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Abstract

Cyclical components in economic time series are analysed in a
Bayesian framework, thereby allowing prior notions about periodic-
ity to be used. The method is based on a general class of unobserved
component models that allow relatively smooth cycles to be extracted.
Posterior densities of parameters and smoothed cycles are obtained us-
ing Markov chain Monte Carlo methods. An application to estimating
business cycles in macroeconomic series illustrates the viability of the
procedure for both univariate and bivariate models.
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1 Introduction

Decomposing time series into trends and cycles is fundamental to a good deal
of macroeconomic analysis. The Hodrick-Prescott (HP) filter is often used
to detrend series but as shown in Harvey and Jaeger (1993) and Cogley and
Nason (1995), using it inappropriately can result in the creation of spurious
cycles. The same is true of the band pass filter recently proposed by Baxter
and King (1999) for extracting cyclical movements over the range two to ten
years; see Murray (2002).



Harvey and Jaeger (1993) argued that detrending is best accomplished by
fitting a structural time series model consisting of trend, cycle and irregular
unobserved components. The model is estimated in state space form with
the components extracted by the Kalman filter and associated smoother.
However, fitting the model to series like GDP usually results in the irregular
component disappearing with the result that the cycle is quite noisy. To
overcome this feature, Harvey and Trimbur (2002) introduced an extended
class of cyclical components. The higher order cycles in this class yield
implicit filters that concentrate on extracting relatively more power from a
narrower band of frequencies. More high frequency noise is forced into the
irregular thereby yielding a smoother cycle. An ideal band pass filter emerges
as a limiting case.

The parameters in structural time series models are usually estimated
by maximum likelihood (ML) using the Kalman filter. Harvey and Trimbur
(2002) found that this works well for series like investment where the cycle
is pronounced. However, difficulties were experienced with GDP, in that the
likelihood surface often appeared to exhibit irregularities thereby resulting
in implausible parameter estimates. If the period of the cycle was fixed, an
acceptable cycle could be extracted, but making such a strong restriction is
not altogether desirable. This experience provides an incentive for exploring
a Bayesian approach. Since prior information on the periods likely to charac-
terise business cycles is readily available, it may be used to construct a prior
distribution for the frequency parameter in the cyclical component. Prior
information on other parameters may also be used, though this will typically
be rather more vague.

The Bayesian approach is implemented by adapting a Markov chain
Monte Carlo (MCMC) algorithm for the computation of posterior and pre-
dictive distributions. This leads to the complete distribution of the cyclical
component and allows the computation of marginal posteriors of the trend
and cyclical component at different points in time. Confidence bands can
be constructed around cyclical estimates and a forecast distribution for the
cyclical component presented.

Bayesian treatment of unobserved components time series models has
not, to the best of our knowledge, been concerned with cycles. Fruewirth-
Schnatter (1994) and Koop and van Dijk (2000) analyse trends and seasonals
in various macroeconomic series, while Bos, Mahieu, and van Dijk (2000)
describe a Bayesian application of time-varying volatility and heavy tails
using daily financial data. The treatment of cycles leads to a number of new
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technical issues which we address in this paper.

The paper is arranged as follows. Section 2 describes the extension of
the class of structural time series models to include higher order cyclical
components. The Bayesian treatment is developed in section 3, while section
4 illustrates the methods with applications to some US macroeconomic series.
The methods and application are extended to bivariate models in section 5.
Section 6 concludes. Technical details on the state space form and the
Markov chain Monte Carlo algorithm are laid out in the appendix.

2 Cyclical and trend components in time se-
ries
We consider a class of unobserved component (UC) models in which the

observations, y;,t = 1, ...,T" are made up of a nonstationary trend component
[m.t> @ cyclical component 1, ;, and an irregular term &;. Thus:

Y ::U’m,t—}_l/}n,t—i_gtv t=1,..T, (1)

where the irregular is white noise, that is e, ~ WN(0,0?), the m — th order
stochastic trend is

Mg = M1 T Cpy Gy ~ WN(O’ 0?) (2)
Mt = Mig—1 T Hiq -1 i=2,...,m (3)
while the n — th order cycle is defined by
l/zl,t - COS A, sin A ¢1,t71 Ky
[ (UM = P| _sin Ae  COS A\, (U + Ky (4)

3N

EIRRA (k)

Vg | | cosAe  sin A, Vi T o
[W,t —7 —sin A, cos A\ Vi + R i=2,..,n (5)

The parameter \. denotes frequency in radians while p is a damping factor
lying between zero and one; if it is equal to one, the cycle is nonstationary.
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The disturbances driving the trend and cycle are assumed to be uncorrelated
with each other and with the irregular. The specification in (1) is well-suited
for trend-cycle decompositions, but the model can be easily augmented, for
example by adding a seasonal component.

The second-order trend, m = 2, is an integrated random walk; see Harvey
(1989), Kitagawa and Gersch (1996), and Young (1984). This is the usual
choice since it produces relatively smooth trends that allow a cycle to be
separated out more easily.

The nth order stochastic cycle 1, , has periodic movements centered
around a frequency of A\.. The stochastic movements stem from the two
disturbances, x; and x; in (4). Suppressing ; in the model specification
yields a class of band pass filters that generalises the Butterworth class of
filters; see Gomez (2001) and Harvey and Trimbur (2002). However, our
preference here is to work with the ‘balanced form’ of (4); for n = 1 this
is identical to the stochastic cycle in (Harvey 1989, p. 39) and analytical
expressions for key properties are available for all n. There is, for instance,
a complete closed-form expression for the covariance matrix of the cyclical
state; see appendix B and Trimbur (2002) for details. This is required for
initialising the Kalman filter and in the Bayesian approach it plays a key
role in the Gibbs sampler, as it affects the form of the conditional posteri-
ors. Direct computation is important as it avoids the need for a large matrix
inversion when n is big.

The variance of the cycle, 07, is equal to o2 /(1 — p?) for n = 1 and

2 1 i 2

for n = 2. The autocorrelation function for n = 2 is

1— 2
p(T) = p" cos(A.T) [1 + (1+—Z2)7’} : 7=0,1,2,..
as compared with p(7) = p” cos(\.7) in the first order model.
Analysis in the frequency domain provides complementary insight about
periodic behaviour. It is shown in Trimbur (2002) that the spectral density
for the second order cyclical is

(1= p%)* (no + ny cos A+ ny cos 2)
(1+ p?) (do + dy cos X + da cos 2\ + d3 cos 3\ + dg cos 4)\)

fo(A) = (7)
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where the coefficients of the terms in the numerator and denominator are
given by:

ng = 1+4p>+p* np=—4p(1+p*)cosh, ny=2p°cos2).
do = (1+4p*+ p®) 4+ 16p% cos® \e(1 + p*(1 + cos® A + p?))

dy = —8pcosA(1+2p% 4+ 2p* + p° + 4p* cos® A.(1 + p?))
dy = 4p*((1+ p*) +2cos? A\ (1 +4p* + p*)),
ds = —8p’cosA(1+p?), dy=2p

The corresponding result for n = 1 is

(1—p?) (14 p* —2pcos A.cos \)

\) —
fu) 1+ p* +4p?cos? Ae — 4p(1 + p?) cos Ac cos A + 2p? cos 2

(8)

Figure 1 shows the spectral density for first and second order processes
with A\, = 7/4,p = 0.9. As n increases, the spectrum becomes sharper and
more concentrated in a band around A.. In figure 2, the second order cycle
has p = 0.81, while the damping factor for the basic cycle, n = 1, remains
fixed at 0.9. There is now a compensating effect so that the height of the
peak is about the same, but the spectral shape for the second order process
is such that there is more mass in the centre and less in the tails. Increasing
n further, with a corresponding reduction in p, leads to further movements
in this direction.

The statistical treatment of the model is based on the state space form.
The likelihood function is computed in the prediction error decomposition
form using the Kalman filter. Maximum likelihood estimation is carried
out by numerical maximisation with respect to the unknown parameters,
0%,0%,02,p and .. Once this has been done, the trend and cycle may be
extracted by the smoothing algorithm; see Harvey and Trimbur (2002) for
further details.
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Figure 1. Spectral density of cyclical components for n = 1 and 2, with the
parameter p set to 0.9.
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Figure 2 Spectral density of cyclical components for n = 1 with p set to 0.9
and for n = 2 with p = 0.81.
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3 Bayesian treatment

The three variance parameters and two cyclical parameters are arranged in
the vector 6 = {07,07,02,p,A\.}. The model is assumed to have Gaussian
disturbances throughout. Given a sample Y = {y,...,yr}, we specify the
likelihood. Given a prior, specified below, we obtain the posterior. The goal
is to analyze the properties of the posterior distribution, p(f|Y"). Since this is
not a member of a class of densities which has known analytical properties,
it is computed by a Markov chain Monte Carlo routine. An overview is
provided here and details are given in an appendix. The method produces
smoothed estimates of the cycle as a by-product.

We start by summarising the elicitation of priors. The direct interpre-
tation of the cycle parameters, A\. and p, makes it straightforward to design
suitable priors; they are linked to economic intuition and previous experience
of modelling business cycles. The frequency A. is of particular interest and
the period, 27/ )., is anticipated to lie in the neighborhood of five years. A
standard peaked distribution for A, can reflect this expectation. A practical
rationale for using informative priors is that, for a moderate size sample, the
likelihood surface may be unusually flat in some regions so that it becomes
difficult to estimate a reasonable cycle; Harvey and Trimbur (2002) found
this to be the case when modelling US GDP with a second-order cycle.

For quarterly macroeconomic data, we consider priors for A. centred
around 27 /20, based on the class of beta distributions; such priors are very
flexible and are easy to work with analytically; see figure 3. The least infor-
mative prior covers a wide range of frequencies, while the sharpest density
focuses attention narrowly around a period of five years. For technical details
on the priors, see the appendix A.
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Figure 3: Beta-based priors on )., with mean equal to 27 /20 (five-year
period for quarterly data).

The parameter p is linked to the order of the cycle. In the first order case
p is the rate of decay of the cycle, but for higher orders the interpretation
of p changes somewhat so that different values are appropriate; this is the
point made by figure 2. However, since the precise form of the relationship
between p and n is not clear, we use a uniform prior on p over the interval
[0,1].

For all three variances, independent inverted gamma densities were used,
with shape and scale set to 1077 and 1074, respectively. These priors are
essentially noninformative, and the use of the inverted gamma ensures proper
posteriors.

Next, we summarise the evaluation of the likelihood and posterior of our
unobserved components model. As normality of the disturbances is assumed,
the likelihood function, L(#;Y"), can be evaluated for any permissible value of
# using the Kalman filter. This relies on the prediction error decomposition
as described in Harvey (1989, p. 126). With an appropriate initialisation,
the density of Y given 6 is multivariate Gaussian.

The posterior p(f]Y) is proportional to the product of the prior and like-
lihood. However, the expression for the product p(6)L(6;Y") does not rep-
resent the kernel of a known distribution. The normalizing constant (equal
to the marginal likelihood) required for evaluating the posterior ordinate is
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not known in terms of elementary functions (like V27 in the case of the
normal distribution). A strategy is needed for analyzing the properties of
p(0Y). With a five-dimensional parameter vector, MCMC methods offer
an efficient way to sample (pseudo-random) parameter drawings from the
posterior. This may be used to produce drawings of regular functions of
the parameters. Thus finite sample results on posterior moments may be
compared with ML estimates.

The MCMC method also produces drawings from the joint density of the
two unobserved components, the cycle and trend, over the sample period.
These high-dimensional variates, conditional on the data, can be used to
compute a Bayesian analogue of the classical smoother. They form part of
the Gibbs sampler and no additional effort is required to obtain them.

Smoothed estimates of the cycle are obtained by averaging over draws.
Classical estimates correspond to the conditional mean of the cyclical com-
ponent, given the sample, assuming the parameters are fixed at estimated
values. The Bayesian smoother incorporates parameter uncertainty (the
parameter vector is integrated out) and accounts for prior knowledge about
the period. As for the parameters, drawings of regular functions of the com-
ponents over the sample are directly obtained. This enables properties of the
time-varying cycle, such as amplitude, to be studied.

Next, we briefly discuss model evaluation in our Bayesian approach. In
practice, models are compared based on a particular sample y, which repre-
sents a draw from a marginal, or unconditional, density m(Y’) over all pos-
sible realisations Y. The predictive density m(Y’) shows the probabilities
associated with hypothetical samples, before the data are actually observed.
When evaluated at y, the marginal likelihood m(y) is obtained. Higher
values of m(y) imply greater success in predicting the data, and therefore,
the marginal likelihood offers a way to assess different models; see Kass and
Raftery (1995) for a discussion. In the unobserved components framework,
this allows a comparison of different cyclical orders. The marginal likelihood
m(y) is obtained by integrating out the parameter vector 6:

m(y) = / L(8: y)p(6)d (9)

Bayes factors are computed as the ratio of marginal likelihoods. If there
is an a priori preference for certain shapes of p(6) or for particular compo-
nent structures, this can be reflected in the prior probability ratios over the
various models {L(6;y), p(A)}. The relative posterior probabilities associ-
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ated with different model pairs can then be determined by multiplying the
Bayes factors by prior probability ratios. In the current application dealing
with business cycle components, there may be a preference for sharper priors
on the frequency. In practice, this would mean that, unless the marginal
likelihood decreases substantially when moving to a sharp density, such pri-
ors may be preferred. Some ways to estimate the marginal likelihood are
discussed in the appendix.

In a Bayesian framework, forecasts account for the uncertainty in the
hyperparameters. The prediction at a horizon of h quarters is

ElyenlYy) = / B(yenlY, 0)p(6]Y)d (10)

This is the sum of the forecasts of the cyclical and trend components. The
classical predictor, E(y;n|Yr,#), is constructed assuming 6 to be fixed.

The informational content of the final posterior sample depends on the
correlation between adjacent draws. By burning a large number of initial
iterations and then skipping a certain number of iterations in between draws,
the degree of correlation was reduced. As a result, in each case, the correlo-
grams for the series of parameter draws declined rapidly with lag length; see
the appendix for further discussion.

4 Application to macroeconomic series

This section illustrates the approach with quarterly US real GDP and invest-
ment data from 1947:1 to 2001:4 (Source: US Dept. of Commerce, Bureau
of Economic Analysis: National Accounts Data), and annual US real GDP
data from 1870 to 1998 compiled from the OECD publications Monitoring
the World Economy and The World Economy: a Millennial Perspective. We
present posterior and predictive results for the parameters for different cycli-
cal orders for various priors and we examine smoothed cycles and trends. By
using different priors we investigate the robustness of the posterior results
to the choice of prior. Reference should be made to Harvey and Trimbur
(2002) for the corresponding classical results.
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4.1 Hyperparameters

The marginal posterior densities for n = 1, with the least informative prior
on A, are shown in figures 4 and 5. As business cycle researchers may tend
to think in terms of duration or periodicity, it is interesting to look at the

implied densities for the period, 27 /A..

The prior and posterior for the

frequency and period appear in figure 5. The posteriors show a clear peak
around a five-year period even with a relatively noninformative prior.
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100 30000}
[ 20000+
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1 10000-
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500006 r . .
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[ e
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300006
20000

L0000

2e6f
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Figure 4: Marginal posterior densities of p, 02, 0, and o2 for n = 1, with
least informative prior on A., for quarterly US real GDP (logarithms) from
1947:1 to 2001:4.
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Figure 5: Marginal posterior densities of A. and 27 /)., and trend and
cyclical components p, 7 and v, 7 in middle of sample (¢ = 110), for n =1
with least informative prior on ..

The other cyclical parameters similarly have well-behaved marginal pos-
teriors. Based on a uniform prior on [0,1], the marginal posterior for p peaks
near 0.9, and the density of the cyclical error variance o2 appears symmetric.
These results suggest that the likelihood surface in the first order case has a
more or less regular shape so that it is straightforward to pick out a business
cycle component. Note that each displayed density represents a standard
approximation based on Gaussian kernels; see (Doornik 1999, p. 216). Fig-
ure 4 shows that, for the slope variance Ug, the marginal posterior is skewed.
There is significant mass near zero (the local Gaussian approximation is not
shown in this case since it would, due to the skewness, extend below zero and
so would not represent a meaningful density), but as shown in the histogram,
the inverted gamma prior ensures that only positive values are considered.

4.2 Trends and cycles

The Bayesian analysis produces draws from the joint posterior of the trend
and cyclical components, p, 1 and 1, 1, over the sample period. The marginal
posteriors of the trend and cyclical components in the middle of the sample
are shown in the lower panels of figure 5. We note that the posterior mean
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is the optimal estimator for a quadratic loss. The estimated trend and cycle
over the entire sample period are displayed in figures 6 and 7. The shaded
regions in figure 7 denote recessions as identified by the NBER. These series
are obtained by averaging over the J state draws, that is

J J

~ 1 ; ~ 1 :

Ao =5 m, bor =32 0 t=1..T,
J=1 j=1

where ,ugj ) denotes the jth draw for the trend at time ¢ and similarly for the

cyclical component. The standard deviation is estimated by \/ > 1 G) /J — ﬁfT
and other higher-order moments may be computed in a similar way.
The amplitude of the cycle at time ¢ is estimated by

J
1 : e
A== E 1/13(])‘*‘%2(]); t=1,..,1

The evolving amplitude is shown in figure 8. Significant time variation is
evident, with especially high levels reached in the early 1950s and around
the times of the oil price shocks in the 1970s.

[ |—— Trend_smooth—— Real GDP (logarithms)
900l —— Trend HPD

8.50|

8.25[

L L L L L L L L L L L
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Figure 6: Estimated trend in quarterly US real GDP (logarithms) and 95%
confidence bands for n = 1 with least informative prior on ..
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Figure 7: Estimated cycle in quarterly US real GDP (logarithms) and 95%
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Figure 8: Evolving amplitude of the cyclical component in US real GDP
(logarithms) for n = 1 with least informative prior on A..

The HPD (Highest Posterior Density) regions for the estimated series are
shown as well. These are computed by taking the 2.5 and 97.5 percentiles,
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and the series of HPD regions form confidence bands that give the Bayesian
counterpart of classical 95% confidence intervals. The smoothed cyclical
component incorporates the prior information on periodicity. More generally,
the Bayesian smoother accounts for the uncertainty in the parameter values
- this contrasts with the classical case where parameters are assumed fixed
at their estimates.

Posterior results for the cyclical parameters in the second order case,
with the least informative prior on A., are presented in figure 9. With the
same prior as before, the marginal posterior of p now peaks around 0.71.
The marginal posterior of 27w /). peaks at just below thirty quarters, and
there is significant mass above an eight-year period. The distribution of
the period may conflict with expectations about the business cycle range.
Noting the rather low estimate of ag reported in table 1, it seems that the
cycle is accounting for (low frequency) movements that are more plausibly
attributed to variations in the trend.

Density 40000 Density
7.5F —— Posterior  Variance Kap¢a
—— Posterior  Rhp
30000~
5.0r
20000~
25¢ 10000F
‘HHM....M...I&LM‘HX e G B T e P BT I
04 05 06 07 08 09 10 0.00002 0.00004 0.00006 0.00008 0.00010
Density Density —
‘— Prior —— Posterior Lamdh -
7.5 0.06r-
0.04r
0.021-
! ] |

02 03 04 05 06 07 08 100 15 20 25 30 35 40 45

Figure 9: Marginal posterior densities of p, 0%, \., and 27 /). for n = 2 with
least informative prior on A. for quarterly US real GDP (logarithms) from
1947:1 to 2001:4.

Table 1 shows posterior means and marginal likelihood estimates forn = 1

to 4, with the least informative prior on the frequency. When n = 3, there
again seems to be some difficulty in estimating a reasonable cyclical, albeit
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to a lesser extent than for the second order case. For n = 4, the results are
slightly better, but the average period is still about one year above the value
of five years obtained for the first order cycle.

Series n o¢ ol o? p Ae 21/A. 0 q m(y)
Real GDP 1 16.4 610 4 0.902 0.322 204 3638 0.00609  682.8
2 465 435 102 0.715 0.239 274 6215 0.00118  686.4
3 839 233 154 0.587 0.256 25.8 5545  0.00254  685.5
4 152 171 165 0.486 0.273 24.5 4820 0.00631 684.1
Investment 1 11.9 22487 24.2 0.880 0.289 22.5 10,436 0.000132 309.1
2 5.03 11,124 4817 0.690 0.264 24.8 12,119 0.000049 309.8
3 5.92 5295 6513 0.597 0.272 24.3 13,426 0.000056 311.7
4 7.12 3086 7047 0.534 0.283 23.5 15,535 0.000068 311.9

Table 1: Posterior means for quarterly US real GDP from 1947:1 to 2001:4 for
different values of n with a relatively noninformative prior on A.. This prior is
based on a beta density ((r, s) with r = 2. 27/, is the period in quarters, and
012/) is the variance of the cycle. The signal to noise ratio ¢ = ag/(U?/, + a?). The
logarithm of the marginal likelihood m(y) was estimated for each model using a
LaPlace approximation. All variance parameters are multiplied by 107.
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Figure 10: Marginal posterior densities of p, 0%, \., and 27/, for n = 2,
with intermediate prior on A, for quarterly US real GDP (logarithms) from
1947:1 to 2001:4.
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Figure 11: Estimated cycle in quarterly US real GDP (logarithms) and 95%
confidence bands for n = 2, with intermediate informative prior on ..

Two types of sharper priors, which were shown earlier in figure 3, are
therefore investigated. These specify at the outset that the central period
of the cycle focuses more narrowly around five years. The posterior means
are recorded, for n = 2 and 3, in table 2. Note how increasing the sharp-
ness of the prior leads to a decline in 02 and an associated rise in ag. The
trend becomes more flexible as the cycle concentrates more on mid-range
frequencies.

The marginal posteriors for n = 2 are shown in figure 10 for the interme-
diate prior. The estimated cycle is shown in figure 11. The main difference
with the first order cycle is its relative smoothness; this makes it easier to
track movements in the business cycle. The higher value of 0% in the second-
order case means that a good deal of high frequency movement is consigned
to the irregular.
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Prior n o 0. 0. p A 2n/Ae 0l q m(y)
Intermediate 2 8.48 360 111 0.709 0.292 21.9 4939 0.00248 685.2
3 11.3 154 162 0.613 0.303 21.1 4594  0.00398 684.7

Sharp 2 104 333 115 0.706 0.312 20.2 4376 0.00315 684.7
13.0 186 159 0.588 0.313 20.1 4432 0.00435 684.5

Table 2: Posterior means for quarterly US real GDP from 1947:1 to 2001:4 for
n = 2 and 3 with more informative priors on A.. The intermediate prior was
based on a 3(r, s) with r = 10, while for the sharp prior, 7 = 100. 27/, is the
period in quarters, and 012/) is the variance of the cycle. The signal to noise ratio
q= J%/(U?/) +0%). m(y) is the estimated logarithm of the marginal likelihood.
All variance parameters are multiplied by 107.

For the second order cycle, using an informative prior solves the problem
of the irregular likelihood and a plausible value is obtained for the posterior
mean of the period. The use of the intermediate prior on A. seems to be a
good choice. The second order model is attractive as it extracts a relatively
smooth cycle with a minimum of complexity, and its marginal likelihood,
m(y), exceeds those obtained for higher order cycles.

4.3 Annual data

Annual time series are available over a fairly long period of time and this
allows one to investigate issues concerning long-term changes in the business
cycle. The enormous swing from the beginning of the Great Depression to the
end of World War II constitutes a much longer and more pronounced cycle
than is found in post-war data. To allow for longer periods we therefore
consider priors for A, that have a mean of 27/10; in other words the average
period is taken to be ten rather than five years. In addition we assume that
the variance of the cyclical disturbances from 1929 to 1946 is ten times what
it is elsewhere. The state space model has no difficulty handling such an
extension. (A similar device could have been adopted for the frequency, that
is the period from 1929 to 1946 could have been assumed to be double what
it is elsewhere). The posterior results for n = 1 with the least informative
prior on A, are shown in figure 12. The density of the damping factor peaks
at a higher value than for the quarterly data, indicating more persistence in
the annual cycle.
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Figure 12: Marginal posterior densities of parameters with least informative
prior on A for annual US real GDP (logarithms) from 1870 to 1998.

Despite the fact that the prior expectations of periodicity centre around
10 years, the posterior of 27 /. concentrates around 17.5 years, owing to the
dominating influence of the long trade cycle swing from 1929 to 1946. Two
sharper priors are considered, and the corresponding posterior densities for
the frequency and period are shown in figure 13. It may be preferable to use
the sharpest prior (shown on the right in the figure) to insure that a plausible
range for 27/\., corresponding to business cycle periods, is obtained. The
resulting trend and cycle in this case are shown in figures 14 and 15.
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Figure 13: Marginal posterior densities of frequency and period with
intermediate and very informative priors on A, for annual US real GDP
(logarithms) from 1870 to 1998.
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Figure 14: Estimated trend in annual US real GDP (logarithms) from 1870
to 1998 for n = 1 with most informative prior on A..
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Figure 16: Evolving amplitude of the cyclical component in annual US real
GDP (logarithms) from 1870 to 1998 for n = 1 with a very informative

prior on ..

An interesting question is whether business cycles have generally declined
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in intensity since WWII. Figure 16 displays the evolving amplitude. The
graph is dominated by the Great Depression and WWII. However, there is
some indication that the average amplitude of the cycle is smaller in the post
war period as compared with the period before 1929.

As in the case of quarterly real GDP, there is some difficulty in estimating
plausible cycles in the annual series for higher order models; with noninfor-
mative priors the cyclical variance falls to near zero so that the trend accounts
for most of the variation in the series. Therefore, for n > 1 more informative
priors on O'% were used to ensure a minimal degree of smoothness in the trend.
The estimated cyclical component for n = 2 is displayed in figure 17. Note
the increased smoothness relative to the first order case. Posterior means
for different values of n are shown in table 4 for the sharp prior; with less
informative priors on A., the posterior mass of the period shifts to higher
values while the results for the other parameters remain similar. In the case
n = 4, a substantial amount of noise is removed from the cycle, as can be
seen from the higher estimate for o?. The turning points in the cyclical
component become even more apparent; see figure 18.
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Figure 17: Estimated cycle in annual US real GDP (logarithms) from 1870
to 1998 for n = 2 with a very informative prior on ..
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Figure 18: Estimated cycle in annual US real GDP (logarithms) from 1870
to 1998 for n = 4 with a very informative prior on ..

Ordern o 0.  o? p A 21/ Ae
1 60.7 5416 3413 0.918 0.507 124
2 18.8 417 7847 0.897 0.525 11.9
3 20.7 64.4 8296 0.872 0.549 11.5
4 12.9 3.11 10,469 0.883 0.542 11.6

Table 3: Posterior means for annual US real GDP from 1870 to 1998 for
different values of n with an informative prior on )., centred at 27w /10. For
n = 2, 3, the shape and scale of the inverted gamma prior on O'% were set to 20
and 2 x 1077, respectively. For n = 4, the shape and scale of the inverted gamma
prior on 02 were set to 100 and 10~%, and additionally, a moderately informative
prior on O'% was used, with shape and scale equal to 10 and 1075, The period in

years is 27 /.. All variance parameters are multiplied by 107,

£

4.4 Forecasts

In making predictions about future cyclical and trend movements, the Bayesian
approach accounts for uncertainty in the hyperparameters, just as it does in
smoothing.
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The forecast function E(y;pn|Yr,0) in (10) may be expressed in terms of
trend and cycle components. The forecast of the trend is simply a deter-
ministic trend with the slope and level given by the Kalman filter estimates
at time T. The forecast function for the cyclical component with n =1 is a
damped cycle

&1,T-‘,—h|T(9) = Ph (¢1,T cos[h] + wT,T sin[h)\c])

where h is the forecast horizon and v, 7,97 7 are the Kalman filter estimates
at the end of the sample. For the second-order cyclical,

bornr(0) = (") (Y cos[(h — 1)A] + ¥ psin[(h — 1)A])
+ph (wQ,T cos[AA] + 5 1 Sin[h)\c])

The combination of the two levels of the cycle means that it is possible for
the amplitude of the predicted cycle to increase before it eventually damps
down to zero.

The Bayesian predictions at horizon h are obtained by averaging over the
J draws. Thus for the cycle

-~

J
1 ~ .
¢n,T+h\T = 7Z¢n,T+h|T(9(]))

j=1

Given the structure of the model, there is a straightforward way to assess
the forecast uncertainty, which avoids the numerically demanding task of es-
timating the predictive density. The variance of the h-step ahead prediction
may be decomposed as

Um"(¢n,T+h,\T|Y) = /UQT[¢n,T+hT(9)|Ya 9]p(9|Y)d0+Ua7"[17’n,T+h|T(‘9)] (11)

The second variance on the right hand side is taken with respect to the
posterior and so may be estimated by

var [, pypr(0)] = (%Z [an,T-s-hT(e(j))}Q) - (@n,T+hT>2
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The first term on the right hand side of (11) is equal to the mean of the
classical forecast variance. Since the model in (5) may be cast in state space
form, the forecasting routine in the SsfPack suite of programs may be used;
see the appendix for details. In simple cases, an analytical expression for
var ([, ryr(0)]Y, 0] may be obtained.
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0.00 A\\/J\/\\/\/ N /\/\ —

k 4
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-0.04[
-0.06
1 1 1 1
1990 1995 2000 2005

Figure 19: Forecast of cyclical component in US real GDP (logarithms) for
n = 1 with least informative prior on ..
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Figure 20: Forecast US real GDP (logarithms) for n = 1 with least
informative prior on A..

The forecast of the cyclical component, that is the time series of posterior
means, along with bands lying at plus or minus two standard deviations, are
shown in figure 19 for up to 20 quarters ahead. These confidence bands
for the predictions correspond roughly to the 95% HPDs of the smoothed
cyclical component, but to the extent that the predictive densities depart
from normality, the two measures will not be equivalent. The forecasts
show a cyclical recovery lasting until the early part of 2004; the standard
error of the prediction gradually widens as the horizon is extended. The
corresponding forecasts for the real GDP series and the forecast MSE are
shown in figure 20. There are some differences in cyclical forecasts for
higher n. In figure 21 based on the second order component, the recovery is
anticipated to occur sooner and to be more moderate.

26



0.06+ —— Smoothed Cycle — Forecast Cycl
—— Cycle HPD - - Pred +/- 2SE
0.041 ,
0.02 M ,
0.00 ——
\/ /
0.02
0.04
0.06
1 1 n n n 1 n n n n 1 n n n n 1 n
1990 1995 2000 2005

Figure 21: Forecast of cyclical component in US real GDP (logarithms) for
n = 2 with informative prior on A,

5 Multivariate model

Modeling several series jointly can produce more precise parameter estimates
by pooling information. A multivariate UC model may be set up for N series
as

Yt = Ut + wn,t + &g, Ex NID(O, 25), t= 1, ...,T, (12)

where the N x 1 vector y; = ( 4}, ..., ') and similarly for s, ;, 1, , and &,.
Y. is an N x N positive semi-definite matrix. For m = 2, the trend is

fe = fy1+ B, (13)
Be = B+ G CtNNID(OaEC);
where 3. is an N x N positive semi-definite matrix. In the notation of (2)
and (3) uy, the level, is p,,, while 3,, the slope, is ;.

The similar cycle model, introduced by Harvey and Koopman (1997) and
implemented in the STAMP package of Koopman et al (2000), is defined for
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n =1 as

U, cos A, sin A, V4 Kt
= |p ®IN + 3 t:]_,...,T,
(A —sin A\, cos A, (A K}

where k; and x; are N x 1 vectors of the disturbances such that
E(rr)) = E(ki6Y) =%, E(mr!) =0, (15)

and X, is an N x N covariance matrix. The model may be readily extended
to higher order cycles as in Harvey and Trimbur (2002) and appendix D.
Because the damping factor and the frequency, p and A., are the same in all
series, the cycles in the different series have similar properties; in particular
their movements are centred around the same period. This seems eminently
reasonable if the cyclical movements all arise from a similar source such as
an underlying business cycle. Furthermore, the restriction means that it is
often easier to separate out trend and cycle movements when several series
are jointly estimated.

The Bayesian analysis extends directly to this multivariate model. The
essence of the MCMC routine remains the same. The details are in appendix
D. We illustrate the method with a bivariate model for real GDP and in-
vestment. Table 4 shows results for the least informative prior on \. with
an essentially noninformative inverted Wishart prior on the variance matrix
parameters.
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Series: US real GDP Series: US Investment

n ag o2  o? n J% o2 o?
1 174 643 22 1 326 22818 23
2 175 470 81 2 10.0 12,799 4383
3 170 228 153 3 6.23 5977 6472
4 21.8 131 177 4 10.1 3336 7119

Correlations and cyclical parameters

no v Vs Ve p 27/ Ae
1 0847 0.811 0.255 0.876 23.4
2 0574 0.909 0459 0.670 25.7
3 0303 0.920 0.642 0.581 24.9

4 0.550 0.935 0.660 0.513 24.1
Table 4: Posterior means for a bivariate model for quarterly US real GDP

and investment from 1947:1 to 2001:4 with a relatively noninformative prior on
Ac- The priors on the variance matrices are essentially noninformative inverted
Wishart densities. All variance parameters are multiplied by 10”. The parameter
v¢ denotes the correlation between the slope disturbances in the two series, and p
and A, are the shared cyclical parameters.

Posterior results for the cyclical parameters with n = 2 are shown in
figure 22. The draws for the variance matrices may be directly used to
form draws for the correlations between the components of the series. Thus,
the posterior density of the cyclical error correlation peaks at around 0.9,
indicating significant co-movements in the cycles. The estimated common
period of oscillation is about two quarters less than the posterior mean for
the univariate model for real GDP with the least informative prior.
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Figure 22: Marginal posterior densities for the cyclical parameters in a
bivariate model of quarterly US real GDP and investment (logarithms)
from 1947:1 to 2001:4. The parameter correlation kappa denotes the
correlation between the cyclical disturbances in the two series.

Figure 23 shows the cycle produced by the bivariate model for n = 2.
The overall shape resembles that of figure 11, but the confidence bands are
at times narrower. Also, a steeper upswing in the cycle in the 1990s is
apparent in figure 23. The cycles estimated from the bivariate models are
often more pronounced; for instance, for real GDP the cyclical variance rises
by around 20% when n = 2.
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Figure 23: Estimated cycle in quarterly US real GDP (logarithms) from
1947:1 to 2001:4, based on a bivariate model with investment.

To the extent that somewhat more plausible business cycle periods result
from combining the information in the real GDP and investment series, this
approach provides another way to help address the problem of the likelihood
surface in the case of univariate models for real GDP.

6 Conclusion

A structural time series model provides a framework for extracting trends
and cycles. This article has investigated the Bayesian treatment of such a
model, paying particular attention to the cyclical component and the way
in which prior information on periodicity can be used. Markov chain Monte
Carlo methods are successfully adapted to deal with the models, including
those with higher order cycles of the kind introduced recently by Harvey and
Trimbur (2002), and those in which two series are considered jointly.

The approach is illustrated with an application to US macroeconomic
time series, where smooth cycles are successfully extracted from real GDP
and investment. These cycles have a simple interpretation in terms of the
percentage by which they exceed or fall below the long-term level and they
are consistent with the NBER dating of business cycles. The approach is
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shown to be viable in situations where maximum likelihood estimation failed
to yield plausible results.
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A Priors

The priors on A. derive from the beta family of densities and are based on
expectations of period lying in the business cycle range. A random variable
X has a beta distribution with parameters R and S, that is X ~ (R, S) for
R,S >0, if

I(R+S9)
IX) = S RrE)

where T'(.) is the gamma function.

A beta density is defined on an arbitrary interval (a,b),where a,b > 0,
by setting Y = a + (b — a)X. The mean and variance of the transformed
variable are given by

X1 -Xx)%1 0<X <1,

RS
(R+S2(R+S+1)

R/S 0'2:(6—&)2

o =a+b-a)premg %

The priors on A. were all constructed to have mean 7/10 (5 year period)
and to lie between 7/20 (10 year period) and 7/4 (2 year period). Therefore,
(5/m)(A\e —7/20) ~ B(R,S). The reason for constraining A. to an interval
within [0, 7] is that frequencies near zero and 7 are implausible. For the
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wide prior, R = 2. For the intermediate and sharp cases, R was set to 10
and 100, respectively. S was then determined by the value of the mean and
the boundaries.

The priors for the variance parameters 0%, 0%, 0% are members of the in-
verted gamma family. The random variable X has an inverted gamma
distribution with shape ¢ and scale S, denoted X ~ IG(c,5), if its density
is given by

1
S e O YEIE

The parameters c and S determine the location and spread of the distribution
and the mean and variance o are given by

(X)f%(c+2)efs/(2X)7 X >0 (17)

w==S/(c—2),¢c>2 0 =2u*/(c—4), c>4

Low values of ¢ correspond to less informative priors. The mean and variance
of 1/X are given by ¢/S and 2¢/S? respectively.

B SSF and initial conditions

This appendix presents the state space form of the class of models in (1).
The density of the states conditional on the hyperparameters, which plays
a key role in the MCMC routine presented in the next appendix, is then
derived.

The model defined in equations (1) to (5) expresses the observed process
as a sum of unobserved components. The (m+2n) x 1 state vector contains
the trend, cycle, and the associated processes used in their definition, that is

ar = (:U’m,t Hp—1t - - - M1t ¢n,t ¢;t ¢n—1,t - ¢1,t T/f{t )/
= (k1) (19)

Denote by « the (m + 2n) x T matrix formed by stacking the complete set
of state vectors over the sample period:

a=lag,...,ar] (20)

This will be referred to as the state matrix.
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The measurement equation is

Yt = 210 + € (21)

where the vector z; contains ones in the first and (m + 1) — th positions and
zeroes elsewhere.
The transition equation for the trend is

My = (Im + Sm),ut—l + cmGy (22)

where S, is a matrix with ones on the diagonal strip to the right of the
main diagonal and zeros elsewhere. That is, the row 7, column 7+ 1 element
of S,, equals 1 for i« = 1,...,m — 1, and all other elements equal 0. The
m x 1 column ¢, has a one in the last position and zeroes elsewhere. The
covariance matrix of the disturbance vector is therefore

Var(en(,) = chmc;n (23)
The transition equation for the cyclical part of the state vector is
K
Yy =Tyt 1+ ® { Kf« ] (24)
t
where
_ pPCOS A,  psin A,
Tq/) = In X l —psin )\C p oS )\C ] + Sn ® 12 (25)

The covariance matrix of the disturbance vector is

2
K¢ L ’ O-ri 0
Var{cn@)[@]})—cncn@[o Ui]

The Kalman filter is applied by initialising the nonstationary trend vector,
;, with a diffuse prior. The unconditional distribution of the cyclical state
vector v, has mean zero, and the general form of the covariance matrix for
the nth order cyclical is

Fn,n Fn,nfl Fn,l
I = Pn—l,n Pn—l,l (26)
Fl n Fl n—1 Fl 1



with the 2 x 2 block in position ¢, j given by

5 (L)
[, _r=0 r r+7—1 =i

ij — (1 _ p2)i+j71 ’
for all 1 < 4,5 < n such that ¢ < j; see Trimbur (2002) for the proof and
further details. Note that the block index goes from n at the top (left) to 1

at the bottom (right) to remain consistent with the definition of the cyclical
state vector. The upper triangular part is given by the transpose, that is

The variance of the cycle is obtained from the first element in the top-left
block, I';, ,(p), and is given by

& 0 ( ¢ > d
var(i,) = — S (28)
The conditional density of the state matrix, given the parameters, is an
integral part of the conditional posteriors in the Gibbs sampler:

T
p(a]0) = p(en|0)] [placlas 1, 6) (29)
=2
As noted previously, normality is assumed throughout the analysis. The
density of the initial state depends only on the cyclical parameters since the
trend at time ¢t = 1 is diffuse:

1
plen o, p. Ae) o [T exp(— 59, T 1)

The vector ¢, contains the starting values of the cyclical elements in the
state vector. Conditional on «;_1, some elements of a; are known so we
define the reduced state vector, transition matrix, and covariance matrix by:

M1 1 0 0 O-g 0 0
ap=| v, |, T =10 pcosA psinA |, Q=0 o2 0
(B 0 —psinA. pcosA. 0 0 o2

Then the one-step ahead density is:
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- 1 * * * * — * % *
plaslas1,0) = |2 exp {—§<at CTar )@l - T a“)}

Therefore,

2
t=2

T
— s —(T— 1 — 1 * * ok *— * * %
p(cf) o [T 2 €] e exp {—§¢1T Yy — Z(at —Trop ) o = T at—l)}

Given the partitioned structure of 7™, this can be rewritten as

T
-1/2 _—o(7-1) _—(T-1) 1 -1 1
plald) o [T O ( )UC €xp {_§T/J1T Py — Ttizct} (30)

t=2
X exp —LZ(M — fiygq)’
952 1t 1,t—1
t

where

¢t = (r—pcos Aty —psin Ay 1) "+ (Y] pHpsin Aetby, = peos AT, )

C MCMC routine

This section sets out the details of the Gibbs sampler used to obtain pos-
terior draws and component estimates. The steps of the MCMC routine
are outlined, and the method for drawing from each conditional posterior
distribution is discussed. Details on simulation output are then noted.

In designing an efficient MCMC routine, it is convenient to produce draws
{H(i), ¥} from the joint posterior p(d,a|Y). In this case, the complete
conditional densities of the parameters are known up to proportionality, and
can be handled using standard methods. Similar algorithms, which capitalise
on the state space framework, may be found in Carter and Kohn (1994) and
Koop and van Dijk (2000).
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The four sections of the routine correspond to a set of complete condi-
tional densities for the joint posterior density p(f,«|Y). Taken on their
own, the variates {H(i)} represent draws from the marginal posterior of the
parameter vector. Separately, the {a(V} serve as draws from p(a|Y).

We start with an initial value for the parameter vector, 8. Each itera-
tion ¢ involves the following sequence of draws, organised into four steps:

1. o is drawn from p(a|6®,Y):

The state space form of the model was shown in the previous appendix.
This enables the direct application of the general simulation smoother of
Durbin and Koopman (2002).

2. The variances {02 @ ,0¢ 20) 5201 are sampled as a group from the joint
density p(o2, O'C, o?|pli= )\(’ RIFMON Y):

As the priors on all parameters are assumed independent, we start with

(07, 08,0210, Ay, V) o p(Ya, 0)p(elf)p(og)p(of)p(o)  (31)

Conditional on p and )., the reduced state transition matrix 7™ is fixed.
The unconditional variance of the cyclical part of the state can be written
as:

I =0o:V(p,Ae,n) (32)

where V' is a 2n x 2n matrix that depends only on p and A.. The determinant
of T is therefore proportional to o%*, and it follows that

T T
p(af) o o= exp {_F%/V L, — Z } Y exp { 552 Z(:ul,t ~ Prp-1
K ¢ =2

Furthermore,

T
p(Y|a,0) oc o exp { Z Y — 21y) } (33)
€=

Given inverted gamma priors on the variances, the conditional posterior
therefore factors into three independent inverted gamma densities. This is
related to the d-inverse gamma class of models in Fruewirth-Schnatter (1994),
but the models investigated here do not fall into this class given the presence
of the cyclical component. The use of this natural conjugate framework on a
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conditional basis simplifies the MCMC routine. It also remains flexible since
a broad range of prior shapes for the variances are available by changing the
shape and scale.

3. {p¥} is drawn from p(p|o2(?, 02?52 \FD o) Y):

The parameter p determines how the white noise shocks feed through to
the cyclical component over time. A uniform prior is used to ensure the value
of p lie between zero and one, but otherwise gives no information about its
location within the interval. Denote the prior by p(p). Using Bayes theorem
for densities,

plplos, 08,02, Ac, 0, Y) o p(p)p(Y e, 0)p(e]f) o p(p)p(erlf)

T
- 1 - 1
pplo, 02,02 A, 0, Y) o p(p) [T|™7 exp {—;AT W= 5D :ct} (34)
R t=2

Note that ¢; and I" both depend on p as can be seen from the definitions
in (30) and (32). The use of an M-H step made it possible to handle (34)
in a straightforward manner. A random walk proposal density was used.
Note that if informative priors on p were used, for instance to capture the
relationship between p and the cyclical order n, then the algorithm would
remain the same, with the scale in the M-H step adjusted.

4. Analogously to the case for p, for the frequency parameter we have

p(Alor, 08,02, p,a,Y) o p(A)p(Ye, 0)p(elf) o p(A)p(alf) (35)

T
PO, 02,02 .0, Y) o p(A) 1|2 exp {—gwl'rlwl - %Z}
(36)
With a beta density for p(A.), the conditional posterior is nonstandard
as trigonometric functions of A. occur within the exponent. Again, an M-H
step was applied, with candidates generated by a random walk.
While 1. and 2. are sampled using a standard algorithm and direct Gibbs
sampling, respectively, steps 3. and 4. require additional effort. The shape
of these conditional posteriors seems unclear before estimation, and there is
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little information to guide the choice of a problem-specific proposal density
(this would make importance sampling more difficult). Chib and Greenberg
(1996) discuss the application of the M-H sampler in econometric modelling
and show examples where M-H steps are embedded within MCMC routines
with multiple blocks. Two recent examples are Koop and van Dijk (2000)
and Bos, Mahieu, and van Dijk (2000). The method is appropriate for the
conditional densities of p and A, since the value of the normalizing constant
is unknown, and we can only evaluate a constant multiple of the density
ordinate.

We implemented random walk chains, and the scales were calibrated for
each model and prior based on the suggested rule of thumb noted in Chib
and Greenberg (1996). The variances for the random walk innovations were
set to attain acceptance probabilities of 30-40%. The simulations performed
well within this range, though the exact choice of scales is not crucial. The
M-H properties were adapted to different priors, cyclical orders, and datasets,
by calibrating the scales for p and A, to reach the target range of acceptance.
A separate routine was designed for the Ox program so that the M-H scales
could be adapted automatically in each case. The calibration was based on
Gibbs sampling with a small number of iterations and typically required only
a minute or so on a 500 MHz Pentium IIT PC.

In practice, an automatic calibration routine was included in the program
to set these two quantities. Given preliminary values, say both equal to 0.1,
the scales for the p and A. M-H steps were then progressively improved until
the target range of acceptance was reached. Thus the M-H properties could
be automatically adapted to different priors, cyclical orders, and datasets.
The calibration was based on computing acceptance rates for Gibbs sampling
with a small number of iterations, and typically required around a minute or
so on a PC with a 500 MHz Intel Pentium III processor, depending on what
scales were tried at the outset.

The ultimate set of drawings {H(j), aW} i =1,..,J, used in the final
posterior sample were a subset of the {§%), a®} produced by the MCMC
routine. To improve the efficiency of the posterior samples, multiple itera-
tions per posterior draw were run, and a certain number of initial iterations
were discarded as the chain moved toward convergence. Each posterior sam-
ple ultimately consisted of 5,000 parameter draws, and apart from the slope
variance, the correlations between successive draws in the final sample typi-
cally fell to near zero after just a few lags. The correlograms for the series
of parameter draws is shown in figure 24 for real GDP with n = 1 using the
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least informative prior. The correlogram for the period typically appeared
similar to that of the frequency. The starting values for the parameters had
a negligible impact on the final results assuming that plausible values were
used. The correlations for higher order cyclical models and for the bivariate
models and annual data showed similar decaying patterns with lag length.
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Figure 24: Correlations between successive posterior draws for US real
GDP (logarithms) for n = 1 with least informative prior on A..

Marginal likelihoods may be estimated using the posterior output. Kass
and Raftery (1995) and DiCiccio, Kass, Raftery, and Wasserman (1997) dis-
cuss how to compute them using approaches based on the Laplace method.
The Laplace method, which relies on a multivariate Gaussian approximation,
is appealing due to its simplicity. For our particular MCMC study, exact
analysis of complete conditional densities, carefully calibrated M-H steps,
and multiple iterations per draw helped to produce a posterior sample with
favourable properties. If it seems too costly or impractical to mitigate the
influence of correlations and outliers in the draws, or if higher precision is
desired, then the basic Laplace approximation can be adjusted in a variety
of ways. For example, if the chain shows a tendency to veer away for long
intervals, then one may use an estimator of the posterior covariance matrix
that is robust to multivariate outliers.
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Another sort of method is that of Chib (1995) and Chib and Jeliazkov
(2001). In the earlier version, it is assumed that the complete conditional
densities can be evaluated, which means the normalising constants are known.
This is not the case for p and A, in our model. A simple idea might be to
numerically integrate to find the normalising constants at each iteration,
but this could be computationally inefficient. The framework in Chib and
Jeliazkov (2001) applies to Gibbs samplers with M-H steps. As with Chib
(1995), additional simulations must be run to estimate the quantities needed
to compute the posterior ordinate, but now the properties of the M-H al-
gorithm, in particular the reversibility of the transition kernel, are used to
design the reduced chains.

Both methods require the evaluation of the prior and likelihood, prefer-
ably at a point of high density. We used the posterior mean, which is simple
to compute. Alternatively, the posterior mode or median could be esti-
mated. For the basic Laplace method, the estimated posterior ordinate is
then obtained directly from the sample posterior covariance matrix. This
approximation, which relies on a multivariate Gaussian kernel approxima-
tion to the posterior, is appropriate for comparing marginal likelihoods in
cases where the posterior is relatively well-behaved, for instance it is not
multimodal in a high density region for any of the parameters.

State matrix and Bayesian smoother

Taken on their own, the draws {a?)} are variates from p(a|Y). The
posterior density of « involves a substantial amount of information as it
describes the relationship among subsets of the state vector at various points
in time. The associated marginal densities of the components are of primary
interest for current purposes, but one could in theory examine virtually any
aspect of the joint density of the cyclical estimates by averaging over different
functions of draws. This permits a great deal of flexibility in analyzing the
cycle and its relative positions at different points in time. The conditional
mean of the cyclical component, given the data, represents the Bayesian
counterpart of the classical smoother.

D Multivariate models

In this appendix we present a Bayesian treatment of the general similar
cycle model, (12).
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D.1 SSF and initial conditions

Interest centres on a Bayesian treatment of the cyclical component. The
state vector for the nth order stochastic cycle in the multivariate model is

1 N 1 N 1 N 1 N
Ve = [Wnpr o Unps Yo o Untr W1 V1 Yo 0 V1t |
/ / / /
= [¢n,t7¢nfl,t7"‘7¢2,t7w1,t]/

With similar cycles in the N series, the transition equation is

b= (T s +ens | ] (37)

t
where r; = [k}, ..., k)], Kf = [Ki*, ..., k' *|" are vectors of the cyclical distur-
bances with the same covariance matrix, 3, and T}, the transition matrix
in the univariate case, is given in equation (25). The initial conditions are
formed by noting that the unconditional distribution of 1), has mean zero
and variance matrix given by

Sy =V (0, desn) @ By (38)

where V(p, Ac,n) is given in (32).

The analytical result in (38) is important as it helps avoid potential
numerical problems in the computationally more demanding multivariate
framework. Since the variance matrix in the multivariate case may be im-
mediately obtained from the expression in the univariate setup, there is no
need to invert very high-dimensional matrices that may be near singular.

The proof for (38) is as follows. The cyclical error for the univariate
transition equation (24) has the form ¢2B for the constant matrix B =
cnC, @ Io. More generally, for N similar cycles, the covariance matrix of the
error vector in (37) is B ® X,.

The expression for the variance matrix of the cyclical state in the uni-
variate case is 02V (p, Ae,n), where V(p, A, n) satisfies the equation:

V(p,Aeyn) =TV (p, e, n)T' + B (39)

Similarly, the cycle variance matrix in the multivariate case, 3y, is the solu-
tion to:

3, =T@INE,(T®In)+B®Xy, (40)
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The equivalence with (38) is seen by first taking the Kronecker product of
both sides of (39) with X, to give

V(p,Ae,n) @ X = (TV(p, Ae,n)T') @ s + B® Xy (41)

Further algebraic manipulation then yields (40).
The density of the initial state is now

(a1|2li7p7 ) |2"/)| 12 eXp(__’%bl,E"/) ’l/))

The conditional density of the state matrix, given the parameters, is

P, Seypo Ae) o0 [y L@ D, TR g TR (42)
1 1<
X exp {—§¢1/2¢1¢1 - 526@(12 ® Eﬁ)lct}

T
X exp{ Z B — Hig1)'Sc I(Nu - M1,t1)}
2=

WheI‘e Ct == wl,t — (T ® IN)wl,t—l'
The summation in the cyclical part may be written as

T T
ch(lg ®B,) e = Ztr (I ® = )ec)]
t=2 t=2
= tr(Z;chtc'M) + tr(2;1C27tcl27t)
where ¢ = [¢}, c,,]. For this partition of ¢;, the upper half ¢;; (N x N)
corresponds to the N cycles, that is Yy, = [qbit, - qpfft]’, and the lower half

Cy to the auxiliaries, 7, = [} 1t>' LU

Thus the cyclical part of the conditional density of a may be written as

plalXs, p, Ae) o [V(p, Aeyn) ® EK‘—W L, ® ZK’—(T—I)/Z
1 ) L
X exp {_§¢1, [V(P, Aes n) ® E,i] 1 P, — itr (EHIG)}
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where

as

T
_ / /
G = E (Cl,tcl,t + C2,tc2,t)
t=2

Since
V0, Aesn) @ S| = [V (p, Aey ) [ [ S

and |I, ® 8| = |Z|* we have

V(0 A ) @ S| 72 | L @ S| TP 702 = 1V (0, Ao, )|V 23, 7Y
Let the elements of block 4, j of V(p, A, n) be denoted by

V(pa ACan)i,j V(p; AC7n)i,j*

V(ﬂa >‘C’ n)i’j - V(pa )\c7 n)z’*,j V(ﬂa >‘ca n)i*,j*

The complete cyclical state vector at each t is partitioned as

N
wt = [wnh" Qpntvl/}nt"" wntﬁ wlt?" qpltv 1t7"'7 l,t*v]/
= hbnw ’l/)n k3 wnfl,w HS) wl,tv ,t]

The term involving the initial state vector in the exponent may be written

' Vo o) © 5] gy = Sir(57 ) (13)

where the (N x N) matrix H is given by

H ZZV p,)\c,n” ]1¢11+va,)\c,n1]*¢]1¢@1)

zl]l

+ Z ZV Py Ae, )7 Z*] le,bzl—i-zv Py Aey 1 z*]*"/’]ﬂbzl)

=1 j=1

This expression is derived by first noting that

V(0 Aeyn) @ 2] =t [(V(p, Aoy ) L @ B0 )40
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Once the Kronecker product and multiplication are applied, the sum of the
diagonal elements gives (43).

The summation for the trend part of the conditional density can similarly
be written as

T T
Z M= My 1) 2 1(“1,1:—#1,1:71) = Ztr [Eg_l(ﬂq,t - /J‘l,tfl)(u’l,t - N1,t71),}
t=2

t=2

In summary, the conditional density of the state matrix is

_ (- T— 1 B
p(afSp ) o VoA )2 5"  exp [——tr@;[mHD] (44)

2
X ]Egl_(T_l)/z exp {——tr <
D.2 Priors

T
Z K1t — M1t 1 (Nl,t - /J‘l,t—l)I] > }
=2
The priors on A, and p remain the same as for the univariate Bayesian treat-
ment. Inverted Wishart priors are used for the variance matrices. This
class of density represents a generalisation of the inverted gamma class, and
the natural conjugate property extends to the multivariate model.
A random matrix ¥ (N x N) is distributed as an inverted Wishart, de-
noted by X ~ IW(e,S), if for positive definite symmetric 3 the density
function is given by

Y) = Cpple, S:N) s 2N+ o Lisis
f( ) ) ) p 2 M
Crw(c,S;N) = 2zNpaN(V- 1>Hr \sr- (45)

Note the similarity with the notation for the inverted gamma; in (45) S
represents the shape matrix, and when the dimension N = 1, the formula
reduces to (17).

Independent IW priors are assumed for the variance matrices with ¢, =
cek=c.=10""and S; =S, =S.=10""Iy.
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D.3 MCMC routine

The conditional density of « is shown in (44). The joint density of the
observations given the hyperparameters and « is a direct extension of the
univariate expression:

T
, 1 _
p(Ya, 8) o [X] 1z exp {—ﬁztr [EE l(yt — zpou) (Y — Ztat” }
t=1

The joint posterior of {X;, %, Y.} factors into a product of inverted
Wishart densities with shape and scale matrix parameters given by

T
Yo o Cz =c + (T -1), SZ =S¢+ Z(Hq,t - N1,t71)(#/1,t - N1,t71),
t=2
Y 1 Ci=c+2(n+T—-1), Si=S,+G+H

T
Yo 1 f=c,+T, S]=8+ Z(yt — zou) (Y — zu)

t=1
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