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Abstract: Over-height trucks are continuously striking low clearance overpasses and tunnels. This has led 12 

to significant damage, fatalities, and inconvenience to the public. Smart systems can automatically detect 13 

and warn oversize trucks, and have been introduced to provide the trucks with the opportunity to avoid a 14 

collision. However, high cost of implementing these systems remains a bottleneck for their wide adoption. 15 

This paper evaluates the feasibility of using computer vision to detect over-height trucks. In the proposed 16 

method, video streams are collected from a surveillance camera attached on the overpass/tunnel, and 17 

processed to measure truck heights. The height is measured using line detection and blob tracking which 18 

locate upper and lower points of a truck in pixel coordinates. The pixel coordinates are then translated 19 

into 3D world coordinates. Proof-of-concept experiment results signify the high performance of the 20 

proposed method and its potential in achieving cost-effective monitoring of over-height trucks in the 21 

transportation system. The limitations and considerations of the method for field implementation are also 22 

discussed. 23 
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1. Introduction 25 

Semi-trucks are a major form of transportation unit in the United States delivering nearly 70 percent of all 26 

freight tonnage [1]. The large percentage of tonnage signifies the importance of unhindered flows of these 27 

trucks across the nation. One of the areas where this evolves into a problem is during the transportation of 28 

freight on routes with low clearance overpasses (a bridge, road, or railway that crosses over another road 29 

or railway) and tunnels. There are a considerable number of old low clearance overpasses in the U.S. and 30 

the world, which cause accidents associated with collisions of trucks with overpasses. In a study 31 

conducted by the University of Maryland where all states were polled and 29 states responded, 18 of 32 

those 29 or 62% stated they consider over-height collisions a serious problem [2].  33 

Accidental crashes of over-height trucks with overpasses and tunnels have been continuously reported 34 

over the years [3,4,5,6,7]. Even though the frequency of these accidents might not be thought significant, 35 

the costs they involve are considerably high. The damages involve direct costs related to injuries or 36 

fatalities for drivers or pedestrians and clearing/restoring the overpass/tunnels and underway roads, as 37 

well as indirect costs charged due to traffic delays. For example, an over-height truck collision with the 38 

Melbourne’s Burnley tunnel on April 17, 2013 led to a damage loss and traffic jam cost which was up to 39 

one million dollars [6]. In terms of the frequency of over-height collisions, 14 (3%) out of 503 bridge 40 

failures in 1989-2000 were due to vehicle /structure collisions [8]. Agrawal et al. [9] reported that bridges 41 

in New York State have been experiencing approximately 200 strikes annually by over-height trucks. In 42 

Beijing, it was reported that approximately 20% of the overpasses are associated with over-height 43 

collisions [3]. Based on these statistics, and despite the fact that occurrences of over-height truck 44 

collisions are not as frequent as other traffic accidents such as vehicle collisions, the consequence of over-45 

height collisions are usually quite severe [2].  46 

In order to avoid these accidents and to reduce involved costs, it is beneficial to have a warning 47 

system that detect an over-height truck and notify its driver ahead of the presence of the low clearance 48 

overpass/tunnel. In the United States, many states have started deploying warning systems using laser or 49 

infrared light [10]. The systems (except for laser profiling units) generally consist of 1) a transmitter and 50 
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2) a receiver mounted on opposite sides of the road, 3) loop detectors under the road, and 4) a visual/aural 51 

warning system [11]. However, the high cost of implementing the systems constraints the wide use of 52 

those technologies [12]. In addition, the installation of loop detector requires temporary road closure 53 

causing another indirect cost. In contrast to the laser- or infrared-based systems, a vision-based system 54 

can be a cost-efficient alternative and resistant to false alarms. In the system, the aforementioned three 55 

components 1)-3) can be replaced with one or more cameras and an embedded processor running 56 

computer vision algorithms. This paper introduces an overall framework of the system and evaluates a 57 

vision-based method for measuring truck heights as a part of the framework. The method combines line 58 

segmentation and blob tracking in order to detect lines on the top and bottom of the truck. Two points are 59 

selected as they comprise a vertical line perpendicular to the road plane. The length of the line determines 60 

the truck height in 2D coordinates which can then be translated into 3D space. This process also involves 61 

unit conversions from pixel to a length unit such as meter or feet by use of a fixed reference object height. 62 

The present research signifies the potential of achieving cost-effective solution of preventing possible 63 

collision between over-height trucks and low-clearance overpass/tunnels by simply utilizing existing 64 

surveillance systems. Furthermore, the low cost will allow the system’s broader applications. For instance, 65 

it can be applied at the entrance to parking decks where over-height vehicles are prohibited. The proposed 66 

system is also applicable to luggage handling systems in airports.  67 

 68 

2. Background 69 

2.1 Protective measures for overpass/tunnel crash accidents prevention 70 

To prevent the over-height collisions, a couple of protective measures have been implemented. For 71 

example, in the United States, permits are required for the trucks over 13’-6” (4.12 m) [13]. 13’-6” is the 72 

allowed legal height of trucks. In general, the protective measures can be categorized as: 1) providing a 73 

listing of restricted structures on federal/state-maintained roadways for truck drivers to plan their travel 74 

routes ahead of time, to avoid where low clearance overpass/tunnels may occur, 2) installing signs along 75 

the road or on the overpass/tunnel, informing drivers of the low clearance of the structure, 3) enforcing 76 
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detour of the over-height trucks and providing get-around directions over the road, and 4) installing a 77 

sacrificial system in which an audible alarm is made when over-height vehicles hit a physical obstruction 78 

[14] such as chains, metal strips, or sacrificial beams installed at the overpass/tunnel height in advance of 79 

the overpass/tunnel. These measures play a positive role in protecting existing structures from over-height 80 

truck collisions. However, their effects are limited. The measures 1)-3) highly rely on drivers’ attention 81 

and do not eradicate the collision problem. It is still drivers’ responsibility to confirm clearance heights 82 

along their routes. As a result, crash accidents continue to occur in that truck drivers often accidentally 83 

ignore the structure clearance [2, 6]. In addition, outdated low clearance overpass/tunnels exist that have 84 

not been marked on the drivers’ maps. As to the measure 4), although sacrificial beams cause damages on 85 

trucks, a statistically high detection rate and a low false alarm rate may be achieved. A truck driver would 86 

appreciate that a little damage incurred to the truck will prevent catastrophic damages. However, if the 87 

driver has noticed a low clearance ahead while still needing to hit the detecting chains and metal strips to 88 

let the truck pass through, the inconvenience of being hit or a small damage becomes a disadvantage of 89 

this approach. Moreover, chains and metal strips may not provide an alarm loud enough to be heard inside 90 

trucks [15]. A more preventive way is having a warning system that can detect an over-height truck and 91 

notify its driver ahead of the presence of the low clearance overpass before a collision occurs [16]. The 92 

remainder of this section first reviews the implementation of existing over-height warning systems, the 93 

context within which this paper lies. The review is then followed by current research in vision-based 94 

height measurement, on which this paper is based.  95 

 96 

2.2 Over-height vehicle warning systems 97 

Over-height vehicle warning system, also called Early Warning Detection System (EWDS) is an active 98 

system. It automatically detects the existence of an over-height vehicle for a particular tunnel or overpass 99 

and warns the driver of the vehicle of the pending danger before a collision with the structure occurs. 100 

Sinfield [17] provided an overview on existing commercially available EWDSs and the state of their 101 

implementation in U.S. Based on his review, the majority of existing systems fall into the categories of 102 
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utilizing the sensing technologies of visible beam, laser (acronym for Light Amplification by Stimulated 103 

Emission of Radiation), or infrared, all of which rely on the interruption of a beam or sheet of light to 104 

identify a vehicle exceeding a predefined height threshold or to construct the profile of a vehicle that can 105 

be translated into accurate vehicle dimensions.  106 

 Visible beam systems are the types of optoelectronic sensors. They operate by emitting a beam of 107 

visible light from a source unit to a detection unit that either processes the light or reflects it back. In 108 

general, the cost of visible beam systems is low, but they are unreliable to ambient light and inclement 109 

weather that are particularly common in outdoor conditions. Systems that utilize laser are generally 110 

divided into laser sheet systems [18] and laser profiling systems [19]. The former works by generating a 111 

plane of one or more laser beams that is interrupted by a passing object. The latter reconstructs the point 112 

cloud of a passing object such that the object’s height can be easily interpreted. It is worth mentioning 113 

that the cost of laser profiling systems is particularly high and the effect of these systems is limited to 114 

moving traffic with slow speed. As a result, they tend not to be used solely for overheight vehicle 115 

detection. Similar to laser systems, infrared systems work by directing a focused beam of light in the 116 

infrared region of the optical spectrum from a transmission unit to a reflective target or detection unit. 117 

Both laser and infrared systems present more robust features for outdoor use than visible beam systems. A 118 

typical infrared/laser system (except for the laser profiling system) consists of 1) a transmitter and 2) a 119 

receiver mounted on opposite sides of the road, 3) loop detectors under the road, and 4) a visual/aural 120 

warning system [11]. In this system, the transmitter mounted on a pole at the height of the bridge 121 

clearance emits the laser or infrared beam. The interference of the beam due to the appearance of a truck 122 

activates a warning system that informs the driver with flashers and/or audible alarms. Loop detectors 123 

identify the appearance of a vehicle and their lanes [11]. The identification is used to remove false 124 

detections caused by non-vehicles such as birds and flapping tarps. Many states in the U.S. have started 125 

deploying warning systems using laser or infrared [10]. It is reported the decrease of accidents after the 126 

systems began operation [12]. The use of infrared light is more dominant than laser in these systems, 127 

being considered safer and more durable in various environments than laser (e.g., better penetration of 128 
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rain and fog). However, the high cost of implementing the systems restricts the wide use of these 129 

technologies [20]. For example, the deployment of the system in both directions of a road in Maryland 130 

cost a total of $146,000 [21]. Moreover, the installation of loop detector needs temporary road closure 131 

causing another indirect cost. 132 

 133 

2.3 Computer vision based height measurement 134 

As an alternative to the laser- or infrared-based system, a vision-based over-height vehicle detection 135 

system has the potential of being cost-efficient since it can identify truck heights only with one or more 136 

cameras for each direction, equipped with a processor unit. As video is one of the major data types that 137 

most DOTs daily collect, continuous research efforts have been made on the application of computer 138 

vision algorithms for intelligent transportation systems (ITS). For instance, automated detection [22,23] 139 

and tracking [24,25] of vehicles have drawn great interests and been extensively investigated for counting 140 

vehicles and extracting their trajectories, which are essential information in monitoring and analyzing 141 

traffic conditions.  142 

The vision-based vehicle monitoring generally works as follows. Once the cameras are positioned, 143 

their video streams are processed by an embedded processor unit to identify and locate vehicles. This 144 

processing involves three steps: camera calibration, vehicle detection, and vehicle tracking. Camera 145 

calibration provides a transformation between image pixel coordinates and real-world road-plane 146 

coordinates [26]. The transformation is necessary to obtain the width and height of a vehicle in metric 147 

units and to identify which lane the vehicle appears in. Vehicle detection recognizes a new vehicle 148 

entering the view, and the detected vehicles are tracked by a tracking method.  149 

Measuring the height of on-road vehicle in videos has been investigated in a few research works [27, 150 

28]. In Khorramshahi et al.’s work [27], feature points on a truck are located and tracked while the truck 151 

passes through a cubic virtual zone which is as high as clearance. Based on the relative positions of the 152 

tracked feature points and the virtual zone, it judges whether the truck height is over the clearance or not. 153 

However, creating the virtual zone, which acts an important role in calibration, requires manual marking 154 
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in the captured video frames. The marking refers to the bounding box that defines the length, width, and 155 

height of the virtual zone. It should be done based on the dimension of any vehicle that passes the zone. 156 

Therefore, it needs a priori knowledge about the vehicle dimension. In addition, because this method 157 

deals with the detection in the image pixels and through comparison with the predefined bounding box, it 158 

does not calculate the exact height of a vehicle. Shao et al. [28] proposed an automated method to identify 159 

the height of moving objects from un-calibrated videos by use of vanishing line of the scene. In this 160 

method, trajectories of moving objects are statistically modeled to determine the vanishing lines of scene. 161 

Despite its novelty, it is not applicable to general roadway scenes because two vehicles moving in two 162 

non-parallel directions should be present in the views for their automated calibration method. There is a 163 

need for creating a new method that is capable of utilizing existing roadway features available for 164 

measurement of on-road truck heights.  165 

 166 

3. Methodology 167 

The objective of this paper is to propose an automatic, ubiquitous, and inexpensive method to determine 168 

the height of on-road trucks in digital video collected from a fixed camcorder. Vision-based systems 169 

currently have a limitation of low performance in night time. However, night time imaging technologies 170 

are continuously advancing, increasing the applicability of the computer vision technologies. In other 171 

words, vision-based systems have a potential to be a valid tool for night time applications in near future. 172 

An additional obstacle is inclement weather which is reported also as an obstruction to infrared/laser 173 

system [29]. Low cost allows for wide spread implementation of vision-based systems, and the value of 174 

the information it can provide is expected to outvalue the cost. Also, for the states that have already 175 

employed the infrared/laser system, the vision-based approach can be a cost-effective supplement to the 176 

infrared/laser system enhancing the detection accuracy. It should be noted that this research focuses on 177 

flat, single or double lane per direction roadways, daytime lighting, and one-directional flow for video 178 

processing. 179 
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The schematic overview of the proposed vision-based EWDS is illustrated in Fig. 1. Each single 180 

surveillance camera is mounted on a fixed position facing the roadway traffic on each lane. Such 181 

deployment is to reduce the possibility of parallel vehicle occlusion. As a truck is measured and its height 182 

exceeds a predefined threshold, the warning bell will sound to signal the danger of an over-height 183 

collision. The sign message guides the truck driver to an alternative route where the driver can exit the 184 

current roadway and avoid collision with the overpass [17]. The warning bell and messages need to be 185 

delivered to the drivers early enough so that the trucks can smoothly enter the re-routing road without 186 

interrupting the traffic. The technical framework of the system is shown in Fig. 2. Video frames are 187 

obtained from each camera and Gaussian smoothing is applied to every frame to reduce image noise. The 188 

method then takes two parallel paths: field of view calibration and truck detection. The former reveals the 189 

principal axis and the Manhattan structure to establish field of view geometry, and the latter locates the 190 

truck region based on the motion and shape features. The results of the two paths are combined to 191 

calculate truck heights. The result is an estimate of a truck height, ready to be used in a EWDS. The 192 

details of these framework components are presented below. 193 

Insert Figure 1 here 194 

Insert Figure 2 here 195 

 196 

3.1 Field of view calibration  197 

Once a camera view is fixed, three orthogonal axes comprising of the Manhattan structure [30] in real 198 

world coordinate system have to be found. The three axes consist of the principal axis along the direction 199 

of the road (or the traffic flow) (x-axis), a vertical axis perpendicular to the road plane (z-axis), and the 200 

other orthogonal to the formers (y-axis). The orthogonal axes are defined by three vanishing points. The 201 

following describes the way to find the axes. First, all line segments in the camera view are detected using 202 

the Line Segment Detector (LSD) [31]. The detected line segments are then grouped as they converge to 203 

the same vanishing points. This framework recommends using the J-Linkage algorithm [32] together with 204 

the Expectation-Maximization (EM) [33] to perform the grouping. It is because, unlike other estimators 205 
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such as multi-RANSAC [34], applying J-Linkage does not need to have the knowledge of the number of 206 

models (i.e., vanishing points) in the image, and using EM increases the resistance to errors that a set of 207 

line segments of a vanishing point is falsely divided into two groups [35]. A number of line segment sets 208 

and their corresponding vanishing points will be accordingly generated. In Fig. 3, the line segment sets 209 

are illustrated in different colors. It can be easily seen that the blue lines form the majority and are thus 210 

determined to be a principal axis. Following this, a set of line segments that are orthogonal to this 211 

principal axis is found by checking the orthogonality with the following equation. 212 

       vT
wvm = 0 213 

v is the vanishing point of the candidate line segment set, vm is the vanishing point of the principal axis, 214 

and the w is the Image of Absolute Conic (IAC) calculated via the 3 × 3 matrix of the camera internal 215 

parameters [36]. The camera internal parameters can be achieved through camera calibration. Next, a 216 

similar procedure is applied in search of the third set of line segments. In this procedure, the difference is 217 

that the framework takes the search objective as the minimum of the sum of squares of every two sets. 218 

This will result in the most orthogonal triplet of line segments, which makes up the Manhattan structure 219 

(Fig. 4). It is worthwhile to note that all calibration procedures are performed online and fully automated. 220 

This enables the flexibility of the surveillance video being installed, which allows for fine-tuning pan or 221 

tilt angles of the lens even after the camera has been installed on spot. 222 

Insert Figure 3 here 223 

Insert Figure 4 here 224 

 225 

3.2 Truck detection  226 

In order to calculate truck heights, truck regions in video frames have to be located. The truck detection 227 

employs two algorithms – blob detection [37,38,39] and HOG (Histogram of Oriented Gradients) 228 

detection [40]. First, the blob detection creates/updates a background model of static background scene 229 

and detects the regions of moving objects by comparing incoming video frames with the background 230 
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model. The detected regions are called blobs. The blob detection narrows down the candidate regions of 231 

trucks and reduces false positives of the HOG detection. The HOG feature which is a well-known shape 232 

feature is used to locate the trucks within the detected blobs. The output is a bounding box enclosing the 233 

truck.  234 

 235 

3.3 Truck height determination 236 

This section deals with a new algorithm for calculating truck heights. This algorithm is applied to the 237 

regions of bounding boxes obtained by truck detection. The linear workflow of the algorithm is shown in 238 

Fig. 5. First, a line segment corresponding to the top boundary of a truck is obtained. All line segments 239 

inside a bounding box are detected by LSD method (Fig. 6(a)), and those whose direction is along the 240 

principal axis are selected. From the obtained line segments, the one whose left end point is closest to the 241 

top left corner of the bounding box is determined as a top boundary of the truck (Fig. 6(b)). The above 242 

works when the camera is placed, from the truck driver’s perspective, to the right hand side of the truck. 243 

If the camera is positioned to the left hand side of the truck, the one whose right end point is closest to the 244 

top right corner of the bounding box will be selected as a top boundary of the truck. Second, the truck’s 245 

bottom boundary is located. The blob image of the truck is obtained by using blob detection (Fig. 7(a)). 246 

Then, the boundaries (i.e., a set of pixel lines) of the blobs are extracted by applying the Canny edge 247 

detection [41] to the blob image (Fig. 7(b)). This allows for detection of the bottom boundary of the truck. 248 

The method first selects all edge pixels that are nearest to the bottom along the horizontal direction of the 249 

image. Then the top boundary is projected downward intersecting with the resulting pixel edges to 250 

determine the start and end locations of the bottom boundary. Fig. 7(b) indicates the bottom boundary of 251 

the truck annotated by yellow arrows. It is noteworthy that the blobs in this research result from the 252 

moving truck. Therefore, the trajectory of the truck wheels forms a region (Fig. 7(a)) in which the 253 

contacts of the truck wheels and the road surface result in a continuous and near-linear pixel line. The 254 

pixel line results from the truck wheel instead of shadow. It is used to detect the bottom boundary of the 255 

truck in the image. Fig. 8 shows an example of obtaining the bottom boundary when the area below the 256 
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truck is not fully filled with the shadow. In this case, the height is determined by the bottom point of the 257 

wheels.  258 

Insert Figure 5 here 259 

Insert Figure 6 here 260 

Insert Figure 7 here 261 

Insert Figure 8 here 262 

The subsequent step is to measure the truck height in pixel units. The height is measured by locating 263 

two points – one on the top boundary and the other on the bottom – that forms a vertical line (in z-axis 264 

direction). It should be noted that the top boundary in Fig. 6(b) is a straight line in the same direction of 265 

the principal axis (in vector image format) while the bottom one in Fig. 7(b) is winding (in raster image 266 

format). Hence, any point on the top boundary can be considered as a reference point, but finding the 267 

reference point on the bottom boundary is challenging. The remaining task is to find the correct part that 268 

lies on the actual bottom line corresponds to the top boundary. The following details the procedure of this 269 

task. The top boundary line is divided into n fragments by same length, which locates (n+1) points on the 270 

line. From each point, line scanning in z-direction (i.e., the vertical direction perpendicular to the road 271 

plane) is executed to search for the intersection with the bottom boundary. In this way, n sub-segments of 272 

the bottom boundary are obtained. From the sub-segments, one whose inclination is the closest (or the 273 

most parallel) to the top boundary line in the real world coordinate system is selected as the correct part of 274 

the bottom line. This also enables to avoid any falsely selected reference point that does not lie on the 275 

bottom boundary such as a small noise line segment. A small noise line segment may be generated from a 276 

road marking due to the imperfection of the blob detection algorithms. Next, the height in pixel units is 277 

measured simply by calculating the distance between an end point of the selected sub-segment on the 278 

bottom and the corresponding point on the top boundary line (Fig. 9).  279 

Insert Figure 9  here 280 

The final step is to convert 2D truck height in pixel units into 3D height in real world length units so 281 

as to compare with the overpass clearance. Single view metrology [42] is employed in this process. It 282 
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takes known dimensions of objects in the camera view as input data. The road width and the length of the 283 

lane line pattern are good reference dimensions in y and x directions of the Manhattan structure, 284 

respectively. Based on the reference dimensions, the 2D height calculated in the image frames can be 285 

converted to a height value in real world units.  286 

 287 

4. Implementation and Results 288 

4.1 Implementation 289 

A prototype was implemented to test the proposed method. This prototype was built upon a platform 290 

named “Gygax”, which has been developed in house using Microsoft Visual C# in .NET Framework 4.0 291 

Environment. Videos were recorded in an “mts” format using Canon VIXIA HF series camcorders. The 292 

“mts” format is then converted into an “avi” format from which “Gygax” can extract image frames in 293 

various formats such as “jpg” and “png”. The original videos were recorded in 1280x720p resolution in 294 

color at the rate of 30 fps. During the process of video processing, they were converted to gray scale 295 

images as required. Fig. 10 shows the screenshots of applying the implemented prototype to measuring 296 

on-road truck heights in videos. Fig. 10(a) is the initial user interface of the prototype. Once a video is 297 

recorded and saved. The user can browse the folder to select the video into the prototype (Fig. 10(b)). 298 

Processing the video data in this prototype needs the user to click the “Truck Height Measurement” 299 

button in the “Tools” menu. Fig. 10(c) shows the result of the truck height measurement. Besides, the raw 300 

video and intermediate results such as Manhattan structure and blob detection are also provided on the 301 

result interface as shown in Fig. 10(c). It is worth mentioning that this prototype also implemented a 302 

dynamic-link library (DLL). It enables video streams to be directly read and transmitted from a camera to 303 

the prototype via wired connection. The DLL promises the automatic computing of the truck heights from 304 

video streams collected in real-time, making it potential for use in an Early Warning Detection System.   305 

Insert Figure 10  here 306 

In the process of implementing the prototype, the Manhattan structure algorithm, which searches the 307 

principal axis of the roadway and the three vanishing points, was validated on its accuracy and 308 
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consistency. To this end, a two-minute video was recorded using a Canon VIXIA HF S100 camera. The 309 

camera was placed facing a road - Northside Drive in Atlanta, GA, which is located at prior to the 310 

intersection of the 17th street. The heading of the camera was configured to have an angle of 30 degrees 311 

with respect to the direction of the road. Having the camera angle fixed during video recording, fifty 312 

frames were extracted from the resulting stream. Based on each frame, the Manhattan structure algorithm 313 

found the principal axis and determined the vanishing points. Fig. 11 shows a summary of the obtained 314 

results from which the number of line segments along the principal axis and the cumulative histograms of 315 

the vanishing points’ consistency errors were delineated. Fig. 11(a) shows the total number of detected 316 

line segments that belong to the maximum detection group in each frame. The group of line segments 317 

aligns along the same direction and serves as a basis for determination of the principal axis with the use of 318 

the Manhattan structure algorithm. Fig. 11(a) put here has two main purposes. First, it shows that the 319 

group in each frame used for determining the principal axis contains sufficient line segments. Second, it 320 

reveals the consistency of the algorithm in detecting the direction of the principal axis in each frame. Fig. 321 

11(b) presents the cumulative histograms of the vanishing points’ errors. It indicates the pixel accuracy 322 

and detection consistency of the algorithm for three Manhattan structure axes on each frame. For example, 323 

according to Fig. 11(b), the vanishing point #1 has the lowest pixel error and the most consistent 324 

performance in each frame. The average number of line segments along the principal axis was 295. The 325 

three vanishing points determined based on each frame have an average deviation of 3.24 pixels, 3.86 326 

pixels, and 5.32 pixels respectively.  327 

Insert Figure 11 here 328 

The detection performance was also evaluated based on precision and recall. Precision is the ratio of 329 

the number of trucks retrieved to the total number of irrelevant and relevant records retrieved, while recall 330 

is the ratio of the number of trucks retrieved to the total number of trucks appeared in the video frames. 331 

The size of the HOG feature template was set as 104 × 136, and the bin size is set as 9. Depending on the 332 

hit threshold value, precision and recall vary as shown in Fig. 12. In this research, recall is more critical 333 

factor than precision since low recall increases the fraction of missed trucks. In other words, some trucks 334 
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may not be detected and their heights will not be calculated at all. Therefore, it affects the overall 335 

performance of detecting over-height vehicles. In contrast, low precision increases the fraction of 336 

irrelevant instances retrieved. For example, other types of vehicles such as sedans and SUVs (Sport 337 

Utility Vehicles) are detected. However, it does not affect the overall performance as the irrelevant 338 

instances will be discarded in the next step if their heights are accurately calculated. Accordingly, the 339 

threshold is determined 0.4 which scores 0.996 of recall and 0.840 of precision. Fig. 13 shows examples 340 

of the detection results. Fig. 13(a), (b) and (c) show the cases when trucks were located accurately with 341 

bounding boxes while the Fig. 13(d) shows the cases when irrelevant instance (sedan) was detected. Fig. 342 

13(c) is a result in a congested condition on a rainy day. Though the truck was moving extremely slowly 343 

with other vehicles on both the front and the rear sides, the whole truck face was clear in the view and the 344 

truck was detected successfully at a certain point on the road.  345 

Insert Figure 12 here 346 

Insert Figure 13 here 347 

Also, in the process of implementing the prototype, three methods of blob detection were 348 

implemented to find the best option for this specific case of detecting the bottom region of trucks. The 349 

methods are the median filter method [37], the mixture of Gaussian method [38], and the color co-350 

occurrence method [39]. The results of this experiment are shown in Fig. 14. The primary criterion of 351 

selecting the blob detection method is the density since its main role is to extract the bottom boundary. 352 

Faint bottom edges often result in false or no detection of the bottom point of the height. Therefore, the 353 

selection is made mainly based on the density. The median filter method is selected as the most 354 

appropriate since it provides the most dense region detection on the bottom of trucks. The density was 355 

measured by GIMP (GNU Image Manipulation Program) [43]. The median filter method generated 37.4% 356 

white pixels (i.e., the ratio of the number of while pixels over the number of the entire pixels in the 357 

image), while the mixture of Gaussian method and color co-occurrence method generated 32.6% and 16.5% 358 

white pixels, respectively. The density and the noise of the blob detection can be controlled by adjusting 359 

the parameters associated with each method. The results in Fig. 14 were obtained by tuning the 360 
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parameters in such a way that the density is increased and the noise is reduced on the bottom area of the 361 

truck. In terms of the parameter setting, the median filter method is easy to handle since it only has a 362 

single threshold parameter while the other two are associated with 4 or more parameters. Through the 363 

tests, the appropriate threshold parameter in the median filter method was determined to be 30, and this 364 

value was used consistently in the following experiments.  365 

Insert Figure 14 here 366 

This section does not particularly validate the detection accuracy of top and bottom boundaries of a 367 

truck. This paper directly validates the final truck height measurement, which indeed integrates the 368 

validity of the method in detecting the top and bottom boundaries of a truck. To test the performance of 369 

the implemented prototype, experiments were carried out in which twenty-five videos were collected at 370 

the locations of a low clearance (LC) bridge over the Northside Drive in Atlanta, GA prior to the 371 

intersection of 17th street, and a Personal Rapid Transit (PRT) bridge near the intersection location of the 372 

US 19 and Evansdale Drive in Morgantown, WV, respectively. Each video stream was 6-10 minute in 373 

length. The videos were collected using a Canon VIXIA HF S100 camera or a Canon VIXIA HF M50 374 

camera. The cameras ware mounted on a heavy-duty tripod to prevent human involved movement or 375 

vibration during video recording. The detailed experimental setup concerning camera configuration and 376 

video collection is summarized in Table 1. Note in Table 1, the view angle refers to the angle between the 377 

camera light of sight and the roadway alignment. 378 

Insert Table 1 here 379 

Three parameters – (1) accuracy of height measurements in 2D pixel coordinates, (2) accuracy of 380 

height measurements in 3D real world coordinates, and (3) detection error rate – are considered to 381 

evaluate the performance of the proposed methodology. The parameters (1) and (2) are measured by 382 

comparing with actual ground truth data. The ground truth data for the parameter (1) is obtained by 383 

manual measurement. However, the ground truth data for the parameter (2), the actual height of a truck 384 

traveling on the road, is unknown. Therefore, a sample set of trucks with known heights was taken from 385 

the videos and tested separately for this purpose. Information regarding the heights of these trucks that 386 
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serve as ground truth are obtained by referring to the truck manufacturers or moving equipment and 387 

storage rental companies such as U-Haul. These business companies’ official websites provide 388 

specifications that clearly indicate the dimensions of their trucks. The tested trucks are categorized into 389 

two classes – semi-trucks with standard trailers and box trucks. Total 120 trucks, 60 for each category, 390 

were tested to measure the performance of the proposed method.  391 

 392 

4.2 Results 393 

The measurements of the three metric parameters are statistically analyzed, which are summarized in 394 

Table 2. Table 2 indicates the overall effectiveness of the proposed method. For the experiment at the 395 

bridge in Atlanta, the heights 58 trucks out of 60 were successfully measured. There were two instances 396 

of failure in measuring truck heights, which results in 3.3% of detection error rate. The detected 2D image 397 

height when compared to the actual 2D image height boasts a 97.52% accuracy rate for the 58 measured 398 

trucks. This accuracy rate for estimated 3D truck height when compared to the actual 3D truck height 399 

drops slightly to 96.59%. The experiment at the PRT bridge in Morgantown had a result that 57 truck 400 

heights out of 60 were successfully measured, leading to a detection error rate of 5%. Fig. 15 shows a 401 

snapshot of processing the PRT bridge video with Gygax. The detected 2D image height and 3D physical 402 

height of trucks yielded an accuracy rate of 96.23% and 94.96% respectively. It can be observed that the 403 

results of the two experiments are comparable to each other. The accuracy rate of the physical truck 404 

height is lower than that of the image truck height. This can be attributed to the inaccuracy of the 405 

vanishing line and point detection. The average accuracy record, which is around 96%, signifies that the 406 

proposed method is highly accurate in measuring the height of trucks from streaming videos. The fact that 407 

the method missed two/three trucks out of 60 calls for further enhancement, particularly in the 408 

performance of truck detection.   409 

Insert Table 2 here 410 

Insert Figure 15 here 411 

 412 
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4.3 Limitations and Considerations for Field Implementation  413 

This method is developed for low-clearance roadways, and uses cameras installed on the overpass/tunnels. 414 

The premise of the proposed technique is that the roadways are straight and flat, trucks are fully covered 415 

in the camera view, and sufficient illumination such as daytime light is available. The experiments carried 416 

out herein were geared toward demonstrating that on-road truck heights are able to be measured with 417 

sufficient level of accuracy using the described methodology. As such, the proposed vision-based 418 

technique has the promise for field implementation. However, it should be noted that the proposed 419 

method described here was exercised in a relatively simple way, which may not fully represent the 420 

complexity of truck measurement in the field; namely that roadways present particular characteristics 421 

(e.g., curved pathways, sloped surfaces, and multiple intersections) and that trucks have irregular tops 422 

(e.g., a flatbed carrying a tarped load). Furthermore, depending on the road geometry and camera angles, 423 

trucks may be occluded in the field of view. As such, the proposed method may suffer false positive 424 

detection issues and that over-height trucks are therefore missed. To avoid the occlusion cases, it is 425 

recommended to use one camera for each lane. This is possible because roads with low clearance 426 

overpasses usually involve only one or two lanes per direction. By doing so, it prevents the occlusion of 427 

one truck by another in the other lane. In addition, the capability of the method to detect and measure a 428 

truck height in situation where the truck is changing its driving lane needs further validation.  429 

Several research hurdles must be addressed before the proposed vision-based technique can be 430 

implemented into a field-deployable system readily for use in over-height collision prevention. Further 431 

studies are needed to determine required levels of brightness and proper types of cameras for night time 432 

applications. The authors have noticed that the most popular and well known method of performing low 433 

light vision is based on the use of image intensifiers. An image intensifier is a vacuum tube device that 434 

enables imaging to possess high sensitivity in ultra-low-light conditions. Recent research in low light 435 

imaging techniques primarily focuses on the military and crime surveillance. These applications have 436 

demonstrated the promise. A tangible extension that can be explored is the use of image intensifiers 437 
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incorporated into the charge-coupled-device (CCD) cameras followed by the study of advanced image 438 

processing that allows for nighttime measurement.  439 

Another hurdle that needs to be addressed is the influence of vehicle shadows on the performance of 440 

the height detection. A vehicle shadow is an area where sunlight cannot reach due to obstruction of the 441 

vehicle. The accuracy of measurement on truck heights implemented at the image pixel level may be 442 

severely affected by truck shadows. As such, the impact of truck shadows on the measurement accuracy 443 

should be carefully measured and controlled. Removal of truck shadows could be a feasible solution 444 

which has been presented in several research papers [44,45,46]. However, validation and customization 445 

are desirable to enable the techniques in these papers amenable to EDWS field implementation.  446 

 447 

5. Conclusions 448 

This paper evaluated a vision-based EDWS which can be a cost-efficient alternative to the laser- or 449 

infrared-based systems. The system is comprised of four main processes – field of view calibration, 450 

detection, truck height measurement, and warning notice. Having the same warning system as the laser- 451 

or infrared-based systems, it can substitute cameras and embedded processor units for expensive 452 

equipment and infrastructure such as mounted poles, transmitters, receivers, and detect loops. As the core 453 

of the vision-based EDWS, this paper proposed a novel method to measure truck heights using a camera 454 

installed on an overpass. Given the detected region of a truck, the method locates top and bottom 455 

boundaries of the truck by using line detection and blob detection, respectively. The height is determined 456 

by measuring the distance between the boundaries and converting it to the real world length units. The 457 

method is implemented in C#, and tested on videos taken at two local roads in Atlanta and Morgantown. 458 

The experiment results demonstrated the promise of the proposed method for use in on-road over-height 459 

truck warning. The merit of this research was the creation of an automatic video based method which can 460 

provide height determination of trucks and is a low cost alternative to the current expensive laser and 461 

infrared detection systems. As described in the preceding section, several critical technical issues must be 462 

tackled before the proposed technique is deployable in the field. Further efforts, given the demonstrated 463 
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capabilities, will be to detail cost comparisons and potential savings between the proposed video based 464 

approach and other height detection systems, in various operating environments, given that cost-465 

efficiency is a primary driving force for the present study. Being able to project estimate savings in dollars 466 

may help further understanding of benefits and limits of the vision techniques versus other techniques. 467 

This proposed method could be the valid option for the budget limited DOTs that needs state-wide 468 

implementation of EWDS to protect state infrastructure such as bridges and tunnels. Nevertheless, the 469 

technical issues are more critical and urgent than the cost comparisons for the future work to address. 470 

Though this paper presented experiments on local and highway roads, its wide use can be expected in 471 

controlled conditions in terms of occlusion and illumination. For instance, the proposed system can be 472 

easily applied for prohibition of over-height vehicle at parking decks and luggage handling in airports.  473 

 474 
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Table 1. Experimental Setup 

 @ LC Bridge @ PRT Bridge 

Camera model Canon VIXIA HF S100 Canon VIXIA HF M50 

Resolution (pixel) 1280 × 720 1280 × 720 

FPS (frames/second) 30 30 

View angle (o) 25 ~ 30 30 ~ 35 

# of video clips 10 15 

Length of video clips (min) 6 ~ 8 6 ~ 10 

# of trucks measured 60 60 

 
  

Table



 

Table 2. Summary of experimental results 

 @ LC Bridge @ PRT Bridge 

# of trucks Appeared 60 60 

Measured 58 57 

% of detection error 3.3% 5% 

% of accuracy 
(2D height measurement) 

Mean 97.52% 96.59% 

Standard deviation 5.45% 4.89% 

% of accuracy 
(3D height measurement) 

Mean 96.59% 94.96% 

Standard deviation 4.75% 4.63% 

 


