
ar
X

iv
:h

ep
-p

h/
02

10
08

2v
3 

 1
5 

O
ct

 2
00

2
hep-ph/0210082, Cavendish-HEP-02/15, CTEQ-209, MSUHEP-20930Resummation of transverse momentum and mass logarithmsin DIS heavy-quark produtionP. M. Nadolsky1, N. Kidonakis2, F. I. Olness1, C.-P. Yuan3
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3Department of Physis & Astronomy, Mihigan State University, East Lansing, MI 48824, U.S.A.(Dated: 14th Otober 2002)Di�erential distributions for heavy quark prodution depend on the heavy quark mass and othermomentum sales, whih an yield additional large logarithms and inhibit aurate preditions.Logarithms involving the heavy quark mass an be summed in heavy quark parton distributionfuntions in the ACOT fatorization sheme. A seond lass of logarithms involving the heavy-quark transverse momentum an be summed using an extension of Collins-Soper-Sterman (CSS)formalism. We perform a systemati summation of logarithms of both types, thereby obtaining anaurate desription of heavy-quark di�erential distributions at all energies. Our method essentiallyombines the ACOT and CSS approahes. As an example, we present angular distributions forbottom quarks produed in parity-onserving events at large momentum transfers Q at the epollider HERA.PACS numbers: 12.38 Cy, 13.60 -rKeywords: deep inelasti sattering, summation of perturbation theory, heavy �avor produtionI. INTRODUCTIONIn reent years, signi�ant attention was dediated toexploring properties of heavy-�avor hadrons produed inlepton-nuleon deep inelasti sattering (DIS). On theexperimental side, the Hadron-Eletron Ring Aelerator(HERA) at DESY has generated a large amount of dataon the prodution of harmed [1, 2, 3, 4, 5℄ and bottommesons [6, 7, 8, 9, 10℄. At present energies (of order 300GeV in the ep enter-of-mass frame), a substantial harmprodution ross setion is observed in a wide range ofBjorken x and photon virtualities Q2, and harm quarksontribute up to 30% to the DIS struture funtions.On the theory side, Perturbative Quantum Chromo-dynamis (PQCD) provides a natural framework for thedesription of heavy-�avor prodution. Due to the largemasses M of the harm and bottom quarks (M2 ≫
Λ2

QCD), the renormalization sale an be always ho-sen in a region where the e�etive QCD oupling αS issmall. Despite the smallness of αS , perturbative alu-lations in the presene of heavy �avors are not withoutintriaies. In partiular, are in the hoie of a fator-ization sheme is essential for the e�ient separation ofthe short- and long-distane ontributions to the heavy-quark ross setion. This hoie depends on the valueof Q as ompared to the heavy quark mass M . The keyissue here is whether, for a given renormalization and fa-torization sale µF ∼ Q, the heavy quarks of the N -th�avor are treated as partons in the inoming proton, i.e.,whether one alulates the QCD beta-funtion using Native quark �avors and introdues a parton distributionfuntion (PDF) for the N -th �avor. A related, but sepa-rate, issue is whether the mass of the heavy quark an benegleted in the hard ross setion without ruining theauray of the alulation.

Currently, several fatorization shemes are availablethat provide di�erent approahes to the treatment ofthese issues. Among the mass-retaining fatorizationshemes, we would like to single out the �xed �avornumber fatorization sheme (FFN sheme), whih in-ludes the heavy-quark ontributions exlusively in thehard ross setion [11, 12, 13, 14, 15, 16℄; and massivevariable �avor number shemes (VFN shemes), whihintrodue the PDFs for the heavy quarks and hange thenumber of ative �avors by one unit when a heavy quarkthreshold is rossed [17, 18, 19, 20, 21, 22, 23, 24, 25℄.Further details on these shemes an be found later inthe paper. Here we would like to point out that, werethe alulation done to all orders of αS , the FFN andmassive VFN shemes would be exatly equivalent. How-ever, in a �nite-order alulation the perturbative seriesin one sheme may onverge faster than that in the othersheme. In partiular, the FFN sheme presents the mosteonomi way to organize the perturbative alulationnear the heavy quark threshold, i.e., when Q2 ≈ M2.At the same time, it beomes inappropriate at Q2 ≫M2due to powers of large logarithms ln
(
Q2/M2

) in the hardross setion. In the VFN shemes, these logarithmsare summed through all orders in the heavy-quark PDFwith the help of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [26, 27, 28℄; hene the pertur-bative onvergene in the high-energy limit is preserved.In their turn, the VFN shemes may onverge slower at
Q2 ≈M2, mostly beause of the violation of energy on-servation in the heavy-quark PDF's in that region. Re-ently an optimal VFN sheme was proposed that om-pensates for this e�et [29℄.In this paper, we would like to onentrate on the anal-ysis of semi-inlusive di�erential distributions (i.e., dis-tributions depending on additional kinematial variablesbesides x and Q). We will argue that �nite-order alu-
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2lations in any fatorization sheme do not satisfatorilydesribe suh distributions due to additional large loga-rithms besides the logarithms ln(Q2/M2). To obtain sta-ble preditions, all-order summation of these extra loga-rithmi terms is neessary.The extra logarithms are of the form
(αn

S/q
2
T ) lnm(q2T /Q

2), 0 ≤ m ≤ 2n− 1, where qT = pT /zdenotes the transverse momentum pT of the heavyhadron in the γ∗p enter-of-mass (.m.) referene frameresaled by the variable z ≡ (pA · pH)/(pA · q). Here
pµ

A, q
µ, and pµ

H are the momenta of the initial-stateproton, virtual photon, and heavy hadron, respetively.Our de�nitions for the γ∗p .m. frame and hadronmomenta are illustrated by Fig. 1. The resummation ofthese logarithms is needed when the �nal-state hadronesapes in the urrent fragmentation region (i.e., losethe diretion of the virtual photon in the γ∗p .m.frame, where the rate is the largest). In the urrentfragmentation region, the ratio q2T /Q2 is small; therefore,the terms lnm(q2T /Q
2) ompensate for the smallnessof αS at eah order of the perturbative expansion. Ifhadroni masses are negleted, suh logarithms an besummed through all orders in the impat parameterspae resummation formalism [30, 31, 32, 33℄, whihwas originally introdued to desribe angular orrela-tions in e+e− hadroprodution [34, 35℄ and transversemomentum distributions in the Drell-Yan proess [36℄.1Here the impat parameter b is onjugate to qT . Theresults of Refs. [30, 31, 32, 33℄ are immediately validfor semi-inlusive DIS (SIDIS) prodution of lighthadrons (π,K, ...) at Q of a few GeV or higher, and forsemi-inlusive heavy quark prodution at Q2 ≫ M2.To desribe heavy-�avor prodution at Q2 ∼ M2, themassless qT -resummation formalism must be extendedto inlude the dependene on the heavy-quark massM .In this paper, we perform suh extension in the Aivazis-Collins-Olness-Tung (ACOT) massive VFN sheme [18℄with the optimized treatment of the threshold region [29℄.We adopt a �bottom-up� approah to the development ofsuh mass-dependent resummation.2 We start by sepa-rately reviewing the massive VFN sheme in the inlu-sive DIS and qT resummation in the massless SIDIS. Wethen disuss a ombination of these two frameworks ina joint resummation of the logarithms ln(Q2/M2) and

ln(q2T /Q
2). As a result, we obtain a uni�ed desrip-tion of fully di�erential heavy-hadron distributions at all

Q2 above the heavy quark threshold. It is well knownthat the �nite-order alulation does not satisfatorily1 The similarity between the multiple parton radiation in semi-inlusive DIS and the other two proesses was known for a longtime; see, for instane, an early paper [37℄.2 An alternative �top-down� approah will require the analysis ofleading regions in the high-energy limit and derivation of the evo-lution equations that retain terms with positive powers of M/Q.Suh analysis ould involve methods similar to those disussedin Ref. [38℄.

Target fragmentation Current fragmentation
z

pAe
�H pq pH H

�

Figure 1: The parity-onserving semi-inlusive prodution
e+p → e+H +X of heavy hadrons in the γ∗p .m. refereneframe. The resummation e�ets onsidered here are impor-tant in the urrent fragmentation region θH → 0, i.e., whenthe �nal-state heavy quark h losely follows the diretion ofits esape in the O(α0

S) �avor-exitation proess γ∗ + h → h.treat the urrent fragmentation region for any hoieof the fatorization sheme. In ontrast, the proposedmassive extension of the qT -resummation aurately de-sribes the urrent fragmentation region in the wholerange Q2 > M2.The present study is interesting for two phenomeno-logial reasons. Firstly, the quality of the di�erentialdata will improve greatly within the next few years. By2006, the upgraded ollider HERA will aumulate an in-tegrated luminosity of 1 fb−1 [39℄, i.e., more than eighttimes the �nal integrated luminosity from its previousruns. Studies of the heavy quarks in DIS are also en-visioned at the proposed high-luminosity Eletron IonCollider [40℄ and THERA [41℄. Eventually these exper-iments will present detailed distributions both at small(Q2 ≈M2) and large (Q2 ≫M2) momentum transfers.Seondly, the knowledge of the di�erential distribu-tions is essential for the aurate reonstrution of in-lusive observables, suh as the harm omponent of thestruture funtion F2(x,Q
2). At HERA, 40-60% of theharm prodution events our outside the detetor a-eptane region, notably at small transverse momenta ofthe heavy quarks. To determine F c

2 (x,Q2), those eventsshould be reonstruted with the help of some theoretialmodel, whih so far was theO(α2
S) alulation in the FFNsheme [15, 16, 42, 43, 44℄ inorporated in a massless par-ton showering generator. As mentioned above, for inlu-sive observables the FFN sheme works the best not farfrom the threshold and beomes unstable at Q2 ≫ M2,where the VFN sheme is more appropriate. In more de-tail, the VFN sheme desribes F c
2 (x,Q2) better than theFFN sheme when Q2 exeeds 20 (GeV/c)2, i.e., roughlywhen Q2/M2 > 10 [20℄. The transition to the VFNsheme ours faster at smaller x, where the .m. energy



3of the γ∗p ollision is muh larger than M . For bottomquark prodution, the estimate Q2/M2 >∼ 10 orrespondsto Q2 >∼ 200 (GeV/c)2. The VFN alulation an also beextended down to the mass threshold to uniformly de-sribe the whole range Q2 > M2. Sine the proposed re-summation alulation is formulated in the VFN sheme,it provides a better alternative to the �nite-order alu-lation in the FFN sheme due to its orret treatment ofdi�erential distributions at all values of Q2.As an example, we apply the developed method to theleading-order �avor-reation and �avor-exitation pro-esses in the prodution of bottom mesons at HERA. We�nd that the resummed ross setion for this proess anbe desribed purely by means of perturbation theory dueto the large mass of the bottom quark. Our preditionsan be tested in the next few years one the integratedluminosity at HERA approahes 1 fb−1. Essentially thesame method an be applied to harm prodution. Inthat ase, however, the resummed ross setion is sensi-tive to the nonperturbative large-b ontributions due tothe smaller mass of the harm quarks, and the analysisis more involved. Sine the goal of this paper is to dis-uss the basi priniples of the massive qT -resummation,we leave the study of the harm prodution and otherphenomenologial aspets for future publiations.The paper has the following struture. Setion II re-views the appliation of the ACOT fatorization sheme[18℄ and its simpli�ed version [17, 25℄ to the desription ofthe inlusive DIS struture funtions. Setion III reapsbasi features of the b-spae resummation formalism inmassless SIDIS. Setion IV disusses modi�ations in theresummed ross setion to inorporate the dependene onthe heavy-quark massM . In Setion V, we present a de-tailed alulation of the mass-dependent resummed rosssetions in the leading-order �avor-reation and �avor-exitation proesses. Setion VI presents numerial re-sults for polar angle distributions in the prodution ofbottom quarks at HERA. Appendix A ontains details onthe alulation of the O(αS) mass-dependent part of theresummed ross setion. In Appendix B, we present ex-pliit expressions for the O(αS) �nite-order ontributionsfrom the photon-gluon hannel. Finally, Appendix C dis-usses in detail the optimization of the ACOT shemewhen it is applied to the di�erential distributions in theviinity of the threshold region.II. OVERVIEW OF THE FACTORIZATIONSCHEMEA. Fatorization in the presene of heavy quarksIn this Setion, we disuss the appliation ofthe Aivazis-Collins-Olness-Tung (ACOT) fatorizationsheme [18℄ to inlusive DIS observables, for whih thissheme yields aurate preditions both at asymptoti-ally high energies and near the heavy-quark threshold.In the inlusive DIS, the fatorization in the presene

of heavy �avors is established by a fatorization theo-rem [17℄, whih we review under a simplifying assumptionthat only one heavy �avor h with the massM is present.Let A denote the inident hadron. Aording to the theo-rem, the ontribution Fh/A(x,Q2) of h to a DIS struturefuntion F (x,Q2) (where F (x,Q2) is one of the funtions
F1(x,Q

2) or F2(x,Q
2) in parity-onserving DIS) an bewritten as

Fh/A(x,Q2) =
∑

a

∫ 1

χa

dξ

ξ
Ch/a

(
χa

ξ
,
µF

Q
,
M

Q

)

×fa/A

(
ξ,

{
µF

mq

})
+ O

(
ΛQCD

Q

)
. (1)Here the summation over the internal index a inludesboth light partons (gluons G and light quarks), as wellas the heavy quark h. This representation is aurate upto the non-fatorizable terms that do not depend on Mand an be ignored when Q≫ ΛQCD. The non-vanishingterm on the r.h.s. is written as a onvolution integralof parton distribution funtions fa/A (ξ, {µF /mq}) andoe�ient funtions Ch/a(χa/ξ, µF /Q, M/Q). The on-volution is realized over the hadron light-one momen-tum fration ξ arried by the parton a. The oe�ientfuntion depends on the �avor-dependent �saling vari-able� χa disussed below. The parton distributions andoe�ient funtions are separated by an arbitrary fa-torization sale µF suh that fa/A depends only on µFand quark masses {mq} ≡ mu,md, ...,M ; and Ch/a de-pends only on µF , M, and Q. As a result of this sepa-ration, all logarithmi terms αn

S lnk (µF /mq) with light-quark masses are inluded in the PDF's, where they aresummed through all orders using the DGLAP equation.Note that in the massless approximation suh logarithmsappear in the guise of ollinear poles 1/ǫk in the pro-edure of dimensional regularization. The logarithms
lnk(µF /M) with the heavy-quark mass M are inludedeither in Ch/a or fa/A depending on the fatorizationsheme in use.In the referene frame where the momentum of theinident hadron A in the light-one oordinates is

pµ
A =

{
p+

A,
m2

A

2p+
A

,0T

}
,(where p± ≡

(
p0 ± p3

)
/
√

2), the quark PDF an be de-�ned in terms of the quark �eld operators ψq(x) as [45℄
fq/A

(
ξ,

{
µF

mq

})
=
∑

spin

∑

color

∫
dy−

2π
e−iξp+

A
y−

×〈pA|ψ̄q(0, y
−,0T )

×P exp

{
−ig

∫ y−

0

dz−A
+(0, z−,0T )

}

×γ
+

2
ψq(0)|pA〉. (2)Here P exp {...} is the path-ordered exponential of thegluon �eld Aν(x) in the gauge η · A = 0. The r.h.s.



4is averaged over the spin and olor of A and summedover the spin and olor of q. A similar de�nition existsfor the gluon PDF. The dependene of fa/A(ξ, {µF /mq})on µF is indued in the proess of renormalization ofultraviolet (UV) singularities that appear in the bilo-al operator on the r.h.s. of Eq. (2). In general, thePDF is a nonperturbative objet; however, it an bealulated in PQCD when µF ≫ ΛQCD, and the ini-dent hadron A is replaed by a parton. This featureopens the door for the alulation of Fh/A(x,Q2) for anyhadron A through the onventional sequene of alu-lating Ch/a(χa/ξ, µF /Q,M/Q) in parton-level DIS andonvolving it with the phenomenologial parameteriza-tion of the nonperturbative PDF fa/A(ξ, {µF /mq}). Inthe inlusive DIS, it is onvenient to hoose µF ∼ Q toavoid the appearane of the large logarithm ln(µF /Q) in
Ch/a(χa/ξ, µF /Q,M/Q).The fatorized representation (1) is valid in all fa-torization shemes. The spei� fatorization sheme isdetermined by (a) the proedure for the renormalizationof the UV singularities; and (b) the presription for keep-ing or disarding terms with positive powers of M/Q inthe oe�ient funtion Ch/a. The hoie (a) determinesif the logarithms lnk(µF /M) are resummed in the heavy-�avor PDF or not. With respet to eah of two issues, thehoie an be done independently. For instane, the MSfatorization sheme uses the dimensional regularizationto handle the UV singularities, but does not uniquely de-termine the hoie (b). Hene, it is not neessary in thissheme to always neglet M in the oe�ient funtionand expose the heavy-quark mass singularities as polesin the dimensional regularization.The ACOT sheme belongs to the lass of the vari-able �avor number (VFN) fatorization shemes [46℄ thathange the renormalization presription when µF rossesa threshold value µthr. It is onvenient to hoose µthrfor the �avor h to be equal to M , sine the logarithms
lnk (µF /M) vanish at that point. If µF < M , all graphswith internal heavy-quark lines are renormalized by zero-momentum subtration. If µF > M , these graphs arerenormalized in the MS sheme. The masses of the lightquarks are negleted everywhere, and graphs with onlylight parton lines are always renormalized in the MSsheme.The physial piture behind the ACOT presription issimple: the heavy quark is exluded as a onstituent ofthe hadron for su�iently low energy (an N − 1 �avorsubsheme), but the heavy quark is inluded as a on-stituent for su�iently high energies (an N �avor sub-sheme). The renormalization by zero-momentum sub-tration below the threshold leads to the expliit deou-pling of the heavy-quark ontributions from light partonlines. As one onsequene of the deoupling, all pertur-bative omponents of the heavy-quark PDF vanish at
µF < M , so that a nonzero heavy-quark PDF may ap-pear only through nonperturbative hannels, suh as the�intrinsi heavy quark mehanism� [47℄. Sine the sizeof suh nonperturbative ontributions remains unertain,

they are not onsidered in this study. At µF > M , anon-zero heavy-quark PDF fh/A is introdued, whih isevolved together with the rest of the PDFs with the helpof the mass-independent MS splitting kernels. The ini-tial ondition for fh/A(ξ, µF ) is obtained by mathing thefatorization subshemes at µF = M . At order αS , thisondition is trivial:
fh/A(ξ, µF = M) = 0. (3)At higher orders, the initial value of fh/A(ξ, µF ) is givenby a superposition of light-�avor PDF's [20℄. A simpleillustration of these issues is given in Appendix A.The ACOT sheme possesses another important prop-erty: the oe�ient funtion Ch/a in this sheme has a�nite limit as Q → ∞, whih oinides with the expres-sion for the oe�ient funtion obtained in the massless

MS sheme with N ative �avors. This happens be-ause the mass-dependent terms in Ch/a ontain onlypositive powers of M/Q, while the quasi-ollinear log-arithms ln(µF /M) are resummed in fh/A(ξ, µF ). As aonsequene of the introdution of fh/A(ξ, µF ), the oe�-ient funtion Ch/a inludes subproesses of three lasses:
• �avor exitation, where the parton a is a heavyquark;
• gluon �avor reation, where a is a gluon;
• and light-quark �avor reation, where a is a lightquark.In ontrast, in the FFN sheme [11, 12, 13, 14, 15, 16℄only the �avor-reation proesses are present. Thelowest-order diagrams for eah lass are shown in Fig. 2.The subsequent parts of the paper onsider the pro-esses shown in Figs. 2a and 2b. Note that we ount theorder of diagrams aording to the expliit power of αSin the oe�ient funtion, i.e., O(α0

S) in Fig. 2a, O(α1
S)in Fig. 2b, and O(α2

S) in Fig. 2. This ounting doesnot apply to the whole struture funtion Fh/A(x,Q2) inEq. (1) when the heavy-quark PDF is itself suppressed by
αS/π near the mass threshold [48, 49, 50℄. In that region,an O(αn

S) �avor-exitation ontribution has roughly thesame order of magnitude as the O(αn+1
S ) �avor-reationontribution. We return to this issue in the disussionof numerial results in Setion VI, where we interpretthe ombination of the O(α0

S) �avor-exitation ontri-bution (Fig. 2a) and O(α1
S) �avor-reation ontribution(Fig. 2b) as a �rst approximation at Q ≈M .B. Simpli�ed ACOT FormalismOf several available versions of the ACOT sheme,our alulation utilizes its modi�ation advoated byCollins [17℄, whih we identify as the Simpli�ed ACOT(S-ACOT) formalism [25℄. It has the advantage of beingeasy to state and of allowing relatively simple alula-tions. This simpliity ould be ruial for implementing



5
(a) (b) (c)Figure 2: Basi subproesses in the ACOT sheme: (a) �avorexitation γ∗ + h → h at O(α0

S); (b) gluon �avor reation(photon-gluon fusion) γ∗ + G → h + h̄ at O(α1
S); () light-quark �avor reation γ∗ + q → (γ∗ + G) + q → (h + h̄) + qat O(α2

S). The thik and thin solid lines orrespond to theheavy quark h and light quarks q = u, d, s, respetively.the massive VFN presription at the next-to-leading or-der in the global analysis of parton distributions.In brief, this presription is stated as follows.Simpli�ed ACOT (S-ACOT) presription:Set M to zero in the alulation of the oef-�ient funtions Ch/a for the inoming heavyquarks: that is,
Ch/h

(
χh

ξ
,
µF

Q
,
M

Q

)
→ Ch/h

(
χh

ξ
,
µF

Q
, 0

)
.It is important to note that this presription is not anapproximation; it orretly aounts for the full mass de-pendene [17℄. It also tremendously redues the om-plexity of �avor-exitation struture funtions, as theyare given by the light-quark result. In the spei� aseonsidered here, the heavy quark mass in the S-ACOTsheme should be retained only in the γ∗ + G → h + h̄subproess (Fig. 2b). Another important onsequenewill be disussed in Setion IV, where we show that theS-ACOT sheme leads to a simpler generalization of the

qT -resummation to the mass-dependent ase.C. The saling variableFinally, we address the issue of the most appropriatevariables χa (a = G, u, d, s, ...) in the onvolution inte-gral (1). In a massless alulation, χa are just equalto Bjorken x, sine all momentum frations ξ between
x and unity are allowed by energy onservation. Thissimple relation does not hold in the massive ase. Forinstane, in the harged-urrent heavy quark prodution
W± + q → h, where h is present in the �nal, but notthe initial, state, a simple kinematial argument leadsto the onlusion that the longitudinal variable in the�avor-exitation proesses should be resaled by a mass-dependent fator, as χh = x

(
1 +M2/Q2

) [49℄.In the �avor-exitation subproesses of the neutral-urrent heavy quark prodution (e.g., γ∗ + h→ h), typi-ally no resaling orretion was made. The presene of aheavy quark in both the initial and �nal states of the hard

sattering suggested that no kinematial shift was nees-sary, i.e., χh = x. This assumption has been reentlyquestioned by a new analysis [29℄. Spei�ally, Tung etal. note that the heavy quarks in the hadron ome pre-dominantly from gluons splitting into quark-antiquarkpairs. Hene the heavy quark h initiating the hard pro-ess must be aompanied by the unobserved h̄ in thebeam remnant. When both h and h̄ are present, thehadron's light-one momentum fration arried by the in-oming parton annot be smaller than x (1 + 4M2/Q2
),whih is larger than the minimal momentum fration

ξmin = x allowed by the single-partile inlusive kine-matis. The fator of 4M2 arises from the threshold on-dition for h and h̄. This e�et an be aounted for byevaluating the �avor-exitation ross setions at the sal-ing variable χh = x
(
1 + 4M2/Q2

).In brief, the rule proposed in Ref. [29℄ is to use χa =
x
(
1 + 4M2/Q2

) in �avor-exitation proesses (Fig. 2a)and χa = x in �avor-reation proesses (Figs. 2b and2) when alulating inlusive ross setions. However,to orretly desribe the di�erential distributions of the�nal-state hadron, we have to generalize the above rulefor semi-inlusive observables. This generalization is dis-ussed in Appendix C, where the proper saling variablefor fully di�erential �nite-order ross setions is found tobe χh = x
(
1 +M2/

(
z(1 − z)Q2

)) (f. Eq. (C11)).III. MASSLESS TRANSVERSE MOMENTUMRESUMMATIONWe now turn to the di�erential distributions of theheavy-�avor ross setions. Spei�ally, we onsider theprodution of a heavy-quark hadron H via the proess
e(ℓ) + A(pA) → H(pH) + e(ℓ′) + X. This reation is il-lustrated in Fig. 1 for the spei� ase when A is a pro-ton. In muh of the disussion, we will �nd it onvenientto amputate the external lepton legs and work with thephoton-hadron proess γ∗(q) + A(pA) → H(pH) +X inthe photon-hadron .m. frame. Given the onventionalDIS variables Q2 = −q2 and x = Q2/(2pA · q), as wellas the Lorentz invariant SeA ≡ (ℓ+ pA)2, we deomposethe eletron-level ross setion into a sum over the fun-tions Aρ(ψ, ϕ) of the lepton azimuthal angle ϕ and boostparameter ψ ≡ cosh−1

(
2xSeAQ

−2 − 1
) [32, 51℄:

dσ(e+A→ e+H +X)

dxdQ2dpH
∝
∑

ρ

Vρ(q, pA,pH)

× Aρ(ψ, ϕ). (4)This proedure is nothing else but the deompositionover the virtual photon's heliities [52, 53, 54℄; heneit is ompletely analogous to the tensor deompositionfamiliar from the inlusive DIS. As a result of this proe-dure, the dependene on the kinematis of the �nal-statelepton is fatorized into the funtions Aρ(ψ, ϕ), whilethe hadroni dynamis a�ets only the funtions Vρ. Inparity-onserving SIDIS, the only ontributing angular



6funtions are
A1(ψ, ϕ) = 1 + cosh2 ψ,

A2(ψ, ϕ) = −2,

A3(ψ, ϕ) = − cosϕ sinh 2ψ,

A4(ψ, ϕ) = cos 2ϕ sinh2 ψ. (5)In Setion II we found that the ACOT presrip-tion resums logarithms of the form ln(M2/Q2). Forthe inlusive observables, this proedure provides a-urate preditions throughout the full range of x and
Q2. More di�erential observables may ontain additionallarge logarithms in the high-energy limit. In partiu-lar, we already mentioned the logarithms of the type
(q−2

T )αn
S lnm(q2T /Q

2), 0 ≤ m ≤ 2n − 1, whih appearwhen the polar angle θH of the heavy hadron H in the
γ∗A .m. frame beomes small (f. Fig. 1). Here wehose the z-axis to be direted along the momentum q ofthe virtual photon γ∗. When M2 ≪ Q2, the sale qT isrelated to θH as

q2T = Q2

(
1

x
− 1

)
1 − cos θH

1 + cos θH
; (6)hene

lim
θH→0

q2T = Q2

(
1

x
− 1

)(
θ2H
4

+ ...

)
→ 0. (7)The resummation of these logarithms of soft andollinear origin an be realized in the formalism byCollins, Soper, and Sterman (CSS) [34, 35, 36, 55℄. Theresult an be expressed as a fatorization theorem, whihstates that in the limit Q2 ≫ q2T , {m2

q},Λ2
QCD the rosssetion is

dσ(e+A→ e+H +X)

dΦ

∣∣∣∣
q2

T
≪Q2

=
σ0Fl

2SeA
A1(ψ, ϕ)

×
∫

d2b

(2π)2
eiqT ·bW̃HA(b,Q, x, z)

+O
(
qT
Q
,

{
mq

Q

}
,
ΛQCD

Q

)
. (8)In this equation, b is the impat parameter (onjugateto qT ), dΦ ≡ dxdQ2dzdq2Tdϕ, z ≡ (pA · pH)/(pA · q),and σ0 and Fl are onstant fators given in Eq. (B2).As before, {mq} olletively denotes all quark masses,

{mq} ≡ mu,md, ...,M. At large Q2, the b-spae inte-gral in Eq. (8) is dominated by ontributions from theregion b2 <∼ 1/Q2. In this region, the hadroni form fa-tor W̃HA(b,Q, x, z) an be fatorized in a ombinationof parton distribution funtions fa/A(ξa, µF ), fragmenta-tion funtions DH/b(ξb, µF ), and the partoni form fator
̂̃
W ba:

W̃HA (b,Q, x, z) =
∑

a,b

∫ 1

x

dξa
ξa

∫ 1

z

dξb
ξb

×DH/b(ξb, µF )
̂̃
W ba (b,Q, x̂, ẑ, µF )

×fa/A(ξa, µF ), (9)

where
̂̃
W ba(b,Q, x̂, ẑ, µF ) =

∑

j

e2j e
−S(b,Q,C1,C2)

×Cout
b/j

(
ẑ, µF b;

C1

C2

)
Cin

j/a

(
x̂, µF b;

C1

C2

)
. (10)Here x̂ ≡ x/ξa, ẑ ≡ z/ξb. The indies a, b in Eq. (9) aresummed over all quark �avors and gluons; the summationover j in Eq. (10) is over the quarks only. The frationalharge of a quark j is denoted as e2e2j . The parton distri-butions and fragmentation funtions are separated fromthe partoni form fator ̂̃W ba at the fatorization sale

µF . The Sudakov fator S(b,Q,C1, C2) is an all-ordersum of logarithms lnm (q2T /Q
2). It is given by an inte-gral between sales C2

1/b
2 and C2

2Q
2 (where C1 and C2are onstants of order 1) of two funtions A (αS(µ̄);C1)and B(αS(µ̄);C1, C2) appearing in the solution of equa-tions for renormalization- and gauge-group invariane:

S =

∫ C2
2Q2

C2
1
/b2

dµ̄2

µ̄2

[
ln

(
C2

2Q
2

µ̄2

)
A (αS(µ̄);C1)

+B(αS(µ̄);C1, C2)

]
. (11)The funtions Cin, Cout ontain perturbative orre-tions to ontributions from the inoming and outgoinghadroni jets, respetively. To evaluate the Fourier-Bessel transform integral, W̃HA (b,Q, x, z) should bealso de�ned at b >∼ 1 GeV−1, where the perturba-tive methods are not trustworthy. The ontinuation of

W̃HA (b,Q, x, z) to the large-b region is realized with thehelp of some phenomenologial model, as disussed, e.g.,in Refs. [36, 56, 57℄.As noted above, the resummed ross setion in Eq. (8),whih we shall label as σ
W̃
, is derived in the limit q2T ≪

Q2. In the region q2T
>∼ Q2, the standard �nite-order(FO) perturbative result, σFO, is appropriate. While σ

W̃and σFO represent the orret limiting behavior, we an-not simply add these two terms to obtain the total rosssetion, σTOT , as we would be �double-ounting� the on-tributions ommon to both terms.The solution is to subtrat the overlapping ontribu-tions between σ
W̃

and σFO. This overlapping ontribu-tion (the asymptoti piee σASY ) is obtained by expand-ing the b-spae integral in σ
W̃

out to the �nite order of
σFO. Thus, the omplete result is given by

dσTOT

dΦ
=
dσ

W̃

dΦ
+
dσFO

dΦ
− dσASY

dΦ
. (12)At small qT , where terms lnm(q2T /Q

2) are large, σFOanels well with σASY , so that the total ross setion isapproximated well by the b-spae integral: σTOT ≈ σ
W̃
.At q2T >∼ Q2, where the logarithms are no longer domi-nant, the b-spae integral σ

W̃
anels with σASY , so that
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(a)

= +

= +

= +

−

−

−

(b)

dσ
dq

T

dσ
dq

T

q
T

q
T

�TOT �FO �ASY�fW

Figure 3: Balane of various terms in the total resummed ross setion dσTOT /dqT : (a) away from the threshold (Q ≫ M);(b) near the threshold (Q ≈ M). In eah plot the thik urves orrespond to the "ative" ross setion (TOT, FO, W or ASY),and the thin urves orrespond to the other three ross setions.the total ross setion is equal to σFO up to higher orderorretions: σTOT ≈ σFO. This interplay of σ
W̃
, σFO,and σASY in σTOT is illustrated in Fig. 3a.As we will be referring to these di�erent terms fre-quently throughout the rest of the paper, let us presenta reap of their roles.

• σ
W̃

is the small-qT resummed term as given bythe CSS formalism in Eq. (8); sometimes alled�the CSS term� [58℄. This expression ontainsthe all-order sum of large logarithms of the form
lnm (q2T /Q

2), whih is presented as a Fourier-Besseltransform of the b-spae form fator W̃ (b,Q, x, z).It is a good approximation in the region q2T ≪ Q2.
• σFO is the �nite-order (FO) term; sometimes alled�the perturbative term�. It ontains the ompleteperturbative expression omputed to the relevantorder of the alulation n. As suh, this term on-tains logarithms of the form lnm (q2T /Q

2) only outto m = 2n− 1. It also ontains terms that are notimportant in the limit q2T /Q2 → 0, but dominatewhen q2T ∼ Q2. Hene, it provides a good approxi-mation in the region q2T >∼ Q2.
• σASY is the asymptoti (ASY) term. It ontains theexpansion of σ

W̃
out to the same order n as in σFO.As suh, this term ontains logarithms of the form

lnm (q2T /Q
2) only out to m = 2n−1. It is preisely

what is needed to eliminate the �double-ounting�between the σ
W̃

and σFO terms in Eq. (12).
• σTOT is the total (TOT) resummed ross setion;sometimes alled �the resummed term�. It is on-struted as σTOT = σ

W̃
+ σFO − σASY . In theregion q2T ≪ Q2, σASY preisely anels the largeterms present in the σFO ontribution, so that

σTOT ≈ σ
W̃
. In the region q2T

>∼ Q2, σASY ap-proximately anels the σ
W̃

term leaving σFO asthe dominant representation of the total ross se-tion: σTOT ≈ σFO. Hene, when alulated to asu�iently high order of αS , σTOT serves as a goodapproximation at all qT .In a pratial alulation in low orders of PQCD, onemay want to further improve the anellation between
σ

W̃
and σASY at q2T >∼ Q2. This improvement anbe ahieved by introduing a kinematial orretion inthese terms that aounts for the redution of the al-lowed phase spae for the longitudinal variables x and zat non-zero qT . The purpose of this kinematial orre-tion is quite similar to the purpose of the inlusive salingvariable disussed in Subsetion II C: it removes ontri-butions from the unphysially small x and z that makethe di�erene σ

W̃
− σASY non-negligible as ompared to

σFO. Note that the resummed ross setions with andwithout the kinematial orretion are formally equiva-lent to one another up to higher-order orretions. Fur-



8ther disussion of this issue an be found in Appendix C,whih introdues the kinematial orretion for the re-summed heavy-quark qT distributions.IV. EXTENSION OF THE CSS FORMALISM TOHEAVY-QUARK PRODUCTIONIn the previous Setion, we presented a proedure forthe resummation of distributions dσ/dq2T in the limitwhen Q2 is muh larger than all other momentum sales,
Q2 ≫ q2T , {m2

q}. We now are ready to disuss its ex-tension to the ase when the heavy-quark mass is not
negligible. For simpliity, we again assume that onlyone heavy �avor h has the mass M omparable with Q:
Q2 ∼M2 ≫ Λ2

QCD. The generalization for several heavy�avors an be realized through the onventional sequeneof fatorization subshemes, in whih the heavy quarksbeome ative partons at energy sales above their mass,and are treated as non-partoni partiles at energy salesbelow their mass.We start by rewriting Eq. (9) in a form analogous toEq. (4.3) of Ref. [36℄, where the form fator W̃ was givenfor the Drell-Yan proess:
W̃HA (b,Q, x, z) =

∑

j

e2j P
out

H/j

(
z, b, {mq},

C1

C2

)
P

in

j/A

(
x, b, {mq},

C1

C2

)

× exp

{
−
∫ C2

2Q2

C2
1
/b2

dµ̄2

µ̄2

[
ln

(
C2

2Q
2

µ̄2

)
A
(
αS(µ̄);

{
µ̄

mq

}
;C1

)
+ B

(
αS(µ̄);

{
µ̄

mq

}
;C1, C2

)]}
. (13)Here the funtion P

in

j/A (x, b, {mq}, C1/C2) desribesontributions assoiated with the inoming hadroni jet.As illustrated in Appendix A, P
in

j/A (x, b, {mq}, C1/C2)is related to the kT -dependent parton distribu-tion Pin
j/A (x, kT , {mq}). Similarly, the funtion

P
out

H/j (z, b, {mq}, C1/C2) desribes ontributions asso-iated with the outgoing hadroni jet [35℄. It isrelated to the kT -dependent fragmentation funtion
Pout

H/j (z, kT , {mq}). The funtions A and B are the sameas in Eq. (11), exept that now they retain the depen-dene on the quark masses {mq} = mu,md,ms, ...,M .Eq. (9) presents a speial ase of Eq. (13). It is validat short distanes, i.e., when 1/b is muh larger than anyof the quark masses mq. In ontrast, Eq. (13) is validat all b [36℄. As shown in Ref. [45℄, the transition fromEq. (13) to Eq. (9) is possible beause the funtions P
in

j/Aand P
out

H/j fatorize when b20/b2 ≫ {m2
q} :

P
in

j/A

(
x, b, {mq},

C1

C2

)
→
∑

a

∫ 1

x

dξa
ξa

× Cin
j/a

(
x̂, µF b;

C1

C2

)
fa/A

(
ξa,

{
µF

mq

})
;

P
out

H/j

(
z, b, {mq},

C1

C2

)
→
∑

b

∫ 1

z

dξb
ξb

× DH/b

(
ξb,

{
µF

mq

})
Cout

b/j

(
ẑ, µF b;

C1

C2

)
. (14)Here we introdued a frequently enountered onstant

b0 ≡ 2e−γE ≈ 1.123. We see that the form-fator W̃HAis well-de�ned both for non-zero quark masses and in

the massless limit. Hene, it does not ontain negativepowers of the quark masses or logarithms ln (mq/Q), withthe exeption of the ollinear logarithms resummed in theparton distributions and fragmentation funtions.We will now argue that the fatorization rule similarto Eq. (14) should also apply in heavy-�avor produtionwhen M2 is not negligible ompared to b20/b2. Indeed,the fatorization of the funtions P
in

j/A and P
out

H/j in thelimit b20/b2 ≫ {m2
q} [45℄ losely resembles the fatoriza-tion of the inlusive DIS struture funtions in the limit

Q2 ≫ {m2
q} [59, 60, 61, 62, 63℄. In both ases the fa-torization ours beause the dominant ontributions tothe ross setion ome from �ladder� ut diagrams withsubgraphs ontaining lines of drastially di�erent virtu-alities. More preisely, the leading regions in suh di-agrams an be deomposed into hard subgraphs, whihontain highly o�-shell parton lines; and quasi-ollinearsubgraphs, whih ontain lines with muh lower virtual-ities and momenta approximately ollinear to pµ

A (in thease of Fh/A(x,Q2) orP
in

j/A) or pµ
H (in the ase of Pout

H/j).In the funtions P
in

j/A and P
out

H/j , additional soft gluonsubgraphs are present, but they eventually do not a�etthe proof of the fatorization [45℄. The hard subgraphsontribute to the inlusive oe�ient funtion Ch/a inEq. (1), as well as funtions Cin
j/a or Cout

b/j in Eq. (14).The quasi-ollinear subgraphs, whih are onneted tothe hard subgraphs through one on-shell parton on eahside of the momentum ut, ontribute to the PDF's (inthe inlusive DIS and SIDIS) or FF's (in SIDIS).The hard subgraphs are haraterized by typial trans-verse momenta k2
T
>∼ µ2

F ≫ Λ2
QCD, while the PDF's and



9FF's are haraterized by transverse momenta k2
T
<∼ µ2

F .The fatorization sale µF is of order Q in the inlu-sive DIS struture funtions and b0/b in the funtions
P

in

j/A and P
out

H/j . As disussed in Setion II, the fa-torization in the inlusive DIS an be extended to thease when Q is omparable to the heavy-�avor mass M ,
Q2 ∼ M2 ≫ Λ2

QCD. Given the lose analogy betweenthe inlusive DIS struture funtions and the funtions
P

in

j/A, P
out

H/j , it is natural to assume that the latterfatorize when b20/b2 ∼M2 ≫ Λ2
QCD as well:

P
in

j/A

(
x, b, {mq},

C1

C2

)
=
∑

a

∫ 1

x

dξa
ξa

× Cin
j/a

(
x̂, µF b, bM,

C1

C2

)
fa/A

(
ξa,

{
µF

mq

})
;

P
out

H/j

(
z, b, {mq},

C1

C2

)
=
∑

b

∫ 1

z

dξb
ξb

× DH/b

(
ξb,

{
µF

mq

})
Cout

b/j

(
ẑ, µF b, bM,

C1

C2

)
. (15)The main di�erene between Eqs. (14) and (15) is on-tained in the funtions Cin

j/a and Cout
b/j , whih now expli-itly depend on M. These funtions an be alulatedaording to their de�nitions given in Ref. [34℄. Theunrenormalized expressions for the C-funtions ontainultraviolet singularities. To anel these singularities,we introdue ounterterms aording to the proeduredesribed in Setion II: that is, graphs with internalheavy-quark lines are renormalized in the MS shemeif µF ∼ b0/b > M and by zero-momentum subtration if

b0/b < M . This hoie leads to the expliit deouplingof diagrams with heavy quark lines at b >∼ b0/M . Inpartiular, the deoupling implies that ontributions toEq. (15) with j, a, or b equal to h are power-suppressedat b > b0/M.We now onsider other soures of the dependene onMin dσ/dΦ. Firstly, aording to Eq. (13), there is a depen-dene onM in the Sudakov funtions A(αS(µ̄); µ̄/M ;C1)and B(αS(µ̄); µ̄/M ;C1, C2). Due to the deoupling, themass-dependent terms in the Sudakov fator vanish at
b >∼ b0/M , exept for perhaps terms of truly nonpertur-bative nature, like the intrinsi heavy quark omponent[47℄. As mentioned above, in this paper suh nonpertur-bative omponent is ignored. Seondly, there may alsobe mass-dependent terms in the �nite-order ross se-tion, whih are not assoiated with the leading ontri-butions resummed in the W̃ -term: those are the termsthat ontribute to the remainder in Eq. (8). The termsof both types are orretly inluded in dσTOT /dΦ. In-deed, the terms of the �rst type appear in all three terms

dσ
W̃
/dΦ, dσFO/dΦ, and dσASY /dΦ. Two out of threeontributions (in dσ

W̃
/dΦ and dσASY /dΦ, or dσFO/dΦand dσASY /dΦ) anel with one another, leaving thethird ontribution unanelled in dσTOT /dΦ. The termsof the seond type are ontained only in dσFO/dΦ, sothat they are automatially inluded in dσTOT /dΦ.The treatment of the massive terms simpli�es moreif we adapt the S-ACOT fatorization sheme, in whihthe heavy quark mass is set to zero in the hard partsof the �avor-exitation subproesses. As a result, Mis negleted in the �avor-exitation ontributions to thehard ross setion σFO, asymptoti term σASY , and C-funtions in the W̃ -term. The mass-dependent terms arefurther omitted in the perturbative Sudakov fator S. Atthe same time, all mass-dependent terms are kept in σFO,

σASY , and C-funtions for gluon-initiated subproesses.As we will demonstrate in the next setion, in thispresription the ross setion σTOT resums the soft andollinear logarithms, when these logarithms are large,and redues to the �nite-order ross setion, when theselogarithms are small. In partiular, at Q ∼M the �nite-order �avor-reation terms approximate well the heavy-quark ross setion. Hene we expet that σTOT repro-dues the �nite-order �avor-reation part at Q ∼ M(Fig. 3b). For this to happen, the �avor-exitationross setion should anel well with the subtration
∝ ln(µF /M) from the �avor-reation ross setion; and
σ

W̃
should anel well with σASY .We �nd that these an-ellations indeed our in the numerial alulation, sothat at Q ≈M σTOT agrees well with the �avor-reationontribution to σFO. Similarly, σTOT reprodues themassless resummed ross setion when Q≫ M (Fig. 3a).It also smoothly interpolates between the two regions of

Q.To summarize our method, the total resummed rosssetion in the presene of heavy quarks is alulated as
dσTOT

dΦ
=
dσ

W̃

dΦ
+
dσFO

dΦ
− dσASY

dΦ
, (16)i.e., using the same ombination of the W̃ -term, �nite-order ross setion, and asymptoti ross setion as in themassless ase. All three terms on the r.h.s. of Eq. (16)are alulated in the S-ACOT sheme. The W̃ -term isalulated as

(
dσ(e+A→ e+H +X)

dΦ

)

W̃

=
σ0Fl

SeA

A1(ψ, ϕ)

2

×
∫

d2b

(2π)2
eiqT ·bW̃HA(b,Q,M, x, z), (17)where the form-fator W̃HA(b,Q,M, x, z) is
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W̃HA (b,Q,M, x, z) =

∑

a,b

∫ 1

χa

dξa
ξa

∫ 1

z

dξb
ξb
DH/b

(
ξb,

{
µF

mq

})
fa/A

(
ξa,

{
µF

mq

})

×
∑

j=u,ū,d,d̄...

e2jCout
b/j

(
ẑ, µF b, bM ;

C1

C2

)
Cin

j/a

(
χa

ξa
, µF b, bM ;

C1

C2

)
e−Sba(b,Q,M), (18)and

Sba(b,Q,M) ≡
∫ C2

2Q2

C2
1
/b2

dµ2

µ2

×
[
A(αS(µ);C1) ln

(
C2

2Q
2

µ2

)

+B(αS(µ);C1, C2)

]
+ SNP

ba (b,Q,M). (19)As in the fatorization of inlusive DIS struture fun-tions (f. Setion II), we �nd it useful to replae Bjorken
x by saling variables

χh = x

(
1 +

M2

z(1 − z)Q2

) (20)in σFO for the �avor-exitation subproesses, and
χ

′

h = x

(
1 +

M2 + z2q2T
z(1 − z)Q2

) (21)in σ
W̃

and σASY . The purpose of these saling variablesis to enfore the orret threshold behavior of terms withinoming heavy quarks. Eqs. (20) and (21) are derivedin detail in Appendix C.V. MASSIVE RESUMMATION FORPHOTON-GLUON FUSIONWe now analyze ontributions to the total resummedross setion dσTOT /dΦ from the O(α0
S) heavy-�avor ex-itation subproess γ∗(q) + h(pa) → h(pb) (Fig. 2a) and

O(αS) photon-gluon fusion subproess γ∗(q) +G(pa) →
h(pb) + h̄(ps) (Fig. 2b). Sine we work in the S-ACOTsheme, only the O(αS) fusion subproess retains theheavy quark mass, so that we onentrate on that pro-ess �rst. The expression for the γ∗h ontribution, whihis the same as in the massless ase, is given in Eq. (B1).In the following we outline the main results, while detailsare relegated to Appendies.A. Mass-Generalized Kinematial VariablesOur approah will be to �rst generalize the kinematialvariables from the massless resummation formalism to

�reyle� as muh of the results from Refs. [31, 32, 51℄ aspossible.Throughout the derivation, the mass of the inidenthadron will be negleted: p2
A = 0. We will use the stan-dard DIS variables x, Q2, and z, de�ned by

x ≡ Q2

2pA · q ; Q2 ≡ −q2; z ≡ pA · pH

pA · q . (22)Sine we will be interested in the transverse momentumdistributions (or equivalently, the angular distributions),we next de�ne the transverse momentum in a frame-invariant manner. The four-vetor qµ
t of the transversemomentum must be orthogonal to both of the hadrons,so that we have the onditions qt ·pA = 0 and qt ·pH = 0.In the massless ase, qµ

t is simply de�ned by subtratingo� the projetions of the photon's momentum qµ onto pAand pH . This is slightly modi�ed in the massive ase tobeome
qµ
t = qµ −

(
pH · q
pA · pH

−M2
H

pA · q
(pA · pH)2

)
pµ

A

− pA · q
pA · pH

pµ
H . (23)HereMH denotes the mass of the heavy hadron. We �ndfor q2T ≡ −qµ

t qtµ :

q2T = Q2 + 2
pH · q
z

− M2
H

z2
. (24)The kinematial variables at the parton level an be in-trodued in an analogous manner. Let ξa denote the fra-tion of the large '−' omponent of the inoming hadron'smomentum pA arried by the initial-state parton a (i.e.,

ξa ≡ p−a /p
−
A);3 and ξb denote the fration of the large'+' omponent of the �nal-state parton's momentum pbarried by the outgoing hadron H (i.e., ξb ≡ p+

H/p
+
b ).We also assume that ξb relates the transverse momentaof b and H , as (pT )H = ξb(pT )b. Sine all inoming par-tons are massless in the S-ACOT fatorization sheme,we �nd the following relations between the hadron-levelvariables x, z, qT and their parton-level analogs x̂, ẑ, q̂T :

x̂ ≡ Q2

2 (pa · q) =
x

ξa
; (25)3 We remind the reader that the analysis is performed in the γ∗A.m. frame, where the inident hadron moves in the −z diretion.
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ẑ ≡ (pa · pb)

(pa · q) =
z

ξb
; (26)

q̂T = qT , (27)where in the derivation of Eq. (27) we used the �rst equal-ity in Eq. (40).If we introdue a massive extension of q̂2T alled q̃2T andde�ned by
q̃2T ≡ q̂2T +

M2

ẑ2
, (28)then the form of q̃2T in terms of the Lorentz invariants isidential to the massless ase:

q̃2T = Q2 + 2
ph · q
ẑ

. (29)We also generalize the usual Mandelstam variables
{ŝ, t̂, û} to what we label the �mass-dependent� Mandel-stam variables {ŝ, t̂1, û1}:

ŝ = (q + pa)2, (30)
t̂1 ≡ t̂−M2 = (q − ph)2 −M2, (31)
û1 ≡ û−M2 = (pa − ph)2 −M2. (32)By using the variables q̃2T , ŝ, t̂1, and û1 instead of theirounterparts q2T , ŝ, t̂, and û, we shall be able to astmany of the massive relations in the form of the mass-less ones. For example, the expressions for the �mass-dependent� Mandelstam variables {ŝ, t̂1, û1} in terms ofthe DIS variables an be written as
ŝ = Q2 (1 − x̂)

x̂
; (33)

t̂1 = −Q2 ẑ

x̂
; (34)

û1 = Q2(ẑ − 1) − q̃2T ẑ = −Q2 (1 − ẑ)

x̂
. (35)Note how we made use of the generalized transverse mo-mentum variable q̃2T . These relationships have the sameform as their massless ounterparts. As a result, thedenominators of the mass-dependent propagators, whihare formed from the invariants ŝ, t̂1, and û1, retain thesame form as the denominators of the massless propaga-tors, whih are formed from the invariants ŝ, t̂, and û.B. Relations between {EH , cos θH}in the γ∗A.m. frame and {z, q2

T }It is useful to onvert between the �nal-state energy
EH , polar angle θH and the Lorentz invariants {z, q2T}.Given the γ∗A .m. energyW 2 ≡ (q+pA)2 = Q2(1−x)/xand p ≡ |pH | =

√
E2

H −M2
H , one easily �nds the follow-ing onstraints on EH , p, and cos θH :

MH ≤ EH ≤ W
2

(
1 +

M2
H

W 2

)
, (36)

0 ≤ p ≤ W
2

(
1 − M2

H

W 2

)
, (37)
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Figure 4: Plots of qT /W vs. θH at various values of λ ≡
MH/EH = 0.999 (lower urve), λ = 0.5 (middle urve), and
λ = 0.001 (upper urve).and

− 1 ≤ cos θH ≤ 1. (38)Given EH and cos θH , we an determine z and q2T as
z =

1

W
(EH + p cos θH) ; (39)

q2T =

(
p2

T

)
H

z2
= W 2 p

2
(
1 − cos2 θH

)

(EH + p cos θH)
2 . (40)From Eqs. (36-38) the bounds on z an be found as

M2
H

W 2
≤ z ≤ 1. (41)Note that the �rst equality in Eq. (40) identi�es qT asthe the transverse momentum of H resaled by the �nal-state fragmentation variable z. Hene qT an be alsointerpreted as the leading-order transverse momentumof the fragmenting parton. Similarly, q̃T = MT /ẑ anbe interpreted as the resaled transverse massMT of theheavy quark. It also follows from Eqs. (39,40) that thetwo-variable distribution with respet to the variables zand qT oinides with the two-variable distribution withrespet to EH and θH :

dσ

dxdQ2dzdqT
=

dσ

dxdQ2dEHdθH
. (42)As a result, the distributions in the theoretial variables

z and qT are diretly related to the distributions in EHand θH measured in the experiment.Despite the simpliity of the relation (42), z and qTare quite ompliated funtions of EH and cos θH indi-vidually. This feature is di�erent from the massless ase,where there exists a one-to-one orrespondene between
qT and cos θH for the �xed γ∗A .m. energy W :

cos θH |MH=0 =
W 2 − q2T
W 2 + q2T

. (43)



12This relationship does not hold in the massive ase, inwhih one value of qT orresponds to two values of cos θH .Indeed, Eq. (40) an be expressed as
q2T
W 2

=
(1 − λ2)

(
1 − cos2 θH

)
(
1 +

√
1 − λ2 cos θH

)2 , (44)where, aording to Eq. (36), the variable λ ≡ MH/EHvaries in the following range:
2MH

W (1 +M2
H/W

2)
≤ λ ≤ 1. (45)Eq. (44) an be solved for cos θH as

cos θH =
1

(q2T +W 2)
√

1 − λ2

×
(
−q2T ±W

√
(1 − λ2) (q2T +W 2) − q2T

)
. (46)When the energy EH is muh larger than MH (λ → 0)the solution with the �+� sign in Eq. (46) turns into themassless solution (43). The solution with the �−� signredues to cos θH = −1.The physial meaning of the relationship between qTand cos θH an be understood by onsidering plots of

qT /W vs. θH for various values of λ (Fig. 4). Let usidentify the urrent fragmentation region as that where
cos θH is lose to +1 (θH = 0), and the target fragmenta-tion region as that where cos θH is lose to −1 (θH = π).Firstly, qT = 0 if cos θH = 1 or cos θH = −1. Seondly,near the threshold (λ→ 1) the ratio qT /W is vanishinglysmall and symmetri with respet to the replaement of
θH by (π− θH). Thirdly, as λ dereases, the distribution
qT /W vs. θH develops a peak near θH = 180◦. Thispeak is positioned at cos θH = −

√
1 − λ2, and its heightis qT /W =

(
1 − λ2

)1/2
/λ2. For θH ≪ 180◦, the distribu-tion rapidly beomes insensitive to λ; more so for smaller

θH .In the limit λ → 0, the peak at θH = 180◦ turnsinto a singularity. This singularity resides at the point
z = 0 and orresponds to hard di�rative hadroprodu-tion. The analysis of this region requires di�rative par-ton distribution funtions [64, 65, 66, 67, 68℄ and will notbe onsidered here. For θH 6= 180◦, one reovers a one-to-one orrespondene between qT /W and cos θH of themassless ase. We see that there is a natural relationshipbetween qT and cos θH , whih beomes espeially simplein the massless limit. In the following, we onentrate onthe limit qT → 0 and z 6= 0, whih orresponds to theurrent fragmentation region θH → 0.C. Fatorized ross setionsNext, we onsider the fatorization of the hadroniross setion. Given the hadron-level phase spae ele-ment dΦ ≡ dxdQ2dzdq2Tdϕ and its parton-level analog

dΦ̂ ≡ dx̂dQ2dẑdq̂2T dϕ̂, all three terms on the r.h.s. ofEq. (16) an be written as
dσ

dΦ
=
∑

a,b

∫ 1

z

dξb
ξb

∫ 1

χa

dξa
ξa

× DH/b

(
ξb,

{
µF

mq

})
fa/A

(
ξa,

{
µF

mq

})

× dσ̂

dΦ̂

(
χa

ξa
,
z

ξb
,
qT
Q
,
µF

Q
,
M

Q

)
. (47)Let us �rst onsider the �nite-order ross setion

dσ̂FO/dΦ̂ . The expliit expression for this ross se-tion at the lepton level an be found in Appendix B. Weare interested in extrating the leading ontribution inthis ross setion in the limit Q → ∞ with other sales�xed. Spei�ally, we onentrate on the behavior of thephase-spae δ−funtion that multiplies the matrix ele-ment |M|2:
dσ̂FO

dΦ̂
∝ δ

(
ŝ+ t̂+ û+Q2 − 2M2

)
|M|2

= δ
(
ŝ+ t̂1 + û1 +Q2

)
|M|2

= δ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
|M|2 . (48)Here we used the mass-generalized variable q̃2T introduedin Eq. (29). Note that in terms of the variables x̂, ẑ, and

q̃2T this expression takes the same form as its masslessversion. In the limit Q→ ∞, and x̂, ẑ, and q̃T �xed, the
δ-funtion an be transformed using the relationship

lim
ε→0

δ (y1y2 − ε) ≈ δ(y1)

[y2]+
+
δ(y2)

[y1]+

− log(ε)δ(y1)δ(y2). (49)This transformation yields
lim

Q→∞
δ
(
ŝ+ t̂+ û+Q2 − 2M2

)
∝

δ(1 − x̂)

[1 − ẑ]+
+
δ(1 − ẑ)

[1 − x̂]+
(50)

− log

(
q̃2T
Q2

)
δ (1 − x̂) δ(1 − ẑ). (51)This asymptoti expression for the δ-funtion is exatlyof the same form as in the massless ase up to the re-plaement q̃2T → q2T .Furthermore, in the above limit the matrix element

|M|2 itself ontains singularities when Q2 ≫ q̃2T . Inpartiular, the largest struture funtion V̂1 in the γ∗G-fusion subproess (f. Eq. (B4)) ontains ontributionsproportional to
1

(M2 − t̂)(M2 − û)
∝ 1

t1u1
∝ 1

q̃2T
, (52)and

M2

t̂21û
2
1

∝ M2

q̃4T
=

ẑ4M2

(ẑ2q2T +M2)
2 . (53)



13When M is not negligible, these ontributions are �niteand omparable with other terms. However, in the limitwhen both M and qT are muh less than Q, the terms ofthe �rst type diverge as 1/q2T . The terms of the seondtype vanish at qT 6= 0 and yield a �nite ontribution at
qT = 0. These non-vanishing ontributions are preiselythe ones that are resummed in the W̃ -term; in the totalresummed ross setion σTOT , they have to be subtratedin the form of the asymptoti ross setion σASY to avoidthe double-ounting between σFO and σ

W̃
.To preisely identify these terms, we alulate themfrom their de�nitions, as desribed in Appendix A. Sinethe O(αS) γ∗G subproess is �nite in the soft limit, itontributes only to the funtion Cin

h/G(x, µF b, bM) andnot to the Sudakov fator. The O(αS/π) oe�ient inthis funtion is
Cin(1)

h/G (x̂, µF b, bM) = TRx(1 − x) (1 + c1(bM))

+P
(1)
h/G(x)

(
c0(bM) − ln

(µF b

b0

)) (54)if µF ≥M , and
Cin(1)

h/G (x̂, µF b, bM) = Cin(1)
h/G (x̂, µF b, bM)

∣∣∣
µF ≥M

+ P
(1)
h/G(x̂) ln

µF

M
(55)if µF < M . Here P (1)

h/G(ξ) is the MS splitting fun-tion: P (1)
h/G(ξ) = TR

(
1 − 2ξ + 2ξ2

)
, with TR = 1/2. Thefuntions c0(bM), and c1(bM) denote the parts of themodi�ed Bessel funtions K0(bM) and bM K1(bM) thatvanish when b ≪ 1/M . They are de�ned in Eqs. (A18)and (A19), respetively.We now have all terms neessary to alulate theombination (Cin(0)

h/h ⊗ fh/A)(x) + (Cin(1)
h/G ⊗ fG/A)(x),whih serves as the �rst approximation to the funtion

P
in

h/A (x, b,M,C1/C2). We �nd that this ombinationpossesses two remarkable properties: it smoothly van-ishes at µ2
F = b20/b

2 ≪ M2 and is di�erentiable withrespet to ln(µF /M) at the point µF = M . As a result,the form fator W̃ (b,Q, x, z) for the ombined O(α0
S)�avor-exitation and O(α1

S) �avor-reation hannels isa smooth funtion at all b, whih is strongly suppressedat b2 ≫ b20/M
2. The physial onsequene is that, fora su�iently heavy quark, the b-spae integral an beperformed over the large-b region without introduing anadditional suppression of the integrand by nonperturba-tive ontributions. We use this feature in Setion VI,where we alulate the resummed ross setion for bot-tom quark prodution, whih does not depend on thenonperturbative Sudakov fator.Finally, by expanding the form-fator W̃HA in a seriesof αS/π and alulating the Fourier-Bessel transform in-tegral in Eq. (17), we �nd the following asymptoti pieefor the γ∗G fusion hannel:

(
dσ̂(e+G→ e+ h+ h̄)

dΦ̂

)

ASY

=
σ0Fl

4πSeA

αS

π

×A1(ψ, ϕ)δ(1 − ẑ)

×


P

(1)
h/G(x̂)

̂̃q
2

T

+
M2x̂(1 − x̂)

̂̃q
4

T


 . (56)When Q ∼M, dσ̂ASY /dΦ̂, whih is a regular funtion atall qT , anels well with dσ̂W̃

/dΦ̂. In the limit Q → ∞,
dσ̂ASY /dΦ̂ preisely anels the asymptoti terms thatappear in the �nite-order ross setion dσ̂FO/dΦ̂.VI. NUMERICAL RESULTSIn this Setion, we apply the resummation formalismto the prodution of bottom quarks at HERA. The alu-lation is done for the eletron-proton .m. energy of 300GeV and bottom quark mass M = 4.5 GeV. For simpli-ity we assume that the masses of the B-hadrons oinidewith the mass of the bottom quark M . We also negletthe mixing of photons with Z0-bosons at large Q.In the following, we disuss polar angle distributionsin the γ∗p frame for x = 0.05 and various values of Q.The ross setion is alulated in the lowest-order ap-proximation as disussed in Setion V.4 The alulationwas realized using the CTEQ5HQ PDF's [69℄ and Pe-terson fragmentation funtions [70℄ with ε = 0.0033 [8℄.The �nite-order ross setion dσFO/dΦ and asymptotiross setion dσASY /dΦ were alulated at the fatoriza-tion sale µF = Q. The sale-related onstants in the
W̃ -term were hosen to be C1 = 2e−γE = b0 and C2 = 1,and the fatorization sale was µF = b0/b. The W̃ -terminluded the O(α0

S) C-funtions Cin(0)
h/h (x̂, µF b, C1/C2),

Cout(0)
h/h (ẑ, µF b, C1/C2) and O(α1

S) initial-state funtion
Cin(1)

h/G (x̂, µF b, bM). In addition, it inluded the pertur-bative Sudakov fator (11), unless stated otherwise. TheSudakov fator was evaluated at order O(αS), whih wassu�ient for this alulation given the order of otherterms. The funtions in the Sudakov fator were eval-uated as
A(µ;C1) = CF

αS(µ)

π
, (57)and

B(µ;C1, C2) = −3CF

2

αS(µ)

π
. (58)Aording to the disussion in Setion V, our alu-lation ignores unknown nonperturbative ontributions in4 The generalization of our approah to higher orders is straight-forward. The next-order alulation should inlude the O(αS)�avor-exitation and O(α2

S) �avor-reation hannels, whihshould appear together to ensure the smoothness of the formfator W̃ (b, Q,M, x, z) and its suppression at b >
∼

1/M .
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() (d)Figure 5: The angular distributions of the bottom hadrons in the γ∗p .m. frame at (a) Q = 5 GeV, (b) Q = 15 GeV, ()
Q = 50 GeV without the Sudakov fator, and (d) Q = 50 GeV with the Sudakov fator. At Q = 50 GeV, an additional ut
EH > 0.1(W/2) is made to suppress ontributions at z < 0.1, i.e., from the region where the onventional fatorization may beinappliable. The plots show the �nite-order ross setion σF O (long-dashed line), the b-spae integral σ

W̃
(dot-dashed line),the asymptoti piee σASY (dotted line), and the full resummed ross setion σTOT (solid line).the W̃ -term. In the numerial alulation, we also needto de�ne the behavior of the light-quark PDF's at sales

µF = b0/b < 1 GeV. Due to the strong suppression ofthe large-b region by the M -dependent terms in the C-funtions (f. the disussion after Eq. (A12)), the exatproedure for the ontinuation of the PDF's to small µFhas a small numerial e�et. We found it onvenient to�freeze� the sale µF at a value of about 1 GeV by in-troduing the variable b∗ = b/

√
1 + (b/bmax)

2 [36℄ with
bmax = b0 GeV−1 ≈ 1.123 GeV−1. Other proedures[56, 57℄ for ontinuation of W̃HA(b,Q, x, z) to large val-ues of b may be used as well. Due to the small sensitivityof the resummed ross setion to the region b2 ≫ b20/M

2,all these ontinuation proedures should yield essentiallyidential preditions.Fig. 5 demonstrates how various terms in Eq. (16)are balaned in an atual numerial alulation. Nearthe threshold (Q = 5 GeV, Fig. 5a) the ross setion
dσTOT /(dxdQ

2dθH) should be well approximated by the

O(αS) �avor-reation diagram γ∗ +G→ h+ h̄. We �ndthat this is indeed the ase, sine the W̃ -term, whih doesnot ontain large logarithms, anels well with its pertur-bative expansion dσASY /dΦ. As a result, the full rosssetion is pratially indistinguishable from the �nite-order term.At higher values of Q, we start seeing deviations fromthe �nite-order result. Fig. 5b shows the di�erentialdistribution at Q = 15 GeV, i.e., approximately at
Q2/M2 = 10. At this energy, dσTOT /(dxdQ

2dθH) stillagrees with dσFO/(dxdQ
2dθH) at θH

>∼ 10◦, but is above
dσFO/(dxdQ

2dθH) at θH
<∼ 10◦. The exess is due to thedi�erene dσ

W̃
/(dxdQ2dθH)− dσASY /(dxdQ

2dθH), i.e.,due to the higher-order logarithms.Away from the threshold (Q = 50 GeV),
dσTOT /(dxdQ

2dθH) is substantially larger than the�nite-order term at θH
<∼ 10◦, where it is dominatedby dσ

W̃
/(dxdQ2dθH). In this region, dσFO/(dxdQ

2dθH)is aneled well by dσASY /(dxdQ
2dθH). Note, however,
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(b)Figure 6: Comparison of the massive and massless ross se-tions at (a) Q = 15 GeV, and (b) Q = 50 GeV. The plotsshow the massive resummed ross setion σTOT (thik solidline); the massless resummed ross setion σTOT (thin solidline); the massive �nite-order ross setion σF O (thik dashedline); and the massless �nite-order ross setion σF O (thindot-dashed line).that ontrary to the experiene from the massless ase,
dσFO/(dxdQ

2dθH) and dσASY /(dxdQ
2dθH) are not sin-gular at θH → 0 due to the regularizing e�et of theheavy quark mass in the heavy-quark propagator at

θH
<∼ 3◦. Figs. 5 and 5d also ompare the distribu-tions with and without the O(α1

S) perturbative Sudakovfator, respetively. Note that at the threshold the �avor-exitation terms responsible for S are of a higher orderas ompared to the O(α0
S) �avor-exitation and O(α1

S)�avor-reation terms. Correspondingly, near the thresh-old the impat of S is expeted to be minimal. Thisexpetation is supported by the numerial alulation, inwhih the di�erene between the urves with and with-out the O(αS) perturbative Sudakov fator is negligi-ble at Q = 5 GeV, and is less than a few perent and
Q = 15 GeV. In ontrast, at Q = 50 GeV the distributionwith the O(αS) Sudakov fator is notieably lower andbroader than the distribution without it: at some val-ues of θH , the di�erene in ross setions reahes 40%.The in�uene of the Sudakov fator on the integrated

rate is mild: the inlusive ross setion dσ/(dxdQ2) al-ulated without and with the O(αS) Sudakov fator isequal to 330 and 320 fb/GeV2, respetively. Due tothe enhanement at small θH , these resummed inlu-sive ross setions are larger than the �nite-order rate
dσFO/(dxdQ

2) ≈ 260 fb/GeV2 by about 25%.It is interesting to ompare our alulation with themassless approximation for the γ∗G ontribution. Fig. 6shows the �nite-order and resummed ross setions al-ulated in the massive and massless approahes. In on-trast to the massive σTOT , the massless σTOT must in-lude the nonperturbative Sudakov fator SNP , whih isnot known a priori and is usually found by �tting to thedata. To have some referene point, we plot the mass-less σTOT with SNP (b) = b2M2/b20 ≈ 16b2, so that, inanalogy to the massive ase, the region of b >∼ b0/M inthe massless W̃ (b,Q, x, z) is suppressed. Sine the heavy-quark mass has other e�ets on the shape of W̃ (b,Q, x, z)besides the uto� in the b-spae, we expet the shape ofthe massless and massive resummed urves be somewhatdi�erent. This feature is indeed supported by Fig. 6b,where at small θH both resummed urves are of the sameorder of magnitude, but di�er in detail. Furthermore, theshape of the massless σTOT an be varied by adjusting
SNP . At the same time, the massive resummed rosssetion is uniquely determined by our alulation.At su�iently large θH , both the massless and mas-sive resummed ross setions redue to their orrespond-ing �nite-order ounterparts. The massless ross se-tion signi�antly overestimates the massive result nearthe threshold and at intermediate values of Q. For in-stane, at Q = 15 GeV (Fig. 6a) the massless ross se-tion is several times larger than the massive ross setionin the whole range of θH . In ontrast, at Q = 50 GeV(Fig. 6b) the massless σFO agrees well with the massive
σFO at θH

>∼ 20◦ and overestimates the massive σFO at
θH

<∼ 20◦. The massive σTOT is above the massless σFOat 3◦ <∼ θH
<∼ 10◦ and below it at θH

<∼ 3◦.The presene of two ritial angles (θH ∼ 3◦ and
∼ 10◦) in σTOT an be qualitatively understood fromthe following argument. The rapid rise of σTOT overthe massive σFO begins when the small-qT logarithms
lnm

(
q̃2T /Q

2
) beome large � say, when q̃2T is less thanone tenth of Q2. Given that the Peterson fragmentationfuntion peaks at about z ∼ 0.95, and that Q = 50 GeV,

M = 4.5 GeV, the ondition q̃2T ∼ 0.1Q2 orrespondsto θH ∼ 8◦, whih is lose to the observed ritial angleof 10◦. Note that in that region q2T ≫ M2/z2. On theother hand, when q2T is of order M2/z2, the growth ofthe logarithms ln
(
q̃2T /Q

2
) is inhibited by the non-zeromass termM2/z2 in q̃2T . The ondition q2T ∼M2/z2 or-responds to θH ∼ 2.5◦, whih is approximately where themass-dependent ross setion turns down.



16VII. CONCLUSION AND OUTLOOKIn this paper, we presented a method to desribe po-lar angle distributions in heavy quark prodution in deepinelasti sattering. This method is realized in the sim-pli�ed ACOT fatorization sheme [17, 25℄ and uses theimpat parameter spae (b-spae) formalism [34, 35, 36℄to resum transverse momentum logarithms in the ur-rent fragmentation region. We disussed general fea-tures of this formalism and performed an expliit al-ulation of the resummed ross setion for the O(α0
S)�avor-exitation and O(α1

S) �avor-reation subproessesin bottom quark prodution. Aording to the numeri-al results in Setion VI, the multiple parton radiatione�ets in this proess beome important at Q >∼ 15 GeV(or approximately at Q2/M2 >∼ 10). At Q = 50 GeV,the multiple parton radiation inreases the inlusive rosssetion by about 25% as ompared to the �nite-order�avor-reation ross setion.Many aspets of the resummation in the presene of theheavy quarks are similar to those in the massless resum-mation. In partiular, it is possible to organize the alu-lation in the massive ase in a lose analogy to the mass-less ase by properly rede�ning the Lorentz invariants (inpartiular, by replaing the Lorentz-invariant transversemomentum qT in the logarithms by the resaled trans-verse mass q̃T =
√
q2T +M2/ẑ2). The total resummedross setion is presented as a sum of the b-spae integral

σ
W̃

and the �nite-order ross setion σFO, from whihwe subtrat the asymptoti piee σASY . Construtedin this way, the resummed ross setion redues to the�nite-order ross setion at Q ≈ M and reprodues themassless resummed ross setion at Q≫M .At the same time, there are important di�erenes be-tween the light- and heavy-hadron ases. For instane,the light hadron prodution is sensitive to the oher-ent QCD radiation with a wavelength of order 1/ΛQCD,whih is poorly known and has to be modeled by thephenomenologial �nonperturbative Sudakov fator�. Inontrast, in the heavy-hadron ase suh long-distane ra-diation is suppressed by the large value ofM . Hene, fora su�iently heavy M , as in bottom quark prodution,the resummed ross setion an be alulated without in-troduing the nonperturbative large-b ontributions. Itwill be interesting to test the hypothesis about the ab-sene of suh long-distane ontributions experimentally.Given the size of the di�erential ross setions obtainedin Setion VI, aurate tests of this approah will be fea-sible one the integrated luminosity of the HERA II runapproahes 1 fb−1. The same alulation an be donefor harm prodution. However, in that ase the region
b >∼ 1GeV−1 is not as suppressed, and the nonperturba-tive Sudakov fator has to be inluded.Another important improvement in our alulation ismore aurate treatment of threshold e�ets in fully dif-ferential ross setions. The auray in the thresholdregion is improved by introduing saling variables (20)and (21) in �nite-order and resummed di�erential ross

setions. These saling variables generalize the salingvariable proposed in Ref. [29℄ for inlusive struture fun-tions. They lead to stable theoretial preditions at allvalues of Q and agreement with the massless result athigh energies.The extension of our alulation to higher orders is fea-sible in the near future, sine many of its ingredients arealready available in the literature [32, 43, 71℄. Further-more, in a forthoming paper we will study the additionale�ets of threshold resummation [72, 73, 74, 75, 76, 77℄in DIS heavy-quark prodution, so that both transversemomentum and threshold logarithms are taken into a-ount. We onlude that the ombined resummation ofthe mass-dependent logarithms ln(M2/Q2) and trans-verse momentum logarithms ln(q2T /Q
2) is an importantingredient of the theoretial framework that aims atmathing the growing preision of the world heavy-�avordata. AknowledgementsAuthors have bene�ted from disussions withJ. C. Collins, J. Smith, D. Soper, G. Sterman,W.-K. Tung, and other members of the CTEQ Collabo-ration. We also appreiate disussions of related topiswith A. Belyaev, B. Harris, R. Vega, W. Vogelsang,and S. Willenbrok. We thank S. Kretzer for theorrespondene on the saling variable in the ACOTfatorization sheme and R. Salise for the partiipationin early stages of the projet. The work of P. M. N. andF. I. O. was supported by the U.S. Department of En-ergy, National Siene Foundation, and Lightner-SamsFoundation. The researh of N. K. has been supportedby a Marie Curie Fellowship of the European Commu-nity programme �Improving Human Researh Potential�under ontrat number HPMF-CT-2001-01221. Theresearh of C.-P. Y. has been supported by the NationalSiene Foundation under grant PHY-0100677.Appendix A: CALCULATION OF THEMASS-DEPENDENT C-FUNCTIONIn this Appendix, we derive the O(αS) part of thefuntion Cin

h/G(x, µF b, bM). This is the only O(αS) termin the heavy-quark W̃ -term that expliitly depends onthe heavy-quark mass M . This funtion appears in thefatorized small-b expression for the �b-dependent PDF�
P

in

h/A (x, b, {mq}, C1/C2):
P

in

h/A

(
x, b, {mq},

C1

C2

)
=

∫ 1

x

dξa
ξa

×Cin
h/a

(
x̂, µF b, bM ;

C1

C2

)
fa/A

(
ξa,

{
µF

mq

})
.(A1)



17To perform this alulation, we onsider a more ele-mentary form of Eq. (A1), whih represents the leadingregions in Feynman graphs in the limit Q → ∞. Thiselementary form an be found in Ref. [35℄, where it wasderived in the ase of e+e− hadroprodution. The fun-tion P
in

j/A (x, b, {mq}, C1/C2) is deomposed as
P

in

j/A

(
x, b, {mq},

C1

C2

)
=

∣∣∣∣Hj

(
C1

C2b

)∣∣∣∣

×Ũ (b)
1/2

P̂
in
j/A

(
x, b, {mq}, µ,

C1

C2

)
. (A2)Here Hj denotes the �hard vertex�, whih ontains highlyo�-shell subgraphs. Ũ denotes soft subgraphs attahedto Hj through gluon lines. P̂in

j/A(x, b, {mq}, C1/C2)onsists of subgraphs orresponding to the propaga-tion of the inoming hadroni jet. The jet part
P̂in

j/A(x, b, {mq}, C1/C2) is related to the kT -dependentPDF Pin
j/A(x, kT , {mq}, ζA), de�ned as

P
in
j/A(x, kT , {mq}, ζA) =

∑

spin

∑

color

∫
dy−d2yT

(2π)3

×e−ixp+

A
y−+ikT ·yT

×〈pA|ψ̄j(0, y
−,yT )

γ+

2
ψj(0)|pA〉 (A3)in the frame where pµ

A =
{
p+

A, 0,0T

}
, pµ

a ={
xp+

A,M
2/(2xp+

A),kT

}
, and p+

A → ∞. This de�nitionis given in a gauge η · A = 0 with η2 < 0. The kT -dependent PDF depends on the gauge through the pa-rameter ζA ≡ (pA · η)/|η2|.Let P̃in
j/A(x, b, {mq}, ζA) be the b-spae transform of

Pin
j/A(x, kT , {mq}, ζA) taken in d dimensions:

P̃
in
j/A(x, b, ζA, {mq}) ≡

∫
dd−2kT e

ikT ·b

×P
in
j/A(x, kT , ζA, {mq}). (A4)Note that our de�nition P̃

in
j/A(x, b, ζA, {mq}) di�ersfrom the de�nition in Ref. [45℄ by a fator (2π)2−d.The jet part P̂in

a/A(x, b, {mq}, C1/C2) is related to
P̃in

j/A(x, b, {mq}, ζA) in the limit ζA → ∞:
P̂

in
j/A

(
x, b, {mq},

C1

C2

)
= lim

ζA→∞

{
eS

′(b,ζA;C1/C2)

×P̃
in
j/A(x, b, {mq}, ζA)

}
, (A5)where S′(b, ζA;C1/C2) is a partial Sudakov fator,

S′(b, ζA;C1/C2) ≡
∫ C2ζ

1/2

A

C1/b

dµ̄

µ̄

k0
pA

pa
pA

pa

Figure 7: The Feynman diagram for the O(αS/π) ontribu-tions f
(1)

h/G
(x, µF /M) and limζA→∞ P̃

in(1)

h/G
(x, b, M, ζA).

×
[
ln

(
C2ζ

1/2

µ̄

)
γK (αS(µ̄))

−K

(
b;αS

(
C1

b

)
,
C1

b

)
− G

(
µ̄

C2
;αS(µ̄), µ̄

)]
.(A6)The de�nitions of the funtions γK , K , and G an befound in Ref. [34℄.We now have all neessary ingredients for the alula-tion of the O(αS/π) funtion Cin(1)

h/G (x, µF b, bM). Setting
j = h and A = G, and expanding Eqs. (A1,A2,A5), and(A6) in powers of αS/π, we �nd

Cin(1)
h/G (x, µF b, bM) = lim

ζA→∞

{
P̃

in(1)
h/G (x, b,M, ζA)

}

− f
(1)
h/G (x, µF /M) , (A7)where the supersript in parentheses denotes the orderof αS/π. In the derivation of this equation, we used thefollowing easily deduible equalities:

H
(0)

h = Ũ (0) = 1, (A8)
(
S ′

)(0)

= P̃
in(0)
h/G = Cin(0)

h/G = f
(0)
h/G = 0, (A9)

Cin(0)
h/h (x) = f

(0)
G/G(x) = δ(x − 1). (A10)The r.h.s. of Eq. (A7) an be alulated withthe help of the de�nitions for f

(1)
h/G (x, µF /M) and

P̃
in(1)
h/G (x, b,M, ζA) in Eqs. (2) and (A3,A4), respetively.A further simpli�ation an be ahieved by observingthat at O(αS/π) the limit η2 → 0 in P̃

in(1)
h/G (x, b,M, ζA)an be safely taken before the limit ζA → ∞, and, fur-thermore, for η2 = 0 the funtion P̃
in(1)
h/G (x, b,M, ζA)does not depend on ζA. Correspondingly, both objetsan be derived in the lightlike gauge from a single utdiagram shown in Fig. 7, where the double line orre-sponds to the fator γ+δ(p+

A − p+
a − k

′+)/2 in the ase of
f

(1)
h/G (x, µF /M) and γ+δ(p+

A − p+
a − k

′+)eik
′

T ·b/2 in thease of limζA→∞ P̃
in(1)
h/G (x, b,M, ζA).The di�erene between limζA→∞ P̃

in(1)
h/G (x, b,M, ζA) ≡

P̃
in(1)
h/G (x, b,M) and f

(1)
h/G (x, µF /M) resides in the ex-



18tra exponential fator eik
′

T ·b in P̃
in(1)
h/G (x, b,M). Re-markably, this fator strongly a�ets the nature of

P̃
in(1)
h/G (x, b,M). The loop integral over k

′

T in
f

(1)
h/G (x, µF /M) ontains a UV singularity, whih is regu-larized by an appropriate ounterterm. In the ACOTsheme, the UV singularity is regularized in the MSsheme if µF ≥ M , and by zero-momentum subtra-tion if µF < M . The result for the heavy-quark PDF
f

(1)
h/G (x, µF /M) is
f

(1)
h/G

(
x,
µF

M

)
=

{
P

(1)
h/G(x) ln (µF /M) , µF ≥M ;

0, µF < M. (A11)As expeted, f (1)
h/G (x, µF /M) exhibits the threshold be-havior at µF = M .In ontrast, the UV limit in the loop integral of

P̃
in(1)
h/G (x, b,M) is regularized by the osillating expo-nent eik

′

T ·b. Sine no UV singularity is present in
P̃

in(1)
h/G (x, b,M), it does not depend on µF and, there-fore, does not hange at the threshold. It is given by

P̃
in(1)
h/G (x, b,M) = P

(1)
h/G(x)K0(bM)

+ TRx(1 − x)bMK1(bM). (A12)Here K0(bM) and K1(bM) are the modi�ed Bessel fun-tions [78℄, whih satisfy the following useful properties:
lim

bM→∞
K0(bM) = lim

bM→∞
bMK1(bM) = 0; (A13)

K0(bM) → − ln (bM/b0) as bM → 0; (A14)
bM K1(bM) → 1 as bM → 0. (A15)The �infrared-safe� part Cin(1)

h/G (x, µF b, bM) of
P̃

in(1)
h/G (x, b,M) is obtained by subtrating

f
(1)
h/G (x, µF /M) as in Eq. (A7):

Cin(1)
h/G (x, µF b, bM)

∣∣∣
µF ≥M

= TRx(1 − x)

× (1 + c1(bM))

+P
(1)
h/G(x)

(
c0(bM) − ln

(µF b

b0

))
; (A16)

Cin(1)
h/G (x, µF b, bM)

∣∣∣
µF <M

= P̃
in(1)
h/G (x, b,M)

= Cin(1)
h/G (x, µF b, bM)

∣∣∣
µF ≥M

+P
(1)
h/G(x) ln

µF

M
. (A17)In these equations, c0(bM) and c1(bM) are the parts of

K0(bM) and bM K1(bM) that vanish at bM → 0 (f.Eqs. ( A13-A15)):
c0(bM) ≡ K0(bM) + ln

bM

b0
; (A18)

c1(bM) ≡ bMK1(bM) − 1. (A19)

If µF is hosen to be of order b0/b, no large logarithmsappear in Cin(1)
h/G (x, µF b, bM) at b → 0. At large Q, thesmall-b region dominates the integration in Eq. (17), sothat Cin

h/G(x̂, µF b, bM) e�etively redues to its masslessexpression [31, 32℄:
Cin(1)

h/G (x, µF b, bM)
∣∣∣
b→0

= TRx(1 − x)

−P (1)
h/G(x) ln

(µF b

b0

)
. (A20)The above manipulations an be interpreted in thefollowing way. At small b (b = b0/µF ≤ b0/M), wesubtrat from P̃

in(1)
h/G (x, b,M) its infrared-divergent part

P
(1)
h/G(x) ln(µF /M), whih is then inluded and resummedin the heavy-quark PDF fh/G(x, µF /M). The onvolu-tion of the resulting C-funtion with the PDF remainsequal to P̃

in(1)
h/G (x, b,M) up to higher-order orretions:

∑

a=h,G

Cin
h/a ⊗ fa/G = P

in(1)

h/G (x, µF b, bM) + O(α2
S).(A21)At large b (b > b0/M), the heavy-quark PDF fh/G isidentially equal to zero. To preserve the relationship(A21) below the threshold, one should inlude the abovelogarithmi term in the funtion Cin(1)

h/G (x, µF b, bM), asshown in Eq. (A17). The addition of an extra term
P

(1)
h/G(x) ln (µF /M) to Cin(1)

h/G (x, µF b, bM) at µF < M en-fores the smoothness of the form-fator W̃ (b,Q, x, z) inthe threshold region, whih, in its turn, is needed to avoidunphysial osillations of the ross setion dσ/dq2T .Appendix B: THE FINITE-ORDER CROSSSECTIONThis Appendix disusses the �nite-order ross setion
dσ̂FO/dΦ̂ that appears in the fatorized hadroni rosssetion (47). For the O(α0

S) subproess e + h → e + h,this ross setion is the same as in the massless ase:
(
dσ̂(e+ h→ e+ h)

dΦ̂

)

FO

=
σ0Fl

SeA

A1(ψ, ϕ)

2

×e2jδ(qT )δ(1 − x̂)δ(1 − ẑ), (B1)where, in aordane with the notations of Ref. [32℄,
σ0 ≡ Q2

4πSeAx2

(e2
2

)
,

Fl ≡ e2

2

1

Q2
. (B2)The ontribution of the gluon-photon fusion hannel is
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(
dσ̂(e+G→ e+ h+ h̄)

dΦ̂

)

FO

=
σ0Fl

4πSeA

αS

π
e2Qδ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
x̂(1 − x̂)

ẑ2

×TR

4∑

ρ=1

V̂ρ(x̂, Q
2, ẑ, q2T ,M

2)Aρ(ψ, ϕ), (B3)where Aρ(ψ, ϕ) denote orthonormal funtions of the lep-toni azimuthal angle ϕ and boost parameter ψ given inEq. (5). The struture funtions V̂ρ(x̂, Q
2, ẑ, q2T ,M

2) arealulated to be
V̂1 =

1

x̂2q̃2T

(
1 − 2x̂ẑ + 2x̂2ẑ2 − 4

M2x̂2

Q2

)

+
2ẑ

x̂

1

Q2
(5x̂ẑ − x̂− ẑ) +

+ κ1

(
4
q̃2T
Q2

ẑ2 + 2 − 8ẑ + 8ẑ2 − 4
M2

Q2

)
, (B4)

V̂2 = 8
1

Q2
ẑ2 − 4

M2

Q2

1

q̃2T
+ 4κ1 (−1 + ẑ) ẑ, (B5)

V̂3 =
2ẑ

x̂

qT
Qq̃2T

(
−1 + 2

(
1 +

q̃2T
Q2

)
x̂ẑ

)

+ 4κ1ẑ (−1 + 2ẑ)
qT
Q
, (B6)

V̂4 = 4
q2T
Q2q̃2T

ẑ2 + 4
q2T
Q2

ẑ2κ1. (B7)In Eqs. (B4-B7),
κ1 ≡ M2(1 − x̂)

ẑ2x̂q̃4T
. (B8)Appendix C: KINEMATICAL CORRECTIONIn this Appendix, we derive the kinematial orretions(20) and (21) that are introdued in the �avor-exitationontributions to σFO, as well as in σW̃

and σASY . Letus �rst onsider the O(αS) ross setion for the photon-gluon fusion, whih we write as
(
dσ(e+A→ e+H +X)

dΦ

)

γ∗G,FO

=

∫
dξb
ξb

∫
dξa
ξa
DH/h (ξb) fG/A (ξa)

×δ
((

1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
β(Φ). (C1)Here β(Φ̂) inludes all terms in the parton-level ross se-tion (dσ̂/dΦ̂)FO exept for the δ−funtion (f. Eq. (B3)):

β(Φ̂) =
σ0Fl

4πSeA

αS

π
e2h
x̂(1 − x̂)

ẑ2

× TR

4∑

ρ=1

V̂ρ(x̂, Q
2, ẑ, q2T ,M

2)Aρ(ψ, ϕ). (C2)The δ-funtion in Eq. (C1) an be reorganized as
δ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q̃2T
Q2

)
=

z Q2

√
Ŵ 4 − 4M2

(
q2T + Ŵ 2

)

[
δ
(
ξb − ξ+b

)

+δ
(
ξb − ξ−b

)
]
, (C3)where

ξ±b ≡ z
Ŵ 2 ±

√
Ŵ 4 − 4M2(q2T + Ŵ 2)

2M2
, (C4)and Ŵ 2 ≡ Q2 (1 − x̂) /x̂. We see that the mass-dependent phase spae element ontains two δ-funtions

δ(ξb − ξ+b ) and δ(ξb − ξ−b ), whih an be used to integrateout the dependene on ξb in Eq. (C1).It an be further shown that in the massless limit thesolutions ξb = ξ−b and ξb = ξ+b orrespond to the heavyquarks produed in the urrent and target fragmentationregions, respetively. When M → 0, the relationship(C3) simpli�es to
δ

((
1

x̂
− 1

)(
1

ẑ
− 1

)
− q2T
Q2

)
=

z Q2

Ŵ 2

[
δ
(
ξb − ξ0+b

)
+ δ

(
ξb − ξ0−b

)]
, (C5)where

ξ0+b = z

(
Ŵ 2

M2
− q2T + Ŵ 2

Ŵ 2
+ O(M2)

)
, (C6)

ξ0−b = z

(
q2T + Ŵ 2

Ŵ 2
+ O(M2)

)
. (C7)In this limit, the solution ξ0+b diverges (and, therefore,will not ontribute) unless z is identially zero. How-ever, aording to Eq. (39) and the last paragraph inSubsetion B of Setion V, at z = 0 the observed�nal-state hadron appears among remnants of the tar-get (θH ≈ 180◦ in the γ∗A .m. frame), i.e., away from



20the region of our primary interest (small and intermedi-ate θH). Hene, in the limit θH → 0 all dominant loga-rithmi ontributions as well as their all-order sums (the�avor-exitation ross setion and W̃ -term) arise onlyfrom terms proportional to δ(ξb−ξ−b ). The ontributions proportional to δ(ξb − ξ+b ) in the urrent fragmentationregion are suppressed.The integration over ξb with the help of Eq. (C3) leadsto the following expression for the ross setion (C1):
(
dσ(e+A→ e+H +X)

dxdQ2dzdq2Tdϕ

)

γ∗G

=

∫ ξmax
a

ξmin
a

dξa
ξa
fG/A(ξa, µF )

Q2

√
Ŵ 4 − 4M2

(
q2T + Ŵ 2

)

×
[
ẑDH/h(ξb, µF )β(Φ̂)

∣∣∣
ξb=ξ+

b

+ ẑDH/h(ξb, µF )β(Φ̂)
∣∣∣
ξb=ξ−

b

]
. (C8)Here the lower and upper integration limits ξmin

a and
ξmax
a are determined by demanding the argument of thesquare root in Eq. (C8) be non-negative and ξb ≤ 1; thatis,

ξmin
a = x


1 +

2M
(
M +

√
M2 + q2T

)

Q2


 ,

ξmax
a = min

[
x

(
1 +

M2 + z2q2T
z(1 − z)Q2

)
, 1

] (C9)for ξb = ξ+b , and
ξmin
a = x

(
1 +

1

z(1 − z)

M2 + z2q2T
Q2

)
,

ξmax
a = 1 (C10)for ξb = ξ−b . We see that, aording to the exat kinemat-is of heavy �avor prodution, the heavy quark pairs areprodued only when the light-one momentum fration

ξa is not less than ξmin
a (where ξmin

a ≥ x) and not morethan ξmax
a (where ξmax

a ≤ 1). The exat values of ξmin
aand ξmax

a are di�erent for the branhes with ξb = ξ+b and
ξb = ξ−b .Turning now to the �avor-exitation ontributions γ∗+
h→ h+X , we �nd that in those the integration over ξaa priori overs the whole range x ≤ ξa ≤ 1. Indeed, inthose ontributions the heavy antiquark in the remnantsof the inident hadron is ignored, so that the reationan go at a lower .m. energy Ŵ than it is allowed by theexat kinematis. Sine the PDF's grow rapidly at small
x, the naively alulated total ross setion σTOT tends toontain large ontributions from the unphysial region ofsmall x and disagree with the data. To �x this problem,we use Eq. (C10) to derive the following saling variablein the �nite-order �avor-exitation ontributions:

χh = x

(
1 +

1

z(1 − z)

M2

Q2

)
. (C11)This variable takes into aount the fat that the inom-ing heavy quark in the �avor-exitation proess appears

from the ontributions with ξb = ξ−b in the �avor-reationproess, and that the transverse momentum zqT of thisquark in the �nite-order ross setion is identially zero.Similarly, we notie that the W̃ -term σ
W̃

and its �nite-order expansion σASY ontain the �b-dependent PDF's�
P

in

h/A (x, b,M,C1/C2), whih orrespond to the inom-ing heavy quarks with a non-zero transverse momentum.Aording to Eq. (C10), the available phase spae inthe longitudinal diretion is a dereasing funtion of thetransverse momentum zqT , and it is desirable to imple-ment this phase-spae redution to improve the anella-tion between σ
W̃

and σASY at large qT . In our alula-tion, this feature is implemented by evaluating σ
W̃

and
σASY at the saling variable

χ′
h = x

(
1 +

1

z(1 − z)

M2 + z2q2T
Q2

)
, (C12)whih immediately follows from Eq. (C10).Despite the apparent omplexity of the saling vari-ables (C11) and (C12), they satisfy the following impor-tant properties:1. They are straightforwardly derived from the ex-at kinematial onstraints on the variable ξa inEqs. (C9) and (C10).2. They remove ontributions from unphysial valuesof x at all values of Q and qT , thus leading to betteragreement with the data.3. In the limit Q2 ≫ M2, the variable χh in σFO re-dues to x (f. Eq. (C11)), so that the standardfatorization for the massless �nite-order ross se-tions is reprodued.4. In the limit Q2 ≫ M2 and Q2 ≫ q2T , the variable

χ
′

h in σ
W̃

and σASY redues to x (f. Eq. (C12)),so that the exat resummed ross setion is repro-dued.



21Finally, onsider the integration of the ross setion (C8)over z, q2T , and ϕ to obtain the O(αS) γ∗G ontributionto an inlusive DIS funtion F (x,Q2). We �nd that
F (x,Q2)

∣∣
γ∗G,O(αS)

=

∫ 1

ξ′

a

dξa
ξa
C

(1)
H/G

(
x

ξa
,
µF

Q
,
M

Q

)

× fG/A

(
ξa,

{
µF

mq

})
, (C13)where the lower limit of the integral over ξa is given by

ξ
′

a = x

(
1 +

4M2

Q2

) (C14)for both solutions ξb = ξ+b and ξb = ξ−b . This value of

ξ
′

a an be easily found from Eqs. (C9) and (C10), giventhat qT ≥ 0, 0 ≤ z ≤ 1, and z(1 − z) ≤ 1/4 in theinterval 0 ≤ z ≤ 1. Sine in the γ∗G ontribution theintegration over ξa is onstrained from below by ξ′

a > x,it makes sense to implement a similar onstraint in the�avor-exitation ontributions by introduing the sal-ing variable χh = x(1 + 4M2/Q2). This variable is pre-isely the one that appears in the reent version of theACOT sheme with the optimized treatment of the in-lusive struture funtions in the threshold region [29℄.Our saling variables extend the idea of Ref. [29℄ to thesemi-inlusive and resummed ross setions.
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