
Assessing Symbiodinium diversity in scleractinian corals
via next-generation sequencing-based genotyping of the
ITS2 rDNA region

CHATCHANIT ARIF, * CAMILLE DANIELS,* TILL BAYER,† EULALIA BANGUERA-HINESTROZA,*

ADRIAN BARBROOK,‡ CHRISTOPHER J . HOWE,‡ TODD C. LAJEUNESSE§ and CHRISTIAN R.

VOOLSTRA*

*Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), 23955 Thuwal, Saudi Arabia,

†GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany, ‡Department of Biochemistry, University of

Cambridge, Building O, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK, §Department of Biology, Penn State

University, University Park, PA 16802, USA

Abstract

The persistence of coral reef ecosystems relies on the symbiotic relationship between

scleractinian corals and intracellular, photosynthetic dinoflagellates in the genus

Symbiodinium. Genetic evidence indicates that these symbionts are biologically diverse

and exhibit discrete patterns of environmental and host distribution. This makes the

assessment of Symbiodinium diversity critical to understanding the symbiosis ecology

of corals. Here, we applied pyrosequencing to the elucidation of Symbiodinium diver-

sity via analysis of the internal transcribed spacer 2 (ITS2) region, a multicopy genetic

marker commonly used to analyse Symbiodinium diversity. Replicated data generated

from isoclonal Symbiodinium cultures showed that all genomes contained numerous,

yet mostly rare, ITS2 sequence variants. Pyrosequencing data were consistent with

more traditional denaturing gradient gel electrophoresis (DGGE) approaches to the

screening of ITS2 PCR amplifications, where the most common sequences appeared as

the most intense bands. Further, we developed an operational taxonomic unit (OTU)-

based pipeline for Symbiodinium ITS2 diversity typing to provisionally resolve ecolog-

ically discrete entities from intragenomic variation. A genetic distance cut-off of 0.03

collapsed intragenomic ITS2 variants of isoclonal cultures into single OTUs. When

applied to the analysis of field-collected coral samples, our analyses confirm that much

of the commonly observed Symbiodinium ITS2 diversity can be attributed to intrage-

nomic variation. We conclude that by analysing Symbiodinium populations in an OTU-

based framework, we can improve objectivity, comparability and simplicity when

assessing ITS2 diversity in field-based studies.
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Introduction

Coral reef communities depend critically on the relation-

ship between scleractinian corals and photosynthetic

endosymbionts in the genus Symbiodinium. While the

coral host provides a light-rich, sheltered environment

and inorganic nutrients, the dinoflagellate algae provide

photosynthetically fixed carbon (Muscatine & Cernich-

iari 1969). Some corals seem to rely strictly on a distinct

symbiont type, whereas others harbour different types

of Symbiodinium (Rowan & Knowlton 1995). Although

host identity is the primary predictor of symbiont

identity, coral-associated Symbiodinium diversity also

covaries with geographical location, water depth and

health state (Rodriguez-Lanetty et al. 2001; Toller et al.
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2001; LaJeunesse et al. 2004, 2010; Sampayo et al. 2007;

Macdonald et al. 2008; Finney et al. 2010; Tonk et al.

2013b). The current decline in coral reef cover resulting

from global (e.g. ocean warming) and local (e.g. pollu-

tion, overfishing) anthropogenic factors has intensified

the need to examine the spatial, geographical and eco-

logical distribution of Symbiodinium–coral associations

and how these relate to environmental extremes.

Various DNA markers have been used to describe

genetic diversity within Symbiodinium (Sampayo et al.

2009). Rowan & Powers (1991) were the first to examine

Symbiodinium evolutionary relationships using restric-

tion fragment length polymorphisms (RFLPs) of the

small ribosomal subunit RNA (SSU) gene from dinofla-

gellates from various marine invertebrate hosts. Their

phylogeny identified divergent lineages within this

genus, which exhibited sequence differences compara-

ble to those observed among dinoflagellates from differ-

ent taxonomic families and orders (Rowan & Powers

1992). These lineages are commonly referred to as

clades. So far, nine clades are identified (clades A–I), of

which representatives in six clades (i.e. A, B, C, D, F

and G) have been shown to persist in association with

corals, other cnidarians, giant clams and sponges (Baker

2003; Pochon et al. 2006). It was soon recognized that

the conserved SSU gene is not able to resolve species

(Rowan & Powers 1991; McNally et al. 1994; LaJeunesse

2001). Researchers turned to more variable DNA

regions, including the nuclear large subunit (LSU) (Wil-

cox 1998; Loh et al. 2001), the internal transcribed spacer

regions (Hunter et al. 1997; LaJeunesse 2001; van Oppen

et al. 2001), the chloroplast large subunit (cp23S) (Santos

et al. 2002; Pochon et al. 2006) and cytochrome oxidase

b (Sampayo et al. 2009). A systematic survey by Sam-

payo et al. (2009) targeting ribosomal, mitochondrial

and chloroplast genes employing 13 distinct genetic

analyses found that different markers showed remark-

able concordance, but differed in their relative ability to

resolve ecologically distinct units. Other rapidly evolv-

ing markers, including the chloroplast psbA noncoding

region (Moore et al. 2003; LaJeunesse & Thornhill 2011)

and microsatellites, were recently employed, often in

combination with each other, to improve genetic resolu-

tion further and delimit species boundaries (Thornhill

et al. 2014). Only recently, Barbrook et al. (2014)

sequenced the entire chloroplast genome of a Symbiodi-

nium sp. type C3, where individual genes reside on

minicircles that will provide additional genetic markers.

Currently, however, the ITS2 region is still the most

commonly employed DNA marker used to assess Sym-

biodinium diversity from a diverse array of hosts and

over large geographical distances (LaJeunesse et al.

2010; Wicks et al. 2010; Silverstein et al. 2011; Putnam

et al. 2012; Tonk et al. 2013a).

LaJeunesse (2002) determined that ITS2, when analy-

sed through targeting of numerically dominant intrage-

nomic variants, provides sufficient resolution to resolve

many ecologically distinct Symbiodinium spp. To achieve

this, denaturing gradient gel electrophoresis (DGGE)

was used to screen PCR amplifications for common

ITS2 sequence variants diagnostic of a particular Symbi-

odinium ‘type’ (LaJeunesse 2002; Sampayo et al. 2007;

LaJeunesse et al. 2010; Silverstein et al. 2011). More

recently, researchers have also employed bacterial clon-

ing and sequencing and found more sequence diversity

within the populations of Symbiodinium residing in a

host than identified with DGGE (Apprill & Gates 2007;

Stat et al. 2009, 2011, 2013). Because rDNA represents

an extreme example of a multicopy gene arrayed in tan-

dem, intragenomic variation in the form of pseudogenes

or numerous low-abundant functional variants affect

how ITS2 data are interpreted (Thornhill et al. 2007;

Sampayo et al. 2009; LaJeunesse & Thornhill 2011). For

instance, it has been shown that cloning-and-sequenc-

ing-based approaches are potentially prone to inflated

diversity estimates through the technique’s tendency to

recover intragenomic variants that are of low abun-

dance (i.e. limited diagnostic value), as well as by intro-

ducing additional sequence artefacts generated during

the PCR and cloning steps (Thornhill et al. 2007). How-

ever, sequencing a substantial number of clones may

resolve how rDNA data are best analysed and inter-

preted by allowing differentiation between intragenom-

ic and interspecific ITS2 sequence variants, albeit at a

high cost (Sampayo et al. 2009). Assessment has also

shown that individuals from different species possess

widely differing amounts of intragenomic variation

(Thornhill et al. 2007), yet the full extent of this varia-

tion is at present unknown. In both regards, the appli-

cation of pyrosequencing-based methods is projected to

overcome the limited resolution and high cost associ-

ated with Sanger-based ITS2 diversity assessments, as a

high number of sequences are produced at compara-

tively low cost per sequence.

While the study of prokaryotic diversity is now rou-

tinely conducted via pyrosequencing-based amplicon

typing of the 16S ribosomal RNA gene (Sogin et al.

2006; Roesch et al. 2007), only a limited number of stud-

ies have utilized high-throughput sequencing to assess

eukaryotic diversity. For instance, Stoeck et al. (2010,

2009) and Amaral-Zettler et al. (2009) sequenced the

variable regions of the small subunit (SSU) and large

subunit (LSU) of the 18S region to estimate eukaryotic

diversity.

Pyrosequencing is now being applied to assess Symbi-

odinium diversity (Green et al. 2014; Quigley et al. 2014;

Thomas et al. 2014), but there is a need to ground

truth this new approach. In this study, we applied
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pyrosequencing of ITS2 rDNA amplicons (320–360 bp)

to genotype Symbiodinium diversity in several isoclonal

and replicated cultures, two cultured isolates mixed at

different ratios and field-collected coral specimens. The

application of a high-throughput pyrosequencing

approach holds the promise to improve assessment of

the relative degree of sequence variation found in

these eukaryotic genomes. Further, a pyrosequencing

approach may provide a more accurate detection of

low-abundance background Symbiodinium. Our aim was

to understand diversity of the ITS2 gene at the genome

level and to compare pyrosequencing results to data

obtained from DGGE typing. Furthermore, we sought to

analyse Symbiodinium diversity in an OTU-based frame-

work in order to improve objectivity, comparability and

simplicity when assessing ITS2 to study Symbiodinium

composition in environmental samples of corals.

Materials and methods

Sample collection and processing

Isoclonal cultures of Symbiodinium sp. (CCMP2467: Sym-

biodinium microadriaticum, KB8: S. microadriaticum, rt-147:

undescribed clade B type and rt-064: undescribed B1

type) were cultured at 23 °C in f/2 medium (Guillard

& Ryther 1962) on a 12 h/12 h light–dark cycle (day-

time: 6 am to 6 pm; night-time: 6 pm to 6 am, light

intensity 80 lmol/m2/s). The salt content in the med-

ium was set to 40 g/L, matching the average salinity

characteristic of the Red Sea. Coral samples were col-

lected from various reefs in the Red Sea between 2011

and 2012 with SCUBA at depths between 4 and 12 m.

More specifically, five specimens of Pocillopora verrucosa

were collected from reefs at Maqna (n = 2), Al Wajh

(n = 2) and Doga (n = 1) as well as one specimen of

Acropora hemprichii from Al Fahal reef at Thuwal. Speci-

mens of about 1–3 cm2 tissue were collected with ham-

mer and chisel and stored in Whirl-Paks during diving,

subsequently washed with 0.22-lm-filtered sea water

(FSW), preserved in DMSO/NaCl buffer (Gaither et al.

2010) and stored at 4 °C until further processing. For

Symbiodinium culture DNA extraction, cells from each

culture were counted using a haemocytometer (Hausser

Scientific, Horsham, PA) under a light microscope (Leica

DM2500, Wetzlar, Germany), and ~8 9 106 cells per cul-

ture were used for DNA extraction. Mixed samples were

generated by combining cells of two Symbiodinium spe-

cies (a strain of S. microadriaticum CCMP2467 from clade

A and strain rt-147 from clade B) in a ratio of 1:1

(4 9 106 cells : 4 9 106 cells) and in a ratio of 1:3

(2 9 106 cells : 6 9 106 cells), respectively. Cells were

spun at 1934 g for 10 min and subsequently washed

with DNase-free water. Five hundred microlitres of

0.5-mm sterile glass beads (BioSpec, Bartlesville, OK)

was added to the pelleted cells together with 400 lL of

buffer AP1 and 4 lL RNAse (Qiagen, Hilden, Germany).

Samples were bead-beaten for 90 s with a Tissue Lyser II

(Qiagen). DNA was isolated with the Qiagen DNeasy

Plant Mini Kit (Qiagen) according to the manufacturer’s

instructions. For the analysis of technical variation, DNA

from isoclonal cultures of CCMP2467 and rt-147 was iso-

lated once but amplified in distinct PCRs with a different

barcoded primer. For DNA extraction of environmental

samples, ~50 mg of coral tissue was transferred to 1.5-

mL tubes (Eppendorf, Hamburg, Germany). Five hun-

dred microlitres of 0.5-mm sterile glass beads (BioSpec)

was added together with 400 lL of buffer AP1 and 4 lL
RNAse (Qiagen). Samples were bead-beaten for 90 s

with a Tissue Lyser II (Qiagen). DNA was isolated with

the Qiagen DNeasy Plant Mini Kit (Qiagen) according to

the manufacturer’s protocol.

DGGE analysis of Symbiodinium ITS2 rDNA

DGGE ITS2 diversity typing was performed following

the protocol detailed in LaJeunesse (2002). Briefly, the

Symbiodinium ITS2 region was amplified with the primer

pair ITSintfor2 and ITS2CLAMP using PCR conditions

described in LaJeunesse et al. (2003) with the following

modifications: the annealing temperature was main-

tained at 52 °C for 27 cycles after 20 cycles of touch-

down amplification. PCR products were mixed with

10 lL Ficoll-based loading buffer and concentrated by a

speed vacuum before loading on an 8% polyacrylamide

gel using a Cipher DGGE kit (CBS Scientific Company,

Del Mar, CA). Gels were run at 150 V for 15 h, stained

for 30 min with 19 SYBR Green (Invitrogen, Carlsbad,

CA) and visualized on a Dark Reader Transilluminator

(Clare Chemical Research, Dolores, CO). Prominent

band(s) were excised from the DGGE gel with a sterile

scalpel. Each band was transferred into an Eppendorf

tube that contained 500 lL DNase-free water and incu-

bated at 4 °C for 24 h. Two microlitres of this were used

for reamplification as described in LaJeunesse (2002)

and purified with Illustra ExoStar (SelectScience, Bath,

UK) enzyme mix following the manufacturer’s instruc-

tions. Successful amplification was verified by running

products on a 1% agarose gel stained with 19 SYBR

Safe (Invitrogen). Samples were sent for bidirectional

Sanger sequencing at the KAUST BioScience Core Labo-

ratory (Thuwal, Saudi Arabia). Sequences were pro-

cessed in CodonCode Aligner (CodonCode Corporation,

Centerville, MA). After quality trimming, forward and

reverse sequences were assembled into contigs. For

phylogenetic assignment of ITS2 sequences, we built a

custom BLAST database (File S1, Supporting informa-

tion) of ITS2 types collected from 409 ITS2 sequences

© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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taken from GeoSymbio (Franklin et al. 2012) (denoted

as GS), 7 ITS2 sequences from Scott Santos’

database (www.auburn.edu/~santosr/sequencedatasets.

htm) (denoted as ST) and 17 DGGE ITS2 sequences

from Todd LaJeunesse’s SD2-GED database (https://

131.204.120.103/srsantos/symbiodinium/sd2_ged/data-

base/views.php) denoted as LJ. ITS2 sequences were

assigned to the ITS2 types that represented highest

identity in the BLASTN hits.

454 pyrosequencing of Symbiodinium ITS2 rDNA

PCR amplification of the ITS2 gene for pyrosequencing

was performed using primers ITSintfor2 and ITS2-

reverse that generated an amplicon of around 320 bp.

The primer sequences were 50- CCATCTCATCCCTGCG-

TGTCTCCGACTCAG(N)8GAATTGCAGAACTCCGTG-30

(454-ITSintfor2) and 50- CCTATCCCCTGTGTGCCTTGG-

CAGTCTCAGGGGATCCATATGCTTAAGTTCAGCGG-

GT-30 (454-ITS2-reverse). Primers included 454 Lib-L

library adapters (underlined) and a barcode (shown as

N) (Hamady et al. 2008). PCRs were run in triplicate

per sample with 12.5 lL of Qiagen Multiplex PCR Kit

(Qiagen), 0.1 lM primers, 20–50 ng DNA and DNase-

free water to make a total volume of 25 lL. The follow-

ing PCR conditions were used: initial denaturation for

15 min at 94 °C, followed by 35 cycles of 94 °C for 30 s,

51 °C for 30 s, 72 °C for 30 s and a final extension step

of 10 min at 72 °C. PCR products were run on a 1%

agarose gel stained with 19 SYBR Safe (Invitrogen) to

visualize successful amplification. For each sample, trip-

licate PCR products were pooled, and their DNA

concentrations were measured using a Qubit 2.0 (Invi-

trogen). Twenty nanograms of the triplicated PCR sam-

ples from all specimens was combined and ran on a 1%

agarose gel to remove excess primers. The gel band was

excised, purified with the Qiagen MinElute Gel Extrac-

tion Kit (Qiagen) according to the manufacturer’s

instructions, quantified with Qubit 2.0 (Invitrogen) and

quality checked via Bioanalyzer (Agilent, Santa Clara,

CA). Forty nanograms of this pooled library (i.e. pooled

triplicated PCRs from all samples) was submitted to

KAUST BioScience Core Laboratory for sequencing

using Titanium FLX chemistry on a quarter of a picoti-

ter plate. Raw sequencing data were retrieved with

Roche 454 amplicon-processing pipeline.

454 pyrosequencing data analysis

A total of 218 475 reads with a median length of 314 bp

were obtained from sequencing and processed using

the software MOTHUR version.1.31.2 (Schloss et al. 2009).

Sequences were denoised using PyroNoise (Quince et al.

2011). Forward primer and barcode sequence were

removed from reads by the trim.seqs function in

mothur. All sequences that met the following criteria

were discarded: barcodes (>0 mismatches), forward

primer (>2 mismatches), ambiguities (>0 bp), homo-

polymers (>4 bp) and short sequence length (<250 bp).

CUTADAPT version 1.1 (Martin 2011) was applied to

remove the reverse primer (overall error rate set to

0.15). All identical sequences were subsequently col-

lapsed, and representative sequences were retained via

unique.seqs command in mothur. After chimera

removal with UCHIME as implemented in mothur

(Edgar et al. 2011), singletons (i.e. sequences detected

only once across the entire data set) were also dis-

carded. A total of 197 181 sequences were retained for

the remainder of the analyses. From these data, fre-

quency distributions of ITS2 variants for all samples

were obtained via count.seqs command in mothur.

Genetic distances for within-culture ITS2 diversity were

calculated with the dist.seqs command in mothur based

on MUSCLE-aligned ITS2 copies that were represented

by at least 100 reads in any given isoclonal culture.

For the OTU-based framework analysis, ITS2

sequences were assorted into their respective clades

based on pairwise distances via pairwise.seqs com-

mand, and subsequent clustering with average neigh-

bour algorithm using a cut-off value of 0.15 (empirically

determined to effectively cluster sequences into clades).

Sequences assigned to distinct clades were aligned

using MUSCLE (Edgar 2004) and trimmed to equal

length using the screen.seqs and filter.seqs commands

in mothur. Sequences that were shorter than 90% of

sequences in each clade were discarded, resulting in

197 128 sequences. A distance matrix was calculated

using the aligned sequences within each clade.

Sequences were clustered with the average neighbour

algorithm (Schloss & Westcott 2011) at a 97% similarity

cut-off, as this cut-off clustered ITS2 variants from isocl-

onal cultures into a single OTU (i.e. species). The most

abundant sequence in each OTU was chosen as the rep-

resentative ITS2 copy and was annotated via BLASTN

against the custom ITS2 database to determine a specific

Symbiodinium type. In addition, the most abundant ITS2

copy from each pyrosequenced sample was aligned to

the sequence derived from the most prominent DGGE

band of the same sample to verify whether they were

identical. A list of succession of commands and an

unattended script are available as supplementary infor-

mation (Files S2 and S3).

Single-cell PCRs on Symbiodinium cells

To conduct single-cell PCRs on Symbiodinium, we devel-

oped an approach modified from Frommlet & Iglesias-

Rodr�ıguez (2008). Cells from cultures CCMP2467, KB8,

© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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rt-064 and rt-147 were harvested with the following

changes: 1 mL of each culture was filtered through a

40-lm cell strainer (BD Biosciences, San Jose, CA), spun

down at 1934 g for 10 min and washed 3 times with

1 mL of 19 TE buffer. Cell pellets were subsequently

resuspended with 500 ll of 19 TE, counted using a

haemocytometer (Hausser Scientific) and diluted to a

concentration of 1 cell/lL (‘dilution-to-extinction’

approach). One microlitre was subsequently transferred

into wells of 96-well plates, and the presence of single

cells was confirmed using an inverted microscope (Le-

ica DMI3000B). Cells were disrupted by triplicate freez-

ing of cells for 2 min in liquid nitrogen and immediate

thawing for 2 min at 95 °C. Next, a single 0.5-mm glass

bead (BioSpec) was added to each well, and the cell

was homogenized with a Tissue-Lyzer II (Qiagen) for

1 min. PCR master mix containing 12.5 lL Qiagen Mul-

tiplex PCR Kit, 0.1 lM of ITSintfor2 and ITS2-reverse

(LaJeunesse 2002) and DNase-free water was added to

make a total volume of 25 lL. PCR conditions were

identical to the conditions used for 454 sequencing.

Subsequently, 1 lL of the PCR product was used as

template in a 25 lL clade-specific PCR containing

12.5 lL Qiagen Multiplex PCR Kit, DNase-free water,

0.1 lM of degenerated reverse primer (50- TCWC

YTGTCTGACTTCATGC-30) and 0.1 lM of clade A (50-T
GGCACTGGCATGC-30)-, B (50- ATTGCTGCTTCGCTTT

CC-30)- or C (50- TGCTTAACTTGCCCCAAC-30)-specific
forward primers generating 100, 180 and 210 bp ampli-

cons, respectively. PCR conditions were 94 °C for 15 min

followed by 35 cycles of 30 s at 94 °C, 30 s at 53 °C and

30 s at 72 °C and a final step of 10 min at 72 °C. Ampli-

cons were checked on a 1% agarose gel, cloned with

Invitrogen TOPO-TA cloning kit and sent for Sanger

sequencing to the KAUST BioScience Core Laboratory.

CodonCode Aligner (CodonCode Corporation, Center-

ville, MA) was used to process sequences and annotated

via BLASTN using the local Symbiodinium ITS2 database.

Results

Sequence variation among ITS2 copies in the genomes
of Symbiodinium

We applied 454-based amplicon sequencing of the ITS2

rDNA region from Symbiodinium to a collection of repli-

cated isoclonal cultures (n = 7), pooled cultures (n = 2)

and environmental samples (n = 6) (Table 1). A total of

218 475 reads were obtained from pyrosequencing with

a median length of 314 bp (mean length = 323.11 �
32.61 SD). After filtering of sequences, 197 181 reads

were retained with an average of 13 145.40 sequences

per sample, representing 1487 unique ITS2 sequences

(Table 1, File S4, Supporting information).

Depending on the taxon investigated, we identified

between 102 and 331 distinct ITS2 sequence variants,

including cultured strains and field-collected specimens

(mean = 219.67). Taking only isoclonal culture samples

into account, we identified on average 230.86 ITS2

sequence variants per culture, indicating that there is a

substantial number of distinct ITS2 sequence variants

found within Symbiodinium genomes (Table 1). Despite

the high number of distinct ITS2 copies, read counts for

the different ITS2 copies showed a highly uneven distri-

bution (Fig. 1A). When sorting ITS2 variants of isoclo-

nal cultures by sequence read abundance, the most

abundant ITS2 copies were on average ~20 times more

prevalent than the second most common ITS2 copy (all

clades: 21.84-fold, clade A’s: 8.25-fold, clade B’s: 39.88-

fold, clade C’s: 8.49-fold). Further, the five most abun-

dant ITS2 copies from any culture made up >80% of

associated reads, indicating that only few distinct ITS2

genes make up the majority of genomic gene copies.

This was substantiated by a rarefaction analysis, which

indicated that most of the numerous ITS2 copies were

captured at very low abundance in each genome

(Fig. 1B). For instance, subsampling of isoclonal cultures

to 2000 reads yielded on average less than half of the

distinct ITS2 copies we were able to recover taking all

sequence reads into account. Additionally, the rarefac-

tion curves at this sampling depth did not approach

saturation. This effectively illustrates that intragenomic

diversity lies in low-abundant genomic ITS2 copies,

which also seems to far exceed what could be captured

by ‘traditional’ sequencing methods. Comparison of py-

rosequencing data of culture CCMP2467 (type A1) with

25 sequences generated by cloning and sequencing

showed that both techniques identified the same most

dominant sequence, but numerical ranking of the next

most common sequences did not particularly match up

well between cloning and 454 data (not shown). Com-

paring pyrosequencing data to DGGE fingerprinting of

isoclonal Symbiodinium cultures, DGGE yielded a single

dominant band accompanied by few, faint, background

bands. The dominant ITS2 variants produced by 454

pyrosequencing (numerically abundant) and DGGE

(brightest band) were identical in sequence and were

representative sequences of the Symbiodinium type anal-

ysed (Table 1, Fig. 2). Accordingly, 454 pyrosequencing,

cloning and sequencing and DGGE produced uniform

results in regard to identifying the ITS2 variants most

representative of the genome.

To further assess levels of intragenomic ITS2 diver-

sity, we calculated uncorrected genetic distances

between all ITS2 variants of a given isoclonal culture

(Table 2). For each sample, we only considered ITS2

types represented by at least 100 reads. This was done

to avoid diversity inflation by potential contamination,

© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
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methodological artefacts or ultralow-abundant ITS2 cop-

ies. The resulting median genetic distance between ITS2

copies from isoclonal cultures was in all cases below

0.02, and median intragenomic variation ranged from

0.003 to 0.017 (Table 2). Therefore, most sequence vari-

ants within any culture differed by only one or two

nucleotide substitutions from each other.

The reproducibility of pyrosequencing rDNA varied

depending on the scale of comparison. In some cases,

different tallies of distinct ITS2 copies were calculated

between the sequencing of different PCR amplifications

conducted from the same DNA extract. Our replicated

analysis of culture CCMP2467 recovered 331 and 241

distinct ITS2 sequences from 16 681 and 8565 sequence

reads, respectively. Of these ITS2 sequences, 184 were

identical (55.59 and 76.35%, respectively). Repeated

sequencing of the culture rt-147 was less variable and

retrieved 225 and 241 distinct ITS2 variants at a compa-

rable sequencing depth, of which 168 were identical

(74.67 and 69.71%, respectively) (Table 1). The compari-

son between the top 10 most abundant sequence

variants showed consistency, but there were some

discrepancies between replicated samples (Fig. 3).

Sequence variants that represented 2–3% of the total

variation were typically recovered between replicates,

but not always in the same relative abundance. The top

three most common sequences, however, were always

recovered, and in the same order of abundance between

replicates (Fig. 3). To further elucidate this pattern, the

top 10 most common variants from pyrosequencing

ITS2 of culture rt-152 (Symbiodinium goreaui or type C1)

were compared to the composition of top 10 variants

identified from several field-collected samples repre-

senting clade C Symbiodinium, including types C1c, C1h

and C41 (Fig. 4). For each of these samples, there were

one to five common sequence variants representing

>5% of sequence reads for the respective specimen.

Each sequence set contained the C1 sequence, sensu

LaJeunesse (2001), but in very different proportions.

The C1 sequence comprised 68.36% of the genome of

S. goreaui (rt-152 or type C1), 34.00% for type C1c

(P.Waj.D7), 34.08% for type C1 h (P.Maq.R2.19) and

11.82% in type C41 (A.Af.B6). These proportions were

similar to the relative band intensities observed from

their respective DGGE fingerprint profile (Fig. 2). The

‘c’ sequence found in codominance with C1 (19.95% vs.

34.00%) in the ribosomal array of Symbiodinium type

C1c also was detected in two other types (C1h and C1)

at significantly lower concentrations and explains

why this sequence variant was not resolved by DGGE

fingerprinting (Fig. 2).

Among sequences recovered from PCRs of

DNA extracted from the artificially mixed cultures,

CCMP2467 (S. microadriaticum or type A1) and rt-147T
a
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(type B1), in a 1:1 or 1:3 cell ratio, more than 99% of

ITS2 reads were identified only as clade B. This result

was consistent with DGGE profiling conducted on the

same samples, which showed only a single prominent

band matching that of the fingerprint for culture rt-147.

The band diagnostic of type A1, S. microadriaticum, was

absent in both mixed samples (Fig. 2). Sequences

derived from 454 (most abundant) and DGGE (brightest

band) of both pooled samples were identical and identi-

fied as type B1 via BLASTN. These results suggest that

clade B has either a far greater copy number of rDNA

than clade A, or PCR bias of rt-147 over CCMP2467.

This bias might arise from differences in DNA isolation

efficiency or preferential primer amplification as dis-

cussed in Thornhill et al. (2013). In conclusion, we

could not detect both entities in their initially mixed

proportions.

Looking further at ITS2 type composition from

pyrosequencing reads of isoclonal cultures, we found

that besides the majority of sequences being representa-

tives of the underlying ITS2 type, very low-abundant

ITS2 types were present that were representatives of

other clades (Table 1). These variants matched with the

dominant sequence variants (or nearly so) of isolates

representing other Symbiodinium clades also under

analysis and occurred between 0.01 and 0.40% of all

reads (Table 1). To understand the cause of this obser-

vation further, we conducted a series of single-cell

PCRs on cultures CCMP2467, KB8, rt-064 and rt-147

with primers specific to clades A, B and C. Clade-spe-

cific PCRs performed on single Symbiodinium cells from

these cultures yielded PCR products with the corre-

sponding clade-specific primers and failed to yield

amplicons using primers specific to a clade other than

the template, with the exception of culture rt-064 (type

B1). For this culture, we retrieved PCR products in two

of seven cases upon amplification with clade A-specific

primers. From both PCR products, a total of eight

clones were sent for sequencing, of which five were

0
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Fig. 1 (A) Frequency distribution of sequence reads for the 10 most common ITS2 copies from isoclonal culture samples. (B) Rarefac-
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identical to the identified clade B1 in 454 sequences and

three were discarded due to reduced quality.

Taxon-based analysis of Symbiodinium ITS2 diversity
in isoclonal cultures

Studies of microbial diversity in an OTU framework

based on pyrosequencing of the 16S rRNA gene have

revolutionized our understanding of bacterial diversity

and distribution (Sogin et al. 2006). Similarly, the ITS2

gene is amenable to analysis in a taxon-based frame-

work under the premise of derivation of appropriate

cut-offs to denoting clades and species/types. Given the

deep divergence between Symbiodinium species from

different clades (comparable to differences between

orders in other dinoflagellates), we had to devise a

strategy where taxonomic delineation was conducted

on the clade level first and subsequently at the type

level.

Clade separation was empirically determined by pair-

wise similarity calculation of all sequences and subse-

quent clustering using a similarity cut-off of >0.10. This
approach consistently clustered reads into different

clades, which was confirmed by BLASTing representa-

tives of each cluster against our custom ITS2 database.

As mothur calculates exact distance cut-offs, the next

higher distant cut-off from 0.10 was chosen for data

analysis (here: 0.15). After aligning, trimming and dis-

carding sequences that were shorter than 90% of the

reads in each clade, 197 128 sequences remained, of

which 101 239 sequences belonged to clade A, 82 273

belonged to clade B, and 13 616 sequences belonged to

clade C (Table 3).

For the determination of species- or type-level cut-

offs, we used data from isoclonal cultures. Our aim

was to determine a cut-off that effectively clustered all

reads from culture samples assorted to a clade (step

above) into one corresponding OTU at the ‘species’

level. Average neighbour clustering of reads based on

uncorrected pairwise distances at 0.03 provided the

cut-off where all cultures collapsed into one OTU for

a given clade (Table 3). Therefore, 97% sequence simi-

larity was implemented as a cut-off value for species/

type-level OTU-based analyses within clades. Compar-

ing results from sequence- (Table 1) and OTU-based

(Table 3) analyses effectively illustrates that the high

number of distinct ITS2 copies that we identified in

isoclonal culture samples could be collapsed to within-

species (i.e. within OTU0.03) ITS2 variation in a taxon-

based analysis. Three distinct OTUs0.03 (1 of each

clade A, B and C) represented data from all cultures.

For the pooled culture samples, two OTUs0.03 were

Table 2 Intragenomic diversity of ITS2 genes in isoclonal cultures (only ITS2 copies represented by at least 100 reads were consid-

ered). Differences are calculated as uncorrected pairwise distances between aligned DNA sequences. The difference between the min-

imum and maximum genetic distance of ITS2 variants within cultures can be used to derive a similarity cut-off for an operational

taxonomic unit (OTU)-based framework, upon which intragenomic diversity is contained within a given OTU

Symbiodinium

culture

Symbiodinium

culture type

Mean uncorrected

genetic distance

Median uncorrected

genetic distance Minimum Maximum

Difference

(Max-Min)

CCMP2467 (1) A1 0.006 0.008 0.004 0.008 0.004

CCMP2467 (2) A1 0.006 0.008 0.004 0.008 0.004

KB8 A1 0.013 0.008 0.004 0.031 0.027

rt-147 (1) B1 0.005 0.003 0.003 0.007 0.003

rt-147 (2) B1 0.017 0.017 0.003 0.031 0.027

rt-064 B1 0.003 0.003 0.003 0.003 0.000

rt-152 C1 0.003 0.003 0.003 0.003 0.000

*

*

*

*

Rep 1 Rep 2

(A) (CCMP2467)

Rep 1 Rep 2

(B) (rt-147)

*

*

*

* *

*

*

Fig. 3 Reproducibility of pyrosequencing rDNA variants for

replicated PCRs (using the same DNA extract) of isoclonal cul-

tures (A) CCMP2467 and (B) rt-147 taking the top 10 most

abundant sequence variants into account. The sizes of the

circles represent relative abundance; circles with an asterisk

represent distinct ITS2 variants.
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correctly identified, but the relative abundances of

reads did not reflect the initial ratio of cells used.

Accordingly, while diversity was correctly recovered

for cells from pooled isoclonal cultures, the relative

abundances were not.

Taxon-based analysis of ITS2 diversity in
environmental samples

We applied our OTU-based framework to analyse

ITS2 diversity in environmental samples based on the
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Fig. 4 Comparison of top 10 most com-

mon variants found from pyrosequencing

ITS2 from (A) culture rt-152 (Symbiodini-

um goreaui or type C1) and several field-

collected samples representing clade C

Symbiodinium: (B) C1c (sample P.Waj.D7),

(C) C1h (sample P.Maq.R2.19) and (D)

C41 (sample A.Af.B6). The size of the cir-

cles represents relative abundance, and

numbers in circles represent order of dis-

tinct ITS2 variants for a given sample.

Shared ITS2 variants are depicted in a

black outer circle representing ITS2 type

C1, and a grey outer circle representing

ITS2 subtype c.

Table 3 Symbiodinium ITS2 OTU-based analysis overview. Depicted are samples used in this study and the designated clade type

based on DGGE typing. For ITS2 pyrosequencing data, the total number of sequence reads (after filtering and clade-based alignment)

and the number of OTUs at a 97% similarity cut-off for each sample are provided. Distribution of sequence reads over OTUs on a

clade basis and the ITS2 clade type most similar to an OTU are detailed. In cases where the OTU is different from the ITS2 clade

type database sequence, the percentage identity is indicated

Culture or

Sample name

DGGE

typing

ITS2

pyrosequencing Clade A OTUs Clade B OTUs Clade C OTUs

No. of

sequences

No. of

OTUs

No. of

sequences

OTU1A0.03

No. of

sequences

OTU2A0.03

No. of

sequences

OTU3A0.03

No. of

sequences

OTU1B0.03

No. of

sequences

OTU2B0.03

No. of

sequences

OTU1C0.03

Isoclonal

cultures

CCMP2467 (1) A1 16 681 3 16 589 0 0 26 0 66

CCMP2467 (2) A1 8565 3 8537 0 0 14 0 14

KB8 A1 14 891 3 14 879 0 0 9 0 3

rt-147 (1) B1 16 836 2 6 0 0 16 830 0 0

rt-147 (2) B1 18 987 1 0 0 0 18 987 0 0

rt-064 B1 16 042 2 2 0 0 16 040 0 0

rt-152 C1 3116 3 1 0 0 11 0 3104

Pooled

Cultures

CCMP2467:

rt-147 (1:1)

B1 15 231 2 100 0 0 15 131 0 0

CCMP2467:

rt-147 (1:3)

B1 14 911 2 18 0 0 14 893 0 0

Field-

collected

Coral

specimens

P.Dog.R3.2 A1 22 733 4 22 663 61 0 7 0 2

P.Maq.R2.19 C1h 3653 3 41 0 0 30 0 3582

P.Maq.R2.7 A1 18 327 6 18 146 70 4 31 8 68

P.Waj.R1.5 A1 20 284 4 20 080 0 0 143 55 6

P.Waj.D7 C1c 3579 3 38 0 0 33 0 3508

A.Af.B6 C41 3292 3 4 0 0 25 0 3263

ITS2 clade type A1 A1

(97.27%)

A13

(98.04%)

B1 B2 C1
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cut-offs we derived from the isoclonal cultures (File S5,

Supporting information). Similar to the results for the

isoclonal culture samples, the amount of type-level

OTUs0.03 was dramatically lower than the number of dis-

tinct ITS2 copies. Diversity in environmental samples

was comprised of only six OTUs0.03 that represented

a total of 841 distinct ITS2 sequences, demonstrating that

taxon-based framework analyses drastically and effec-

tively reduce complexity and diversity of primary

sequence data. Of the six OTUs0.03 that we identified

across all environmental samples, three OTUs could

be assigned to clade A (referred to as OTU1A0.03,

OTU2A0.03 and OTU3A0.03), two OTUs to clade B

(referred to as OTU1B0.03 and OTU2B0.03) and one

OTU to clade C (referred to as OTU1C0.03) (Table 3).

OTU1A0.03, OTU1B0.03 and OTU1C0.03 were the most com-

mon ITS2 types representing >99% of all sequences for a

given clade. These OTUs were classified belonging to

Symbiodinium types A1, B1 and C1, each with 100%

sequence identity (Table 3). Interestingly, all environ-

mental samples were dominated by a single OTU0.03. At

the same time, all environmental samples comprised

more than one OTU, but the fraction of sequence reads

representing additional OTUs was low. This diversity

was not captured in the DGGE fingerprint. For instance,

DGGE fingerprinting of samples P.Dog.R3.2 and

P.Maq.R2.7 only showed association with Symbiodinium

A1. In our pyrosequencing data, although both sam-

ples were dominated by OTU1A0.03 representing clade

A1 (~99% of all reads), 0.27 and 0.38% of reads repre-

sented OTU2A0.03 and 0.02% of all reads from sample

P.Maq.R2.7 represented OTU3A0.03 (Table 3). Similarly,

while P.Maq.R2.19 was dominated by OTU1C0.03 in

pyrosequencing data (98.06% of sequence reads), it was

also associated with clade A1 (OTU1A0.03: 1.12%) and

clade B1 (OTU1B0.031: 0.82%). Finally, even though

P.Maq.R2.7 was the most diverse sample, it still could be

represented by only six OTUs, effectively demonstrating

how OTU-based analyses collapse the majority of genetic

diversity into intragenomic (i.e. within OTU) variation.

Comparing the OTU-based analysis to DGGE finger-

printing, we found that for the majority of samples, the

representative OTUs were identical to the Symbiodinium

ITS2 type derived from DGGE rDNA fingerprinting

when the most prominent band was sequenced. For

sample A.Af.B6, however, the most prominent DGGE

band was represented by ITS2 type C41. While this type

was also the most abundant pyrosequencing read in that

sample, C41 collapsed into a single OTU (i.e. OTU1C0.03)

with the C1 ITS2 type. Similarly, in some cases DGGE

fingerprinting identified ITS2 types that were not readily

identified as distinct OTUs from pyrosequencing data.

For instance, while P.Maq.R2.19 was primarily associ-

ated with clade C1 ITS2 type, it was also associated with

clade C1h based on the DGGE profile. Further, sample

P.Waj.D.7 showed an association with C1c in addition to

clade C1 in the DGGE profile. C1h and C1c were readily

detected in pyrosequencing data, but represented by/

collapsed to a single OTU (i.e. OTU1C0.03). This can be

attributed to a single-base pair difference between C1,

C41, C1h and C1c. From a taxon-based analysis point of

view, intergenomic divergence did not exceed intrage-

nomic divergence and accordingly could not be resolved

into distinct OTUs.

Discussion

Sequence variation among ITS2 copies in the genomes
of Symbiodinium

We applied 454 pyrosequencing to analyse intra- and

intergenomic Symbiodinium rDNA diversity in order to

gain an in-depth perspective on the relative homogene-

ity of this high multicopy gene (Thornhill et al. 2007).

By utilizing isoclonal cultures, we further resolved the

degree of genomic homogeneity relative to abundance

of ITS2 sequence variants across the ribosomal array. In

addition, we extended sequencing resolution in

comparison with classical cloning-and-sequencing-based

approaches, and we were able to empirically derive cut-

offs for application of these types of data in a taxon-

based framework. Our analysis protocol was then

applied to environmental samples to assess overall fea-

sibility of the approach.

A concern regarding utilization of ITS2 genes for esti-

mating Symbiodinium diversity is the multicopy nature

of ribosomal DNA (LaJeunesse 2002). The genomes of

eukaryotes contain one to several numerically dominant

sequence variants (Dover 1986; Hillis & Dixon 1991;

LaJeunesse & Pinzon 2007). Species lineages of Symbiodi-

nium exist that have two or more codominant ITS2 cop-

ies that together are diagnostic of the species (Sampayo

et al. 2009). The rank abundance plot of ITS2 variants

from isoclonal samples (Fig. 1A) revealed that while

there seems to be extensive intragenomic variation in

ITS2 sequences, each genome was characterized (in

these particular examples) by the presence of one

numerically dominant ITS2 sequence. Provided that the

process of concerted evolution is correctly understood

(Dover 1986), common intragenomic variants persist in

the genomes among the individuals of a genetically

recombining population over long evolutionary time-

scales (Sampayo et al. 2009; Thornhill et al. 2014). The

number of ITS2 sequence variants follows a long-tail

abundance distribution with dominant variants (often

one or two) being present at high frequency and a high

number of rare variants at much lower frequencies

(Fig. 1). This disparity among intragenomic variants
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indicates that gene conversion drives the relative

homogenization of this gene array, but is not rapid

enough to dampen out the appearance and partial

spread of new mutations. As rare variants are removed

or replaced through concerted evolution, variants

derived from the dominant sequence are continually

being generated. This process, however, leads to evolu-

tionary stability of the dominant sequence variant(s).

For this reason, the numerically dominant intragenomic

variant is used to conservatively characterize Symbiodini-

um (LaJeunesse 2002; Thornhill et al. 2007). Accordingly,

DGGE-based analyses focus only on the dominant Sym-

biodinium ITS2 sequence variants in a sample to resolve

the most abundant Symbiodinium species present in the

host. However, DGGE-based analyses are relatively

labour- and time intensive, which might prohibit study-

ing a large number of samples. In comparison, pyrose-

quencing requires little hands-on time and has become

comparatively cheap. In addition, the resolution of addi-

tional Symbiodinium that might occur at low abundances

(<5%) may be detected. DGGE can usually detect the

coexistence of a second or third Symbiodinium if present

at >5–10% of the sample (Thornhill et al. 2006), with

some species (e.g. type D1 in Pocillopora) requiring 10–

30% abundance to be detected (LaJeunesse et al. 2008).

In contrast, pyrosequencing detected sequences below

1% in our data. Accordingly, DGGE-based ITS2 typing

can miss the presence of background species that may

be ecologically important (LaJeunesse et al. 2009).

The application of deep sequencing can be used to

better understand intragenomic rDNA diversity and its

evolution within a genome. Pyrosequencing repeatedly

identified a large number of ITS2 sequence variants

diagnostic of a particular genome (Fig. 3) beyond the

resolution of DGGE- or cloning-based approaches. Still,

the median intragenomic sequence divergence was

<0.02 (Table 2) similar to the values calculated when

only the most abundant sequence variants were consid-

ered (Sampayo et al. 2009; Stat et al. 2013), and this

value was subsequently used to inform cut-off estimates

for the resolution of separate taxa.

The analysis of mixed cultured isolates at different

ratios showed that one must be conservative when

interpreting abundance in samples with two or more

Symbiodinium species. This is mainly due to the differ-

ences in rDNA copy number between Symbiodinium

species (Rowan & Knowlton 1995; Rowan et al. 1997;

Mieog et al. 2007; LaJeunesse et al. 2008), or differences

in DNA extraction efficiency among different Symbiodi-

nium spp. Pooled cultures of Symbiodinium A1

(CCMP2467) and B1 (rt-147) in a 1:1 ratio generated far

more sequence reads for Symbiodinium B1, despite pool-

ing the same number of Symbiodinium cells from both

cultures (Table 1). While genomic complexity in terms

of distinct copies was similar for both cultures, clade B

has several times more ITS copies than clade A, explain-

ing the unequal read distribution we recovered (T. C.

LaJeunesse, unpublished data). Accordingly, this has to

be taken into account when using rDNA in estimating

the relative abundances of samples containing members

of two or more clades.

Our discovery of ITS2 sequence variants diagnostic of

a different clade in pyrosequencing data from isoclonal

cultures prompted further investigations via single-cell

PCRs. Given the absence of consistent foreign clade

amplification in single-cell PCRs as well as the vast

evolutionary timescales between Symbiodinium clades

(estimated at tens of millions of years), the most parsi-

monious explanation is DNA contamination (e.g. in the

form of aerosols). In a recent review, van Oppen & Gates

(2006) report on the retrieval of highly divergent

sequences (diagnostic of other clade entities) at ultralow

abundance, indicating that contamination is potentially a

significant issue in laboratories that extensively employ

PCRs of the ITS2 marker. The finding of unexpected

‘background’ sequences would need to be confirmed by

next-generation sequencing these samples in laboratories

that have not previously worked on Symbiodinium ITS2.

Taxon-based analysis of ITS2 diversity

While many studies have applied cluster-based

approaches to analyse Symbiodinium ITS2 diversity

within environmental samples (Correa & Baker 2009;

Stat et al. 2013), few studies yet have targeted analysing

Symbiodinium diversity with high-throughput sequenc-

ing data in an OTU-based framework (Green et al. 2014;

Thomas et al. 2014). We think that this is the most suit-

able approach in dealing with data produced from

next-generation sequencing of rDNA. It should be noted

that the application of high-throughput sequencing of

the ITS2 region is not limited to the Roche 454 platform.

Given current read-length improvements of the Illu-

mina MiSeq platform (2*300 bp Paired-End libraries) in

addition to its higher throughput, data from this plat-

form can readily be applied to the analysis of ITS2 in a

taxon-based framework. In particular, our OTU-based

pipeline developed here for mothur is compatible and

portable to data generated on the Illumina MiSeq plat-

form with minor changes to the quality trimming steps

(Phase I, File 2, Supporting information) based on

differences in the sff (Roche 454) and fastq (Illumina

MiSeq) file format. The challenge lies in the deriva-

tion of appropriate cut-offs for the separation of

sequences into clades and species or types. Even for a

well-studied marker such as 16S, taxonomic cut-offs are

not necessarily accurate (Ghyselinck et al. 2013; Preheim

et al. 2013). Here, we used (replicated) sequencing of
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isoclonal cultures representing clades A, B and C to bet-

ter understand inter- and intragenomic diversity and

empirically derive taxonomic cut-offs. Future studies

should sequence rDNA from additional cultures repre-

senting a diverse set of Symbiodinium species.

On the clade level, due to the large evolutionary dis-

tance in the genus Symbiodinium, ITS2 sequences from

different clades are difficult if not impossible to align

correctly. Accordingly, taxon-based framework analyses

will fail to separate ITS2 sequences into ecological and

evolutionarily discrete entities when sequences from all

clades are considered at the same time. Rather, it will

lead to exaggerated genetic distance estimates retrieved

from the alignment of nonhomologous DNA characters.

To resolve ITS2 types more accurately, we found that

sequences need to be separated into distinct clades first,

and a subsequent OTU-based analysis has to be carried

out for each clade separately. For our data, ITS2

sequences separated into clades upon applying a cut-off

value of 0.15. However, application of this cut-off to

ITS2 sequences from our database considering all clades

(i.e. A–I) did not correctly cluster ITS2 sequences into

all distinct clades (data not shown). This might be due

to difficulties in calculating pairwise similarities

between sequences when all subtypes of Symbiodinium,

for example A1, A2, A3 or B1, B2, B3 are present in one

data set. To separate ITS2 sequences into Symbiodinium

clade levels, we suggest manual binning upon determi-

nation of an appropriate similarity cut-off before con-

ducting OTU-based ITS2 type analyses (File S5,

Supporting information).

Similarly as for the separation of ITS2 reads into

clades, there is no a priori cut-off value that consistently

sorts ITS2 sequences into distinct species (Thornhill

et al. 2014). In fact, Symbiodinium species classification

should not be conducted using ITS2 sequence diver-

gence alone, as ITS2 may not consistently resolve spe-

cies. For instance, two distinct Symbiodinium lineages

that are not undergoing genetic exchange can have the

same ITS2 sequence (Thornhill et al. 2014). Accordingly,

a taxonomic cut-off value that clusters existent ITS2

variants into OTUs should be regarded as provisional,

pending subsequent analysis with independent and

more rapidly evolving markers. For this reason, group-

ing of ITS2 variants into provisional OTUs for the (ini-

tial) characterization and comparison of Symbiodinium

diversity seems a more feasible approach than trying to

definitely resolve ITS2 sequence differences into species.

As ITS2 rDNA is not a single-copy gene, a cut-off

value that clusters intragenomic ITS2 variants into a sin-

gle OTU might be indicated as a valid cut-off value. In

our data, clustering sequences from isoclonal cultures

assorted to clades with the average neighbour algorithm

(Schloss & Westcott 2011) at a pairwise genetic distance

cut-off of 0.03 collapsed intragenomic ITS2 variation

into a single OTU. For this reason, we adopted 0.03 as a

cut-off to determine Symbiodinium community composi-

tion from pyrosequencing data retrieved from field-

collected coral specimens. The application of this cut-off

to samples from coral host tissues resulted in only six

distinct OTUs describing Symbiodinium diversity,

despite numerous sequenced ITS2 variants. This pro-

vides an indication of how much of the variation we

sequenced might be attributable to actual intra- rather

than intergenomic diversity. Applying an OTU-based

approach to the analysis of coral symbiont diversity

suggests that most coral colonies appear to be domi-

nated by a single genetic entity (Sampayo et al. 2009;

Pettay et al. 2011; Baums et al. 2014; Thornhill et al.

2014). However, ITS2 sequences of types C1, C1h, C1c

and C41 were represented by the same OTU at a 0.03

cut-off underscoring the difficulties that are associated

with matching ITS2 sequence variants to closely related

Symbiodinium with separate ecological distributions.

Because these entities share a recent common ancestor

as members of the C1 radiation (sensu Thornhill et al.

2014), the genomes of these Symbiodinium shared the

ancestral sequence, C1, at different relative abundances

(Fig. 4). An exception was a Pocillopora verrucosa speci-

men (P.Maq.R2.7, Table 3): in this sample, we detected

all six OTUs representing the entire OTU diversity from

our data. The significance of colonies possibly harbour-

ing highly mixed Symbiodinium assemblages is not fully

understood and should be the effort of future studies.

Considerations for the application of an OTU-based
pipeline to the analysis of Symbiodinium ITS2 diversity

There is probably no single genetic marker that can cor-

rectly classify all Symbiodinium diversity into distinct

species (LaJeunesse et al. 2012; Pochon et al. 2012). Typi-

cally, a distinct ITS2 variant that is numerically domi-

nant in the genome is tentatively regarded as a new

type, or ‘species’, of Symbiodinium (LaJeunesse 2002;

LaJeunesse et al. 2010), and only when diagnostic of an

ecologically distinct population. However, for (initial)

characterization of Symbiodinium diversity in a large

number of samples, elucidation of Symbiodinium species

using multimarker molecular evidence in combination

with morphological, ecological and physiological data

(as detailed in, e.g., LaJeunesse et al. 2012) is not (yet)

feasible. Here, we suggest adoption of an OTU-based

framework to analyse high-throughput Symbiodinium

ITS2 sequence data to provisionally assess species diver-

sity (similar to the use of DGGE fingerprinting of ITS2

rDNA) until ‘true’ species are formally described using

the convergence of independent lines of genetic,

ecological and in some cases morphological evidence

© 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

4430 C. ARIF ET AL.



(LaJeunesse et al. 2014). Although the application of a

taxon-based framework will miss some ecologically and

evolutionarily distinct entities, most importantly, it pro-

vides a conservative and comparable estimate of Symbi-

odinium diversity based on rDNA. The development of

sensible cut-offs to delineate Symbiodinium diversity in

an OTU-based framework allows harmonization and

reanalysis of existing and new data under a common set

of rules. We specifically acknowledge that some Symbio-

dinium species will be contained in a single OTU and

not resolve at a cut-off of >97% similarity. For instance,

clade C, which is by far the most diverse clade with a

broad radiation, would require higher cut-off values to

resolve species. But as ITS2 data alone are unable to

unequivocally diagnose species, our intentions were to

provide a reasonable cut-off that investigators can apply

to compare diversity within and between their samples

and that deflates rather than inflates Symbiodinium spe-

cies diversity estimates. Further, continuing efforts in

the (genetic) description of Symbiodinium species (LaJeu-

nesse et al. 2012, 2014; Jeong et al. 2014) and the ease of

typing a large number of samples might encourage the

use of multiple markers in the analysis of Symbiodinium

diversity, which will facilitate analysis of high-through-

put sequencing data in a phylogeny-based context. This

perspective stimulates further comparative analyses of

ocean basins and species in a standardized framework

that might provide greater insight into symbiont diver-

sity of marine invertebrates and the acclimation of

corals to environmental change.
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