluon-fusion and Z-fusion process.

◮

◮

Figure 3: One of the real emission processes which contributes at the matrix element squared
level.

2 The Calculation

We set out to calculate the helicity amplitudes necessary to form the loop interference terms
and the real emission contributions. Sample diagrams are shown in Figs. 2 and 3. As discussed
in Ref. [16] this is the lowest order contribution to the interference between ZZH and ggH-
processes for non-identical quark flavours and helicity configurations, and for identical quark
and helicity configurations the loop amplitudes are the first order which does not require a
kinematically disfavoured crossing.

The amplitudes have four non-zero helicity components, which we label by ++++, −−−−,
− + +− and + −−+. Due to parity invariance of the kinematical part of the amplitudes, only
two of them are independent. By using the spinor helicity formalism we have defined projection
operators on each of these amplitudes. In practice, we calculate the amplitudes with all momenta
incoming (and therefore summing to zero); to map to physical scattering kinematics, crossing
relations are applied easily in the end.

The leading order amplitudes, denoted by MZ and Mg (see Fig. 2), are proportional to a
colour singlet and a colour octet term. The colour singlet is formally of order O(α2) whereas
the octet is of order O(α2

s). The virtual corrections, which we call MgZ and Mgg respectively,
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are mixtures of octet and singlet terms. For the intereference term we need to consider only the
octet part of MgZ and the singlet part of Mgg. One finds that only four one-loop five-point
topologies for each amplitude survive this colour projection. As was already pointed out in
Ref. [16], the colour singlet cannot interfere with the colour octet tree amplitude for different
quark flavours. However, a new colour channel opens up at order O(α2α3

s) which is neither
flavour nor kinematically suppressed.

The loop amplitudes require the evaluation of one-loop five-point tensor integrals with partly
massive propagators and external legs. We apply the reduction algorithm outlined in Ref. [17,18]
to express each Feynman diagram as a linear combination of 1-, 2-, and 3-point functions in
D = 4−2ǫ dimensions and 4-point functions in D=6. The same algorithm has been successfully
applied to a number of one-loop computations and further details can be found elsewhere [19–22].
The coefficient of each integral, which is a rational polynomial in terms of Mandelstam variables
sij = (pi + pj)

2 and masses, was evaluated symbolically using FORM [23] and simplified using
Mathematica [24]. Both steps were fully automated. The algebraic expressions were checked
by independent implementations, both amongst the authors and with another group [25].

After the algebraic reduction, all helicity amplitudes for both cases, gluon and weak boson
fusion, were obtained as linear combinations of a certain number of scalar integrals. We choose
this basis of so-called master integrals (MIs) in accordance with Ref. [26], i.e. our MI’s are
D-dimensional two-point and three-point functions (ID

2 , ID
3 ), and (D+2)-dimensional four-point

functions (ID+2
4 ). Schematically

M =
∑

j,α

kjαIj({sα,mα}) , Ij ∈ {ID
2 , ID

3 , ID+2
4 } (1)

where the summation over α indicates the summation over different argument lists {sα,mα} of
the relevant MI. The conventions for the arguments and the analytic forms of these are given
in the appendix. No one-point functions appear in the reduction, and also two-point functions
are absent in the amplitudes of MgZ . Furthermore, coefficients of some of the integrals which
arise in several topologies sum to zero: if the tree resulting from a cut of an internal line of a
master integral corresponds to helicity forbidden tree level processes one can immediately infer
the vanishing of the corresponding coefficient. In our algebraic tensor reduction approach we are
able to verify such cancellations and enforce them analytically before the numerical evaluation
of the cross section (for a nontrivial example see Ref. [26]).

The coefficients we obtain through this procedure can be too large to be of use in a printed
form (their simple polynomial structure means that numerical evaluation is, however, fast). We
performed several algebraic checks of relations between coefficients of different topologies and
helicity configurations. The coefficients are included as supplementary material to this paper.

As most of the required integrals are not provided in the literature, we have evaluated
representations in terms of analytic functions valid in all kinematic regions. We give our result
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paT
, pbT

> 20 GeV ηa · ηb < 0
ηj < 5 |ηa − ηb| > 4.2

sab > (600 GeV)2

Table 1: The cuts used in the following analysis which bias the Higgs Boson plus dijet sample
towards WBF. The suffices a, b label the tagged jets.

for these integrals in the appendix, as they might be of use for other calculations1.
The IR structure of the interference term is very simple. It is easily extracted from the result

by focusing on the IR divergent triangles. All MIs with single poles drop out. Only triangles
with double poles survive. This results in an expression

∼ αsCF [(−s13)
−ǫ + (−s24)

−ǫ − (−s12)
−ǫ − (−s34)

−ǫ]/ǫ2

in which all double poles cancel and only sub-leading soft divergences survive.
The virtual corrections to the interference term have to be combined with the real emission

part shown in Fig. 3. In accordance with the virtual corrections, the collinear IR divergences
from the three-parton final states integrate to zero, leaving only a soft divergence proportional
to 1/ε in dimensional regularisation. Due to the simple structure of the divergences, we have
used the phase space slicing method [28,29] to isolate the IR divergences from the real radiation
part. We have checked that the remaining single poles cancel exactly when combining the real
emission with the virtual part. The phase space integration and the numerical evaluation of
integrals and coefficients is coded in a C++ program allowing for a flexible implementation of
cuts and observables.

3 Results

This study aims at investigating a possible pollution of the clean extraction of the ZZH vertex
structure by the interference terms. Therefore we will apply the cuts summarised in Table 1,
which are generally used for the selection of WBF events [30] over the gluon fusion “background”.
Our input parameters for the numerical studies are taken from either the parton density function-
fit [31] in the case of αS(M2

Z) and the Review of Particle Physics [32] for the others.

αs(M
2
Z) = 0.1205 , g2 =

GF√
2

1

8M2
W

, GF = 1.16637 × 10−5 GeV−2

MZ = 91.1876 GeV , MW = 80.425 GeV , sin2 θW = 0.2312 .

(2)

1Of course all finite integrals can in principle be evaluated by using the LoopTools package [27]. The D = 6
boxes can be written as linear combinations of 3- and 4-point functions in D=4. If IR divergences are present, a
small regulator mass must be used, but its dependence can be made arbitrarily small as the D=6 box integral is
IR finite.
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Figure 4: The ∆φjj-distribution for different helicity-configurations of the valence quarks only.
The purple histogram labelled “Sum” indicates the sum over the four contributions shown. The
sum over all valence quark flavour and helicity assignments is shown in the black histogram.

We have checked that variations of the numerical values chosen for the WBF cuts have no impact
on the conclusions, nor does the exact value of the Higgs boson mass, which we set to 115 GeV
unless otherwise stated. The same is true for the choice of parton sets; we choose to use the
NLO set from Ref. [31], and use 2-loop running for αs, in accordance with the chosen pdfs.

We observe that in all the flavour and helicity channels, the finite contribution from the
3-parton final state is numerically negligible. In fact, in the case at hand, the only rôle of this
real emission is to cancel the divergences which arise from the one-loop diagrams.

As an interference effect proportional to 2Re(MggM∗
Z +MgZM∗

g), the result is not necessar-
ily positive definite. In fact, the sign of the interference contribution depends on the azimuthal
angle between the two tagging jets, ∆φjj. Because of the event topology with two well sep-
arated jets, it becomes possible to define an orientation of the azimuthal angle which allows
observability in the whole range of [−π, π), as pioneered in Ref. [6, 33]. ∆φjj is then defined
through

|p+T
||p−T

| cos ∆φjj = p+T
· p−T

,

2|p+T
||p−T

| sin ∆φjj = εµνρσbµ
+pν

+bρ
−pσ

−,
(3)

where b+ (b−) are unit vectors in positive (negative) beam direction, and likewise for the jet
momenta p±. The cuts ensure that the two tagging jets lie in opposite hemispheres.

Figure 4 displays the contribution to the distribution in ∆φjj from the interference terms for
various helicity and flavour configurations of the valence quarks only, for a Higgs boson mass of
115 GeV. Figure 5 displays the contribution to the distribution in ∆φjj including sea quarks.

Due to the oscillatory behaviour, the total integrated cross section does not at all tell the
full story about the size of the impact on the ∆φjj-distribution; for example, the integral of
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Figure 5: The ∆φjj-distribution for various flavour and helicity-configurations. The purple
histogram labelled “Sum” indicates the sum over the four contributions shown. The sum over
all flavour and helicity assignments including all sea flavours is shown in the black histogram.

the contribution from the sea and valence up-quarks with negative helicity, denoted by u−u−,
is +5 ab, while the distribution peaks at more than 150 ab/rad. If only valence quarks are
considered, the integral is −30 ab, while the distribution peaks at ∼ 90 ab/rad.

There is an accidental cancellation of sea and valence quark contributions which leads to the
fact that the sum over all flavour and helicity assignments peaks at around 2 ab/rad only, with
an integrated effect of 1.19 ± 0.07 ab, where the error is due to the numerical integration. Note
that the integral of the absolute value of the φjj distribution,

∫ π

−π
d∆φjj|

dσ

d∆φjj
| ,

is a useful measure of the impact of the interference effect on the extraction of the ZZH-vertex.
This integral evaluates to 9.1± 0.1 ab, an order of magnitude larger. The total integral over the
the absolute value of the fully differential cross section leads to 29.59 ± 0.07 ab.

As can be readily seen, there is a cancellation between the contribution from each flavour and
helicity assignment; this is because the sign of quark couplings to the Z-boson becomes relevant,
since it is not squared for the interference. The flavour- and helicity sum for each quark line
therefore leads to some cancellation, resulting from the weak charges listed in Table 2. This
cancellation was discussed in Ref. [34] for the valence content where it was pointed out that if
sin2 θW = 1/4 and the u-valence content of the proton was exactly twice the d-valence content
for all Björken x, the contributions from uu, ud and dd would sum to zero. However, neither of
these approximations is exactly true: sin2 θW = 0.2312 and the parton distribution functions are
shown in Fig. 6. The cancellation stemming from the SU(2) × U(1)-flavour and helicity sums
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qλ af,λ bf,λ

uL 1/2 -2/3
uR 0 -2/3
dL -1/2 1/3
dR 0 1/3

Table 2: SU(2) × U(1) charges for the Zqq̄-couplings, [af,λ + bf,λ sin2(θW )]

of the valence quarks can be effectively studied by calculating the ratio

∑

f,λ

cf,λ(x,Q2)/
∑

|cf,λ(x,Q2)| where

cf,λ(x,Q2) = f(x,Q2) [af,λ + bf,λ sin2(θW )],

(4)

where f(x,Q2) is the relevant parton distribution function. This ratio is plotted in Fig. 7 (left).
This figure also shows the ratio of the u-valence to the d-valence pdf, which influences the
cancellation. It follows that in QCD the cancellation due to SU(2) × U(1)-flavour and helicity
traces amounts to roughly 10−1 in the most relevant regions of the pdfs2. If one includes the
sea quarks in this argument, one sees that the ratio Eq. (4) is modified significantly, see Fig. 7
(right). Its change of sign in the relavant x-region leads to a further reduction of the interference
term after integration.

Using the same cuts and value for the mass of the Higgs boson as in the present study, we
have checked that the total contribution to the ∆φjj-distribution from the leading order WBF
process (both Z and W+/− included) is relatively flat at around 240 fb/rad. Therefore, the
result of the interference effect reported here is unlikely to be measurable.

The smallness of the overall effect is in fact also a result of the complex phases arising from
the full one-loop calculation of the amplitudes. To illustrate this, we calculate the average value
of

|Re
(

MgZM∗
g + MggM∗

Z

)

|
|MgZM∗

g| + |MggM∗
Z |

. (5)

The average over phase space for this quantity is roughly 20%, which illustrates that the relevant
products and sums for the interference effect project out only a small component of the full
complex loop amplitudes.

We have checked that none of the sources of suppression discussed above depends severely
on the mass of the Higgs boson; since the amplitudes themselves depend on this parameter
only weakly, the effect of increasing the Higgs boson mass is basically nothing but a reduction

2We were not able to reproduce the one order of magnitude larger suppression factor reported in Ref. [34]
within the naive Quark Model.
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Figure 6: The required parton distribution functions [31] in the relevant region of Björken x for
Q2 = 400 GeV2.

of available phase space. This reduction however is very small, since the partonic centre of
mass energy is dominated by the contribution from the jets rather than the Higgs boson. The
exact numerical value chosen for the cuts also does not affect the relative importance of the
interference effect — the effect on the interference and the WBF signal is similar, so the relative
importance of the interference is largely unchanged.

For completeness we list in Table 3 the integral of the absolute ∆φjj-distribution for various
choices of the renormalisation and factorisation scales.

We chose the factorisation and renormalisation scales as in accordance with the natural scales
in the relevant high energy limit (as in Ref. [35]), i.e. the factorisation scales are set equal to the

µf,a = µr,a µf,b = µr,b Integral of |dσ/d∆φjj |[ab]

paT
pbT

9.1 ± 0.1
mH/2 mH/2 13.9 ± 0.6
mH mH 9.2 ± 0.4
2mH 2mH 6.3 ± 0.3

Table 3: The dependence of the interference effect on the choices for factorisation and renormal-
isation scales, with a fixed mass of the Higgs boson of 115 GeV. The variation is slightly larger
than what would be expected from renormalisation scale variations only, since the variations in
factorisation scale impacts the cancellations between SU(2) × U(1)-charges by slightly altering
the ratio defined above Eq. (4).
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Figure 7: The pdf-weighted sum of the SU(2)×U(1)-charges divided by the sum of the absolute
weighted charges for valence quarks only (left) and valence and sea quarks (right). The left figure
illustrates how the apparent almost complete cancellation expected from the Quark Model is in
fact not as severe once the pdfs are taken into account, as discussed in the text. The insert shows
the ratio of the valence u-quark distribution to the valence d-quark distribution for the pdf set
MRST 2004 (NLO) [31]. The right plot shows that the inclusion of sea quarks does actually
alter the pdf-weighted sum in the relevant x range such that there are additional compensations
when integrating over x.

transverse momenta of the relevant jet, and the renormalisation scale for the strong couplings
are chosen correspondingly, i.e. one αs evaluated at each value of the transverse momentum of
the jets, and one at the Higgs mass. However, varying these has no impact on the conclusions.

4 Conclusions

We have presented the calculation of the loop-induced O(α2α3
s) interference effect between the

gluon fusion and weak boson fusion processes in Higgs boson plus two jet production at the
LHC.

In the context of the weak boson fusion cuts we have evaluated all relevant one-loop diagrams
algebraically and have obtained an analytic representation of the interference term as a linear
combination of scalar one-loop integrals. The analytic result for all the necessary integrals is
presented for general kinematics such that it can be used in other computations.

Our expressions have been coded into a flexible computer program to test speculations in the
literature about the size of this interference contribution. We do confirm by explicit calculation
that this contribution is too small to contaminate the extraction of the ZZH-coupling from WBF
processes. Interestingly the effect which survives comes dominantly from the virtual corrections.
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We have analysed in detail why this contribution is so small, and instead of a single effect we
rather find a conspiracy of several mechanisms which can only be completely assessed having
the full NLO calculation at hand.
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The mechanisms basically are

• accidental cancellations between the sea quark and valence quark contributions

• compensations between different weak isospin flavours of the valence quark contributions
due to their SU(2)×U(1) couplings in combination with their weights from the (valence)
quark content of the proton

• cancellations due to destructive interference of the phases from the different contributions.

The exact impact of these partly accidental effects has until now not been quantified thoroughly
and was very hard to assess without an explicit calculation.

As a final comment we would like to point out that anomalous couplings which affect the
phases could change the interference pattern substantially. However, the first two cancellation
mechanisms still being present, the overall contribution is still expected to be undetectably
small.
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A Analytic Results for Master Integrals

The appendix contains the Master Integrals (MIs) which occur in the reduction of the one-loop
pentagon diagrams encountered in the given calculation. The analytic results of the integrals
containing only massless propagators have appeared in the literature, see e.g. [17,36–38]. Those
with massive propagators have been calculated for this project. All finite integrals can also be
calculated by the LoopTools package [27], based on [39–41] which we used for checking purposes.

The conventions we use for the scalar triangles and boxes listed below are different from the
ones defined in [17,18,36,38], as we follow the LoopTools conventions for the argument lists, in
order to comply with the “Les Houches Accord on Master Integrals”.

To be specific, for a general N -point integral as shown in Fig. 8, we use

ID
N ({sj1...jn

}; {m2
i }) =

∫

dDk

i πD/2

µ4−D

[(k + r1)2 − m2
1 + iδ] . . . [(k + rN )2 − m2

N + iδ]
(A.1)

= µ4−D(−1)NΓ(N − D

2
)

1
∫

0

(

N
∏

i=1

dzi

)

δ(1 −
∑N

l=1 zl)
(

−1
2ziSijzj − i δ

)N−D

2

,

where ri =
∑i

j=1 pj and Sij = (ri − rj)
2 − m2

i − m2
j . The results for the integrals are charac-

terised by the invariants sj1...jn
= (pj1 + . . . + pjn

)2 and m2
i , where the list {sj1...jn

} contains
the invariants defined by n-particle cuts of the diagram. To map the labelling of Sij resp.

p4

p3
p2

p1

pN

pN−1pN−2

m1

mN

mN−1

mN−2

Figure 8: Momentum and mass assignments for a general N -point one-loop graph.

Fig. 8 to the LoopTools conventions, the argument lists of triangles and boxes are given by
ID
3 (s1, s2, s3;m

2
3,m

2
1,m

2
2) and ID

4 (s1, s2, s3, s4; s12, s23;m
2
4,m

2
1,m

2
2,m

2
3).

The integrals listed below will also be posted shortly to the LoopForge integral database at
http://www.ippp.dur.ac.uk/LoopForge, together with some numerical benchmark points. The
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triangles (A.5), (A.6), (A.8), (A.9) and the boxes (A.14), (A.15), (A.16), (A.18), (A.19) can also
be found at http://qcdloop.fnal.gov/ for certain kinematic regions.

For the analytical representations given below we use the following auxiliary functions.
The Källén function:

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx, (A.2)

the η-function:

η(x, y) = log(xy) − log(x) − log(y), (A.3)

and the R-function [39,40]:

R(y0, z ± iδ) =

1
∫

0

dy
log(y − z ∓ iδ) − log(y0 − z ∓ iδ)

y − y0

= Li2(z1) − Li2(z2) + η1 log(z1) − η2 log(z2) (A.4)

where z1 =
y0

y0 − z ∓ iδ
, z2 =

y0 − 1

y0 − z ∓ iδ

η1 = η(−z ∓ iδ, 1/(y0 − z ∓ iδ)) , η2 = η(1 − z ∓ iδ, 1/(y0 − z ∓ iδ)).

We work in general in D = 4 − 2ǫ dimensions but give all formulas only up to O(ε0). We
abbreviate infinitesimal displacements in the Mandelstam variables as s̃ = s + iδ.

Triangle integrals

In the figures below, a single (double) internal line represents a massless (massive) propagator,
while a single (double) external leg represents one for which p2 is zero (non-zero).

Triangle ID
3 (s1, 0, 0; 0, 0, 0)

p1

ID
3 (s1, 0, 0; 0, 0, 0) =

Γ(1 + ε)

s1

[

1

ε2
− 1

ε
log

(−s̃1

µ2

)

+
1

2
log2

(−s̃1

µ2

)

− π2

6

]

. (A.5)
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Triangle ID
3 (s1, s2, 0; 0, 0, 0)

p1

p2

ID
3 (s1, s2, 0; 0, 0, 0) = (A.6)

Γ(1 + ε)

s1 − s2

{

1

ε

[

log

(−s̃2

µ2

)

− log

(−s̃1

µ2

)]

− 1

2
log2

(−s̃2

µ2

)

+
1

2
log2

(−s̃1

µ2

)}

.

Triangle ID
3 (s1, s2, s3; 0, 0, 0)

ID
3 (s1, s2, s3; 0, 0, 0) = − 1

√

λ(s1, s2, s3) − iδ s1

[

2Li2

(

−x−

y+

)

+ 2Li2

(

− y−
x+

)

+
π2

3

+
1

2
log2

(

x−

y+

)

+
1

2
log2

(

y−
x+

)

+
1

2
log2

(

x+

y+

)

− 1

2
log2

(

x−

y−

)

]

(A.7)

with

x± =
s1 + s3 − s2 ∓

√

λ(s1, s2, s3) − iδ s1

2 s1
, y± = 1 − x∓.

Note that the permutation symmetry of the integral in s1, s2, s3 is preserved, although not
manifest due to the choice of the denominator in x±.
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Triangle ID
3 (s1, 0, 0; 0,M

2, 0)

ID
3 (s1, 0, 0; 0,M

2 , 0) =
Γ(1 + ε)

−s1

{

1

ε

[

log

(−s̃1 + M2

µ2

)

− log

(

M2

µ2

)]

(A.8)

+Li2

(

s̃1

s̃1 − M2

)

− 1

2

[

log2

(−s̃1 + M2

µ2

)

− log2

(

M2

µ2

)]}

Triangle ID
3 (s1, s2, 0; 0,M

2, 0)

ID
3 (s1, s2, 0; 0,M

2, 0) =
Γ(1 + ε)

s2 − s1

{

1

ε

[

log

(−s̃1 + M2

µ2

)

− log

(−s̃2 + M2

µ2

)]

+Li2

(

s̃1

s̃1 − M2

)

− Li2

(

s̃2

s̃2 − M2

)

+
1

2
log2

(−s̃2 + M2

µ2

)

− 1

2
log2

(−s̃1 + M2

µ2

)}

(A.9)

Triangle ID
3 (s1, s2, 0; 0, 0,M

2)

ID
3 (s1, s2, 0; 0, 0,M

2) =
1

s2 − s1

{

R(x0, x̃1) −
π2

6
+ Li2

(

1 − 1

x0 − iδ

)}

(A.10)

with x0 =
s1

s1 − s2
, x̃1 =

s̃1

s1 − s2 + M2
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Triangle ID
3 (s1, s2, 0; 0,M

2,M2)

ID
3 (s1, s2, 0; 0,M

2,M2) = (A.11)

1

s2 − s1

{

Li2

(

s̃1

M2

)

− Li2

(

1

x+

)

− Li2

(

1

x−

)

+ R

(

x0,
M2

s̃1

)

+R(1 − x0, x−) − R(x0, x−) − η0 log

(

1 − x0

−x0

)}

with

x0 = 1 − s1

s2
, x± =

1

2



1 ±
√

1 − 4M2

s̃2





η0 = η

(

1 − s̃1

M2
x0,

M2

M2 − s̃2x0(1 − x0)

)

Triangle ID
3 (s1, s2, s3; 0,M

2,M2)

ID
3 (s1, s2, s3; 0,M

2,M2) = (A.12)

1
√

λ(s1, s2, s3)

[

R(x−, x̃1) − R(x+, x̃1) + R(1 − x−, x̃0) − R(1 − x+, x̃0)

−R(x−, x̃0) + R(x+, x̃0) −η− log

(

1 − x−

−x−

)

+ η+ log

(

1 − x+

−x+

)]
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with

x± =
s1 + s2 − s3 ∓

√

λ(s1, s2, s3)

2s2

x̃0 =
1

2



1 −
√

1 − 4M2

s̃2



 , x̃1 =
s̃1 − M2

s1 − s3

η± = η

(

−s3x± − s1(1 − x±) + M2 − iδ,
1

M2 − x±(1 − x±)s̃2

)

.

In this formula we assume momentum conservation and at least one positive invariant sj . The
latter condition is always guaranteed if the triangle graph is a subgraph of 1 → n or 2 → n
scattering kinematics. These lead to a positive Kaellen function: λ(s1, s2, s3) > 0.

Box integrals

The results are given here for D=4-2ǫ dimensional boxes. The conversion relation to 6-dimensional
boxes is achieved by the formula

ID
4 =

4
∑

i=1

bi I
D
3,i + (D − 3)B ID+2

4 , (A.13)

where bi =
∑4

j=1 S−1
ij and B =

∑4
i=1 bi. ID

3,i denotes the “pinch” triangle stemming from a box
where the ith propagator is omitted. All pinch triangle integrals needed by eq. (A.13) are given
above. We use s12 = s and s23 = t in the following.

Box ID
4 (s1, 0, 0, 0; s, t; 0, 0, 0, 0)

ID
4 (s1, 0, 0, 0; s, t; 0, 0, 0, 0) =

Γ(1 + ε)

st

{

2

ε2
− 2

ǫ

[

log

(−s̃

µ2

)

+ log

(−t̃

µ2

)

− log

(−s̃1

µ2

)]

+2Li2

(

1 − s̃

s̃1

)

+ 2Li2

(

1 − t̃

s̃1

)

+ 2 log

(

s̃

s̃1

)

log

(

t̃

s̃1

)

(A.14)

+ log2

(−s̃

µ2

)

− log2

(−s̃1

µ2

)

+ log2

(−t̃

µ2

)

− 2π2

3

}
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Box ID
4 (s1, s2, 0, 0; s, t; 0, 0, 0, 0)

ID
4 (s1, s2, 0, 0; s, t; 0, 0, 0, 0) = (A.15)

Γ(1 + ε)

st

{

1

ε2
+

1

ε

[

log

(−s̃1

µ2

)

+ log

(−s̃2

µ2

)

− log

(−s̃

µ2

)

− 2 log

(−t̃

µ2

)]

− π2

6

−2Li2

(

1 − s̃1

t̃

)

− 2Li2

(

1 − s̃2

t̃

)

+ log

(

s̃

s̃1

)

log

(

s̃

s̃2

)

− log2

(

s̃

t̃

)

+
1

2
log2

(−s̃

µ2

)

− 1

2
log2

(−s̃1

µ2

)

− 1

2
log2

(−s̃2

µ2

)

+ log2

(−t̃

µ2

)}

Box ID
4 (s1, 0, s3, 0; s, t; 0, 0, 0, 0)

ID
4 (s1, 0, s3, 0; s, t; 0, 0, 0, 0) = (A.16)

Γ(1 + ε)

st − s1s3

{

2

ǫ

[

log

(−s̃1

µ2

)

+ log

(−s̃3

µ2

)

− log

(−s̃

µ2

)

− log

(−t̃

µ2

)]

+ log2

(−s̃

µ2

)

− log2

(−s̃1

µ2

)

− log2

(−s̃3

µ2

)

+ log2

(−t̃

µ2

)

−2Li2

(

1 − s̃1

s̃

)

− 2Li2

(

1 − s̃3

s̃

)

− 2Li2

(

1 − s̃1

t̃

)

− 2Li2

(

1 − s̃3

t̃

)

+2Li2

(

1 − s̃1 s̃3

s̃ t̃

)

− log2

(

s̃

t̃

)

+ 2 η

(

s̃3

s̃
,
s̃1

t̃

)

log

(

1 − s̃1 s̃3

s̃ t̃

)}
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Box ID
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0)

We find for the 6-dimensional integral

ID+2
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0) = (A.17)

−t + M2

t(s1 − s − t)

[

R (x0, x̃2) + Li2

(

1 − 1

x̃0

)

− π2

6

]

− M2

t(s1 − s)

[

R (x1, x̃2) + Li2

(

1 − 1

x̃1

)

− π2

6

]

where

x0 =
s

s + t − s1
, x̃0 = x0 +

iδ

t − M2
,

x1 =
s

s − s1
, x̃1 = x1 − iδ , x̃2 =

s̃

s − s1 + M2

The integral in D = 4 − 2ǫ is obtained by

ID
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0) = b1 I3(s, 0, 0; 0, 0, 0) + b2 I3(s1, t, 0; 0,M
2, 0) (A.18)

+b3 I3(s1, 0, s; 0,M
2, 0) + b4 I3(t, 0, 0; 0,M

2, 0) + B ID+2
4 (s1, 0, 0, 0; s, t; 0,M

2 , 0, 0)

with

b1 = − 1

M2 − t
, b2 =

s1 − t

s (M2 − t)
, b3 =

t(s − s1) + M2(s + 2t − s1)

s (M2 − t)2

b4 = − t

s (M2 − t)
, B =

2 t (s + t − s1)

s (M2 − t)2
.
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Box ID
4 (s1, s2, 0, 0; s, t; 0,M

2 ,M2, 0)

ID
4 (s1, s2, 0, 0; s, t; 0,M

2 ,M2, 0) =
Ipole + Ifinite

st − (s + t − s1)M2
(A.19)

with

Ipole = −Γ(1 + ǫ)

ǫ

[

log

(−t̃ + M2

M2

)

− log

(−s̃1 + M2

−s̃ + M2

)

]

Ifinite = log2

(−t̃ + M2

µ2

)

− log2

(

M2

µ2

)

− log2

(−s̃1 + M2

µ2

)

+ log2

(−s̃ + M2

µ2

)

−2R(x0, x̃1) + 2R(x0, x̃2)

+R(1 − x1, x−) − R(x1, x−) − R(1 − x2, x−) + R(x2, x−)

−
[

log
(

−s̃2/µ
2
)

+ log(x+ − x1) + log(x1 − x−)
]

log

(

1 − x̃1

−x̃1

)

+
[

log
(

−s̃2/µ
2
)

+ log(x+ − x2) + log(x2 − x−)
]

log

(

1 − x̃2

−x̃2

)

x± =
1

2



1 ±
√

1 − 4M2

s̃2



 , x0 =
s

s + t − s1

x1 =
M2

t
, x̃1 =

M2 − iδ

t
, x2 =

s − M2

s − s1
, x̃2 =

s̃ − M2

s − s1

Box ID
4 (s1, 0, s3, 0; s, t; 0, 0,M

2,M2):

ID
4 (s1, 0, s3, 0; s, t; 0, 0,M

2,M2) =
I− − I+

√

det(S) − Jiδ
(A.20)
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with the auxiliary integrals3

I± = R

(

x±,
M2

t̃

)

− R

(

1 − x±,
M2

s̃

)

+ R(1 − x±, x−
0 ) − R(x±, x−

0 )

+ log

(

1 − x±

−x±

)

[

log

(

s̃

s̃1

)

+ log

(

t̃

s̃3

)

+ log

(

x± − M2

t̃

)

− log(x+
0 − x±) − log(x± − x−

0 ) + log

(

1 − x± − M2

s̃

)

]

(A.21)

where

det(S) = [st − s1s3 + M2(s − t)]2 + 4M2(st − s1s3)(−s + s1 + M2)

J = 2(s3 − t)[st − s1s3 + M2(s − t)] + 4(st − s1s3)(−s + s1 + M2),

x± =
(st − s1s3) + M2(s − t) ±

√

det(S) − Jiδ

2 (st − s1s3)
, x±

0 =
1

2



1 ±
√

1 − 4M2

s̃3





Checks on the integrals

We tested the Master Integrals by comparing our results numerically with LoopTools [27]. For
the IR finite box and triangle integrals this is straightforward. The IR divergent box integrals
have been checked indirectly by mapping to the 6D case which is IR finite. Using eq. (A.13)
the 1/ε poles cancel when combining the D-dimensional box with the triangle pinch integrals.
The same expression can be evaluated with LoopTools by using a mass regulators in the IR
divergent integrals. In the given IR finite combinations the cut-off dependence is polynomial and
can be made arbitrarily small. We have tested the formulae in all kinematically distinguishable
regions. For example, ID

3 (s1, s2, s3; 0,M
2,M2) has been checked in the regions resulting from

combining the conditions (s1 < 0, 0 < s1 < M2, M2 < s1), (s2 < 0, 0 < s2 < 4M2, 4M2 < s2)
and (s3 < 0, 0 < s3 < M2, M2 < s3) such that the Kaellen function is positive in line with the
comment below equation (A.12).
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