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Abstract

To study the electrochemical reaction on surfaces, phase interfaces, and crack

surfaces in lithium ion battery electrode particles, a phase-field model is devel-

oped which describes fracture in large strains and anisotropic Cahn-Hilliard-

Reaction. Thereby the concentration-dependency of the elastic properties and

the anisotropy of diffusivity are also considered. The implementation in 3D is

carried out by the isogeometric finite element method in order to treat the higher

order terms in a straightforward manner. The electrochemical reaction is mod-

eled through a modified Butler-Volmer equation to account for the influence of

the phase change on the reaction on exterior surfaces. The reaction on the crack

surfaces is considered through a volume source term weighted by a term related

to the fracture order parameter. Based on the model, three characteristic exam-

ples are considered to reveal the electrochemical reactions on particle surfaces,

phase interfaces, and crack surfaces, as well as their influence on the particle

material behavior. The results show that both the anisotropy and the ratio

between the timescales of reaction and diffusion can have a significant influence
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on the phase segregation behavior. In turn, the distribution of the lithium con-

centration strongly influences the reaction on the surface, especially when the

phase interfaces appear on exterior surfaces or crack surfaces. The reaction rate

increases considerably at phase interfaces due to the large lithium concentration

gradient. Moreover, the simulations demonstrate that the segregation of a Li-

rich and a Li-poor phase during delithiation can drive the cracks to propagate.

The results indicate that the model can capture the electrochemical reaction on

the freshly cracked surfaces.

Keywords: Electrochemical reaction, Phase-field modeling of fracture,

Cahn-Hilliard-type diffusion, Isogeometric analysis, Lithium-ion battery

electrode particles, Anisotropic diffusion

1. Introduction

Lithium ion batteries, with their high energy densities and light-weight de-

signs, have found wide applications in portable electronics and electric vehicles.

A typical lithium ion battery cell is illustrated in Figure 1. The current col-

lectors and the binders between the electrodes (not depicted here) conduct the5

electrons, while the separator only permits the diffusion of lithium ions. The

anode and cathode particles are surrounded by the electrolyte. Lithium ions in-

tercalate into the electrodes through electrochemical reactions on the surface of

the particles. Due to this process, certain electrode active materials experience

large deformations during charge-discharge circles. For instance, a volumetric10

expansion of as much as 400 % of silicon anode has been observed during lithi-

ation [1]. In the electrochemical system of a battery, the reaction rate is a key

issue since it is directly related to the charge/discharge performance of a battery.

The phenomenological Butler-Volmer (BV) equation, which is based on a dilute

solution model, may not be able to account for a separation of phases with dif-15

ferent Li concentrations in materials, such as silicon and LiFePO4. In the work

of Singh et al. [2], a generalized BV kinetics model was proposed, which includes

the influence of the phase transition on the surface reaction in a 1D case. Based
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Figure 1: Schematic of a lithium-ion battery cell.

on this model, Bai et al. [3] discussed the suppression of the phase segregation

under large reaction rate. The two dimensional case, which also coupled the20

Cahn-Hilliard bulk diffusion was studied by Dargaville and Farrell [4]. Using

different limits of the 1D case, they discussed when the orthotropic diffusivity

becomes more isotropic. In mechanically coupled modeling, there has also been

a tendency recently to treat the electrochemical reaction on the surface directly

through the BV equation rather than simply to replace the reaction by a source25

of constant or time dependent flux [5, 6].

The mechanical degradation of the electrode particle is widely believed to

be closely related to the failure of the batteries. This issue has been inten-

sively studied in various chemo-mechanical coupled models [7–10]. However,

those models mainly treat the diffusion process as in a dilute solution, where30

the concentration smoothly changes with the incoming/outgoing flux, accompa-

nied by a homogeneous “breathing-like” expansion and shrinkage of the particle,

which will hardly lead to the failure of the electrode particles. In the work of

Huttin et al. [11] and Walk et al. [12], the Cahn-Hilliard equation was em-

ployed to investigate the stress state and to compare the results with those in35

the case of a dilute solution. The diffusion process was treated as isotropic in
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both works. However, as Rohrer et al. [13, 14] pointed out from first principle

calculations, the anisotropic volumetric expansion in Silicon will indeed initiate

cracking, especially in large particles, where the segregation between amorphous

and crystalline silicon phases can not be suppressed. Moreover, in positive elec-40

trode materials such as LiFePO4, striped phase boundaries have been observed

by Chen et al. [15, 16] because of strong anisotropy and phase segregation. It

demonstrated the necessity to employ a Cahn-Hilliard model and to consider

the anisotropic diffusion property coupled with large deformations for describing

the bulk behavior of the particle.45

The description of the dynamics of crack propagation in lithium ion battery

electrode particles has long been a challenge. Recently, as the concept of phase-

field modeling found more applications in different disciplines, phase-field meth-

ods have also been introduced to predict the crack propagation coupled with

diffusion. In phase-field fracture models, the damaged and undamaged parts of50

the material are considered as two different phases, indicated by the distinct val-

ues of the order parameter. Schneider et al. [17] proposed a model coupling the

mechanics with a general multiphase and multicomponent phase-field approach

to describe the diffusion and crack propagation in brittle materials. Liang et

al. [18] developed a phase-field model to predict the crack evolution in LiFePO455

cathode nanoparticles in of Li-ion batteries. Concurrently, the phase-field frac-

ture simulation in silicon anodes was also carried out by Zuo et al. [19]. Re-

cently, Miehe et al. [20] conducted a comprehensive study on chemo-mechanical

induced fracture in the framework of phase-field fracture modeling, and took

into account the chemical reactions not only on fracture surfaces but also on60

exterior surfaces.

In this paper, the authors propose a phase-field model which accounts for

electrochemical reactions on different interior and exterior surfaces of phases

and crack surfaces based on the fully coupled Cahn-Hilliard-Reaction (CHR)

model proposed in the work of Bazant [21]. To meet the demand of higher-65

order continuity arising from the Cahn-Hilliard equation, isogeometric analysis

is employed.
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The paper is organized as follows. In section 2, the phase-field fracture

model coupled with the anisotropic Cahn-Hilliard-Reaction problem model is

formulated in large strains. The modeling of electrochemical reactions on the70

surface, phase interface, and on the crack surface is shown in section 3. Nu-

merical details are given in section 4. Finally, three examples are presented in

section 5 to discuss the reaction rate, the anisotropic diffusion, and the reaction

on the crack surface.

2. Phase-field model of fracture and phase separation75

2.1. Kinematics

According to continuum theory, the material coordinates X label each ma-

terial point, while the spatial coordinates x denote points in the space. The

motion of the body can be described by tracking the spatial coordinates of the

material points at time t, i.e. x = φ(X, t). The deformation gradient at a given

time is then defined as

F = ∇R φ (1)

in which ∇R denotes the gradient with respect to the material point X in the

reference (material) configuration. The deformation gradient is multiplicatively

decomposed into two parts:

F = FeFc, (2)

where Fe denotes the elastic distortion and Fc the (de-)intercalation-induced

deformation. The (de-)intercalation-induced deformation is usually assumed to

be volumetric, and it can be further defined as

Fc = (Jc)
1
3 1 with Jc = 1 + ΩcR (3)

in which cR(X, t) is the molar concentration per unit volume in the reference

configuration and Ω is the constant partial molar volume. Applying the nor-

malization with respect to the maximum concentration cmax,

c = cR/cmax, Ω∗ = Ωcmax. (4)
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one has

Jc = 1 + Ω∗c. (5)

On the other hand, one can also define the volumetric part of the elastic con-

tribution Fe,

Je = det Fe = J/Jc with J = det F. (6)

The right Cauchy-Green deformation tensors are

C = FTF, Ce = (Fe)TFe = (Jc)
− 2

3 C. (7)

Due to the volumetric feature of Fc, the deviatoric part of the total deformation

equals that of the elastic deformation, i.e.,

C̄ = C̄e with C̄ = J−
2
3 C, C̄e = (Je)−

2
3 Ce. (8)

It follows that

Ī1 = Īe1 with Ī1 = tr(C̄), Īe1 = tr(C̄e). (9)

From the deformation gradient, the Green-Lagrange strain tensor is then defined

as

E =
1

2

(
FTF− 1

)
=

1

2
(C− 1) . (10)

2.2. Free energy density

We assume a free energy, coupling the chemical and the mechanical field

with a damage variable ξ as

ψR(cR,∇RcR,C, ξ,∇ξ) = ψcR(cR)+ψiR(∇RcR)+ψfR(ξ,∇Rξ)+ψ
e
R(cR,C, ξ), (11)

where ψcR, ψiR, ψfR and ψeR are the bulk chemical free energy, the phase interface

free energy, the fracture free energy, and the elastic free energy, respectively. In

this paper, entities with subscript R indicate those defined per volume in the80

reference configuration, unless otherwise indicated.

The first two terms allow for the coexistence of two phases with different

Lithium concentration, which are separated by a diffuse interface. The bulk

free energy ψcR is only dependent on the concentration c and is given as

ψcR(c) = RTcmax [c ln c+ (1− c) ln(1− c)] + RTcmaxχc(1− c), (12)
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in which R and T are the gas constant and the reference temperature, respec-

tively. To achieve a double-well function of ψc, so that this energy density allows

for the coexistence of two phases, one needs to choose χ > 2. In the simulation,

χ = 2.5 is adopted.85

The interfacial free energy ψiR gives an energetic penalty for the interface

which is expressed as

ψiR(∇cR) =
1

2
cmax∇Rc ·K∇Rc. (13)

Here, K is an interfacial parameter which is defined as

K =


κx

κy

κz

 (14)

to exhibit an orthotropy of the interface. The parameters κx, κy and κz are

related to the interfacial thickness in the corresponding directions. For a 1D

case, if the elastic influence is absent, we can obtain the interfacial thickness

and the integrated interfacial energy as [22]

s = �c/ tan θ = (cβ − cα)
√
κ∗/(2�ψcmax), (15)

Ψi =

∫ ∞
−∞

ψiR
RTcmax

dx =

∫ ∞
−∞

1

2
κ∗ (c,x)

2
dx =

∫ cβ

cα

√
κ∗�ψc/2 dc, (16)

where s is the interface thickness defined as depicted in Figure 2(a), cα, cβ and

�ψc are shown in Figure 2(b), and κ∗ = κ/(RTL2
0) with L0 being a characteristic

length scale. One can see from (15) and (16) that, for a given bulk free energy,

the interface thickness and the total energy are proportional to the square root

of κ, that is, s, Ψi ∝
√
κ. It can be further concluded that, in the 3D case, if90

the interfacial parameter κ in one direction is much smaller than those in the

other two directions, the interfacial thickness and the energy expended across

the interface will be much smaller in this direction. For instance, κx � κy = κz

gives s1 � s2 = s3 and Ψi
1 � Ψi

2 = Ψ3.
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Figure 2: Definition of the interface thickness for a 1D problem.

The damage-like order parameter ξ is introduced to describe the damage

state of the material, with a value of 1 when the material is unbroken and being

0 when it is fully broken. According to Bourdin et al. [23], the fracture free

energy density is given by,

ψfR(ξ,∇Rξ) = Gc
[
ε|∇Rξ|2 +

1

4ε
(1− ξ)2

]
. (17)

Here, Gc is the critical energy release rate and ε is a length scale which determines95

the width of the transition zone between the unbroken and the broken region.

The elastic energy ψeR represents the stored energy of the elastic deforma-

tion. Although a crystal with anisotropic chemical properties will also show an

anisotropy in mechanical properties, the quantitative relation is still unknown.

For simplicity, for the undamaged region an isotropic neo-Hookean model is

assumed

ψe0R (cR,C) = Jc
[
Kc

2
(Je − 1)

2
+
Gc
2

(
Ī1 − 3

)]
(18)

in which Kc and Gc are phase-dependent elastic moduli which are expressed as

Kc = K0 (c− cin) , Gc = G0 (c− cin) . (19)

Here, K0, G0 and cin are constants which can be determined by a linear fitting

of the measurements of the elastic moduli at different concentrations. For more
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details of an isotropic model without damage we refer the reader to our previous

work [24].100

Following Schneider et al. [17] and Zuo et al. [19], we ignore the direct influ-

ence of diffusion on the crack propagation. That is, the chemical field will not

directly lead to fracture, but indirectly through the induced stress field. More-

over, to account for the fact that cracks will not propagate under hydrostatic

compression, the elastic free energy can be split into a positive part ψe+R and

a negative part ψe−R . The latter will not be involved in the coupling with the

fracture. More specifically, the two parts take the form

ψe+R (cR,C) = Jc
[
Kc

2

(
Je+ − 1

)2
+
Gc
2

(
Ī1 − 3

)]
, (20a)

ψe−R (cR, J) = Jc
Kc

2

(
Je− − 1

)2
(20b)

in which  Je+ = Je, Je− = 1, if Je ≥ 1;

Je+ = 1, Je− = Je, if Je < 1.
(21)

The elastic energy is defined as

ψeR(cR,C, ξ) = (ξ2 + η)ψe+R + ψe−R , (22)

in which 0 < η � 1 is a constant introduced to prevent a singularity inside the

broken phase when ξ = 0. This method has been successfully implemented in

the works of Kuhn et al. [25, 26] and Schlüter et al. [27] with a careful choice

of η.

2.3. Governing equations105

In this model, there are three sets of field variables: a molar concentration

cR, the displacements u and a damage variable ξ. The variation of the total

free energy can be expressed in terms of variations of those variables as

δΨ =

∫
BR

SR : δE dB +

∫
BR

µR δcR dB +

∫
BR

ζ δξ dB, (23)

in which SR is the second Piola-Kirchhoff stress tensor, µR is the chemical

potential and ζ is the driving force for the fracture. Ψ is defined as the free
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energy over the whole body as

Ψ =

∫
BR

ψR(cR,∇RcR,C, ξ,∇ξ) dB. (24)

With ψR defined in (11), the variation of Ψ is given by

δΨ =

∫
BR

[
dψcR
dcR

δcR +
dψiR

d∇RcR
· δ∇RcR +

∂ψeR
∂cR

δcR +
∂ψeR
∂C

: δC

+
∂ψeR
∂ξ

δξ +
∂ψfR
∂ξ

δξ +
∂ψfR
∂∇ξ

· δ∇ξ

]
dB

=

∫
BR

{(
dψcR
dcR

−∇R ·K∇RcR +
∂ψeR
∂cR

)
δcR + ∇R · (K∇RcRδcR) +

2∂ψeR
∂C

: δE

+

[
2ξψe+R +

Gc
2ε

(ξ − 1)− 2Gcε∆Rξ

]
δξ + ∇R · (∇Rξδξ)

}
dB

=

∫
BR

(
dψcR
dcR

−∇R ·K∇RcR +
∂ψeR
∂cR

)
δcR dB +

∫
BR

2∂ψeR
∂C

: δE dB

+

∫
BR

[
2ξψe+R +

Gc
2ε

(ξ − 1)− 2Gcε∆Rξ

]
δξ dB

+

∫
∂BR

K∇RcR · nR δcR dS +

∫
∂BR

∇Rξ · nR δξ dS. (25)

Comparing (23) and (25), SR, µR and ζ can be written as

SR =
2∂ψR

∂C
=
(
ξ2 + η

) 2∂ψe+R

∂C
+

2∂ψe−R
∂C

, (26a)

µR =
dψcR
dcR

+
∂ψeR
∂cR

−∇R ·K∇Rc, (26b)

ζ = 2ξψe+R − 2Gcε∆Rξ +
Gc
2ε

(ξ − 1), (26c)

with two boundary conditions K∇RcR ·nR = 0 and ∇Rξ ·nR = 0 to be fulfilled

on the boundary surface in the reference configuration ∂BR, in addition to

the Dirichlet and Neumann boundary conditions from physical constraints and

fluxes.

As for the governing equation of the mechanical part, we assume a quasi-

static loading, thus ignoring the inertia terms. The governing equation for the

local force balance in the body of the reference configuration BR reads

∇R ·PR = 0, (27)
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where PR is the first Piola-Kirchhoff stress, defined as

P = F SR. (28)

The molar concentration cR is a conserved order parameter and subject to

the Cahn-Hilliard-type kinetics. In the authors’ previous paper [24], the species

are assumed to be driven by a flux defined in the reference configuration which

leads to a simplification in the finite element implementation. In the present

paper, a more physically based kinetics is employed which defines the flux by the

gradient of chemical potential at the current configuration. More specifically,

∂cC
∂t

= −∇C · jC (29)

where the subscript C denotes quantities defined in the current configuration.110

In the body BC, the Cahn-Hilliard-type diffusion applies in the virgin state,

while in the damaged region no diffusion is considered. It leads to

jC = −ξ2Mc∇CµR in BC, (30)

where Mc is a mobility tensor defined as

Mc = c(1− c)


Mx

My

Mz

 = c(1− c)M, (31)

with c(1 − c) representing a degenerated mobility towards c = 0 and c = 1.

On the boundary surface ∂BC and the surface of a newly created crack Γf , the

flux depends on the electrochemical reaction, which follows a phenomenolog-

ical Butler-Volmer equation. More details will follow in sections 3.1 and 3.2.

Therefore, the flux is given as

jC · nC = −ĵ s on ∂BC ∪ Γf . (32)

Based on density functional theory calculations, Rohrer et al. [14] have found

that the anisotropy of mobility is a consequence of orientation-dependent in-

terface energies and that high-energy interfaces are more mobile than low-

energy interfaces. By recalling (16), it can be concluded that a higher κ leads
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to a larger M . For simplicity, a proportional relation is assumed, that is,

Mx/κx = My/κy = Mz/κz. The chemical potential µR expresses the free energy

change for adding/subtracting one mole lithium to/from the system, thus being

the same for any configuration. The subscript R only indicates the fact that it

is calculated by quantities in the reference configuration. Given the condition

that the total mass should be conserved in different configurations,∫
BC

∂cC
∂t

dB =

∫
BR

∂cR
∂t

dB, (33)

equation (29) can be pulled back straightforwardly to the reference configuration

as
∂cR
∂t

= ∇R ·
[
ξ2c(1− c)JF−1MF−T∇RµR

]
in BR. (34)

For later discussion, a dimensionless activity a is introduced by

RT ln a = µR, (35)

and an activity coefficient γ as the ratio γ = a/c. Note that, when a = c and

thus γ = 1, this model degenerates to an ideal dilute model.

As for a non-conserved order parameter ξ, the evolution equation follows an

Allen-Cahn-type equation

∂ξ

∂t
= −Mξζ = −Mξ

[
2ξψe+R − 2Gcε∆Rξ +

Gc
2ε

(ξ − 1)

]
(36)

with Mξ as the mobility for the evolution of ξ. Following Miehe et al. [28, 29]

and Borden et al. [30], to mimic the irreversibility of the crack, a strain-history

field HR is introduced as a substitution of ψe+R , which satisfies the Kuhn-Tucker

conditions

HR ≥ ψe+R , ḢR ≥ 0, ḢR

(
ψe+R −HR

)
= 0. (37)

The evolution for ξ then reads

∂ξ

∂t
= −Mξ

[
2ξHR − 2Gcε∆Rξ +

Gc
2ε

(ξ − 1)

]
. (38)

In summary, the governing equations for three field variables u, c and ξ are

given by (27), (34) and (38), respectively.
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Figure 3: Illustration of the electrochemical reaction on the surface

3. Modeling of electrochemical reaction115

3.1. Reaction on particle surfaces

On the particle surface, a Faradaic reaction

Li+ + e− ⇀↽ Li (39)

takes place, during which a Li-ion consumes an electron, as shown in Figure 3.

The resultant neutral Lithium inserts into the host material.

The rate of the reaction is described by a phenomenological Butler-Volmer

(BV) equation,

ĵ s = csRBV = cs
a1−β

+ aβ

τ0γA

[
exp

(
−βFηsR

RT

)
− exp

(
(1− β)

FηsR
RT

)]
, (40)

in which cs with the unit of mol m−2 is the molar concentration of intercalation

sites on the surface and RBV is the reaction rate in unit s−1. Moreover, τ0 is

the mean time for a single reaction step which will be set differently to mimic a

slow or fast reaction process in the simulation. The parameter γA denotes the

chemical activity coefficient of the activated state which is taken as (1 − c)−1,

while β is a symmetry factor for a forward and backward reaction indicated in

(39) and which is set to be 0.5. The Faraday constant F describes the amount

of electric charge of one mole electrons. For more details on the coefficients of

this model one can refer to the work of Bai et al. [3] and Dargaville et al. [4].
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The definition of a has been introduced in (35). The parameters a+ and a are

activities of Li+ and Li, respectively. Since Li+ diffuses in the electrolyte much

faster than Li diffuses in the electrode [3], a+ is set to be unity for simplicity.

For a similar reason, the activity of electrons a− is also set to be 1. The surface

overpotential ηsR is defined as the electrostatic potential of the working electrode

relative to a reference electrode of the same kind placed in the solution adjacent

to the surface of the working electrode. It can be expressed in terms of the

electrochemical potentials as

FηsR = µLi − µLi+ − µe− , (41)

where µLi, µLi+ , µe− are the electrochemical potentials of Li, Li+ and e−, re-

spectively, which are expressed as

µLi = RT ln a = µR, (42)

µLi+ = RT ln a+ + Fφe = Fφ, (43)

µe− = RT ln a− − Fφ = −Fφe. (44)

Here, φe denotes the electrostatic potential of the electrode and φ represents

that of the electrolyte. Insertion of the last three equations into the surface

overpotential given in (41) leads to

FηsR = µR + F (φe − φ) = µR + F�φ, (45)

where �φ = φe−φ is the voltage drop across the electrode/electrolyte interface.

As mentioned, the subscript R in η is only to indicate that it is expressed by120

quantities in the reference configuration and it is independent from the chosen

configuration. On the other hand, the flux ĵ s is flow rate per unit area and

therefore it is dependent on the configuration. However, this dependence is

fully described in the parameter cs. Therefore Eq. (40), with the corresponding

cs, is valid for both configurations. The same applies for the next section, where125

the reaction on the newly created crack surfaces is discussed.

By substituting (12), (26b) into (45), the normalized overpotential can be

14



expressed as

ηs =
FηsR
RT

= ln
c

1− c
+ χ(1− 2c) + µe −∇ ·K∗∇c+ �φ∗, (46)

where µe = (1/RT)∂ψeR/∂cR is the normalized elastic chemical potential, �φ∗ =

F�φ/ (RT), K∗ = K/
(
RTL2

0

)
and ∇ = L0∇R. Here L0 is a characteristic length

which is introduced for normalization of the model discussed in Section 4.1

Note that, insertion of Li takes place on the surface for ηs < 0, while extrac-130

tion of Li happens for ηs > 0. Thus, by choosing different voltage drop �φ∗,

the reaction can be controlled as forward and backward. In particular, when

the interfacial and elastic chemical potential is disregarded, ηs = µc + �φ∗. As

shown in Figure 4(a), when �φ∗ is negative and large enough, the system will

absorb Li until c = c1 is reached. On the other hand, as shown in Figure 4(c),135

when �φ∗ is positive and large enough, Li will be deintercalated from the sys-

tem until c = c5. However, when −�φ∗ stays between two spinodal points, as

shown in Figure 4(b), it is highly probable that both insertion and extraction

will take place at the same time towards c = c2 and c = c3, since the whole

system is unstable due to spinodal decomposition. Notice that c2 and c3 can be140

different from the concentrations in two phases cα and cβ , which are the results

of the spinodal decomposition. The values of c2 and c3 depend not only on the

chemical state of the material but also on the applied voltage potential drop

�φ∗. The reaction on the surface will automatically constrain the concentration

in a way that the concentration will stay in the range from 0 to 1.145

Substitution of (46) into (40) leads to

ĵ s =
cs
τ0

(1− c) exp

(
−1

2
�φ∗

)
−cs
τ0
c exp

[
χ (1− 2c) + µe −∇ ·K∗∇c+

1

2
�φ∗

]
.

(47)

3.2. Reaction on crack surfaces

In the framework of phase-field fracture models, the crack interface can be

tracked through ξ(ξ − 1) 6= 0 or ∇ξ 6= 0. Therefore, the boundary flux can be

weighted by functions containing either or both of these two terms, in order to

consider the reaction at the crack interface.150
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Figure 4: Insertion/extraction of Li under different normalized voltage drop �φ∗ =

F�φ/ (RT). The chemical potential µc = ln c− ln(1 − c) + 2.5 (1 − 2c) .

Figure 5: Schematics of the phase field crack

As shown in Figure 5, we denote the idealized crack surface by Γf (one crack

will create two surfaces facing towards each other), and by Γ′f the level surface

in the phase-field model for a constant ξ. The damage variable gradient ∇ξ

remains thus perpendicular to Γ′f . Introduce a vector s, which lies parallel to

the damage variable gradient ∇ξ. The flux on the crack surface can hence be

approximated as the flux average across the interface∫
Γf

ĵ s dΓ ≈ 1

ε

∫
s

∫
Γ′f

g(ξ,∇ξ)ĵ s dΓ′ds ≈ 1

ε

∫
B

g(ξ,∇ξ)ĵ s dB, (48)

where ε is a length parameter which is related to the interface thickness. The

weight function g(ξ) contains either ξ(ξ − 1) or ∇ξ as a factor. If the flux is

16



kept constant across the interface or varies very little along the direction of ∇ξ,

we can observe the following relation

1

ε

∫
s

∫
Γ′f

g(ξ,∇ξ)ĵ s dΓ′ds ≈ 1

ε

∫
s

g(ξ,∇ξ) ds

∫
Γ′
ĵ sdΓ′. (49)

It follows that the approximation of (48) is valid, if

1

ε

∫
s

g(ξ,∇ξ) ds = 1. (50)

It should be commented that there will be several factors that can influence

the accuracy of the approximation.

• The phase-field approximation of the cracked phase interface will deter-

mine the choice of g(ξ). Usually g(ξ) is chosen based on an uncoupled

model for simplicity. However, when the mechanical stresses come into155

play, the ξ profile can be different. The error can be even larger when

ξ(ξ− 1) is used as its weighting term, since ξ might not be 0 and 1 in two

homogeneous phases, depending on the boundary condition given (the

reader is referred to [30] for more details). Therefore g(ξ) needs to be

modified accordingly when the influence of stresses is not negligible;160

• The flux can vary strongly across the phase interface, especially when the

diffusion is so slow that the concentration varies strongly along the di-

rection of ∇ξ, making electrochemical reaction on/in the interface highly

fluctuating in a small range. In these cases the equation (49) may not

be accurate enough. One can, for instance, increase the polynomial or-165

der of g(ξ), so that the fluctuation of the reaction will become negligible

compared to g(ξ).

As a simple case, we set g(ξ) = Aξ2(1 − ξ)2 with A being a coefficient to

be determined. To this end, firstly, in the absence of stresses, the profile of

ξ̃(x) across the interface on one side can be obtained by solving the following

17



uncoupled 1D problem at equilibrium
0 = 2Gcεξ̃′′ +

1

2

Gc
ε

(
1− ξ̃

)
, (0 < x < L)

ξ̃|x=0 = 0,

ξ̃′|x=L = 0.

(51)

The solution reads

ξ̃(x) = 1−cosh
( x

2ε

)
+tanh

(
L

2ε

)
sinh

( x
2ε

)
= 1−cosh−1

(
L

2ε

)
cosh

(
x− L

2ε

)
.

(52)

With the influence of the stress state, the equilibrium solution is assumed to

be ξ = ξ0ξ̃, where ξ0 is the value of the damage variable in the homogeneous

region after the relaxation but before the charging process. Inserting (52) into

g(ξ) and integrating over the whole length L, one obtains

1 =
1

ε
A

∫ L

0

(ξ0ξ̃)
2
(
ξ0 − ξ0ξ̃

)2

dx

=
ξ4
0

ε
A

∫ L

0

[
1− cosh−1

(
L

2ε

)
cosh

(
x− L

2ε

)]2 [
cosh−1

(
L

2ε

)
cosh

(
x− L

2ε

)]2

dx

≈ ξ4
0

ε
A · 1

6
ε =

A

6
ξ4
0 , (53)

which gives A= 6/ξ4
0 and g(ξ) = 6ξ2(ξ0− ξ)2/ξ4

0 . The evolution for the concen-

tration can then be expanded from (34) as

∂cR
∂t

= ∇R ·
[
ξ2c(1− c)JF−1MF−T∇RµR

]
+

6

εξ4
0

ξ2 (ξ0 − ξ)2
ĵ s, (54)

in which ĵ s is given in (47) to account for the flux due to electrochemical

reaction.

4. Numerical treatment170

4.1. Normalization

For the convenience of finite element implementation, the model presented

above is normalized first. Introduce a dimensionless form of space and time as

X̄ =
X

L0
, t̄ =

D

L2
0

t (55)
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where L0 is a characteristic length scale which is identical in the three directions,

and D is a diffusion coefficient of one direction. The energy density is scaled by

RTcmax and the other quantities can be normalized accordingly as

ψ =
ψR

RTcmax
, µ =

µR

RT
, j =

L0

Dcmax
jR, S =

SR

RTcmax
, H =

HR

RTcmax
.

(56)

For the fracture model, the normalized fracture length scale, energy release rate

and the mobility are

ε∗ =
ε

L0
, G∗c =

Gc
L0RTcmax

, M∗ξ =
MξL

2
0RTcmax

D
. (57)

For the reaction, the normalized surface site concentration c∗s and the single

reaction time step τ∗0 are

c∗s =
cs

cmaxL0
, τ∗0 =

D

L2
0

τ0. (58)

Thus, the normalized governing equations can be summarized as:

∇ ·P = 0 in B ×
[
0, T̄

]
,

ċ = ∇ ·
[
ξ2c(1− c)JF−1M∗F−T∇µ

]
+

6

ε∗ξ4
0

ξ2 (ξ0 − ξ)2 ¯̂j s, in B ×
[
0, T̄

]
,

ξ̇ = −M∗ξ
[
2ξH− 2G∗c ε∗∆ξ +

G∗c
2ε∗

(ξ − 1)

]
, in B ×

[
0, T̄

]
,

ū = ˆ̄u on Sū ×
[
0, T̄

]
,

P · n = ˆ̄t on St̄ ×
[
0, T̄

]
,

j · n = −¯̂j s on ∂B ×
[
0, T̄

]
,

K∇c · n = 0 on ∂B ×
[
0, T̄

]
,

∇ξ · n = 0 on ∂B ×
[
0, T̄

]
,

c
(
X̄, 0

)
= c0

(
X̄
)

in B,

ξ
(
X̄, 0

)
= 0 on Γf ,

ξ
(
X̄, 0

)
= 1 in B\Γf ,

(59)

with ¯̂j s defined as

¯̂j s =
c∗s
τ∗0

(1− c) exp

(
−1

2
�φ∗

)
− c∗s
τ∗0
c exp

[
χ (1− 2c) + µe −∇ ·K∗∇c+

1

2
�φ∗

]
.

(60)
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4.2. Implementation details

The model is implemented by using the finite element program FEAP [31]

with Non-Uniform Rational B-Splines (NURBS) as shape functions for the spa-

tial discretization, which allow for a straightforward treatment of the fourth-175

order Cahn-Hilliard equation. The displacements u, the concentration c and

the order parameter ξ are nodal degrees of freedom. In addition, to deal with

the additional boundary condition K∇c · n = 0 arising along with the Cahn-

Hilliard equation, a Lagrange multiplier λ is introduced as an additional degree

of freedom for each node. For more details about λ the reader is referred to180

our previous work [24]. A backward Euler method is employed for the time

integration and the Newton-Raphson iteration scheme is used for the nonlinear

system of equations at each time step.

The above mentioned 6 field variables are interpolated under an isoparamet-

ric/isogeometric concept as

u = N IuI, c = N IcI, ξ = N IξI, λ = N IλI (61)

where (·)I
is the value at the I-th control point, and N I is the NURBS shape

function associated with the I-th control point. The repeated I invokes the

Einstein summation. The gradient terms are thus given by

δE = BI
uδu

I, ∇c = BI
c c

I, ∇ξ = BI
ξ ξ

I, ∇λ = BI
λ λ

I (62)

where E is the Green-Lagrangian strain tensor in Voigt notation,

BI
c = BI

ξ = BI
λ = ∇N I =

[
N I
,1 N I

,2 N I
,3

]T
, (63)

and

BI
u =



F11N
I
,1 F21N

I
,1 F31N

I
,1

F12N
I
,2 F22N

I
,2 F32N

I
,2

F13N
I
,3 F23N

I
,3 F33N

I
,3

F11N
I
,2 + F12N

I
,1 F21N

I
,2 + F22N

I
,1 F31N

I
,2 + F32N

I
,1

F12N
I
,3 + F13N

I
,2 F22N

I
,3 + F23N

I
,2 F32N

I
,3 + F33N

I
,2

F13N
I
,1 + F11N

I
,3 F23N

I
,1 + F21N

I
,3 F33N

I
,1 + F31N

I
,3


. (64)
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Here, N I
,i denotes ∂N I/∂Xi, and Fij are the components of the deformation

gradient F.185

Thus, the discretized weak form of (59) reads

δΠ = (δuI)T RI
u + δcI RI

c + δξI RI
ξ + δλI RI

λ = 0, (65)

in which the residuals are

RI
u = −

∫
B

(BI
u)T

[(
ξ2 + η

) ∂ψe+
∂E

+
∂ψe−

∂E

]
dB, (66a)

RI
c =

∫
B

ċ N I dB +

∫
B

ξ2 [1− 2χc (1− c)] J (∇c · F−1M∗F−T∇N I) dB

+

∫
B

ξ2c (1− c) J (∇µe · F−1M∗F−T∇N I) dB

+

∫
B

2ξc (1− c) J(∇ ·K∗∇c) (∇ξ · F−1M∗F−T∇N I) dB

+

∫
B

ξ2 (1− 2c) J (∇ ·K∗∇c) (∇c · F−1M∗F−T∇N I) dB

+

∫
B

ξ2c (1− c) (∇ ·K∗∇c) (∇J · F−1M∗F−T∇N−1) dB

+

∫
B

ξ2c (1− c) (∇ ·K∗∇c) ∆N I dB

+

∫
B

ξ2c (1− c) J (∇ ·K∗∇c)
[(
∇ · F−1M∗F−T

)
·∇N I

]
dB

+

∫
B

ξ2c (1− c) J (∇ ·K∗∇c)
(
F−1M∗F−T : ∇∇N I

)
dB

−
∫

B

6ξ2 (ξ0 − ξ)2

ε∗ξ4
0

ĵ sN
I dB−

∫
∂B

ĵ
s
N I dS

+

∫
B

∇λ ·K∗∇N I dB +

∫
B

λ∇ ·K∗∇N I dB, (66b)

RI
ξ =

∫
B

ξ̇ N I dB−
∫

B

M∗ξ

[
2ξH+

G∗c
2ε∗

(ξ − 1)

]
N I dB

−
∫

B

M∗ξ · 2G∗c ε∗∇ξ ·∇N I dB (66c)

RI
λ =

∫
B

∇ ·K∗∇cN I dB +

∫
B

K∗∇c ·∇N I dB− 1

α

∫
B

λN I dB. (66d)

The construction of the corresponding tangent matrices can be achieved accord-

ing to the finite element theory.
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5. Simulation results

5.1. Reaction on the particle surface

To study the phase segregation under different diffusion and reaction limits,190

a sphere with isotropic material is considered, where a homogeneous initial and

boundary setup is furthermore given. Symmetric mechanical constraints are

applied on the planes of symmetry, while the spherical surface is set free from

stresses. The electrochemical reaction takes place on the surface of the sphere,

across which a constant voltage drop �φ is prescribed. It drives the reaction,195

such that the neutral Lithium is produced (consumed) until the particle is fully

(dis-)charged. The reaction rate is controlled by the single reaction step time

τ0 which is given as 0.01 s for a fast reaction and 1 s for a slow reaction. The

parameters for the simulation are given in Table 1.

Gas constant (R) 8.32 J mol
−1

K
−1

Absolute temperature (T) 283 K

Diffusivity (D) 7.08× 10
−15

m
2

s
−1

Faraday’s constant (F) 96 485 C mol
−1

Partial molar volume (Ω) 3.497× 10
−6

m
3

mol
−1

Maximum concentration (cmax) 2.29× 10
4

mol m
−3

Phase parameter (χ) 2.5

Interface parameter (κ) 1.0× 10
−10

J mol
−1

m
2

Length scale (L0) 1 µm

Bulk modulus slope (K0) 100 MPa

Shear modulus slope (G0) 100 MPa

Concentration intercept (cin) 10.0

Surface site concentration (cs) 6.78× 10
−6

mol m
−2

Single reaction step time (τ0) 0.01 s (fast)/1 s (slow)

Voltage drop electrode/electrolyte (�φ) −4.88 mV

Initial normalized concentration (c0) 0.25

Table 1: Parameters for the simulation of the spherical particle.

The state of charge (SOC) with respect to time is measured in the simulation200

by integrating all the Lithium inside the particle at each current time compared

with the amount in a full lithiation (cR = cmax). The results are shown in

Figure 6. The solid lines describe the simulated SOC with respect to time.
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Figure 6: The SOC and the corresponding concentration profile of the particle at

different charge rate. A fast reaction (green line) can give a core-shell structure while

a slow reaction (red line) will not preserve the core-shell. However, the latter can give

a more robust reaction after the phase segregation occurs. The pseudo plot is the

curve when the core-shell structure is enforced when τ0 = 1 s.

Both curves show the same tendency of the reaction, which is fairly fast at the

beginning and slows down towards the end of the charge. Both of them show205

an acceleration of reaction when the particle is charged at roughly 30 % (A, E),

because in both cases the phases start to form and the overpotential ηs increases

rapidly as the concentration increases, which can be seen in Figure 4 (a).

However, the phase segregation is very different in the two cases. The green

line shows that, when the reaction is fast enough, a core-shell structure can be210

achieved. This is in agreement with the predictions in the work of Singh et

al. [32], which stated that in an isotropic bulk-transport-limited case, where the

bulk diffusion is much slower than the reaction, the phase boundary is driven

largely by the incoming flux, thus a shrinking-core profile being formed. On the
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other hand, as shown by the red line, when the surface reaction is slow enough,215

the species can be always equilibrated by the bulk transport. In this case,

the spinodal decomposition, or nucleation, initiates from the surface, where the

dynamics of reaction can cause strong fluctuations in the species concentration.

They are very unstable inside the spinodal region. The reaction in the core-

shell structure slows down as the two phase region is finally formed (B, C),220

because the outer shell approaches a full lithiation. However, in the other case,

the reaction maintains its rate (F, G) until the phase segregation is suppressed.

Based on the simulation results of the case τ0 = 0.01 s, one can predict the state

of charge curve for τ0 = 1s when the core-shell structure is enforced, simply

by scaling the time of the fast case by a factor of 100. For comparison, this225

predicted result is shown by the curve in blue color in Fig. 6. It shows that

if the core-shell structure is maintained, the lithiation process becomes slower

than that in the case when the particle is free to adjust the phase pattern for a

more robust reaction.

5.2. Reaction inside the interface230

To investigate the reaction in different phases and in the phase interface,

a square plate with isotropic and anisotropic chemical properties is studied in

this section. The geometry is given in Figure 7. No preferred direction for the

reaction is assumed. Therefore, in the simulation, the reaction will take place

on all six surfaces of the plate and the reaction rate is governed by the chemical235

state at each position on the surface. The anisotropic interfacial parameter κ

and diffusivity D in different directions are given in Table 2. In this model, the

mechanical part is disregarded.

In the isotropic case, as shown in Figure 8, the flux is marching towards the

interior from all four sides and the phase segregation of a Li-rich frame and a240

Li-deficient center forms. As more flux comes in, there arises an island of Li-rich

phase in the middle of the Li-poor phase. This can be explained by the dynamics

of diffusion and reaction, where the whole system is perturbed strongly and it

is easy to achieve a phase segregation once the magnitude of fluctuation is large
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Figure 7: Sketch and measurements of

the square plate problem. All six sur-

faces of the plate are exposed to the elec-

trolyte. Therefore electrochemical reac-

tion can take place on all sides.

Interfacial

Parameter

κx 1.0× 10
−10

J mol
−1

m
−2

κy 1000κx

κz 1000κx

Dx 7.08× 10
−15

m
2

s
−1

Diffusivity Dy 1000 Dx

Dz 1000 Dx

Sing. reac. τ0 1 s

Table 2: Anisotropic interface and diffusiv-

ity parameters for the plate problem. For the

isotropic case, the parameters for x direction

are used for all three directions. All other pa-

rameters are given in Table 1.

enough. As for the reaction, by comparing the concentration profile and the245

reaction rate, one can observe that the reaction peaks at the interface front,

where the concentration gradient is very high. In the two homogeneous phases,

the reaction is relatively slow, especially in the Li-rich phase, where the reaction

almost stops. This low efficiency of reaction in the Li-rich phase explains again

why the core-shell structure is lithiated much slower than the other, studied in250

the last subsection.
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Figure 8: Contour plot of the reaction rate and the concentration SOC in an isotropic

diffusion process. The peak of the reaction will always take place near the interface.

Figure 9 shows the case of an anisotropic diffusion. As explained in the

section 2.3, the interfacial parameter is chosen in such a way that κx/Dx =
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κy/Dy = κz/Dz. In the simulation, the diffusion in x direction is set to be

slowest. Note that even though the diffusivity in y, z direction is the same,255

in z-direction lithium sites are filled faster than in y-direction. This is due to

the fact that the dimension in z-direction is smaller than that in y-direction.

In contrast to the isotropic case, phase segregation initiates from the two ends

although the reaction takes place in all six sides of x axis. As time goes on,

the phase interface marches towards the center. A third Li-rich phase appears260

in the middle when SOC is approximately 50 %, thus the formation of stripes

appears. This result supports the domino-cascade model of LiFePO4, which was

proposed in the work of Delma et al. [33]
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Figure 9: Contour plot of the concentration and plot of the reaction rate along

the direction of the slowest diffusion (x direction) at different SOC in an anisotropic

diffusion process.

These two cases are extreme. However, with a proper implementation of

crystal anisotropy, by filling the diffusion matrix also in the off-diagonal entries,265

one can also achieve a core-shell structure with a polygonal core, as observed in

the work of Liu et al. [34].

5.3. Reaction on the crack surface

As final example, we simulate an infinitely long cylinder with two initial

parallel longitudinal cracks on its exterior. The problem is illustrated in Fig-

ure 10, and the corresponding parameters are given in Table 3. The elec-
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Figure 10: Illustration and dimensions

of an infinite cylinder with initial cracks.

One quarter of a disc with a thickness

of 1 µm under plane strain assumption is

simulated.

Voltage drop eld./ely. (�φ) 4.88 mV

Single reac. step time (τ0) 0.01 s

Initial concentration (c0) 0.8

Fracture resistance (Gc) 6× 10
−2

N m
−1

Crack length scale (ε) 0.05 µm

Crack mobility (Mc) 1.3× 10
−3

J m
−3

s
−1

Table 3: Simulation parameters for the crack

propagation problem. Others parameters can be

found in Table 1.

trode/electrolyte voltage drop is given such that Li is extracted from the cylin-

der. The reaction only takes place on the cylindrical surface and the crack

surface. As it is explained in section 3.2, the reaction on the crack surface is

approximated by the weighted source in the phase-field theory. The initial crack

is imposed through the strain history field HR such that an initial fracture order

parameter ξ is determined. HR is given at initialization as

HR

(
X̄, 0

)
= 103 × G

∗
c

4ε∗

(
1− d

ε∗

)
with d = min

{
dist(X̄,Γf ), ε∗

}
(67)

where dist(X̄,Γf ) is the closest distance of a material point X̄ to the crack Γf .

For more details the readers are referred to the work of Borden et al. [30]. In270

order to reach the diffusive profile for the initial crack, the reaction is set to be

zero for the first 3 seconds.

The results of the crack propagation is shown in Figure 11. Initially, the

concentration field is homogeneous. As the outer layer loses more lithium, a

two-phase profile appears. It should be noted that at the crack tip lithium275

can be supplied quickly from the unbroken material. In fact, due to the large
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tensile stresses at the crack tip, the drift effect of the mechanical field towards

the crack tip becomes prominent. The phase interface overtakes the crack tip

and the fracture branching occurs at the interface, where there are intensified

stresses.

(a) SOC = 80% (b) SOC = 70.47% (c) SOC = 47.42%

(d) SOC = 46.60% (e) SOC = 30.87% (f) SOC = 9.95%
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Figure 11: Crack propagation under delithiation and phase segregation. a) Initial

homogeneous state. b) Formation of phase segregation initiates the crack propagation.

c) Intermediate stage when the phase interface catches up with the crack tip. d) Stage

when the crack tip starts to branch at the phase interphase. e) Stage when phase

interface leaves crack tip and moves towards center, the crack is perpendicular to the

phase interface. d) Final stage when the reaction stops.

280

On the other hand, due to the loss of lithium, the outer layer turns to shrink.

Because of this mismatch with the interior Li-rich phase, tensile circumferential

stresses arise in the outer layer, which drive the crack to propagate. At the first

stage, the crack propagates faster than the interface. It then slows down, until

the phase interface runs over the crack tip. After the phase interface leaves285

the crack, the propagation of crack turns to stop, due to the decrease of the

driving force. However, the phase interface continues to move. At the end of

the simulation, the whole material is almost fully delithiated, and the reaction

stops. It should be mentioned that the interplay between the phase segregation

and the crack propagation can strongly depend on the choice of the kinetics290

parameters. A more comprehensive study on this topic will be carried out in

the future.
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During the whole process, lithium can indeed be released on the crack sur-

face. To check the approximated reaction on the crack surface, the reaction and

the corresponding concentration profile on the circular plate at SOC = 46.60 %295

are demonstrated in Fig. 12. At this state, the phase interface overtakes the

crack tip and the crack starts to branch. By comparing the contour plots of

concentration and reaction, it can be seen that near the crack surface the re-

action is very strong in the neighborhood of the phase interface, with peaks at

the crack tip.
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Figure 12: Reaction rate at the crack interface. a) The concentration profile when

SOC = 46.60 %. b) The simulated reaction rate around the crack interface.
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6. Conclusion

In this paper, the electrochemical reaction in the lithium ion batteries is

studied by using phase-field modeling of fracture coupled with anisotropic Cahn-

Hilliard-type diffusion in the large deformation regime.

The reaction on the surface is modeled through a modified Butler-Volmer305

equation, taking into account the influence of phase separation on the surface.

The reaction on the crack surface is considered as a source term within the

volume, weighted by a damage-variable-related term to constrain the reaction

to take place only on the transition zone between the unbroken and broken

state.310

Three examples are carried out to study different aspects. The first example

of an isotropic sphere shows that the ratio of the timescale of the reaction and
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diffusion strongly influences the phase segregation of the material: a fast reaction

gives a “shrinking core”, while for a slow reaction the nucleation initiated from

the surface early on. In turn, the phase segregation also influences the real315

reaction rate through the electrochemical potential on the surface. When a

core-shell structure is formed, the highly homogeneous concentration on the

surface prevents the lithium from further inserting into the particle. However,

an uneven distribution of the concentration, although accompanied by a highly

distorted surface, can give a much more robust reaction in the long run. In320

the second example, the reaction on the interface of two phases in an isotropic

diffusion case and an anisotropic diffusion case is studied. The results show that,

both in isotropic and anisotropic cases, the reaction rate peaks near the interface,

where there exists a large concentration gradient. Orthotropic diffusion as in the

example has been observed in many cathode materials such as LiFePO4 [2, 33].325

The last example shows the reaction on the crack surface. It is shown that the

crack evolution can be driven by an outflow of the species when the material

exhibits a phase segregation behavior. The electrochemical reaction on the

newly created crack surfaces has been discussed, along with the interaction

between the crack propagation and the phase segregation process.330
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