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It is expected that hadron collider measurements of the Higgs boson mass using the decay h →
W +W−, followed by the leptonic decay of each W -boson, will be performed by fitting the shape of
a distribution that is sensitive to the Higgs mass. We demonstrate that the variable most commonly
used to measure the Higgs mass in this channel is not optimal as it contains an unnecessary and
even counter-productive approximation. We remove that approximation, without introducing any
cost in complexity, and demonstrate that the new variable is a clear improvement over the old: its
performance is never worse, and in some cases (particularly the high Higgs mass region) it might
reduce the fit uncertainty on the Higgs mass in that channel by a factor approaching two.

Introduction

The mass of the Higgs boson is the last unknown pa-
rameter of the Standard Model. Here, we present a
method to measure it at a hadron collider, assuming the
Higgs exists and is sufficiently massive (mh & 130 GeV)
that it decays predominantly to W -bosons. The method
is based on the transverse mass observable, mT , that was
originally used to measure the masses of the W -bosons
themselves, via their decays, W → lν, to a lepton and
a neutrino. There, since the neutrino is invisible in a
detector, one cannot simply reconstruct the mass of the
parent W from the invariant mass of the lν daughter sys-
tem; the transverse mass mT circumvents this problem.
Similarly, in the case of Higgs decays to two W s (one or
more of which may be significantly off-mass-shell), then
if the W s subsequently decay leptonically to lν, we end
up with two invisible neutrinos in the final state. We will
describe a generalization of mT whose distribution fea-
tures an edge, which will enable us to extract mh directly.
We believe that the method both complements, and im-
proves upon, existing strategies [1, 2, 3] for measuring mh

in this channel, and we encourage experiments to make
use of it. The distribution should also aid ongoing Higgs
searches at the Tevatron [4, 5].

We also briefly discuss potential applications to mass
measurement of other particles at the LHC, for example
new resonances (such as Kaluza-Klein gluons from an
extra dimension) that decay to tt, as well as the lightest
stable superpartner (LSP) in supersymmetric theories.

The original application of the transverse mass was in
measurement of mW [6, 7, 8]. We define

m2
T ≡ m2

v + m2
i + 2(evei − pv · pi), (1)

where p is the momentum transverse to the beam, e =
√

p · p + m2 denotes the transverse energy, and v and i
label the visible and invisible decay products respectively,
(a charged lepton and a neutrino in the case at hand).

This definition of mT has two desirable features: first,
since the mass of the neutrino is unknown, but negligible,

and the transverse momentum of the neutrino can be
inferred from the missing transverse momentum in the
event, mT is indeed an observable; second, mT is always
bounded above by the mass mW of the parent W . This
is easily shown using the invariant mass constraint

m2
W = m2

v + m2
i + 2(EvEi − pv · pi − qvqi), (2)

where q is the longitudinal momentum and E =
√

q2 + p · p + m2 is the energy, together with the lemma

EvEi − qvqi ≥ eiev, (3)

with equality at Evqi = Eiqv, which the reader may eas-
ily prove for himself. Thus, by computing the distribu-
tion of mT in many events, mW appears as the upper
endpoint. (In practice, the finite decay width of the W
and other effects lead to mW appearing as a Jacobian
peak in the data.)

Recently, a number of generalizations of mT have ap-
peared [9, 10, 11, 12, 13, 14, 15, 16, 17, 18], with di-
verse applications for LHC mass measurements. They
include generalizations to: decays with multiple visible
daughters; decays with a massive invisible daughter (such
as a DM candidate); and decays of pair-produced par-
ent particles. The last of these has already been used
to measure the mass of the top quark in the process
tt → bbW+W− → bbl+l−νν at the Tevatron [19].

More Invisibles

There is one other generalization that can be made,
which is to situations where a single decay in itself con-
tains more than one invisible daughter. Practical ex-
amples include the single Higgs decay h → WW (∗) →
ℓ+ℓ−νν̄, the decay of new resonances (such as a Kaluza-
Klein gluon) to tt, followed by a semi-leptonic decay of
each top, t → bW → blν, or pair decays in supersym-
metric theories with both the lightest superpartner and
neutrinos in the final state. To generalize mT to such a
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situation, the obvious thing to do is to replace mi in (1)
by the invariant mass of the invisible system [20]. Now,
in any event, mi goes unobserved, but it is useful nev-
ertheless to consider its properties. A first observation
is that mi, though a relativistic invariant, now varies
from event to event, taking values on some real, posi-
tive interval. The endpoints of this interval, mi≶, are
fixed by the particular decay topology. For example, if
a parent of mass m0 undergoes a pointlike three-body
decay to one visible particle of mass mv and two mass-
less invisible particles, the lower and upper endpoints
are given by mi< = 0 and mi> = m0 − mv, respec-
tively, whereas if the decay involves an intermediate res-
onance of mass mI , they are given by mi< = 0 and
mi> =

√

(m2
0 − m2

I)(m
2
I − m2

v)/m2
I .

What is more, it is easy to show that mT is a mono-
tonically increasing function of m2

i . We thus have the
chain of inequalities

mT (mi = mi<) ≤ mT (mi) ≤ m0. (4)

If mi< is known, then mT (mi<) is an observable that
is bounded above by m0; if mi< is unknown, we can
determine it using a generalization of the kink method
described in [12, 13, 14, 15].

Higgs Decays

For the Higgs decay h → WW (∗) → ℓ+ℓ−νν̄, it is
simple enough to show that mi< = 0, when we ignore
the mass of the neutrinos. To wit, consider the on-shell
decay h → WW → ℓ+ℓ−νν̄, with h at rest in the lab-
oratory, in which the two W s are emitted back-to-back.
Then let the two W s decay such that the neutrinos are
emitted parallel to each other (not anti-parallel). In this
configuration, mi = 0. Since mi is positive semi-definite,
mi< = 0. Similar arguments apply to the off-shell decay
h → WW ∗.

That the inequalities in (4) can be made into equal-
ities also follows from the existence of these kinematic
configurations. Thus, by computing

(mtrue
T )2 ≡ m2

T (mi = 0) = m2
v + 2(ev|pi| − pv · pi), (5)

in many events, we should obtain a distribution in mtrue
T

whose endpoint yields the mass of the Higgs boson. Since
the observable defined in (5) is truly bounded above by
m0, we distinguish it from other transverse-mass-like ob-
servables by giving it the label mtrue

T .
In work to date [1, 21, 22], an alternative transverse

mass has been used,

mapprox
T ≡ mT (mi = mv). (6)

The justification for replacing the unknown mi by the ob-
servable mv in those papers is that for Higgs bosons with

masses close to 2mW and produced at or near thresh-
old, each W boson will decay almost at rest, therefore
mi ≈ mv. We note though that mapprox

T is not bounded
above by m0. Not knowing mi and without using the
above approximation, the best lower limit we can place
on mh will be with the true transverse mass (5).

h → WW (∗) simulation

To investigate the relative performance of the alter-
native transverse mass variables (5) and (6) we use the
HERWIG 6.505 [23, 24] Monte Carlo generator, with LHC
beam conditions (

√
s = 14 TeV). Our version of the

generator includes the fix to the h → WW (∗) spin corre-
lations described in [25]. Our simulations do not include
all corrections from higher orders in αs (see e.g. [26] for a
comparison). These will be important to consider when
later comparing against real experimental distributions.

We generate unweighted events for Standard Model
Higgs boson production (gg → h) and for the domi-
nant background, qq̄ → WW .1 Final state hadrons with
pT > 0.5 GeV and pseudorapidity |η| < 5 are clustered
into jets using the longitudinally invariant kT clustering
algorithm for hadron-hadron collisions [27] in the inclu-
sive mode [28] with R = 1.0. The missing transverse mo-
mentum pi is calculated from the vector sum of the trans-
verse momenta of the neutrinos. No detector simulation
is applied in this paper. Detector effects should provide a
relatively small correction since lepton momenta are very
well measured at these energies [1, 2], and the dominant
contribution to the missing transverse momentum pi will
be from recoil against well-measured leptons. There will
be some additional smearing of pi from mismeasured and
out-of-acceptance hadrons but such corrections are small
when the hadronic transverse energy in the event is small
[1].

Selection cuts are applied based on [1], requiring:

• Exactly two leptons ℓ ∈ {e, µ} with pT > 15 GeV
and |η| < 2.5

• Missing transverse momentum, 6pT > 30 GeV

• 12 GeV < mℓℓ < 300 GeV

• No jet with pT > 20 GeV

• Z → ττ rejection: the event was rejected if |mττ −
mZ | < 25 GeV and 0 < xi < 1 for both i ∈ {1, 2}2

1 Other backgrounds, such as Z → 2τ , are rendered sub-dominant
by the cuts discussed below [1].

2 The variable xi is the momentum fraction of the ith tau carried
by its daughter lepton and mττ is the di-tau invariant mass.
They are calculated using the approximation that each τ was
collinear with its daughter lepton.
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FIG. 1: Signal-only distributions of m
approx
T

(top) and mtrue
T

(bottom) for various values of mh (in GeV). No cuts on ∆φmax
ℓℓ

and pmin
T WW have been applied.

• Relative azimuth ∆φℓℓ < ∆φmax
ℓℓ

• Transverse momentum of the W pair system,
pT WW > pmin

T WW

As has been done in previous studies [1], we optimize the
values of the latter two cuts, ∆φmax

ℓℓ and pmin
T WW for each

Higgs boson mass. In this case we select the values which
would be predicted to best constrain mh – experimentally
one would select cuts which would give the best expected
measurement once an approximate Higgs boson mass was
known. The optimal values ranged from 1.4 to 2.4 for
∆φmax

ℓℓ and 0 to 10 GeV for pmin
T WW .

Both observables correlate with mh (see Figure 1), so
it is possible to make a mass measurement with either.
However mapprox

T does not provide a strict event-by-event
lower bound on mh, whereas the kinematic endpoint of
the mtrue

T distribution shows a clear edge at mh.
To examine the relative performance of the two vari-

ables, we generate distributions of them for various
choices of mh. This is done for twenty independent
pseudo-experiments (including both signal and the dom-
inant WW background contributions), each correspond-
ing to integrated luminosity of 10 fb−1. Each pseudo-
experiment is compared to (signal and WW background)
model distributions with differing hypotheses of mmodel

h .
An example pseudo-experiment distribution for mtrue

T

is shown in Figure 2. For each pseudo-experiment the
binned log likelihood of the data is calculated. Each
likelihood is maximised over the normalisations of the
model h → WW signal and WW background distribu-
tions, reflecting our uncertainty in the cross-sections and
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FIG. 2: Example pseudo-experiment mtrue
T distribution

(points with error bars) and model distribution (shaded his-
tograms) for integrated luminosity of 10 fb−1. The plot in-
cludes the WW background and is made for mh = mmodel

h =
180 GeV, ∆φmax

ℓℓ = 1.8 and pmin
T WW = 10 GeV.
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FIG. 3: Relative log likelihood distributions for various Higgs
boson masses for each of several different input masses and
for both m

approx
T

(dashed) and mtrue
T (solid). The points cor-

respond to integrated luminosity of 10 fb−1, and are plotted
for mh ∈ {130, 140, 150, 160, 170, 180, 200, 220, 240} GeV.

luminosity3:

logL(mh, mmodel
h ) =

〈

max
fSIG

fBG

∑

i

logLP
(

ntrial
i ; xi

)

〉

trials

3 While uncertainties in the shapes of these distributions are also
likely to be important, they are difficult to estimate without col-
lision data and so are not considered in this paper. We note that
shape effects are likely to be more detrimental for m

approx
T

; the
position of the kinematic edge in mtrue

T
should be robust against

uncertainties in smoothly-varying background parameters.
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FIG. 4: The bands show the fractional uncertainty with
which one could expect to measure mh with m

approx
T

(black)
and mtrue

T (shaded) as a function of mh. The integrated lu-
minosity simulated is 10 fb−1.

where the sum is over histogram bins, LP (n; x) is the
Poisson likelihood and xi(fSIG, fBG, mmodel

h ) is the ex-
pected number of events if signal and background cross
sections are f times their leading-order Monte Carlo pre-
dictions. The angle brackets indicate an average over the
twenty pseudo-experiments.

The resulting curves of −2∆ logL are plotted in Fig-
ure 3, where ∆ indicates the difference from the minimum
value. The relative precision with which each method can
be expected to measure the Higgs boson mass is deter-
mined from a quadratic fit to −2∆ logL around the min-
imum. The fractional uncertainties (Figure 4) show that
the true transverse mass performs somewhat better than
the approximate version for all mh, so there appears to
be no advantage in making the approximation mi ≈ mv.
When mh > 2mW there is a significant penalty to pay for
assuming mi ≈ mv — the true transverse mass provides
the higher-precision measurement.

The absolute uncertainties (for both variables) will ob-
viously be somewhat broadened when experimental reso-
lution and sub-leading backgrounds are included. While
such detailed simulations are beyond the scope of this
paper, we project that the desirable properties of mtrue

T

will mean it is also the more appropriate variable in the
real world.

One might also expect mtrue
T to be a good selection

variable for Higgs boson discovery and for measuring the
product of cross-section and branching ratio for Higgs
production and di-leptonic decay, by counting the num-
ber of signal events. Indeed, as discussed in the Ap-
pendix, we find that mtrue

T again gives an improvement,
albeit a slight one, over mapprox

T in both cases.

Other Applications

There are many other possible decay processes at the
LHC involving multiple invisible daughters, to which sim-
ilar methods might be applied. One is to decays of new
resonances, such as a Kaluza-Klein gluon from an ex-
tra dimension [29], in the tt channel, followed by semi-
leptonic decays of the tops. For heavy resonances (exist-
ing constraints suggest that a KK gluon should be multi-
TeV, for example), the approximation will certainly be
inappropriate.

A second example is supersymmetric decays involving
both the LSP and neutrinos. There, we do not know
the mass of the LSP and we are forced to resort to a
kink-based method, as in [12, 13, 14, 15].

Conclusions

There seems to be no advantage in using the approxi-
mate version of the transverse mass – whether for Higgs
boson discovery, for mass determination or for measur-
ing event rates. Indeed our simulations show that the
approximation is often counter-productive, particularly
if the objective is to make a Higgs boson mass measure-
ment and especially when mh > 2mW . The true trans-
verse mass is easy to calculate, and (unlike the approxi-
mate version) provides an event-by-event lower bound on
mh.

These results should be cross-checked with more de-
tailed studies with: full detector simulation; more sophis-
ticated models for the signal and background distribution
shape uncertainties; and with calculations to higher or-
ders in αs.

4 Future work should also consider the case of
Higgs boson production via vector boson fusion for which
one might expect rather similar results.

Other examples of processes where this generalization
of mT could be used include Kaluza-Klein gluon decays
gKK → tt̄, where the top quarks decay via leptonic W
bosons, and supersymmetric decays involving neutrinos,
such as χ̃+

1 → ℓνχ̃0
1.

Although we have focussed our attention here on the
decay h → WW , it is worth remarking that, in the case
of an Standard Model Higgs boson with mh > 2mZ , the
decay channel h → 2Z → 4l will allow the Higgs mass to
be measured at the per mille level. Nevertheless, the de-
cay h → WW would provide an important corroborative
measurement.

We are grateful to Bryan Webber for making us aware

4 A subsequent study with full detector simulation [30] confirms
our results and, in addition, suggests that the true transverse
mass appears to have the advantage over m

approx
T

of being less
correlated with ∆φℓℓ.
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of [25], to other members of the Cambridge Supersymme-
try Working Group, and also to Alessandro Nisati, Bruce
Mellado, Bill Quayle and a referee for additional helpful
comments. AJB thanks Chris Hays and members of the
Oxford Dalitz Institute for useful discussions. This work
was supported by the Science and Technology Research
Council of the United Kingdom.

Appendix: Higgs discovery and branching ratio

To quantify the Higgs boson discovery potential using
mtrue

T as a selection variable, we calculate the log likeli-

hood difference

−2∆ logL = −2
〈

logL− logL6h
〉

trials
,

where L6h is the likelihood of the trial data when the
model contains no Higgs boson contribution. L is max-
imised over fSIG, fBG and mmodel

h ; L6h is maximised over
fBG.

Plots of this −2∆ logL are shown as a function of
mh in Figure 5. The absolute numbers are optimistic,
since the discovery potential will be reduced by subdom-
inant backgrounds and detector resolution, but the rela-
tive performance of the two variables is meaningful. One
can see that the plots are rather similar, but there may
be a small advantage in using mtrue

T rather than mapprox
T

when mh > 2mW .
The branching ratio of the Higgs boson to W bo-

son pairs is another parameter of significant interest.
The relative precision with which one could measure
the number of signal events, which is proportional to
σ(pp → h) × BR(h → WW (∗)), was determined from
quadratic fits to

logL(mh, fSIG) =

〈

max
fBG, mmodel

h

∑

i

logLP
(

ntrial
i ; xi

)

〉

trials

for various mh. The resulting fractional uncertainty
bands are shown in Figure 6. There is again an advantage
in using mtrue

T , though in this case it is slight.
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