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tober 2002)Di�erential distributions for heavy quark produ
tion depend on the heavy quark mass and othermomentum s
ales, whi
h 
an yield additional large logarithms and inhibit a

urate predi
tions.Logarithms involving the heavy quark mass 
an be summed in heavy quark parton distributionfun
tions in the ACOT fa
torization s
heme. A se
ond 
lass of logarithms involving the heavy-quark transverse momentum 
an be summed using an extension of Collins-Soper-Sterman (CSS)formalism. We perform a systemati
 summation of logarithms of both types, thereby obtaining ana

urate des
ription of heavy-quark di�erential distributions at all energies. Our method essentially
ombines the ACOT and CSS approa
hes. As an example, we present angular distributions forbottom quarks produ
ed in parity-
onserving events at large momentum transfers Q at the ep
ollider HERA.PACS numbers: 12.38 Cy, 13.60 -rKeywords: deep inelasti
 s
attering, summation of perturbation theory, heavy �avor produ
tionI. INTRODUCTIONIn re
ent years, signi�
ant attention was dedi
ated toexploring properties of heavy-�avor hadrons produ
ed inlepton-nu
leon deep inelasti
 s
attering (DIS). On theexperimental side, the Hadron-Ele
tron Ring A

elerator(HERA) at DESY has generated a large amount of dataon the produ
tion of 
harmed [1, 2, 3, 4, 5℄ and bottommesons [6, 7, 8, 9, 10℄. At present energies (of order 300GeV in the ep 
enter-of-mass frame), a substantial 
harmprodu
tion 
ross se
tion is observed in a wide range ofBjorken x and photon virtualities Q2, and 
harm quarks
ontribute up to 30% to the DIS stru
ture fun
tions.On the theory side, Perturbative Quantum Chromo-dynami
s (PQCD) provides a natural framework for thedes
ription of heavy-�avor produ
tion. Due to the largemasses M of the 
harm and bottom quarks (M2 ≫
Λ2

QCD), the renormalization s
ale 
an be always 
ho-sen in a region where the e�e
tive QCD 
oupling αS issmall. Despite the smallness of αS , perturbative 
al
u-lations in the presen
e of heavy �avors are not withoutintri
a
ies. In parti
ular, 
are in the 
hoi
e of a fa
tor-ization s
heme is essential for the e�
ient separation ofthe short- and long-distan
e 
ontributions to the heavy-quark 
ross se
tion. This 
hoi
e depends on the valueof Q as 
ompared to the heavy quark mass M . The keyissue here is whether, for a given renormalization and fa
-torization s
ale µF ∼ Q, the heavy quarks of the N -th�avor are treated as partons in the in
oming proton, i.e.,whether one 
al
ulates the QCD beta-fun
tion using Na
tive quark �avors and introdu
es a parton distributionfun
tion (PDF) for the N -th �avor. A related, but sepa-rate, issue is whether the mass of the heavy quark 
an benegle
ted in the hard 
ross se
tion without ruining thea

ura
y of the 
al
ulation.

Currently, several fa
torization s
hemes are availablethat provide di�erent approa
hes to the treatment ofthese issues. Among the mass-retaining fa
torizations
hemes, we would like to single out the �xed �avornumber fa
torization s
heme (FFN s
heme), whi
h in-
ludes the heavy-quark 
ontributions ex
lusively in thehard 
ross se
tion [11, 12, 13, 14, 15, 16℄; and massivevariable �avor number s
hemes (VFN s
hemes), whi
hintrodu
e the PDFs for the heavy quarks and 
hange thenumber of a
tive �avors by one unit when a heavy quarkthreshold is 
rossed [17, 18, 19, 20, 21, 22, 23, 24, 25℄.Further details on these s
hemes 
an be found later inthe paper. Here we would like to point out that, werethe 
al
ulation done to all orders of αS , the FFN andmassive VFN s
hemes would be exa
tly equivalent. How-ever, in a �nite-order 
al
ulation the perturbative seriesin one s
heme may 
onverge faster than that in the others
heme. In parti
ular, the FFN s
heme presents the moste
onomi
 way to organize the perturbative 
al
ulationnear the heavy quark threshold, i.e., when Q2 ≈ M2.At the same time, it be
omes inappropriate at Q2 ≫M2due to powers of large logarithms ln
(
Q2/M2

) in the hard
ross se
tion. In the VFN s
hemes, these logarithmsare summed through all orders in the heavy-quark PDFwith the help of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [26, 27, 28℄; hen
e the pertur-bative 
onvergen
e in the high-energy limit is preserved.In their turn, the VFN s
hemes may 
onverge slower at
Q2 ≈M2, mostly be
ause of the violation of energy 
on-servation in the heavy-quark PDF's in that region. Re-
ently an optimal VFN s
heme was proposed that 
om-pensates for this e�e
t [29℄.In this paper, we would like to 
on
entrate on the anal-ysis of semi-in
lusive di�erential distributions (i.e., dis-tributions depending on additional kinemati
al variablesbesides x and Q). We will argue that �nite-order 
al
u-
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2lations in any fa
torization s
heme do not satisfa
torilydes
ribe su
h distributions due to additional large loga-rithms besides the logarithms ln(Q2/M2). To obtain sta-ble predi
tions, all-order summation of these extra loga-rithmi
 terms is ne
essary.The extra logarithms are of the form
(αn

S/q
2
T ) lnm(q2T /Q

2), 0 ≤ m ≤ 2n− 1, where qT = pT /zdenotes the transverse momentum pT of the heavyhadron in the γ∗p 
enter-of-mass (
.m.) referen
e frameres
aled by the variable z ≡ (pA · pH)/(pA · q). Here
pµ

A, q
µ, and pµ

H are the momenta of the initial-stateproton, virtual photon, and heavy hadron, respe
tively.Our de�nitions for the γ∗p 
.m. frame and hadronmomenta are illustrated by Fig. 1. The resummation ofthese logarithms is needed when the �nal-state hadrones
apes in the 
urrent fragmentation region (i.e., 
losethe dire
tion of the virtual photon in the γ∗p 
.m.frame, where the rate is the largest). In the 
urrentfragmentation region, the ratio q2T /Q2 is small; therefore,the terms lnm(q2T /Q
2) 
ompensate for the smallnessof αS at ea
h order of the perturbative expansion. Ifhadroni
 masses are negle
ted, su
h logarithms 
an besummed through all orders in the impa
t parameterspa
e resummation formalism [30, 31, 32, 33℄, whi
hwas originally introdu
ed to des
ribe angular 
orrela-tions in e+e− hadroprodu
tion [34, 35℄ and transversemomentum distributions in the Drell-Yan pro
ess [36℄.1Here the impa
t parameter b is 
onjugate to qT . Theresults of Refs. [30, 31, 32, 33℄ are immediately validfor semi-in
lusive DIS (SIDIS) produ
tion of lighthadrons (π,K, ...) at Q of a few GeV or higher, and forsemi-in
lusive heavy quark produ
tion at Q2 ≫ M2.To des
ribe heavy-�avor produ
tion at Q2 ∼ M2, themassless qT -resummation formalism must be extendedto in
lude the dependen
e on the heavy-quark massM .In this paper, we perform su
h extension in the Aivazis-Collins-Olness-Tung (ACOT) massive VFN s
heme [18℄with the optimized treatment of the threshold region [29℄.We adopt a �bottom-up� approa
h to the development ofsu
h mass-dependent resummation.2 We start by sepa-rately reviewing the massive VFN s
heme in the in
lu-sive DIS and qT resummation in the massless SIDIS. Wethen dis
uss a 
ombination of these two frameworks ina joint resummation of the logarithms ln(Q2/M2) and

ln(q2T /Q
2). As a result, we obtain a uni�ed des
rip-tion of fully di�erential heavy-hadron distributions at all

Q2 above the heavy quark threshold. It is well knownthat the �nite-order 
al
ulation does not satisfa
torily1 The similarity between the multiple parton radiation in semi-in
lusive DIS and the other two pro
esses was known for a longtime; see, for instan
e, an early paper [37℄.2 An alternative �top-down� approa
h will require the analysis ofleading regions in the high-energy limit and derivation of the evo-lution equations that retain terms with positive powers of M/Q.Su
h analysis 
ould involve methods similar to those dis
ussedin Ref. [38℄.

Target fragmentation Current fragmentation
z

pAe
�H pq pH H


�

Figure 1: The parity-
onserving semi-in
lusive produ
tion
e+p → e+H +X of heavy hadrons in the γ∗p 
.m. referen
eframe. The resummation e�e
ts 
onsidered here are impor-tant in the 
urrent fragmentation region θH → 0, i.e., whenthe �nal-state heavy quark h 
losely follows the dire
tion ofits es
ape in the O(α0

S) �avor-ex
itation pro
ess γ∗ + h → h.treat the 
urrent fragmentation region for any 
hoi
eof the fa
torization s
heme. In 
ontrast, the proposedmassive extension of the qT -resummation a

urately de-s
ribes the 
urrent fragmentation region in the wholerange Q2 > M2.The present study is interesting for two phenomeno-logi
al reasons. Firstly, the quality of the di�erentialdata will improve greatly within the next few years. By2006, the upgraded 
ollider HERA will a

umulate an in-tegrated luminosity of 1 fb−1 [39℄, i.e., more than eighttimes the �nal integrated luminosity from its previousruns. Studies of the heavy quarks in DIS are also en-visioned at the proposed high-luminosity Ele
tron IonCollider [40℄ and THERA [41℄. Eventually these exper-iments will present detailed distributions both at small(Q2 ≈M2) and large (Q2 ≫M2) momentum transfers.Se
ondly, the knowledge of the di�erential distribu-tions is essential for the a

urate re
onstru
tion of in-
lusive observables, su
h as the 
harm 
omponent of thestru
ture fun
tion F2(x,Q
2). At HERA, 40-60% of the
harm produ
tion events o

ur outside the dete
tor a
-
eptan
e region, notably at small transverse momenta ofthe heavy quarks. To determine F c

2 (x,Q2), those eventsshould be re
onstru
ted with the help of some theoreti
almodel, whi
h so far was theO(α2
S) 
al
ulation in the FFNs
heme [15, 16, 42, 43, 44℄ in
orporated in a massless par-ton showering generator. As mentioned above, for in
lu-sive observables the FFN s
heme works the best not farfrom the threshold and be
omes unstable at Q2 ≫ M2,where the VFN s
heme is more appropriate. In more de-tail, the VFN s
heme des
ribes F c
2 (x,Q2) better than theFFN s
heme when Q2 ex
eeds 20 (GeV/c)2, i.e., roughlywhen Q2/M2 > 10 [20℄. The transition to the VFNs
heme o

urs faster at smaller x, where the 
.m. energy



3of the γ∗p 
ollision is mu
h larger than M . For bottomquark produ
tion, the estimate Q2/M2 >∼ 10 
orrespondsto Q2 >∼ 200 (GeV/c)2. The VFN 
al
ulation 
an also beextended down to the mass threshold to uniformly de-s
ribe the whole range Q2 > M2. Sin
e the proposed re-summation 
al
ulation is formulated in the VFN s
heme,it provides a better alternative to the �nite-order 
al
u-lation in the FFN s
heme due to its 
orre
t treatment ofdi�erential distributions at all values of Q2.As an example, we apply the developed method to theleading-order �avor-
reation and �avor-ex
itation pro-
esses in the produ
tion of bottom mesons at HERA. We�nd that the resummed 
ross se
tion for this pro
ess 
anbe des
ribed purely by means of perturbation theory dueto the large mass of the bottom quark. Our predi
tions
an be tested in the next few years on
e the integratedluminosity at HERA approa
hes 1 fb−1. Essentially thesame method 
an be applied to 
harm produ
tion. Inthat 
ase, however, the resummed 
ross se
tion is sensi-tive to the nonperturbative large-b 
ontributions due tothe smaller mass of the 
harm quarks, and the analysisis more involved. Sin
e the goal of this paper is to dis-
uss the basi
 prin
iples of the massive qT -resummation,we leave the study of the 
harm produ
tion and otherphenomenologi
al aspe
ts for future publi
ations.The paper has the following stru
ture. Se
tion II re-views the appli
ation of the ACOT fa
torization s
heme[18℄ and its simpli�ed version [17, 25℄ to the des
ription ofthe in
lusive DIS stru
ture fun
tions. Se
tion III re
apsbasi
 features of the b-spa
e resummation formalism inmassless SIDIS. Se
tion IV dis
usses modi�
ations in theresummed 
ross se
tion to in
orporate the dependen
e onthe heavy-quark massM . In Se
tion V, we present a de-tailed 
al
ulation of the mass-dependent resummed 
rossse
tions in the leading-order �avor-
reation and �avor-ex
itation pro
esses. Se
tion VI presents numeri
al re-sults for polar angle distributions in the produ
tion ofbottom quarks at HERA. Appendix A 
ontains details onthe 
al
ulation of the O(αS) mass-dependent part of theresummed 
ross se
tion. In Appendix B, we present ex-pli
it expressions for the O(αS) �nite-order 
ontributionsfrom the photon-gluon 
hannel. Finally, Appendix C dis-
usses in detail the optimization of the ACOT s
hemewhen it is applied to the di�erential distributions in thevi
inity of the threshold region.II. OVERVIEW OF THE FACTORIZATIONSCHEMEA. Fa
torization in the presen
e of heavy quarksIn this Se
tion, we dis
uss the appli
ation ofthe Aivazis-Collins-Olness-Tung (ACOT) fa
torizations
heme [18℄ to in
lusive DIS observables, for whi
h thiss
heme yields a

urate predi
tions both at asymptoti-
ally high energies and near the heavy-quark threshold.In the in
lusive DIS, the fa
torization in the presen
e

of heavy �avors is established by a fa
torization theo-rem [17℄, whi
h we review under a simplifying assumptionthat only one heavy �avor h with the massM is present.Let A denote the in
ident hadron. A

ording to the theo-rem, the 
ontribution Fh/A(x,Q2) of h to a DIS stru
turefun
tion F (x,Q2) (where F (x,Q2) is one of the fun
tions
F1(x,Q

2) or F2(x,Q
2) in parity-
onserving DIS) 
an bewritten as

Fh/A(x,Q2) =
∑

a

∫ 1

χa

dξ

ξ
Ch/a

(
χa

ξ
,
µF

Q
,
M

Q

)

×fa/A

(
ξ,

{
µF

mq

})
+ O

(
ΛQCD

Q

)
. (1)Here the summation over the internal index a in
ludesboth light partons (gluons G and light quarks), as wellas the heavy quark h. This representation is a

urate upto the non-fa
torizable terms that do not depend on Mand 
an be ignored when Q≫ ΛQCD. The non-vanishingterm on the r.h.s. is written as a 
onvolution integralof parton distribution fun
tions fa/A (ξ, {µF /mq}) and
oe�
ient fun
tions Ch/a(χa/ξ, µF /Q, M/Q). The 
on-volution is realized over the hadron light-
one momen-tum fra
tion ξ 
arried by the parton a. The 
oe�
ientfun
tion depends on the �avor-dependent �s
aling vari-able� χa dis
ussed below. The parton distributions and
oe�
ient fun
tions are separated by an arbitrary fa
-torization s
ale µF su
h that fa/A depends only on µFand quark masses {mq} ≡ mu,md, ...,M ; and Ch/a de-pends only on µF , M, and Q. As a result of this sepa-ration, all logarithmi
 terms αn

S lnk (µF /mq) with light-quark masses are in
luded in the PDF's, where they aresummed through all orders using the DGLAP equation.Note that in the massless approximation su
h logarithmsappear in the guise of 
ollinear poles 1/ǫk in the pro-
edure of dimensional regularization. The logarithms
lnk(µF /M) with the heavy-quark mass M are in
ludedeither in Ch/a or fa/A depending on the fa
torizations
heme in use.In the referen
e frame where the momentum of thein
ident hadron A in the light-
one 
oordinates is

pµ
A =

{
p+

A,
m2

A

2p+
A

,0T

}
,(where p± ≡

(
p0 ± p3

)
/
√

2), the quark PDF 
an be de-�ned in terms of the quark �eld operators ψq(x) as [45℄
fq/A

(
ξ,

{
µF

mq

})
=
∑

spin

∑

color

∫
dy−

2π
e−iξp+

A
y−

×〈pA|ψ̄q(0, y
−,0T )

×P exp

{
−ig

∫ y−

0

dz−A
+(0, z−,0T )

}

×γ
+

2
ψq(0)|pA〉. (2)Here P exp {...} is the path-ordered exponential of thegluon �eld Aν(x) in the gauge η · A = 0. The r.h.s.



4is averaged over the spin and 
olor of A and summedover the spin and 
olor of q. A similar de�nition existsfor the gluon PDF. The dependen
e of fa/A(ξ, {µF /mq})on µF is indu
ed in the pro
ess of renormalization ofultraviolet (UV) singularities that appear in the bilo-
al operator on the r.h.s. of Eq. (2). In general, thePDF is a nonperturbative obje
t; however, it 
an be
al
ulated in PQCD when µF ≫ ΛQCD, and the in
i-dent hadron A is repla
ed by a parton. This featureopens the door for the 
al
ulation of Fh/A(x,Q2) for anyhadron A through the 
onventional sequen
e of 
al
u-lating Ch/a(χa/ξ, µF /Q,M/Q) in parton-level DIS and
onvolving it with the phenomenologi
al parameteriza-tion of the nonperturbative PDF fa/A(ξ, {µF /mq}). Inthe in
lusive DIS, it is 
onvenient to 
hoose µF ∼ Q toavoid the appearan
e of the large logarithm ln(µF /Q) in
Ch/a(χa/ξ, µF /Q,M/Q).The fa
torized representation (1) is valid in all fa
-torization s
hemes. The spe
i�
 fa
torization s
heme isdetermined by (a) the pro
edure for the renormalizationof the UV singularities; and (b) the pres
ription for keep-ing or dis
arding terms with positive powers of M/Q inthe 
oe�
ient fun
tion Ch/a. The 
hoi
e (a) determinesif the logarithms lnk(µF /M) are resummed in the heavy-�avor PDF or not. With respe
t to ea
h of two issues, the
hoi
e 
an be done independently. For instan
e, the MSfa
torization s
heme uses the dimensional regularizationto handle the UV singularities, but does not uniquely de-termine the 
hoi
e (b). Hen
e, it is not ne
essary in thiss
heme to always negle
t M in the 
oe�
ient fun
tionand expose the heavy-quark mass singularities as polesin the dimensional regularization.The ACOT s
heme belongs to the 
lass of the vari-able �avor number (VFN) fa
torization s
hemes [46℄ that
hange the renormalization pres
ription when µF 
rossesa threshold value µthr. It is 
onvenient to 
hoose µthrfor the �avor h to be equal to M , sin
e the logarithms
lnk (µF /M) vanish at that point. If µF < M , all graphswith internal heavy-quark lines are renormalized by zero-momentum subtra
tion. If µF > M , these graphs arerenormalized in the MS s
heme. The masses of the lightquarks are negle
ted everywhere, and graphs with onlylight parton lines are always renormalized in the MSs
heme.The physi
al pi
ture behind the ACOT pres
ription issimple: the heavy quark is ex
luded as a 
onstituent ofthe hadron for su�
iently low energy (an N − 1 �avorsubs
heme), but the heavy quark is in
luded as a 
on-stituent for su�
iently high energies (an N �avor sub-s
heme). The renormalization by zero-momentum sub-tra
tion below the threshold leads to the expli
it de
ou-pling of the heavy-quark 
ontributions from light partonlines. As one 
onsequen
e of the de
oupling, all pertur-bative 
omponents of the heavy-quark PDF vanish at
µF < M , so that a nonzero heavy-quark PDF may ap-pear only through nonperturbative 
hannels, su
h as the�intrinsi
 heavy quark me
hanism� [47℄. Sin
e the sizeof su
h nonperturbative 
ontributions remains un
ertain,

they are not 
onsidered in this study. At µF > M , anon-zero heavy-quark PDF fh/A is introdu
ed, whi
h isevolved together with the rest of the PDFs with the helpof the mass-independent MS splitting kernels. The ini-tial 
ondition for fh/A(ξ, µF ) is obtained by mat
hing thefa
torization subs
hemes at µF = M . At order αS , this
ondition is trivial:
fh/A(ξ, µF = M) = 0. (3)At higher orders, the initial value of fh/A(ξ, µF ) is givenby a superposition of light-�avor PDF's [20℄. A simpleillustration of these issues is given in Appendix A.The ACOT s
heme possesses another important prop-erty: the 
oe�
ient fun
tion Ch/a in this s
heme has a�nite limit as Q → ∞, whi
h 
oin
ides with the expres-sion for the 
oe�
ient fun
tion obtained in the massless

MS s
heme with N a
tive �avors. This happens be-
ause the mass-dependent terms in Ch/a 
ontain onlypositive powers of M/Q, while the quasi-
ollinear log-arithms ln(µF /M) are resummed in fh/A(ξ, µF ). As a
onsequen
e of the introdu
tion of fh/A(ξ, µF ), the 
oe�-
ient fun
tion Ch/a in
ludes subpro
esses of three 
lasses:
• �avor ex
itation, where the parton a is a heavyquark;
• gluon �avor 
reation, where a is a gluon;
• and light-quark �avor 
reation, where a is a lightquark.In 
ontrast, in the FFN s
heme [11, 12, 13, 14, 15, 16℄only the �avor-
reation pro
esses are present. Thelowest-order diagrams for ea
h 
lass are shown in Fig. 2.The subsequent parts of the paper 
onsider the pro-
esses shown in Figs. 2a and 2b. Note that we 
ount theorder of diagrams a

ording to the expli
it power of αSin the 
oe�
ient fun
tion, i.e., O(α0

S) in Fig. 2a, O(α1
S)in Fig. 2b, and O(α2

S) in Fig. 2
. This 
ounting doesnot apply to the whole stru
ture fun
tion Fh/A(x,Q2) inEq. (1) when the heavy-quark PDF is itself suppressed by
αS/π near the mass threshold [48, 49, 50℄. In that region,an O(αn

S) �avor-ex
itation 
ontribution has roughly thesame order of magnitude as the O(αn+1
S ) �avor-
reation
ontribution. We return to this issue in the dis
ussionof numeri
al results in Se
tion VI, where we interpretthe 
ombination of the O(α0

S) �avor-ex
itation 
ontri-bution (Fig. 2a) and O(α1
S) �avor-
reation 
ontribution(Fig. 2b) as a �rst approximation at Q ≈M .B. Simpli�ed ACOT FormalismOf several available versions of the ACOT s
heme,our 
al
ulation utilizes its modi�
ation advo
ated byCollins [17℄, whi
h we identify as the Simpli�ed ACOT(S-ACOT) formalism [25℄. It has the advantage of beingeasy to state and of allowing relatively simple 
al
ula-tions. This simpli
ity 
ould be 
ru
ial for implementing
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(a) (b) (c)Figure 2: Basi
 subpro
esses in the ACOT s
heme: (a) �avorex
itation γ∗ + h → h at O(α0

S); (b) gluon �avor 
reation(photon-gluon fusion) γ∗ + G → h + h̄ at O(α1
S); (
) light-quark �avor 
reation γ∗ + q → (γ∗ + G) + q → (h + h̄) + qat O(α2

S). The thi
k and thin solid lines 
orrespond to theheavy quark h and light quarks q = u, d, s, respe
tively.the massive VFN pres
ription at the next-to-leading or-der in the global analysis of parton distributions.In brief, this pres
ription is stated as follows.Simpli�ed ACOT (S-ACOT) pres
ription:Set M to zero in the 
al
ulation of the 
oef-�
ient fun
tions Ch/a for the in
oming heavyquarks: that is,
Ch/h

(
χh

ξ
,
µF

Q
,
M

Q

)
→ Ch/h

(
χh

ξ
,
µF

Q
, 0

)
.It is important to note that this pres
ription is not anapproximation; it 
orre
tly a

ounts for the full mass de-penden
e [17℄. It also tremendously redu
es the 
om-plexity of �avor-ex
itation stru
ture fun
tions, as theyare given by the light-quark result. In the spe
i�
 
ase
onsidered here, the heavy quark mass in the S-ACOTs
heme should be retained only in the γ∗ + G → h + h̄subpro
ess (Fig. 2b). Another important 
onsequen
ewill be dis
ussed in Se
tion IV, where we show that theS-ACOT s
heme leads to a simpler generalization of the

qT -resummation to the mass-dependent 
ase.C. The s
aling variableFinally, we address the issue of the most appropriatevariables χa (a = G, u, d, s, ...) in the 
onvolution inte-gral (1). In a massless 
al
ulation, χa are just equalto Bjorken x, sin
e all momentum fra
tions ξ between
x and unity are allowed by energy 
onservation. Thissimple relation does not hold in the massive 
ase. Forinstan
e, in the 
harged-
urrent heavy quark produ
tion
W± + q → h, where h is present in the �nal, but notthe initial, state, a simple kinemati
al argument leadsto the 
on
lusion that the longitudinal variable in the�avor-ex
itation pro
esses should be res
aled by a mass-dependent fa
tor, as χh = x

(
1 +M2/Q2

) [49℄.In the �avor-ex
itation subpro
esses of the neutral-
urrent heavy quark produ
tion (e.g., γ∗ + h→ h), typi-
ally no res
aling 
orre
tion was made. The presen
e of aheavy quark in both the initial and �nal states of the hard

s
attering suggested that no kinemati
al shift was ne
es-sary, i.e., χh = x. This assumption has been re
entlyquestioned by a new analysis [29℄. Spe
i�
ally, Tung etal. note that the heavy quarks in the hadron 
ome pre-dominantly from gluons splitting into quark-antiquarkpairs. Hen
e the heavy quark h initiating the hard pro-
ess must be a

ompanied by the unobserved h̄ in thebeam remnant. When both h and h̄ are present, thehadron's light-
one momentum fra
tion 
arried by the in-
oming parton 
annot be smaller than x (1 + 4M2/Q2
),whi
h is larger than the minimal momentum fra
tion

ξmin = x allowed by the single-parti
le in
lusive kine-mati
s. The fa
tor of 4M2 arises from the threshold 
on-dition for h and h̄. This e�e
t 
an be a

ounted for byevaluating the �avor-ex
itation 
ross se
tions at the s
al-ing variable χh = x
(
1 + 4M2/Q2

).In brief, the rule proposed in Ref. [29℄ is to use χa =
x
(
1 + 4M2/Q2

) in �avor-ex
itation pro
esses (Fig. 2a)and χa = x in �avor-
reation pro
esses (Figs. 2b and2
) when 
al
ulating in
lusive 
ross se
tions. However,to 
orre
tly des
ribe the di�erential distributions of the�nal-state hadron, we have to generalize the above rulefor semi-in
lusive observables. This generalization is dis-
ussed in Appendix C, where the proper s
aling variablefor fully di�erential �nite-order 
ross se
tions is found tobe χh = x
(
1 +M2/

(
z(1 − z)Q2

)) (
f. Eq. (C11)).III. MASSLESS TRANSVERSE MOMENTUMRESUMMATIONWe now turn to the di�erential distributions of theheavy-�avor 
ross se
tions. Spe
i�
ally, we 
onsider theprodu
tion of a heavy-quark hadron H via the pro
ess
e(ℓ) + A(pA) → H(pH) + e(ℓ′) + X. This rea
tion is il-lustrated in Fig. 1 for the spe
i�
 
ase when A is a pro-ton. In mu
h of the dis
ussion, we will �nd it 
onvenientto amputate the external lepton legs and work with thephoton-hadron pro
ess γ∗(q) + A(pA) → H(pH) +X inthe photon-hadron 
.m. frame. Given the 
onventionalDIS variables Q2 = −q2 and x = Q2/(2pA · q), as wellas the Lorentz invariant SeA ≡ (ℓ+ pA)2, we de
omposethe ele
tron-level 
ross se
tion into a sum over the fun
-tions Aρ(ψ, ϕ) of the lepton azimuthal angle ϕ and boostparameter ψ ≡ cosh−1

(
2xSeAQ

−2 − 1
) [32, 51℄:

dσ(e+A→ e+H +X)

dxdQ2dpH
∝
∑

ρ

Vρ(q, pA,pH)

× Aρ(ψ, ϕ). (4)This pro
edure is nothing else but the de
ompositionover the virtual photon's heli
ities [52, 53, 54℄; hen
eit is 
ompletely analogous to the tensor de
ompositionfamiliar from the in
lusive DIS. As a result of this pro
e-dure, the dependen
e on the kinemati
s of the �nal-statelepton is fa
torized into the fun
tions Aρ(ψ, ϕ), whilethe hadroni
 dynami
s a�e
ts only the fun
tions Vρ. Inparity-
onserving SIDIS, the only 
ontributing angular



6fun
tions are
A1(ψ, ϕ) = 1 + cosh2 ψ,

A2(ψ, ϕ) = −2,

A3(ψ, ϕ) = − cosϕ sinh 2ψ,

A4(ψ, ϕ) = cos 2ϕ sinh2 ψ. (5)In Se
tion II we found that the ACOT pres
rip-tion resums logarithms of the form ln(M2/Q2). Forthe in
lusive observables, this pro
edure provides a
-
urate predi
tions throughout the full range of x and
Q2. More di�erential observables may 
ontain additionallarge logarithms in the high-energy limit. In parti
u-lar, we already mentioned the logarithms of the type
(q−2

T )αn
S lnm(q2T /Q

2), 0 ≤ m ≤ 2n − 1, whi
h appearwhen the polar angle θH of the heavy hadron H in the
γ∗A 
.m. frame be
omes small (
f. Fig. 1). Here we
hose the z-axis to be dire
ted along the momentum q ofthe virtual photon γ∗. When M2 ≪ Q2, the s
ale qT isrelated to θH as

q2T = Q2

(
1

x
− 1

)
1 − cos θH

1 + cos θH
; (6)hen
e

lim
θH→0

q2T = Q2

(
1

x
− 1

)(
θ2H
4

+ ...

)
→ 0. (7)The resummation of these logarithms of soft and
ollinear origin 
an be realized in the formalism byCollins, Soper, and Sterman (CSS) [34, 35, 36, 55℄. Theresult 
an be expressed as a fa
torization theorem, whi
hstates that in the limit Q2 ≫ q2T , {m2

q},Λ2
QCD the 
rossse
tion is

dσ(e+A→ e+H +X)

dΦ

∣∣∣∣
q2

T
≪Q2

=
σ0Fl

2SeA
A1(ψ, ϕ)

×
∫

d2b

(2π)2
eiqT ·bW̃HA(b,Q, x, z)

+O
(
qT
Q
,

{
mq

Q

}
,
ΛQCD

Q

)
. (8)In this equation, b is the impa
t parameter (
onjugateto qT ), dΦ ≡ dxdQ2dzdq2Tdϕ, z ≡ (pA · pH)/(pA · q),and σ0 and Fl are 
onstant fa
tors given in Eq. (B2).As before, {mq} 
olle
tively denotes all quark masses,

{mq} ≡ mu,md, ...,M. At large Q2, the b-spa
e inte-gral in Eq. (8) is dominated by 
ontributions from theregion b2 <∼ 1/Q2. In this region, the hadroni
 form fa
-tor W̃HA(b,Q, x, z) 
an be fa
torized in a 
ombinationof parton distribution fun
tions fa/A(ξa, µF ), fragmenta-tion fun
tions DH/b(ξb, µF ), and the partoni
 form fa
tor
̂̃
W ba:

W̃HA (b,Q, x, z) =
∑

a,b

∫ 1

x

dξa
ξa

∫ 1

z

dξb
ξb

×DH/b(ξb, µF )
̂̃
W ba (b,Q, x̂, ẑ, µF )

×fa/A(ξa, µF ), (9)

where
̂̃
W ba(b,Q, x̂, ẑ, µF ) =

∑

j

e2j e
−S(b,Q,C1,C2)

×Cout
b/j

(
ẑ, µF b;

C1

C2

)
Cin

j/a

(
x̂, µF b;

C1

C2

)
. (10)Here x̂ ≡ x/ξa, ẑ ≡ z/ξb. The indi
es a, b in Eq. (9) aresummed over all quark �avors and gluons; the summationover j in Eq. (10) is over the quarks only. The fra
tional
harge of a quark j is denoted as e2e2j . The parton distri-butions and fragmentation fun
tions are separated fromthe partoni
 form fa
tor ̂̃W ba at the fa
torization s
ale

µF . The Sudakov fa
tor S(b,Q,C1, C2) is an all-ordersum of logarithms lnm (q2T /Q
2). It is given by an inte-gral between s
ales C2

1/b
2 and C2

2Q
2 (where C1 and C2are 
onstants of order 1) of two fun
tions A (αS(µ̄);C1)and B(αS(µ̄);C1, C2) appearing in the solution of equa-tions for renormalization- and gauge-group invarian
e:

S =

∫ C2
2Q2

C2
1
/b2

dµ̄2

µ̄2

[
ln

(
C2

2Q
2

µ̄2

)
A (αS(µ̄);C1)

+B(αS(µ̄);C1, C2)

]
. (11)The fun
tions Cin, Cout 
ontain perturbative 
orre
-tions to 
ontributions from the in
oming and outgoinghadroni
 jets, respe
tively. To evaluate the Fourier-Bessel transform integral, W̃HA (b,Q, x, z) should bealso de�ned at b >∼ 1 GeV−1, where the perturba-tive methods are not trustworthy. The 
ontinuation of

W̃HA (b,Q, x, z) to the large-b region is realized with thehelp of some phenomenologi
al model, as dis
ussed, e.g.,in Refs. [36, 56, 57℄.As noted above, the resummed 
ross se
tion in Eq. (8),whi
h we shall label as σ
W̃
, is derived in the limit q2T ≪

Q2. In the region q2T
>∼ Q2, the standard �nite-order(FO) perturbative result, σFO, is appropriate. While σ

W̃and σFO represent the 
orre
t limiting behavior, we 
an-not simply add these two terms to obtain the total 
rossse
tion, σTOT , as we would be �double-
ounting� the 
on-tributions 
ommon to both terms.The solution is to subtra
t the overlapping 
ontribu-tions between σ
W̃

and σFO. This overlapping 
ontribu-tion (the asymptoti
 pie
e σASY ) is obtained by expand-ing the b-spa
e integral in σ
W̃

out to the �nite order of
σFO. Thus, the 
omplete result is given by

dσTOT

dΦ
=
dσ

W̃

dΦ
+
dσFO

dΦ
− dσASY

dΦ
. (12)At small qT , where terms lnm(q2T /Q

2) are large, σFO
an
els well with σASY , so that the total 
ross se
tion isapproximated well by the b-spa
e integral: σTOT ≈ σ
W̃
.At q2T >∼ Q2, where the logarithms are no longer domi-nant, the b-spa
e integral σ

W̃

an
els with σASY , so that
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(a)

= +

= +

= +

−

−

−

(b)

dσ
dq

T

dσ
dq

T

q
T

q
T

�TOT �FO �ASY�fW

Figure 3: Balan
e of various terms in the total resummed 
ross se
tion dσTOT /dqT : (a) away from the threshold (Q ≫ M);(b) near the threshold (Q ≈ M). In ea
h plot the thi
k 
urves 
orrespond to the "a
tive" 
ross se
tion (TOT, FO, W or ASY),and the thin 
urves 
orrespond to the other three 
ross se
tions.the total 
ross se
tion is equal to σFO up to higher order
orre
tions: σTOT ≈ σFO. This interplay of σ
W̃
, σFO,and σASY in σTOT is illustrated in Fig. 3a.As we will be referring to these di�erent terms fre-quently throughout the rest of the paper, let us presenta re
ap of their roles.

• σ
W̃

is the small-qT resummed term as given bythe CSS formalism in Eq. (8); sometimes 
alled�the CSS term� [58℄. This expression 
ontainsthe all-order sum of large logarithms of the form
lnm (q2T /Q

2), whi
h is presented as a Fourier-Besseltransform of the b-spa
e form fa
tor W̃ (b,Q, x, z).It is a good approximation in the region q2T ≪ Q2.
• σFO is the �nite-order (FO) term; sometimes 
alled�the perturbative term�. It 
ontains the 
ompleteperturbative expression 
omputed to the relevantorder of the 
al
ulation n. As su
h, this term 
on-tains logarithms of the form lnm (q2T /Q

2) only outto m = 2n− 1. It also 
ontains terms that are notimportant in the limit q2T /Q2 → 0, but dominatewhen q2T ∼ Q2. Hen
e, it provides a good approxi-mation in the region q2T >∼ Q2.
• σASY is the asymptoti
 (ASY) term. It 
ontains theexpansion of σ

W̃
out to the same order n as in σFO.As su
h, this term 
ontains logarithms of the form

lnm (q2T /Q
2) only out to m = 2n−1. It is pre
isely

what is needed to eliminate the �double-
ounting�between the σ
W̃

and σFO terms in Eq. (12).
• σTOT is the total (TOT) resummed 
ross se
tion;sometimes 
alled �the resummed term�. It is 
on-stru
ted as σTOT = σ

W̃
+ σFO − σASY . In theregion q2T ≪ Q2, σASY pre
isely 
an
els the largeterms present in the σFO 
ontribution, so that

σTOT ≈ σ
W̃
. In the region q2T

>∼ Q2, σASY ap-proximately 
an
els the σ
W̃

term leaving σFO asthe dominant representation of the total 
ross se
-tion: σTOT ≈ σFO. Hen
e, when 
al
ulated to asu�
iently high order of αS , σTOT serves as a goodapproximation at all qT .In a pra
ti
al 
al
ulation in low orders of PQCD, onemay want to further improve the 
an
ellation between
σ

W̃
and σASY at q2T >∼ Q2. This improvement 
anbe a
hieved by introdu
ing a kinemati
al 
orre
tion inthese terms that a

ounts for the redu
tion of the al-lowed phase spa
e for the longitudinal variables x and zat non-zero qT . The purpose of this kinemati
al 
orre
-tion is quite similar to the purpose of the in
lusive s
alingvariable dis
ussed in Subse
tion II C: it removes 
ontri-butions from the unphysi
ally small x and z that makethe di�eren
e σ

W̃
− σASY non-negligible as 
ompared to

σFO. Note that the resummed 
ross se
tions with andwithout the kinemati
al 
orre
tion are formally equiva-lent to one another up to higher-order 
orre
tions. Fur-



8ther dis
ussion of this issue 
an be found in Appendix C,whi
h introdu
es the kinemati
al 
orre
tion for the re-summed heavy-quark qT distributions.IV. EXTENSION OF THE CSS FORMALISM TOHEAVY-QUARK PRODUCTIONIn the previous Se
tion, we presented a pro
edure forthe resummation of distributions dσ/dq2T in the limitwhen Q2 is mu
h larger than all other momentum s
ales,
Q2 ≫ q2T , {m2

q}. We now are ready to dis
uss its ex-tension to the 
ase when the heavy-quark mass is not
negligible. For simpli
ity, we again assume that onlyone heavy �avor h has the mass M 
omparable with Q:
Q2 ∼M2 ≫ Λ2

QCD. The generalization for several heavy�avors 
an be realized through the 
onventional sequen
eof fa
torization subs
hemes, in whi
h the heavy quarksbe
ome a
tive partons at energy s
ales above their mass,and are treated as non-partoni
 parti
les at energy s
alesbelow their mass.We start by rewriting Eq. (9) in a form analogous toEq. (4.3) of Ref. [36℄, where the form fa
tor W̃ was givenfor the Drell-Yan pro
ess:
W̃HA (b,Q, x, z) =

∑

j

e2j P
out

H/j

(
z, b, {mq},

C1

C2

)
P

in

j/A

(
x, b, {mq},

C1

C2

)

× exp

{
−
∫ C2

2Q2

C2
1
/b2

dµ̄2

µ̄2

[
ln

(
C2

2Q
2

µ̄2

)
A
(
αS(µ̄);

{
µ̄

mq

}
;C1

)
+ B

(
αS(µ̄);

{
µ̄

mq

}
;C1, C2

)]}
. (13)Here the fun
tion P

in

j/A (x, b, {mq}, C1/C2) des
ribes
ontributions asso
iated with the in
oming hadroni
 jet.As illustrated in Appendix A, P
in

j/A (x, b, {mq}, C1/C2)is related to the kT -dependent parton distribu-tion Pin
j/A (x, kT , {mq}). Similarly, the fun
tion

P
out

H/j (z, b, {mq}, C1/C2) des
ribes 
ontributions asso-
iated with the outgoing hadroni
 jet [35℄. It isrelated to the kT -dependent fragmentation fun
tion
Pout

H/j (z, kT , {mq}). The fun
tions A and B are the sameas in Eq. (11), ex
ept that now they retain the depen-den
e on the quark masses {mq} = mu,md,ms, ...,M .Eq. (9) presents a spe
ial 
ase of Eq. (13). It is validat short distan
es, i.e., when 1/b is mu
h larger than anyof the quark masses mq. In 
ontrast, Eq. (13) is validat all b [36℄. As shown in Ref. [45℄, the transition fromEq. (13) to Eq. (9) is possible be
ause the fun
tions P
in

j/Aand P
out

H/j fa
torize when b20/b2 ≫ {m2
q} :

P
in

j/A

(
x, b, {mq},

C1

C2

)
→
∑

a

∫ 1

x

dξa
ξa

× Cin
j/a

(
x̂, µF b;

C1

C2

)
fa/A

(
ξa,

{
µF

mq

})
;

P
out

H/j

(
z, b, {mq},

C1

C2

)
→
∑

b

∫ 1

z

dξb
ξb

× DH/b

(
ξb,

{
µF

mq

})
Cout

b/j

(
ẑ, µF b;

C1

C2

)
. (14)Here we introdu
ed a frequently en
ountered 
onstant

b0 ≡ 2e−γE ≈ 1.123. We see that the form-fa
tor W̃HAis well-de�ned both for non-zero quark masses and in

the massless limit. Hen
e, it does not 
ontain negativepowers of the quark masses or logarithms ln (mq/Q), withthe ex
eption of the 
ollinear logarithms resummed in theparton distributions and fragmentation fun
tions.We will now argue that the fa
torization rule similarto Eq. (14) should also apply in heavy-�avor produ
tionwhen M2 is not negligible 
ompared to b20/b2. Indeed,the fa
torization of the fun
tions P
in

j/A and P
out

H/j in thelimit b20/b2 ≫ {m2
q} [45℄ 
losely resembles the fa
toriza-tion of the in
lusive DIS stru
ture fun
tions in the limit

Q2 ≫ {m2
q} [59, 60, 61, 62, 63℄. In both 
ases the fa
-torization o

urs be
ause the dominant 
ontributions tothe 
ross se
tion 
ome from �ladder� 
ut diagrams withsubgraphs 
ontaining lines of drasti
ally di�erent virtu-alities. More pre
isely, the leading regions in su
h di-agrams 
an be de
omposed into hard subgraphs, whi
h
ontain highly o�-shell parton lines; and quasi-
ollinearsubgraphs, whi
h 
ontain lines with mu
h lower virtual-ities and momenta approximately 
ollinear to pµ

A (in the
ase of Fh/A(x,Q2) orP
in

j/A) or pµ
H (in the 
ase of Pout

H/j).In the fun
tions P
in

j/A and P
out

H/j , additional soft gluonsubgraphs are present, but they eventually do not a�e
tthe proof of the fa
torization [45℄. The hard subgraphs
ontribute to the in
lusive 
oe�
ient fun
tion Ch/a inEq. (1), as well as fun
tions Cin
j/a or Cout

b/j in Eq. (14).The quasi-
ollinear subgraphs, whi
h are 
onne
ted tothe hard subgraphs through one on-shell parton on ea
hside of the momentum 
ut, 
ontribute to the PDF's (inthe in
lusive DIS and SIDIS) or FF's (in SIDIS).The hard subgraphs are 
hara
terized by typi
al trans-verse momenta k2
T
>∼ µ2

F ≫ Λ2
QCD, while the PDF's and



9FF's are 
hara
terized by transverse momenta k2
T
<∼ µ2

F .The fa
torization s
ale µF is of order Q in the in
lu-sive DIS stru
ture fun
tions and b0/b in the fun
tions
P

in

j/A and P
out

H/j . As dis
ussed in Se
tion II, the fa
-torization in the in
lusive DIS 
an be extended to the
ase when Q is 
omparable to the heavy-�avor mass M ,
Q2 ∼ M2 ≫ Λ2

QCD. Given the 
lose analogy betweenthe in
lusive DIS stru
ture fun
tions and the fun
tions
P

in

j/A, P
out

H/j , it is natural to assume that the latterfa
torize when b20/b2 ∼M2 ≫ Λ2
QCD as well:

P
in

j/A

(
x, b, {mq},

C1

C2

)
=
∑

a

∫ 1

x

dξa
ξa

× Cin
j/a

(
x̂, µF b, bM,

C1

C2

)
fa/A

(
ξa,

{
µF

mq

})
;

P
out

H/j

(
z, b, {mq},

C1

C2

)
=
∑

b

∫ 1

z

dξb
ξb

× DH/b

(
ξb,

{
µF

mq

})
Cout

b/j

(
ẑ, µF b, bM,

C1

C2

)
. (15)The main di�eren
e between Eqs. (14) and (15) is 
on-tained in the fun
tions Cin

j/a and Cout
b/j , whi
h now expli
-itly depend on M. These fun
tions 
an be 
al
ulateda

ording to their de�nitions given in Ref. [34℄. Theunrenormalized expressions for the C-fun
tions 
ontainultraviolet singularities. To 
an
el these singularities,we introdu
e 
ounterterms a

ording to the pro
eduredes
ribed in Se
tion II: that is, graphs with internalheavy-quark lines are renormalized in the MS s
hemeif µF ∼ b0/b > M and by zero-momentum subtra
tion if

b0/b < M . This 
hoi
e leads to the expli
it de
ouplingof diagrams with heavy quark lines at b >∼ b0/M . Inparti
ular, the de
oupling implies that 
ontributions toEq. (15) with j, a, or b equal to h are power-suppressedat b > b0/M.We now 
onsider other sour
es of the dependen
e onMin dσ/dΦ. Firstly, a

ording to Eq. (13), there is a depen-den
e onM in the Sudakov fun
tions A(αS(µ̄); µ̄/M ;C1)and B(αS(µ̄); µ̄/M ;C1, C2). Due to the de
oupling, themass-dependent terms in the Sudakov fa
tor vanish at
b >∼ b0/M , ex
ept for perhaps terms of truly nonpertur-bative nature, like the intrinsi
 heavy quark 
omponent[47℄. As mentioned above, in this paper su
h nonpertur-bative 
omponent is ignored. Se
ondly, there may alsobe mass-dependent terms in the �nite-order 
ross se
-tion, whi
h are not asso
iated with the leading 
ontri-butions resummed in the W̃ -term: those are the termsthat 
ontribute to the remainder in Eq. (8). The termsof both types are 
orre
tly in
luded in dσTOT /dΦ. In-deed, the terms of the �rst type appear in all three terms

dσ
W̃
/dΦ, dσFO/dΦ, and dσASY /dΦ. Two out of three
ontributions (in dσ

W̃
/dΦ and dσASY /dΦ, or dσFO/dΦand dσASY /dΦ) 
an
el with one another, leaving thethird 
ontribution un
an
elled in dσTOT /dΦ. The termsof the se
ond type are 
ontained only in dσFO/dΦ, sothat they are automati
ally in
luded in dσTOT /dΦ.The treatment of the massive terms simpli�es moreif we adapt the S-ACOT fa
torization s
heme, in whi
hthe heavy quark mass is set to zero in the hard partsof the �avor-ex
itation subpro
esses. As a result, Mis negle
ted in the �avor-ex
itation 
ontributions to thehard 
ross se
tion σFO, asymptoti
 term σASY , and C-fun
tions in the W̃ -term. The mass-dependent terms arefurther omitted in the perturbative Sudakov fa
tor S. Atthe same time, all mass-dependent terms are kept in σFO,

σASY , and C-fun
tions for gluon-initiated subpro
esses.As we will demonstrate in the next se
tion, in thispres
ription the 
ross se
tion σTOT resums the soft and
ollinear logarithms, when these logarithms are large,and redu
es to the �nite-order 
ross se
tion, when theselogarithms are small. In parti
ular, at Q ∼M the �nite-order �avor-
reation terms approximate well the heavy-quark 
ross se
tion. Hen
e we expe
t that σTOT repro-du
es the �nite-order �avor-
reation part at Q ∼ M(Fig. 3b). For this to happen, the �avor-ex
itation
ross se
tion should 
an
el well with the subtra
tion
∝ ln(µF /M) from the �avor-
reation 
ross se
tion; and
σ

W̃
should 
an
el well with σASY .We �nd that these 
an-
ellations indeed o

ur in the numeri
al 
al
ulation, sothat at Q ≈M σTOT agrees well with the �avor-
reation
ontribution to σFO. Similarly, σTOT reprodu
es themassless resummed 
ross se
tion when Q≫ M (Fig. 3a).It also smoothly interpolates between the two regions of

Q.To summarize our method, the total resummed 
rossse
tion in the presen
e of heavy quarks is 
al
ulated as
dσTOT

dΦ
=
dσ

W̃

dΦ
+
dσFO

dΦ
− dσASY

dΦ
, (16)i.e., using the same 
ombination of the W̃ -term, �nite-order 
ross se
tion, and asymptoti
 
ross se
tion as in themassless 
ase. All three terms on the r.h.s. of Eq. (16)are 
al
ulated in the S-ACOT s
heme. The W̃ -term is
al
ulated as

(
dσ(e+A→ e+H +X)

dΦ

)

W̃

=
σ0Fl

SeA

A1(ψ, ϕ)

2

×
∫

d2b

(2π)2
eiqT ·bW̃HA(b,Q,M, x, z), (17)where the form-fa
tor W̃HA(b,Q,M, x, z) is
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W̃HA (b,Q,M, x, z) =

∑

a,b

∫ 1

χa

dξa
ξa

∫ 1

z

dξb
ξb
DH/b

(
ξb,

{
µF

mq

})
fa/A

(
ξa,

{
µF

mq

})

×
∑

j=u,ū,d,d̄...

e2jCout
b/j

(
ẑ, µF b, bM ;

C1

C2

)
Cin

j/a

(
χa

ξa
, µF b, bM ;

C1

C2

)
e−Sba(b,Q,M), (18)and

Sba(b,Q,M) ≡
∫ C2

2Q2

C2
1
/b2

dµ2

µ2

×
[
A(αS(µ);C1) ln

(
C2

2Q
2

µ2

)

+B(αS(µ);C1, C2)

]
+ SNP

ba (b,Q,M). (19)As in the fa
torization of in
lusive DIS stru
ture fun
-tions (
f. Se
tion II), we �nd it useful to repla
e Bjorken
x by s
aling variables

χh = x

(
1 +

M2

z(1 − z)Q2

) (20)in σFO for the �avor-ex
itation subpro
esses, and
χ

′

h = x

(
1 +

M2 + z2q2T
z(1 − z)Q2

) (21)in σ
W̃

and σASY . The purpose of these s
aling variablesis to enfor
e the 
orre
t threshold behavior of terms within
oming heavy quarks. Eqs. (20) and (21) are derivedin detail in Appendix C.V. MASSIVE RESUMMATION FORPHOTON-GLUON FUSIONWe now analyze 
ontributions to the total resummed
ross se
tion dσTOT /dΦ from the O(α0
S) heavy-�avor ex-
itation subpro
ess γ∗(q) + h(pa) → h(pb) (Fig. 2a) and

O(αS) photon-gluon fusion subpro
ess γ∗(q) +G(pa) →
h(pb) + h̄(ps) (Fig. 2b). Sin
e we work in the S-ACOTs
heme, only the O(αS) fusion subpro
ess retains theheavy quark mass, so that we 
on
entrate on that pro-
ess �rst. The expression for the γ∗h 
ontribution, whi
his the same as in the massless 
ase, is given in Eq. (B1).In the following we outline the main results, while detailsare relegated to Appendi
es.A. Mass-Generalized Kinemati
al VariablesOur approa
h will be to �rst generalize the kinemati
alvariables from the massless resummation formalism to

�re
y
le� as mu
h of the results from Refs. [31, 32, 51℄ aspossible.Throughout the derivation, the mass of the in
identhadron will be negle
ted: p2
A = 0. We will use the stan-dard DIS variables x, Q2, and z, de�ned by

x ≡ Q2

2pA · q ; Q2 ≡ −q2; z ≡ pA · pH

pA · q . (22)Sin
e we will be interested in the transverse momentumdistributions (or equivalently, the angular distributions),we next de�ne the transverse momentum in a frame-invariant manner. The four-ve
tor qµ
t of the transversemomentum must be orthogonal to both of the hadrons,so that we have the 
onditions qt ·pA = 0 and qt ·pH = 0.In the massless 
ase, qµ

t is simply de�ned by subtra
tingo� the proje
tions of the photon's momentum qµ onto pAand pH . This is slightly modi�ed in the massive 
ase tobe
ome
qµ
t = qµ −

(
pH · q
pA · pH

−M2
H

pA · q
(pA · pH)2

)
pµ

A

− pA · q
pA · pH

pµ
H . (23)HereMH denotes the mass of the heavy hadron. We �ndfor q2T ≡ −qµ

t qtµ :

q2T = Q2 + 2
pH · q
z

− M2
H

z2
. (24)The kinemati
al variables at the parton level 
an be in-trodu
ed in an analogous manner. Let ξa denote the fra
-tion of the large '−' 
omponent of the in
oming hadron'smomentum pA 
arried by the initial-state parton a (i.e.,

ξa ≡ p−a /p
−
A);3 and ξb denote the fra
tion of the large'+' 
omponent of the �nal-state parton's momentum pb
arried by the outgoing hadron H (i.e., ξb ≡ p+

H/p
+
b ).We also assume that ξb relates the transverse momentaof b and H , as (pT )H = ξb(pT )b. Sin
e all in
oming par-tons are massless in the S-ACOT fa
torization s
heme,we �nd the following relations between the hadron-levelvariables x, z, qT and their parton-level analogs x̂, ẑ, q̂T :

x̂ ≡ Q2

2 (pa · q) =
x

ξa
; (25)3 We remind the reader that the analysis is performed in the γ∗A
.m. frame, where the in
ident hadron moves in the −z dire
tion.
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ẑ ≡ (pa · pb)

(pa · q) =
z

ξb
; (26)

q̂T = qT , (27)where in the derivation of Eq. (27) we used the �rst equal-ity in Eq. (40).If we introdu
e a massive extension of q̂2T 
alled q̃2T andde�ned by
q̃2T ≡ q̂2T +

M2

ẑ2
, (28)then the form of q̃2T in terms of the Lorentz invariants isidenti
al to the massless 
ase:

q̃2T = Q2 + 2
ph · q
ẑ

. (29)We also generalize the usual Mandelstam variables
{ŝ, t̂, û} to what we label the �mass-dependent� Mandel-stam variables {ŝ, t̂1, û1}:

ŝ = (q + pa)2, (30)
t̂1 ≡ t̂−M2 = (q − ph)2 −M2, (31)
û1 ≡ û−M2 = (pa − ph)2 −M2. (32)By using the variables q̃2T , ŝ, t̂1, and û1 instead of their
ounterparts q2T , ŝ, t̂, and û, we shall be able to 
astmany of the massive relations in the form of the mass-less ones. For example, the expressions for the �mass-dependent� Mandelstam variables {ŝ, t̂1, û1} in terms ofthe DIS variables 
an be written as
ŝ = Q2 (1 − x̂)

x̂
; (33)

t̂1 = −Q2 ẑ

x̂
; (34)

û1 = Q2(ẑ − 1) − q̃2T ẑ = −Q2 (1 − ẑ)

x̂
. (35)Note how we made use of the generalized transverse mo-mentum variable q̃2T . These relationships have the sameform as their massless 
ounterparts. As a result, thedenominators of the mass-dependent propagators, whi
hare formed from the invariants ŝ, t̂1, and û1, retain thesame form as the denominators of the massless propaga-tors, whi
h are formed from the invariants ŝ, t̂, and û.B. Relations between {EH , cos θH}in the γ∗A
.m. frame and {z, q2

T }It is useful to 
onvert between the �nal-state energy
EH , polar angle θH and the Lorentz invariants {z, q2T}.Given the γ∗A 
.m. energyW 2 ≡ (q+pA)2 = Q2(1−x)/xand p ≡ |pH | =

√
E2

H −M2
H , one easily �nds the follow-ing 
onstraints on EH , p, and cos θH :

MH ≤ EH ≤ W
2

(
1 +

M2
H

W 2

)
, (36)

0 ≤ p ≤ W
2

(
1 − M2

H

W 2

)
, (37)
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Figure 4: Plots of qT /W vs. θH at various values of λ ≡
MH/EH = 0.999 (lower 
urve), λ = 0.5 (middle 
urve), and
λ = 0.001 (upper 
urve).and

− 1 ≤ cos θH ≤ 1. (38)Given EH and cos θH , we 
an determine z and q2T as
z =

1

W
(EH + p cos θH) ; (39)

q2T =

(
p2

T

)
H

z2
= W 2 p

2
(
1 − cos2 θH

)

(EH + p cos θH)
2 . (40)From Eqs. (36-38) the bounds on z 
an be found as

M2
H

W 2
≤ z ≤ 1. (41)Note that the �rst equality in Eq. (40) identi�es qT asthe the transverse momentum of H res
aled by the �nal-state fragmentation variable z. Hen
e qT 
an be alsointerpreted as the leading-order transverse momentumof the fragmenting parton. Similarly, q̃T = MT /ẑ 
anbe interpreted as the res
aled transverse massMT of theheavy quark. It also follows from Eqs. (39,40) that thetwo-variable distribution with respe
t to the variables zand qT 
oin
ides with the two-variable distribution withrespe
t to EH and θH :

dσ

dxdQ2dzdqT
=

dσ

dxdQ2dEHdθH
. (42)As a result, the distributions in the theoreti
al variables

z and qT are dire
tly related to the distributions in EHand θH measured in the experiment.Despite the simpli
ity of the relation (42), z and qTare quite 
ompli
ated fun
tions of EH and cos θH indi-vidually. This feature is di�erent from the massless 
ase,where there exists a one-to-one 
orresponden
e between
qT and cos θH for the �xed γ∗A 
.m. energy W :

cos θH |MH=0 =
W 2 − q2T
W 2 + q2T

. (43)
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ase, inwhi
h one value of qT 
orresponds to two values of cos θH .Indeed, Eq. (40) 
an be expressed as
q2T
W 2

=
(1 − λ2)

(
1 − cos2 θH

)
(
1 +

√
1 − λ2 cos θH

)2 , (44)where, a

ording to Eq. (36), the variable λ ≡ MH/EHvaries in the following range:
2MH

W (1 +M2
H/W

2)
≤ λ ≤ 1. (45)Eq. (44) 
an be solved for cos θH as

cos θH =
1

(q2T +W 2)
√

1 − λ2

×
(
−q2T ±W

√
(1 − λ2) (q2T +W 2) − q2T

)
. (46)When the energy EH is mu
h larger than MH (λ → 0)the solution with the �+� sign in Eq. (46) turns into themassless solution (43). The solution with the �−� signredu
es to cos θH = −1.The physi
al meaning of the relationship between qTand cos θH 
an be understood by 
onsidering plots of

qT /W vs. θH for various values of λ (Fig. 4). Let usidentify the 
urrent fragmentation region as that where
cos θH is 
lose to +1 (θH = 0), and the target fragmenta-tion region as that where cos θH is 
lose to −1 (θH = π).Firstly, qT = 0 if cos θH = 1 or cos θH = −1. Se
ondly,near the threshold (λ→ 1) the ratio qT /W is vanishinglysmall and symmetri
 with respe
t to the repla
ement of
θH by (π− θH). Thirdly, as λ de
reases, the distribution
qT /W vs. θH develops a peak near θH = 180◦. Thispeak is positioned at cos θH = −

√
1 − λ2, and its heightis qT /W =

(
1 − λ2

)1/2
/λ2. For θH ≪ 180◦, the distribu-tion rapidly be
omes insensitive to λ; more so for smaller

θH .In the limit λ → 0, the peak at θH = 180◦ turnsinto a singularity. This singularity resides at the point
z = 0 and 
orresponds to hard di�ra
tive hadroprodu
-tion. The analysis of this region requires di�ra
tive par-ton distribution fun
tions [64, 65, 66, 67, 68℄ and will notbe 
onsidered here. For θH 6= 180◦, one re
overs a one-to-one 
orresponden
e between qT /W and cos θH of themassless 
ase. We see that there is a natural relationshipbetween qT and cos θH , whi
h be
omes espe
ially simplein the massless limit. In the following, we 
on
entrate onthe limit qT → 0 and z 6= 0, whi
h 
orresponds to the
urrent fragmentation region θH → 0.C. Fa
torized 
ross se
tionsNext, we 
onsider the fa
torization of the hadroni

ross se
tion. Given the hadron-level phase spa
e ele-ment dΦ ≡ dxdQ2dzdq2Tdϕ and its parton-level analog

dΦ̂ ≡ dx̂dQ2dẑdq̂2T dϕ̂, all three terms on the r.h.s. ofEq. (16) 
an be written as
dσ

dΦ
=
∑

a,b

∫ 1

z

dξb
ξb

∫ 1

χa

dξa
ξa

× DH/b

(
ξb,

{
µF

mq

})
fa/A

(
ξa,

{
µF

mq

})

× dσ̂

dΦ̂

(
χa

ξa
,
z

ξb
,
qT
Q
,
µF

Q
,
M

Q

)
. (47)Let us �rst 
onsider the �nite-order 
ross se
tion

dσ̂FO/dΦ̂ . The expli
it expression for this 
ross se
-tion at the lepton level 
an be found in Appendix B. Weare interested in extra
ting the leading 
ontribution inthis 
ross se
tion in the limit Q → ∞ with other s
ales�xed. Spe
i�
ally, we 
on
entrate on the behavior of thephase-spa
e δ−fun
tion that multiplies the matrix ele-ment |M|2:
dσ̂FO

dΦ̂
∝ δ

(
ŝ+ t̂+ û+Q2 − 2M2

)
|M|2

= δ
(
ŝ+ t̂1 + û1 +Q2

)
|M|2

= δ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
|M|2 . (48)Here we used the mass-generalized variable q̃2T introdu
edin Eq. (29). Note that in terms of the variables x̂, ẑ, and

q̃2T this expression takes the same form as its masslessversion. In the limit Q→ ∞, and x̂, ẑ, and q̃T �xed, the
δ-fun
tion 
an be transformed using the relationship

lim
ε→0

δ (y1y2 − ε) ≈ δ(y1)

[y2]+
+
δ(y2)

[y1]+

− log(ε)δ(y1)δ(y2). (49)This transformation yields
lim

Q→∞
δ
(
ŝ+ t̂+ û+Q2 − 2M2

)
∝

δ(1 − x̂)

[1 − ẑ]+
+
δ(1 − ẑ)

[1 − x̂]+
(50)

− log

(
q̃2T
Q2

)
δ (1 − x̂) δ(1 − ẑ). (51)This asymptoti
 expression for the δ-fun
tion is exa
tlyof the same form as in the massless 
ase up to the re-pla
ement q̃2T → q2T .Furthermore, in the above limit the matrix element

|M|2 itself 
ontains singularities when Q2 ≫ q̃2T . Inparti
ular, the largest stru
ture fun
tion V̂1 in the γ∗G-fusion subpro
ess (
f. Eq. (B4)) 
ontains 
ontributionsproportional to
1

(M2 − t̂)(M2 − û)
∝ 1

t1u1
∝ 1

q̃2T
, (52)and

M2

t̂21û
2
1

∝ M2

q̃4T
=

ẑ4M2

(ẑ2q2T +M2)
2 . (53)



13When M is not negligible, these 
ontributions are �niteand 
omparable with other terms. However, in the limitwhen both M and qT are mu
h less than Q, the terms ofthe �rst type diverge as 1/q2T . The terms of the se
ondtype vanish at qT 6= 0 and yield a �nite 
ontribution at
qT = 0. These non-vanishing 
ontributions are pre
iselythe ones that are resummed in the W̃ -term; in the totalresummed 
ross se
tion σTOT , they have to be subtra
tedin the form of the asymptoti
 
ross se
tion σASY to avoidthe double-
ounting between σFO and σ

W̃
.To pre
isely identify these terms, we 
al
ulate themfrom their de�nitions, as des
ribed in Appendix A. Sin
ethe O(αS) γ∗G subpro
ess is �nite in the soft limit, it
ontributes only to the fun
tion Cin

h/G(x, µF b, bM) andnot to the Sudakov fa
tor. The O(αS/π) 
oe�
ient inthis fun
tion is
Cin(1)

h/G (x̂, µF b, bM) = TRx(1 − x) (1 + c1(bM))

+P
(1)
h/G(x)

(
c0(bM) − ln

(µF b

b0

)) (54)if µF ≥M , and
Cin(1)

h/G (x̂, µF b, bM) = Cin(1)
h/G (x̂, µF b, bM)

∣∣∣
µF ≥M

+ P
(1)
h/G(x̂) ln

µF

M
(55)if µF < M . Here P (1)

h/G(ξ) is the MS splitting fun
-tion: P (1)
h/G(ξ) = TR

(
1 − 2ξ + 2ξ2

)
, with TR = 1/2. Thefun
tions c0(bM), and c1(bM) denote the parts of themodi�ed Bessel fun
tions K0(bM) and bM K1(bM) thatvanish when b ≪ 1/M . They are de�ned in Eqs. (A18)and (A19), respe
tively.We now have all terms ne
essary to 
al
ulate the
ombination (Cin(0)

h/h ⊗ fh/A)(x) + (Cin(1)
h/G ⊗ fG/A)(x),whi
h serves as the �rst approximation to the fun
tion

P
in

h/A (x, b,M,C1/C2). We �nd that this 
ombinationpossesses two remarkable properties: it smoothly van-ishes at µ2
F = b20/b

2 ≪ M2 and is di�erentiable withrespe
t to ln(µF /M) at the point µF = M . As a result,the form fa
tor W̃ (b,Q, x, z) for the 
ombined O(α0
S)�avor-ex
itation and O(α1

S) �avor-
reation 
hannels isa smooth fun
tion at all b, whi
h is strongly suppressedat b2 ≫ b20/M
2. The physi
al 
onsequen
e is that, fora su�
iently heavy quark, the b-spa
e integral 
an beperformed over the large-b region without introdu
ing anadditional suppression of the integrand by nonperturba-tive 
ontributions. We use this feature in Se
tion VI,where we 
al
ulate the resummed 
ross se
tion for bot-tom quark produ
tion, whi
h does not depend on thenonperturbative Sudakov fa
tor.Finally, by expanding the form-fa
tor W̃HA in a seriesof αS/π and 
al
ulating the Fourier-Bessel transform in-tegral in Eq. (17), we �nd the following asymptoti
 pie
efor the γ∗G fusion 
hannel:

(
dσ̂(e+G→ e+ h+ h̄)

dΦ̂

)

ASY

=
σ0Fl

4πSeA

αS

π

×A1(ψ, ϕ)δ(1 − ẑ)

×


P

(1)
h/G(x̂)

̂̃q
2

T

+
M2x̂(1 − x̂)

̂̃q
4

T


 . (56)When Q ∼M, dσ̂ASY /dΦ̂, whi
h is a regular fun
tion atall qT , 
an
els well with dσ̂W̃

/dΦ̂. In the limit Q → ∞,
dσ̂ASY /dΦ̂ pre
isely 
an
els the asymptoti
 terms thatappear in the �nite-order 
ross se
tion dσ̂FO/dΦ̂.VI. NUMERICAL RESULTSIn this Se
tion, we apply the resummation formalismto the produ
tion of bottom quarks at HERA. The 
al
u-lation is done for the ele
tron-proton 
.m. energy of 300GeV and bottom quark mass M = 4.5 GeV. For simpli
-ity we assume that the masses of the B-hadrons 
oin
idewith the mass of the bottom quark M . We also negle
tthe mixing of photons with Z0-bosons at large Q.In the following, we dis
uss polar angle distributionsin the γ∗p frame for x = 0.05 and various values of Q.The 
ross se
tion is 
al
ulated in the lowest-order ap-proximation as dis
ussed in Se
tion V.4 The 
al
ulationwas realized using the CTEQ5HQ PDF's [69℄ and Pe-terson fragmentation fun
tions [70℄ with ε = 0.0033 [8℄.The �nite-order 
ross se
tion dσFO/dΦ and asymptoti

ross se
tion dσASY /dΦ were 
al
ulated at the fa
toriza-tion s
ale µF = Q. The s
ale-related 
onstants in the
W̃ -term were 
hosen to be C1 = 2e−γE = b0 and C2 = 1,and the fa
torization s
ale was µF = b0/b. The W̃ -termin
luded the O(α0

S) C-fun
tions Cin(0)
h/h (x̂, µF b, C1/C2),

Cout(0)
h/h (ẑ, µF b, C1/C2) and O(α1

S) initial-state fun
tion
Cin(1)

h/G (x̂, µF b, bM). In addition, it in
luded the pertur-bative Sudakov fa
tor (11), unless stated otherwise. TheSudakov fa
tor was evaluated at order O(αS), whi
h wassu�
ient for this 
al
ulation given the order of otherterms. The fun
tions in the Sudakov fa
tor were eval-uated as
A(µ;C1) = CF

αS(µ)

π
, (57)and

B(µ;C1, C2) = −3CF

2

αS(µ)

π
. (58)A

ording to the dis
ussion in Se
tion V, our 
al
u-lation ignores unknown nonperturbative 
ontributions in4 The generalization of our approa
h to higher orders is straight-forward. The next-order 
al
ulation should in
lude the O(αS)�avor-ex
itation and O(α2

S) �avor-
reation 
hannels, whi
hshould appear together to ensure the smoothness of the formfa
tor W̃ (b, Q,M, x, z) and its suppression at b >
∼

1/M .
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(
) (d)Figure 5: The angular distributions of the bottom hadrons in the γ∗p 
.m. frame at (a) Q = 5 GeV, (b) Q = 15 GeV, (
)
Q = 50 GeV without the Sudakov fa
tor, and (d) Q = 50 GeV with the Sudakov fa
tor. At Q = 50 GeV, an additional 
ut
EH > 0.1(W/2) is made to suppress 
ontributions at z < 0.1, i.e., from the region where the 
onventional fa
torization may beinappli
able. The plots show the �nite-order 
ross se
tion σF O (long-dashed line), the b-spa
e integral σ

W̃
(dot-dashed line),the asymptoti
 pie
e σASY (dotted line), and the full resummed 
ross se
tion σTOT (solid line).the W̃ -term. In the numeri
al 
al
ulation, we also needto de�ne the behavior of the light-quark PDF's at s
ales

µF = b0/b < 1 GeV. Due to the strong suppression ofthe large-b region by the M -dependent terms in the C-fun
tions (
f. the dis
ussion after Eq. (A12)), the exa
tpro
edure for the 
ontinuation of the PDF's to small µFhas a small numeri
al e�e
t. We found it 
onvenient to�freeze� the s
ale µF at a value of about 1 GeV by in-trodu
ing the variable b∗ = b/

√
1 + (b/bmax)

2 [36℄ with
bmax = b0 GeV−1 ≈ 1.123 GeV−1. Other pro
edures[56, 57℄ for 
ontinuation of W̃HA(b,Q, x, z) to large val-ues of b may be used as well. Due to the small sensitivityof the resummed 
ross se
tion to the region b2 ≫ b20/M

2,all these 
ontinuation pro
edures should yield essentiallyidenti
al predi
tions.Fig. 5 demonstrates how various terms in Eq. (16)are balan
ed in an a
tual numeri
al 
al
ulation. Nearthe threshold (Q = 5 GeV, Fig. 5a) the 
ross se
tion
dσTOT /(dxdQ

2dθH) should be well approximated by the

O(αS) �avor-
reation diagram γ∗ +G→ h+ h̄. We �ndthat this is indeed the 
ase, sin
e the W̃ -term, whi
h doesnot 
ontain large logarithms, 
an
els well with its pertur-bative expansion dσASY /dΦ. As a result, the full 
rossse
tion is pra
ti
ally indistinguishable from the �nite-order term.At higher values of Q, we start seeing deviations fromthe �nite-order result. Fig. 5b shows the di�erentialdistribution at Q = 15 GeV, i.e., approximately at
Q2/M2 = 10. At this energy, dσTOT /(dxdQ

2dθH) stillagrees with dσFO/(dxdQ
2dθH) at θH

>∼ 10◦, but is above
dσFO/(dxdQ

2dθH) at θH
<∼ 10◦. The ex
ess is due to thedi�eren
e dσ

W̃
/(dxdQ2dθH)− dσASY /(dxdQ

2dθH), i.e.,due to the higher-order logarithms.Away from the threshold (Q = 50 GeV),
dσTOT /(dxdQ

2dθH) is substantially larger than the�nite-order term at θH
<∼ 10◦, where it is dominatedby dσ

W̃
/(dxdQ2dθH). In this region, dσFO/(dxdQ

2dθH)is 
an
eled well by dσASY /(dxdQ
2dθH). Note, however,
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(b)Figure 6: Comparison of the massive and massless 
ross se
-tions at (a) Q = 15 GeV, and (b) Q = 50 GeV. The plotsshow the massive resummed 
ross se
tion σTOT (thi
k solidline); the massless resummed 
ross se
tion σTOT (thin solidline); the massive �nite-order 
ross se
tion σF O (thi
k dashedline); and the massless �nite-order 
ross se
tion σF O (thindot-dashed line).that 
ontrary to the experien
e from the massless 
ase,
dσFO/(dxdQ

2dθH) and dσASY /(dxdQ
2dθH) are not sin-gular at θH → 0 due to the regularizing e�e
t of theheavy quark mass in the heavy-quark propagator at

θH
<∼ 3◦. Figs. 5
 and 5d also 
ompare the distribu-tions with and without the O(α1

S) perturbative Sudakovfa
tor, respe
tively. Note that at the threshold the �avor-ex
itation terms responsible for S are of a higher orderas 
ompared to the O(α0
S) �avor-ex
itation and O(α1

S)�avor-
reation terms. Correspondingly, near the thresh-old the impa
t of S is expe
ted to be minimal. Thisexpe
tation is supported by the numeri
al 
al
ulation, inwhi
h the di�eren
e between the 
urves with and with-out the O(αS) perturbative Sudakov fa
tor is negligi-ble at Q = 5 GeV, and is less than a few per
ent and
Q = 15 GeV. In 
ontrast, at Q = 50 GeV the distributionwith the O(αS) Sudakov fa
tor is noti
eably lower andbroader than the distribution without it: at some val-ues of θH , the di�eren
e in 
ross se
tions rea
hes 40%.The in�uen
e of the Sudakov fa
tor on the integrated

rate is mild: the in
lusive 
ross se
tion dσ/(dxdQ2) 
al-
ulated without and with the O(αS) Sudakov fa
tor isequal to 330 and 320 fb/GeV2, respe
tively. Due tothe enhan
ement at small θH , these resummed in
lu-sive 
ross se
tions are larger than the �nite-order rate
dσFO/(dxdQ

2) ≈ 260 fb/GeV2 by about 25%.It is interesting to 
ompare our 
al
ulation with themassless approximation for the γ∗G 
ontribution. Fig. 6shows the �nite-order and resummed 
ross se
tions 
al-
ulated in the massive and massless approa
hes. In 
on-trast to the massive σTOT , the massless σTOT must in-
lude the nonperturbative Sudakov fa
tor SNP , whi
h isnot known a priori and is usually found by �tting to thedata. To have some referen
e point, we plot the mass-less σTOT with SNP (b) = b2M2/b20 ≈ 16b2, so that, inanalogy to the massive 
ase, the region of b >∼ b0/M inthe massless W̃ (b,Q, x, z) is suppressed. Sin
e the heavy-quark mass has other e�e
ts on the shape of W̃ (b,Q, x, z)besides the 
uto� in the b-spa
e, we expe
t the shape ofthe massless and massive resummed 
urves be somewhatdi�erent. This feature is indeed supported by Fig. 6b,where at small θH both resummed 
urves are of the sameorder of magnitude, but di�er in detail. Furthermore, theshape of the massless σTOT 
an be varied by adjusting
SNP . At the same time, the massive resummed 
rossse
tion is uniquely determined by our 
al
ulation.At su�
iently large θH , both the massless and mas-sive resummed 
ross se
tions redu
e to their 
orrespond-ing �nite-order 
ounterparts. The massless 
ross se
-tion signi�
antly overestimates the massive result nearthe threshold and at intermediate values of Q. For in-stan
e, at Q = 15 GeV (Fig. 6a) the massless 
ross se
-tion is several times larger than the massive 
ross se
tionin the whole range of θH . In 
ontrast, at Q = 50 GeV(Fig. 6b) the massless σFO agrees well with the massive
σFO at θH

>∼ 20◦ and overestimates the massive σFO at
θH

<∼ 20◦. The massive σTOT is above the massless σFOat 3◦ <∼ θH
<∼ 10◦ and below it at θH

<∼ 3◦.The presen
e of two 
riti
al angles (θH ∼ 3◦ and
∼ 10◦) in σTOT 
an be qualitatively understood fromthe following argument. The rapid rise of σTOT overthe massive σFO begins when the small-qT logarithms
lnm

(
q̃2T /Q

2
) be
ome large � say, when q̃2T is less thanone tenth of Q2. Given that the Peterson fragmentationfun
tion peaks at about z ∼ 0.95, and that Q = 50 GeV,

M = 4.5 GeV, the 
ondition q̃2T ∼ 0.1Q2 
orrespondsto θH ∼ 8◦, whi
h is 
lose to the observed 
riti
al angleof 10◦. Note that in that region q2T ≫ M2/z2. On theother hand, when q2T is of order M2/z2, the growth ofthe logarithms ln
(
q̃2T /Q

2
) is inhibited by the non-zeromass termM2/z2 in q̃2T . The 
ondition q2T ∼M2/z2 
or-responds to θH ∼ 2.5◦, whi
h is approximately where themass-dependent 
ross se
tion turns down.



16VII. CONCLUSION AND OUTLOOKIn this paper, we presented a method to des
ribe po-lar angle distributions in heavy quark produ
tion in deepinelasti
 s
attering. This method is realized in the sim-pli�ed ACOT fa
torization s
heme [17, 25℄ and uses theimpa
t parameter spa
e (b-spa
e) formalism [34, 35, 36℄to resum transverse momentum logarithms in the 
ur-rent fragmentation region. We dis
ussed general fea-tures of this formalism and performed an expli
it 
al-
ulation of the resummed 
ross se
tion for the O(α0
S)�avor-ex
itation and O(α1

S) �avor-
reation subpro
essesin bottom quark produ
tion. A

ording to the numeri-
al results in Se
tion VI, the multiple parton radiatione�e
ts in this pro
ess be
ome important at Q >∼ 15 GeV(or approximately at Q2/M2 >∼ 10). At Q = 50 GeV,the multiple parton radiation in
reases the in
lusive 
rossse
tion by about 25% as 
ompared to the �nite-order�avor-
reation 
ross se
tion.Many aspe
ts of the resummation in the presen
e of theheavy quarks are similar to those in the massless resum-mation. In parti
ular, it is possible to organize the 
al
u-lation in the massive 
ase in a 
lose analogy to the mass-less 
ase by properly rede�ning the Lorentz invariants (inparti
ular, by repla
ing the Lorentz-invariant transversemomentum qT in the logarithms by the res
aled trans-verse mass q̃T =
√
q2T +M2/ẑ2). The total resummed
ross se
tion is presented as a sum of the b-spa
e integral

σ
W̃

and the �nite-order 
ross se
tion σFO, from whi
hwe subtra
t the asymptoti
 pie
e σASY . Constru
tedin this way, the resummed 
ross se
tion redu
es to the�nite-order 
ross se
tion at Q ≈ M and reprodu
es themassless resummed 
ross se
tion at Q≫M .At the same time, there are important di�eren
es be-tween the light- and heavy-hadron 
ases. For instan
e,the light hadron produ
tion is sensitive to the 
oher-ent QCD radiation with a wavelength of order 1/ΛQCD,whi
h is poorly known and has to be modeled by thephenomenologi
al �nonperturbative Sudakov fa
tor�. In
ontrast, in the heavy-hadron 
ase su
h long-distan
e ra-diation is suppressed by the large value ofM . Hen
e, fora su�
iently heavy M , as in bottom quark produ
tion,the resummed 
ross se
tion 
an be 
al
ulated without in-trodu
ing the nonperturbative large-b 
ontributions. Itwill be interesting to test the hypothesis about the ab-sen
e of su
h long-distan
e 
ontributions experimentally.Given the size of the di�erential 
ross se
tions obtainedin Se
tion VI, a

urate tests of this approa
h will be fea-sible on
e the integrated luminosity of the HERA II runapproa
hes 1 fb−1. The same 
al
ulation 
an be donefor 
harm produ
tion. However, in that 
ase the region
b >∼ 1GeV−1 is not as suppressed, and the nonperturba-tive Sudakov fa
tor has to be in
luded.Another important improvement in our 
al
ulation ismore a

urate treatment of threshold e�e
ts in fully dif-ferential 
ross se
tions. The a

ura
y in the thresholdregion is improved by introdu
ing s
aling variables (20)and (21) in �nite-order and resummed di�erential 
ross

se
tions. These s
aling variables generalize the s
alingvariable proposed in Ref. [29℄ for in
lusive stru
ture fun
-tions. They lead to stable theoreti
al predi
tions at allvalues of Q and agreement with the massless result athigh energies.The extension of our 
al
ulation to higher orders is fea-sible in the near future, sin
e many of its ingredients arealready available in the literature [32, 43, 71℄. Further-more, in a forth
oming paper we will study the additionale�e
ts of threshold resummation [72, 73, 74, 75, 76, 77℄in DIS heavy-quark produ
tion, so that both transversemomentum and threshold logarithms are taken into a
-
ount. We 
on
lude that the 
ombined resummation ofthe mass-dependent logarithms ln(M2/Q2) and trans-verse momentum logarithms ln(q2T /Q
2) is an importantingredient of the theoreti
al framework that aims atmat
hing the growing pre
ision of the world heavy-�avordata. A
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e Foundation under grant PHY-0100677.Appendix A: CALCULATION OF THEMASS-DEPENDENT C-FUNCTIONIn this Appendix, we derive the O(αS) part of thefun
tion Cin

h/G(x, µF b, bM). This is the only O(αS) termin the heavy-quark W̃ -term that expli
itly depends onthe heavy-quark mass M . This fun
tion appears in thefa
torized small-b expression for the �b-dependent PDF�
P

in

h/A (x, b, {mq}, C1/C2):
P

in

h/A

(
x, b, {mq},

C1

C2

)
=

∫ 1

x

dξa
ξa

×Cin
h/a

(
x̂, µF b, bM ;

C1

C2

)
fa/A

(
ξa,

{
µF

mq

})
.(A1)



17To perform this 
al
ulation, we 
onsider a more ele-mentary form of Eq. (A1), whi
h represents the leadingregions in Feynman graphs in the limit Q → ∞. Thiselementary form 
an be found in Ref. [35℄, where it wasderived in the 
ase of e+e− hadroprodu
tion. The fun
-tion P
in

j/A (x, b, {mq}, C1/C2) is de
omposed as
P

in

j/A

(
x, b, {mq},

C1

C2

)
=

∣∣∣∣Hj

(
C1

C2b

)∣∣∣∣

×Ũ (b)
1/2

P̂
in
j/A

(
x, b, {mq}, µ,

C1

C2

)
. (A2)Here Hj denotes the �hard vertex�, whi
h 
ontains highlyo�-shell subgraphs. Ũ denotes soft subgraphs atta
hedto Hj through gluon lines. P̂in

j/A(x, b, {mq}, C1/C2)
onsists of subgraphs 
orresponding to the propaga-tion of the in
oming hadroni
 jet. The jet part
P̂in

j/A(x, b, {mq}, C1/C2) is related to the kT -dependentPDF Pin
j/A(x, kT , {mq}, ζA), de�ned as

P
in
j/A(x, kT , {mq}, ζA) =

∑

spin

∑

color

∫
dy−d2yT

(2π)3

×e−ixp+

A
y−+ikT ·yT

×〈pA|ψ̄j(0, y
−,yT )

γ+

2
ψj(0)|pA〉 (A3)in the frame where pµ

A =
{
p+

A, 0,0T

}
, pµ

a ={
xp+

A,M
2/(2xp+

A),kT

}
, and p+

A → ∞. This de�nitionis given in a gauge η · A = 0 with η2 < 0. The kT -dependent PDF depends on the gauge through the pa-rameter ζA ≡ (pA · η)/|η2|.Let P̃in
j/A(x, b, {mq}, ζA) be the b-spa
e transform of

Pin
j/A(x, kT , {mq}, ζA) taken in d dimensions:

P̃
in
j/A(x, b, ζA, {mq}) ≡

∫
dd−2kT e

ikT ·b

×P
in
j/A(x, kT , ζA, {mq}). (A4)Note that our de�nition P̃

in
j/A(x, b, ζA, {mq}) di�ersfrom the de�nition in Ref. [45℄ by a fa
tor (2π)2−d.The jet part P̂in

a/A(x, b, {mq}, C1/C2) is related to
P̃in

j/A(x, b, {mq}, ζA) in the limit ζA → ∞:
P̂

in
j/A

(
x, b, {mq},

C1

C2

)
= lim

ζA→∞

{
eS

′(b,ζA;C1/C2)

×P̃
in
j/A(x, b, {mq}, ζA)

}
, (A5)where S′(b, ζA;C1/C2) is a partial Sudakov fa
tor,

S′(b, ζA;C1/C2) ≡
∫ C2ζ

1/2

A

C1/b

dµ̄

µ̄

k0
pA

pa
pA

pa

Figure 7: The Feynman diagram for the O(αS/π) 
ontribu-tions f
(1)

h/G
(x, µF /M) and limζA→∞ P̃

in(1)

h/G
(x, b, M, ζA).

×
[
ln

(
C2ζ

1/2

µ̄

)
γK (αS(µ̄))

−K

(
b;αS

(
C1

b

)
,
C1

b

)
− G

(
µ̄

C2
;αS(µ̄), µ̄

)]
.(A6)The de�nitions of the fun
tions γK , K , and G 
an befound in Ref. [34℄.We now have all ne
essary ingredients for the 
al
ula-tion of the O(αS/π) fun
tion Cin(1)

h/G (x, µF b, bM). Setting
j = h and A = G, and expanding Eqs. (A1,A2,A5), and(A6) in powers of αS/π, we �nd

Cin(1)
h/G (x, µF b, bM) = lim

ζA→∞

{
P̃

in(1)
h/G (x, b,M, ζA)

}

− f
(1)
h/G (x, µF /M) , (A7)where the supers
ript in parentheses denotes the orderof αS/π. In the derivation of this equation, we used thefollowing easily dedu
ible equalities:

H
(0)

h = Ũ (0) = 1, (A8)
(
S ′

)(0)

= P̃
in(0)
h/G = Cin(0)

h/G = f
(0)
h/G = 0, (A9)

Cin(0)
h/h (x) = f

(0)
G/G(x) = δ(x − 1). (A10)The r.h.s. of Eq. (A7) 
an be 
al
ulated withthe help of the de�nitions for f

(1)
h/G (x, µF /M) and

P̃
in(1)
h/G (x, b,M, ζA) in Eqs. (2) and (A3,A4), respe
tively.A further simpli�
ation 
an be a
hieved by observingthat at O(αS/π) the limit η2 → 0 in P̃

in(1)
h/G (x, b,M, ζA)
an be safely taken before the limit ζA → ∞, and, fur-thermore, for η2 = 0 the fun
tion P̃
in(1)
h/G (x, b,M, ζA)does not depend on ζA. Correspondingly, both obje
ts
an be derived in the lightlike gauge from a single 
utdiagram shown in Fig. 7, where the double line 
orre-sponds to the fa
tor γ+δ(p+

A − p+
a − k

′+)/2 in the 
ase of
f

(1)
h/G (x, µF /M) and γ+δ(p+

A − p+
a − k

′+)eik
′

T ·b/2 in the
ase of limζA→∞ P̃
in(1)
h/G (x, b,M, ζA).The di�eren
e between limζA→∞ P̃

in(1)
h/G (x, b,M, ζA) ≡

P̃
in(1)
h/G (x, b,M) and f

(1)
h/G (x, µF /M) resides in the ex-



18tra exponential fa
tor eik
′

T ·b in P̃
in(1)
h/G (x, b,M). Re-markably, this fa
tor strongly a�e
ts the nature of

P̃
in(1)
h/G (x, b,M). The loop integral over k

′

T in
f

(1)
h/G (x, µF /M) 
ontains a UV singularity, whi
h is regu-larized by an appropriate 
ounterterm. In the ACOTs
heme, the UV singularity is regularized in the MSs
heme if µF ≥ M , and by zero-momentum subtra
-tion if µF < M . The result for the heavy-quark PDF
f

(1)
h/G (x, µF /M) is
f

(1)
h/G

(
x,
µF

M

)
=

{
P

(1)
h/G(x) ln (µF /M) , µF ≥M ;

0, µF < M. (A11)As expe
ted, f (1)
h/G (x, µF /M) exhibits the threshold be-havior at µF = M .In 
ontrast, the UV limit in the loop integral of

P̃
in(1)
h/G (x, b,M) is regularized by the os
illating expo-nent eik

′

T ·b. Sin
e no UV singularity is present in
P̃

in(1)
h/G (x, b,M), it does not depend on µF and, there-fore, does not 
hange at the threshold. It is given by

P̃
in(1)
h/G (x, b,M) = P

(1)
h/G(x)K0(bM)

+ TRx(1 − x)bMK1(bM). (A12)Here K0(bM) and K1(bM) are the modi�ed Bessel fun
-tions [78℄, whi
h satisfy the following useful properties:
lim

bM→∞
K0(bM) = lim

bM→∞
bMK1(bM) = 0; (A13)

K0(bM) → − ln (bM/b0) as bM → 0; (A14)
bM K1(bM) → 1 as bM → 0. (A15)The �infrared-safe� part Cin(1)

h/G (x, µF b, bM) of
P̃

in(1)
h/G (x, b,M) is obtained by subtra
ting

f
(1)
h/G (x, µF /M) as in Eq. (A7):

Cin(1)
h/G (x, µF b, bM)

∣∣∣
µF ≥M

= TRx(1 − x)

× (1 + c1(bM))

+P
(1)
h/G(x)

(
c0(bM) − ln

(µF b

b0

))
; (A16)

Cin(1)
h/G (x, µF b, bM)

∣∣∣
µF <M

= P̃
in(1)
h/G (x, b,M)

= Cin(1)
h/G (x, µF b, bM)

∣∣∣
µF ≥M

+P
(1)
h/G(x) ln

µF

M
. (A17)In these equations, c0(bM) and c1(bM) are the parts of

K0(bM) and bM K1(bM) that vanish at bM → 0 (
f.Eqs. ( A13-A15)):
c0(bM) ≡ K0(bM) + ln

bM

b0
; (A18)

c1(bM) ≡ bMK1(bM) − 1. (A19)

If µF is 
hosen to be of order b0/b, no large logarithmsappear in Cin(1)
h/G (x, µF b, bM) at b → 0. At large Q, thesmall-b region dominates the integration in Eq. (17), sothat Cin

h/G(x̂, µF b, bM) e�e
tively redu
es to its masslessexpression [31, 32℄:
Cin(1)

h/G (x, µF b, bM)
∣∣∣
b→0

= TRx(1 − x)

−P (1)
h/G(x) ln

(µF b

b0

)
. (A20)The above manipulations 
an be interpreted in thefollowing way. At small b (b = b0/µF ≤ b0/M), wesubtra
t from P̃

in(1)
h/G (x, b,M) its infrared-divergent part

P
(1)
h/G(x) ln(µF /M), whi
h is then in
luded and resummedin the heavy-quark PDF fh/G(x, µF /M). The 
onvolu-tion of the resulting C-fun
tion with the PDF remainsequal to P̃

in(1)
h/G (x, b,M) up to higher-order 
orre
tions:

∑

a=h,G

Cin
h/a ⊗ fa/G = P

in(1)

h/G (x, µF b, bM) + O(α2
S).(A21)At large b (b > b0/M), the heavy-quark PDF fh/G isidenti
ally equal to zero. To preserve the relationship(A21) below the threshold, one should in
lude the abovelogarithmi
 term in the fun
tion Cin(1)

h/G (x, µF b, bM), asshown in Eq. (A17). The addition of an extra term
P

(1)
h/G(x) ln (µF /M) to Cin(1)

h/G (x, µF b, bM) at µF < M en-for
es the smoothness of the form-fa
tor W̃ (b,Q, x, z) inthe threshold region, whi
h, in its turn, is needed to avoidunphysi
al os
illations of the 
ross se
tion dσ/dq2T .Appendix B: THE FINITE-ORDER CROSSSECTIONThis Appendix dis
usses the �nite-order 
ross se
tion
dσ̂FO/dΦ̂ that appears in the fa
torized hadroni
 
rossse
tion (47). For the O(α0

S) subpro
ess e + h → e + h,this 
ross se
tion is the same as in the massless 
ase:
(
dσ̂(e+ h→ e+ h)

dΦ̂

)

FO

=
σ0Fl

SeA

A1(ψ, ϕ)

2

×e2jδ(qT )δ(1 − x̂)δ(1 − ẑ), (B1)where, in a

ordan
e with the notations of Ref. [32℄,
σ0 ≡ Q2

4πSeAx2

(e2
2

)
,

Fl ≡ e2

2

1

Q2
. (B2)The 
ontribution of the gluon-photon fusion 
hannel is
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(
dσ̂(e+G→ e+ h+ h̄)

dΦ̂

)

FO

=
σ0Fl

4πSeA

αS

π
e2Qδ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
x̂(1 − x̂)

ẑ2

×TR

4∑

ρ=1

V̂ρ(x̂, Q
2, ẑ, q2T ,M

2)Aρ(ψ, ϕ), (B3)where Aρ(ψ, ϕ) denote orthonormal fun
tions of the lep-toni
 azimuthal angle ϕ and boost parameter ψ given inEq. (5). The stru
ture fun
tions V̂ρ(x̂, Q
2, ẑ, q2T ,M

2) are
al
ulated to be
V̂1 =

1

x̂2q̃2T

(
1 − 2x̂ẑ + 2x̂2ẑ2 − 4

M2x̂2

Q2

)

+
2ẑ

x̂

1

Q2
(5x̂ẑ − x̂− ẑ) +

+ κ1

(
4
q̃2T
Q2

ẑ2 + 2 − 8ẑ + 8ẑ2 − 4
M2

Q2

)
, (B4)

V̂2 = 8
1

Q2
ẑ2 − 4

M2

Q2

1

q̃2T
+ 4κ1 (−1 + ẑ) ẑ, (B5)

V̂3 =
2ẑ

x̂

qT
Qq̃2T

(
−1 + 2

(
1 +

q̃2T
Q2

)
x̂ẑ

)

+ 4κ1ẑ (−1 + 2ẑ)
qT
Q
, (B6)

V̂4 = 4
q2T
Q2q̃2T

ẑ2 + 4
q2T
Q2

ẑ2κ1. (B7)In Eqs. (B4-B7),
κ1 ≡ M2(1 − x̂)

ẑ2x̂q̃4T
. (B8)Appendix C: KINEMATICAL CORRECTIONIn this Appendix, we derive the kinemati
al 
orre
tions(20) and (21) that are introdu
ed in the �avor-ex
itation
ontributions to σFO, as well as in σW̃

and σASY . Letus �rst 
onsider the O(αS) 
ross se
tion for the photon-gluon fusion, whi
h we write as
(
dσ(e+A→ e+H +X)

dΦ

)

γ∗G,FO

=

∫
dξb
ξb

∫
dξa
ξa
DH/h (ξb) fG/A (ξa)

×δ
((

1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
β(Φ). (C1)Here β(Φ̂) in
ludes all terms in the parton-level 
ross se
-tion (dσ̂/dΦ̂)FO ex
ept for the δ−fun
tion (
f. Eq. (B3)):

β(Φ̂) =
σ0Fl

4πSeA

αS

π
e2h
x̂(1 − x̂)

ẑ2

× TR

4∑

ρ=1

V̂ρ(x̂, Q
2, ẑ, q2T ,M

2)Aρ(ψ, ϕ). (C2)The δ-fun
tion in Eq. (C1) 
an be reorganized as
δ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
=

z Q2

√
Ŵ 4 − 4M2

(
q2T + Ŵ 2

)

[
δ
(
ξb − ξ+b

)

+δ
(
ξb − ξ−b

)
]
, (C3)where

ξ±b ≡ z
Ŵ 2 ±

√
Ŵ 4 − 4M2(q2T + Ŵ 2)

2M2
, (C4)and Ŵ 2 ≡ Q2 (1 − x̂) /x̂. We see that the mass-dependent phase spa
e element 
ontains two δ-fun
tions

δ(ξb − ξ+b ) and δ(ξb − ξ−b ), whi
h 
an be used to integrateout the dependen
e on ξb in Eq. (C1).It 
an be further shown that in the massless limit thesolutions ξb = ξ−b and ξb = ξ+b 
orrespond to the heavyquarks produ
ed in the 
urrent and target fragmentationregions, respe
tively. When M → 0, the relationship(C3) simpli�es to
δ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q2T
Q2

)
=

z Q2

Ŵ 2

[
δ
(
ξb − ξ0+b

)
+ δ

(
ξb − ξ0−b

)]
, (C5)where

ξ0+b = z

(
Ŵ 2

M2
− q2T + Ŵ 2

Ŵ 2
+ O(M2)

)
, (C6)

ξ0−b = z

(
q2T + Ŵ 2

Ŵ 2
+ O(M2)

)
. (C7)In this limit, the solution ξ0+b diverges (and, therefore,will not 
ontribute) unless z is identi
ally zero. How-ever, a

ording to Eq. (39) and the last paragraph inSubse
tion B of Se
tion V, at z = 0 the observed�nal-state hadron appears among remnants of the tar-get (θH ≈ 180◦ in the γ∗A 
.m. frame), i.e., away from



20the region of our primary interest (small and intermedi-ate θH). Hen
e, in the limit θH → 0 all dominant loga-rithmi
 
ontributions as well as their all-order sums (the�avor-ex
itation 
ross se
tion and W̃ -term) arise onlyfrom terms proportional to δ(ξb−ξ−b ). The 
ontributions proportional to δ(ξb − ξ+b ) in the 
urrent fragmentationregion are suppressed.The integration over ξb with the help of Eq. (C3) leadsto the following expression for the 
ross se
tion (C1):
(
dσ(e+A→ e+H +X)

dxdQ2dzdq2Tdϕ

)

γ∗G

=

∫ ξmax
a

ξmin
a

dξa
ξa
fG/A(ξa, µF )

Q2

√
Ŵ 4 − 4M2

(
q2T + Ŵ 2

)

×
[
ẑDH/h(ξb, µF )β(Φ̂)

∣∣∣
ξb=ξ+

b

+ ẑDH/h(ξb, µF )β(Φ̂)
∣∣∣
ξb=ξ−

b

]
. (C8)Here the lower and upper integration limits ξmin

a and
ξmax
a are determined by demanding the argument of thesquare root in Eq. (C8) be non-negative and ξb ≤ 1; thatis,

ξmin
a = x


1 +

2M
(
M +

√
M2 + q2T

)

Q2


 ,

ξmax
a = min

[
x

(
1 +

M2 + z2q2T
z(1 − z)Q2

)
, 1

] (C9)for ξb = ξ+b , and
ξmin
a = x

(
1 +

1

z(1 − z)

M2 + z2q2T
Q2

)
,

ξmax
a = 1 (C10)for ξb = ξ−b . We see that, a

ording to the exa
t kinemat-i
s of heavy �avor produ
tion, the heavy quark pairs areprodu
ed only when the light-
one momentum fra
tion

ξa is not less than ξmin
a (where ξmin

a ≥ x) and not morethan ξmax
a (where ξmax

a ≤ 1). The exa
t values of ξmin
aand ξmax

a are di�erent for the bran
hes with ξb = ξ+b and
ξb = ξ−b .Turning now to the �avor-ex
itation 
ontributions γ∗+
h→ h+X , we �nd that in those the integration over ξaa priori 
overs the whole range x ≤ ξa ≤ 1. Indeed, inthose 
ontributions the heavy antiquark in the remnantsof the in
ident hadron is ignored, so that the rea
tion
an go at a lower 
.m. energy Ŵ than it is allowed by theexa
t kinemati
s. Sin
e the PDF's grow rapidly at small
x, the naively 
al
ulated total 
ross se
tion σTOT tends to
ontain large 
ontributions from the unphysi
al region ofsmall x and disagree with the data. To �x this problem,we use Eq. (C10) to derive the following s
aling variablein the �nite-order �avor-ex
itation 
ontributions:

χh = x

(
1 +

1

z(1 − z)

M2

Q2

)
. (C11)This variable takes into a

ount the fa
t that the in
om-ing heavy quark in the �avor-ex
itation pro
ess appears

from the 
ontributions with ξb = ξ−b in the �avor-
reationpro
ess, and that the transverse momentum zqT of thisquark in the �nite-order 
ross se
tion is identi
ally zero.Similarly, we noti
e that the W̃ -term σ
W̃

and its �nite-order expansion σASY 
ontain the �b-dependent PDF's�
P

in

h/A (x, b,M,C1/C2), whi
h 
orrespond to the in
om-ing heavy quarks with a non-zero transverse momentum.A

ording to Eq. (C10), the available phase spa
e inthe longitudinal dire
tion is a de
reasing fun
tion of thetransverse momentum zqT , and it is desirable to imple-ment this phase-spa
e redu
tion to improve the 
an
ella-tion between σ
W̃

and σASY at large qT . In our 
al
ula-tion, this feature is implemented by evaluating σ
W̃

and
σASY at the s
aling variable

χ′
h = x

(
1 +

1

z(1 − z)

M2 + z2q2T
Q2

)
, (C12)whi
h immediately follows from Eq. (C10).Despite the apparent 
omplexity of the s
aling vari-ables (C11) and (C12), they satisfy the following impor-tant properties:1. They are straightforwardly derived from the ex-a
t kinemati
al 
onstraints on the variable ξa inEqs. (C9) and (C10).2. They remove 
ontributions from unphysi
al valuesof x at all values of Q and qT , thus leading to betteragreement with the data.3. In the limit Q2 ≫ M2, the variable χh in σFO re-du
es to x (
f. Eq. (C11)), so that the standardfa
torization for the massless �nite-order 
ross se
-tions is reprodu
ed.4. In the limit Q2 ≫ M2 and Q2 ≫ q2T , the variable

χ
′

h in σ
W̃

and σASY redu
es to x (
f. Eq. (C12)),so that the exa
t resummed 
ross se
tion is repro-du
ed.



21Finally, 
onsider the integration of the 
ross se
tion (C8)over z, q2T , and ϕ to obtain the O(αS) γ∗G 
ontributionto an in
lusive DIS fun
tion F (x,Q2). We �nd that
F (x,Q2)

∣∣
γ∗G,O(αS)

=

∫ 1

ξ′

a

dξa
ξa
C

(1)
H/G

(
x

ξa
,
µF

Q
,
M

Q

)

× fG/A

(
ξa,

{
µF

mq

})
, (C13)where the lower limit of the integral over ξa is given by

ξ
′

a = x

(
1 +

4M2

Q2

) (C14)for both solutions ξb = ξ+b and ξb = ξ−b . This value of

ξ
′

a 
an be easily found from Eqs. (C9) and (C10), giventhat qT ≥ 0, 0 ≤ z ≤ 1, and z(1 − z) ≤ 1/4 in theinterval 0 ≤ z ≤ 1. Sin
e in the γ∗G 
ontribution theintegration over ξa is 
onstrained from below by ξ′

a > x,it makes sense to implement a similar 
onstraint in the�avor-ex
itation 
ontributions by introdu
ing the s
al-ing variable χh = x(1 + 4M2/Q2). This variable is pre-
isely the one that appears in the re
ent version of theACOT s
heme with the optimized treatment of the in-
lusive stru
ture fun
tions in the threshold region [29℄.Our s
aling variables extend the idea of Ref. [29℄ to thesemi-in
lusive and resummed 
ross se
tions.
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