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Abstract

The Generalized Replica Exchange Method (JREM) was applied to simulaleldiguid phase tran-
sition in a nanoconfined bilayer water system using the monatomic water (mW).nMerging an opti-
mally designed non-Boltzmann sampling weight with replica exchange, gRERIrtiEwarly well suited
for the dfective simulation of first-order phase transitions characterized by &skiimackbending”) in the
statistical temperature and a bimodal structure in the canonical probabiligityémction. The &ec-
tive temperatures of gREM were designed to form unique crossing poititghe statistical temperature,
thereby facilitating sampling of energy states across the transition regidistiStd Temperature Weighted
Histogram Analysis Method (ST-WHAM) was used to reweight gREM simulatesults into canonical
ensemble averages, including the Helmholtz free energy, internal eaedyjieat capacity. The minimized
structures of bilayer water systems with varying sizes were obtained thitoagjn-hopping global opti-
mization using the GMIN package, and ice structures composed of pestdgexagons and heptagons

were observed.
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. INTRODUCTION

The phase behavior of bulk water has received extensiveesttdue to the rich complexity of
structures characterizing liquid, solid and clusters [1-Manoscale confined water adds a new
dimension of phase behavior and has generated intensesn{&~10] due to its relevance in
biology and materials science. In the case of water confiedaden two infinite parallel plates,
monolayer ice, bilayer ice, and three-layer ice structtimse been observed as a function of the
separation between the plates [7, 11, 12]. Bilayer water oan ¥arious crystal, quasicrystals,
and amorphous structures, including hexagonal ice, puneagenal ice, mixed hexagonal and
pentagonal ice, and dodecagonal quasicrystals [8]. Theitrans from liquid to various crystal
and quasicrystal states were shown to be first-order, basttetsharp drop in the potential energy
and discontinuity in the dliusion codicient.

First-order phase transitions have a unique feature in tdtestical temperature referred to
as an S-bend, through which the temperature decreases bporbeg energy in the region of
metastable and unstable states. The behavior results fremiepletion of phase-coexistent con-
figurations associated with the free energy penalty for fioghimterfaces [13]. These features are
associated with a bimodal structure in the energy disiobuthe indicator of two-phase coexis-
tence, in which the energy states between the two peakstareioally unstable for the canonical
ensemble [14-18]. A natural way to enhance sampling in thes@ltoexistence region is the
replacement of canonical sampling in temperature with cexmenical distributions. The general-
ized Replica Exchange Method (gREM) [19] incorporates a noltzB@ann sampling weight from
a generalized ensemble into the replica exchange parad@rBR]. The generalized ensemble
sampling weights are determined from tailoréietive temperatures through an inverse mapping
strategy. The mapping is equivalent to umbrella samplim@foumber of energy windows, with
a “thermometer” in each window. Since its development, gREd lbeen applied to study phase
transitions in Potts spin systems, an adapted Dzutugov imogienard-Jones fluid, and bulk wa-
ter [19, 33-35]. Here we study the solid-liquid phase triamsiin bilayer confined water as a
demonstration of the utility of the generalized Replica Eawie Method.



. METHODS AND MATERIALS

A. Generalized Exchange Method

In a gREM simulation there afd replicas. Each replica, (e = 1,--- , M), is assigned an ef-
fective temperaturé,(E; 1,) and samples energy states consistent with the generalimzinble
weightW,(E; 1,). The sampling weightV,(E, 2,) is determined from thefiective temperature

through the inverse mapping strategy
To(E; o) = [wa /9E] ™, (1)

wherew, = —InW,, is the generalizedfiective potential.
The dfective temperature is conveniently parameterized usimgplh functions with uniform

slope for all replicas¢ = 1,--- , M) as
Ta(E; /la) = /la + 70(E - EO), (2)

where the control parameteg is the constant slop& is a constant in the relevant energy range,
and2, is theT-intercept at a chosef,.

The linear &ective temperature of Eq. (2) produces a sampling weight
Wa(E; /1(2) ~ [/la/ + 70(E - EO)]_l/yo- (3)

The sampling weight in Eg. (3) governs the trial moves withire replica and replica exchanges
between neighboring replicas. The acceptance ratio of a&/@arlo trial move in configuration

space within replica is

Agrem(X — X) = min[1, g"«EX)-wa(ECO), 4)
The acceptance ratio for replica exchange between neigigh@plicase anda + 1 is

Agrem(e; Xx') = min[1,exp@;)] )

WhereAé = wa+1(E(X/)) - w(x+l(E(X)) + w(l(E(X)) - ww(E(X,))! andw(z = _InWa-
B. Statistical Temperature WHAM

As eachreplica = 1, ..., M in gREM samples non-canonical sampling weight&E), the data

must be reweighted to estimate canonical averages. Welatduhe density of stat€3(E) and
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the entropyS(E) = kgIlnQ(E) by combining multiple generalized ensemble runs via tlagiSical
Temperature Weighted Histogram Analysis Method (ST-WHABB-38]. Once the density of
states is known, canonical thermodynamic averages cantéerdeed for any temperature by the
reweighting technique.

Unlike the conventional Weighted Histogram Analysis MetHOVHAM) [39], ST-WHAM
does not use an iterative technique to determine the relgaatition function, but instead de-
termines the inverse statistical temperat@e,= 1/Ts, directly fromW,(E) and the associated
histogramH,(E). The integration oBs = dInQ(E)/JE provides an estimate for the entropy and
the density of states. This procedure leads to a substactialeration of the data analysis without
loss in accuracy.

The ST-WHAM estimate for the inverse statistical tempeatsr

| |
IR ©)

whereH, (E) is the energy histogram in repliea f;(E) = H,(E)/ >, H.(E) is the simulated
histogram fraction.

Integration ofgg provides an entropy estimaf(E) as well asQ(E), but direct integration
is not desirable due to the rapid variationgaf for small E. The statistical temperatui& was
approximated on an equally spaced enthalpy grid which madesible analytical integration [36].
OnceS(E) is determined, all canonical thermodynamic propertiescampletely determined.

The Helmholtz free energy at a given temperatfiires calculated byF+(E) = E — TS(E).
The reweighted probability density function&tis given byP1(E) = e FT®/T = ¢SE-8/T The
canonical expectation value for any variable may then bepted as
[dESEFEA(E)

AT = g (7)
and the canonical heat capacity is estimated through edionlof the fluctuations of the internal
energy,
(E(T)?) = (E(T))?
e, = EDL—EM ®)

kT2 ’
C. Monatomic water (mW) model

We employed the monatomic water model (mW), which is a cogragred model that repre-

sents a water molecule as an intermediate element betwdmmcand silicon [40]. This potential
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reproduces the structural, thermodynamic, and dynamjagpties of liquid water with comparable

or better accuracy than the most popular atomistic wateretsat much less computational cost.
mW has been applied in the study of pure bulk water [41-43]Jremebconfined water [44, 45], as

well as biological water [46] and clathrate hydrates [47].

In this study, the water-like molecules were confined betwa® smooth hydrophobic walls at
afixed distance of 8A. The water-wall interaction was governed by a Lennanied®-3 potential
with o = 3.56 A ande = 0.569 kJ mot? [7]. We simulated systems composed\bf= 256 water
molecules confined between two parallel plates of kizd_, whereL is a length varying between
312 and 358 A. Periodic boundary conditions were applied in lateraédiions. 32 replicas were

used in gREM simulations to cover temperature ffom= 200K to T3, = 320K.

D. Water structure analysis

We calculated the lateral radial distribution function (RE;(r) versus the lateral positian,

parallel to the confining plates. The lateral RDF is defined by] [
1) = =57 D700 = [0z ~ 21+ 6212) - 0z~ 2] - 62/2)), ©)
i%]

whereV is the volumey;; is the lateral distance between coarse-grained molecualed j, z is
thez coordinate, and(x) is the Diracs function. The Heaviside functiof(x) restricts the sum to
pairs within the same layer.

The lateral static structure fact8(q) is the Fourier transform of the lateral radial distributio

functiong,,(r) [48, 49] according to

sin(qr)
qr

The wave vectoq is defined ag| = 27k/L, wherek is an integer that ranges from 11K the total

S(Q) =1+ 21p fo r ( )[g(r) — 1]dr. (10)

number of water molecules, ahds the length of the simulation box.

E. Basin-hopping global optimization

Basin-hopping (BH) global optimization [50, 51], as implertezhin theGMIN [52] package,

was used to explore the potential energy landscape. The BHrrechsed in this work is as follows:

1. arandom Cartesian displacement is applied to the iniatdinatesy;



2. the perturbed coordinatesg, are quenched to the local minimum,

3. the new configuratiom;,, is accepted with probability
p(i — n) = min(1, &%)
whereA = E, - E;, Ej andE, are the energies of the initial and new configurations, and
B = 1/KT.

6x10° BH steps were run for each starting structure. At each stafdpra Cartesian displacements
up to Q8 Awere applied to each particle. The temperature parariieteas fixed at 8 kJ mot™.
Local optimization was performed using a modified versioMNotedal’s limited memory BFGS
(L-BFGS) minimizer[53, 54]. The root-mean-square gradadrthe local minima was converged
to 10 kJmolrt A1,

. RESULTS AND DISCUSSION

gREM utilizes optimally designedfiective temperature3,(E) ensuring that unstable or
metastable energy states of the canonical ensemble in ten&+egion are transformed into
stable states having a unimodal probability distributiondtion (PDF).

To implement gREM, a necessary andfsient condition o, (E; 2,) is derived by identifying

an extremumE;, of a generalized free energy densiy,,(E) = w,(E) — S(E), as
To(E &) = Ts(E)) = T, (11)

whereTs(E) = [0S/0E] ! is the statistical temperature aBglis the crossing point betwedn (E)
andTs(E). The stability condition

BFL(EL) = (vs = ¥a) /T2, (12)

whereys = T¢(E;) andy, = T,(E;), and the prime denotesftBrentiation with respect t&,
ensures the creation of a unimodal probability distribufionction, i.e.,P,(E) = e#”«. For the
unique crossing poirie;, betweenTs(E) andT,(E; 1,), we demonstrated that,(E:) < ys(E}).
For linear dfective temperaturey, is a constant equal tg,.

ExpandingP,(E) to second order & results in
Po(E; 7a) ~ exp[-(E - E})?/20], (13)
whereo, = T:?/(ys - v.), generates a Gaussian PDF centeref atith y,(E}) < ys(E?).
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Fig. 1(a) demonstrates that the line#fieetive temperaturek, (E) form unique crossing points
E; with statistical temperatur€s(E) across the transition region, wheFg(E) displays S-bends.
The parameters i, (E; A,) = 1, +yo(E-Ep) areEy = —43.5kImot?, 1; = 200K, 13, = 427.6 K,
andy, = —0.101 mol K kJ!. The slope of the linearfiactive temperaturesy, is more negative
than the slope of the S-bend part B§(E), fulfills the condition thaty,(E!) < ys(E:). The
resulting GPDFs in Fig. 1(b) are localized aroufjgwith a Gaussian shape, and naturally bridge
between ordered and disordered phases with unimodal edestyiputions across the transition
region. The results shown in Figs. 1 to 3 are from the systehorfength 35.8 A.

In the S-bend region fofs(E), two different energy states can have the same temperature yet
have diferent structures[13]. In order to characterizating structured states in this nanocon-
fined water system, we computed the lateral radial disiobudtinction and structure factor.

For the system in Fig. 1, replica 18 and 25 have the sametstatisemperaturels(E) =
2888 K, but replicas 18 and 25 are on the branch of solid and lighatacterized by the lateral
radial distribution function and structure factor. (Seg.F.) The RDFs of replica 18 and 25 are
quite diferent in terms of the magnitude of the peaks, and the numlpeyaids, as only three peaks
are visible in replica 25. The structure factor of replicadisplays a prepeak gt~ 2, a sharp first
peak, and a split second peak, in comparison \Bifty) for replica 25. The dierence of RDFs
and structure factors shows the solid-like and liquid-ldkeracteristics of the configurations in
replica 18 and 25, respectively, implying the coexisterfdd@se structurally distinct states in the
canonical ensemble.

A sufficiently long simulation with gREM produces the entropy estienS(E), by combining
results from multiple replicas via ST-WHAM. Once the entrapgetermined, canonical thermo-
dynamic properties including internal enerdyT) and heat capacit¢,(T), can be calculated as
in Eqg. (7) and (8). As shown in Fig. 3 (a), the internal energyreéases with temperature mono-
tonically across the phase transition region, as a resuiveéighting gREM derived caloric curve
into the canonical ensemble. The heat capdgjty canonical ensemble shows a sharp peak at the
melting temperatur&,, in Fig. 3(a). The free energy densify(E, T) = E-T S(E), at the melting
temperaturd ,, exhibits two local minima aE; = —38.1 andE; = —40.5kJ mol! and one local
maximum atE, = —39.5 kJ mot?. The canonical probability density functioB;(E) « e (ET),
shows two maxima &E; andEz, and a minimum aE,. E; andEz correspond to two metastable
states andt;, corresponds to an unstable state. The bimodal structitg(B) demonstrates the in-

trinsic instability of the canonical ensemble in sampliegoss the transition region in the vicinity



of a first-order phase transition [15-18].

We also performed gREM simulations for systems of varying sind used ST-WHAM to
compute canonical properties such as the internal enedyeat capacity shown in Fig. 4. The
canonical internal energiek(T), increase monotonically with temperature with a smoothgu
in E(T) near the melting temperature. The transitions in the fasgstems are more abrupt, as
shown by theE(T) curves and the sharp peaks in heat capacity.

Local minima for systems 1 to 6 were produced by the GMIN pgekasing basin-hopping
global optimization [55-57]. The structure of system 1 isnpesed mostly of pentagons. As
the system size increases from 2 to 6, hexagons become theatdrelement, with a significant

number of pentagons and heptagons.

IV. CONCLUSION

In this work, we demonstrated the applicability of gREM in slating the solid-liquid phase
transition of bilayer water nanofilms using a monatomic watedel. By utilizing a linear ef-
fective temperature instead of the canonical temperagiR&M avoids an intrinsic instability of
the canonical ensemble in the negative slope region of dieststal temperature accompanying
the first-order phase transition. The linediieetive temperatures of all replicas were optimized
to form unique and stable crossing points with the sta@istiemperature, resulting in unimodal
probability density functions (PDFs) across the phasesttian region. Due to the S-bend in
the statistical temperature of systems displaying firdeophase transitions, the canonical tem-
perature lacks a one-to-one mapping with energy, and thentead ensemble may obscure the
existence of dterent states with the same canonical temperature. gREM salveethese states
because it uses energy as the dynamical variable, and saonpfermly from the low energy
states to the high energy state with unimodal PDFs. We fuetkemined two states with the same
canonical temperature to compare their radial distrilbuficctions and structure factors, which
show the solid-like and liquid-like features of the two aqestates.

ST-WHAM was used to reweight the gREM simulation results tooacal ensemble so that the
thermodynamic variables at canonical temperature cantbeaged. The internal energy and heat
capacity as a function of temperature were computed andngeémperatures were identified.
At the melting temperature, the Helmholtz free energy hasbiominima and the PDF exhibits

a bimodal structure, implying that the transition statesiatrinsically unstable in the canonical



ensemble[13]. The heat capacities and internal energiggstéms with varying sizes were com-
puted through gREM simulations and the ST-WHAM reweightinghteque. The structures of
gREM simulations were optimized using the GMIN package affiédint crystalline structures

are observed for systems withfldirent sizes.
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FIG. 1: (a) Hfective temperaturek, (E) (a set of parallel lines with negative slope) form unique crossing
points (black open squares) with the statistical temperatgE) (black curve), (b) generalized probability
distributions function$,(E) of corresponding replicag = 17,18, 19, ..., 26 of the system with sizex =

Ly = 35.8A.
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FIG. 2: (a) Lateral radial distribution functiog,(r) and (b) structure factor transformed frayg,(r) of
replica 18 (red line) and replica 25 (blue line) of the same system as in Fig.1.
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FIG. 3: (a) Energy temperature curve in the canonical ensemble (r§chliemolar heat capacit@,(T)
(blue line). (b) Probability distribution functioRt(E) and free energy+(E) at the melting temperature
Tm.
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FIG. 5: Minimized structure of systems 1 to 6 produced by the GMIN method.ifut structure for each
system was the equilibrium structure of the first replica in gREM simulation.
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