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a b s t r a c t

The material flow in friction stir spot welding of aluminium to both aluminium and steel has been inves-
tigated, using pinless tools in a lap joint geometry. The flow behaviour was revealed experimentally
using dissimilar Al alloys of similar strength. The effect on the material flow of tool surface features,
welding conditions (rotation speed, plunge depth, dwell time), and the surface state of the steel sheet
(un-coated or galvanized) have been systematically studied. A novel kinematic flow model is presented,
which successfully predicts the observed layering of the dissimilar Al alloys under a range of conditions.
The model and the experimental observations provide a consistent interpretation of the stick-slip con-
ditions at the tool-workpiece interface, addressing an elusive and long-standing issue in the modelling
of heat generation in friction stir processing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multi-material structures in the automotive industry can offer
greater mass efficiency at an acceptable cost. There is also a trend
in the industry to move towards thinner gauges and stronger alu-
minium alloys and steels, again to save weight. The development of
techniques for spot joining aluminium alloys to thin steel sheet has
thus grown in importance. Resistance spot welding (RSW) is cur-
rently the predominant method for joining sheet-based car bodies
in automotive manufacturing, because it is a fast, versatile, and eas-
ily automated process. But Connolly (2007) notes that there are
major barriers to the adoption of RSW for aluminium intensive
vehicles, including high energy consumption and the requirement
for frequent electrode maintenance. Moreover, in aluminium to
steel welds, Qiu et al. (2009) and Sakiyama et al. (2013) have shown
that, due to the presence of a transient liquid phase, RSW is prone to
the formation of a thick intermetallic interlayer which can seriously
deteriorate joint performance. Friction stir spot welding (FSSW)
is a relatively novel joining technology, emerging as a possible
alternative to RSW for joining aluminium body structures in the
automotive industry. The process requires far less energy than RSW
(∼2 as opposed to ∼50 kJ/weld). More importantly, as discussed
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by Briskham et al. (2006), it reduces intermetallic formation by
avoiding liquid phase reactions. However, the relatively long weld-
ing cycle and lower strength of dissimilar joints are disadvantages,
inhibiting the widespread adoption of FSSW in automotive manu-
facturing. Briskham et al. (2006) and Sato et al. (2009) suggest that
process cycle times for dissimilar FSSWs are typically three to ten
seconds, or even greater, compared to much less than 1 s for RSW.
Shortening the weld cycle is thus necessary to allow wider scale
implementation of FSSW in automotive manufacturing.

The Manchester group in this project (Chen et al. (2010);
Bakavos and Prangnell (2009); Bakavos et al. (2011)) have shown
the feasibility of producing dissimilar aluminium to steel fric-
tion stir spot welds in thin automotive sheet (1 mm thick). Welds
between 6111-T4 aluminium sheets were produced successfully by
Bakavos and Prangnell (2009) and Bakavos et al. (2011), using opti-
mised pinless tools, with a modest degree of profiling on the tool
shoulder. Fig. 1 shows the typical process geometry, with the three
tools used in the current work. The cycle time was less than one
second, and high lap-shear strengths were achieved by the joints
failing in nugget pull-out mode. In comparison, for FSSW of dis-
similar aluminium to steel, Chen et al. (2010) found that it was
difficult to achieve high strength joints within one second, partic-
ularly with zinc coated steel grades. Profiled pinless tool designs
remained most effective for thin, dissimilar-sheet material combi-
nations. da Silva et al., 2010 and Watanabe et al., 2010 have used a
similar tool configuration for FS spot welding steel to aluminium.
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Table 1
Nominal compositions of the materials welded in this investigation.

Alloys Chemical compositions (wt%)

Al C Cu Cr Fe Mg Mn Mo Si Ti Zn P S

Al 6111 Bal. <0.01 0.75 <0.01 0.25 0.75 0.2 <0.01 0.69 0.04 0.02 – –
Al 6082 Bal. – 0.1 0.25 0.5 0.6–1.2 0.4–1 – 0.7–1.3 0.1 0.2 – –
DC04 – 0.08 – – Bal. – 0.4 – – 0.03 0.03
DX54Z 0.01 0.01 – – Bal. – 0.3 – – 0.125 – 0.03 0.035

Studies of FSSW, such as Bozzi et al. (2010) and Lee et al. (2009),
have largely focussed on microstructural and property characteri-
sation, including the formation of intermetallic reaction layers at
the weld interface in aluminium-steel joints. In contrast, while
investigations by Uematsu et al. (2010) and Coelho et al. (2008)
have explored the influence of the material flow behaviour on weld
formation, their limited direct observation make interpretation dif-
ficult. In this study we have devised an experimental technique to
reveal the material flow in FSSW of aluminium, in similar and dis-
similar welds to steel. The aim is to understand the development of
the deformation zone, and how this depends on the process vari-
ables (rotation speed, plunge depth and weld time), and to study the
effect of the contact conditions (between workpiece and tool, and
between the top and bottom sheets). The experiments are inter-
preted via a simple kinematic flow model that sheds new light on
the metal flow and heat generation, exploited by Jedrasiak et al.
(2013) in their numerical analyses of FSSW.

2. Experimental procedure

The materials used in this study were 0.93 mm thick 6111-T4
aluminium and 1 mm thick DC04 (un-galvanized) and DX54Z (gal-
vanized) low carbon steel sheet, supplied by Jaguar Land Rover and
Corus UK. Their chemical compositions are summarized in Table 1.
Bakavos and Prangnell (2009) and Bakavos et al. (2011) provide
details of the weld set-up and clamping arrangements. Rectangular
samples of dimensions 100 × 25 mm were lap-welded in displace-
ment control, with the weld located at the centre of a 25 mm overlap
region (Fig. 1a). The top sheet in contact with the tool was always
aluminium. Three pinless FSSW tools of diameter 10 mm were used
(Fig. 1b): a flat featureless tool, made of tool steel, and two “fluted”

Fig. 1. Friction stir spot welding with pinless tools: (a) schematic of process, show-
ing overall lap geometry; (b) three tool profiles used: flat, short flute, long flute.

tools with 6 symmetrical short or long grooves, designed to rotate
against the curve of the flute to drive material radially inwards. A
variant of the flat tool was made from cemented WC with a PVD
diamond coating. This was found to be necessary for welding the
Al alloy to Zn coated DX54Z steel, to avoid sticking between the tool
and the Al sheet, under the different process conditions needed for
this material combination.

Chen et al. (2010), Bakavos and Prangnell (2009), and Bakavos
et al. (2010, 2011) describe the procedures conducted for lap shear
testing of the joints, measuring peak failure load and overall failure
energy (i.e., the area under the load-displacement curve), since the
latter is found to correlate best with the observed failure mecha-
nism. Optimum process conditions led to a “pullout” failure with
higher failure energy, whereas interfacial failure was associated
with low fracture resistance. Empirical trials resulted in the follow-
ing experimental parameter ranges for Al 6111 welded to itself or to
uncoated DC04 steel: rotation speed, 120–2000 rpm; plunge rate,
100 mm/min, retraction rate 50 mm/min; shoulder plunge depth,
0.1–0.7 mm; nominal dwell time, 0.5–1 s. The total weld cycle time
included the additional nominal times spent in the plunge and
retraction stages (usually less than 2 s in total). Typical optimum
conditions for Al to steel with a 1 s dwell time were 1600 rpm with
a plunge depth of 0.5 mm. For Al 6111 to Zn coated DX54Z steel,
it was found that the process window was very limited, requiring
plunge and retraction rates to be more than 10 times slower in
order to avoid tool sticking and weld failure. As a result, total weld
times increased to the order of 10 s. Table 2 summarises the lap
shear strengths and failure energies for the optimised conditions in
each case. Joints between Al 6111 and uncoated DC04 steel signif-
icantly underperformed compared to similar Al 6111–6111 welds,
particularly in terms of joint failure energy, with higher strength
being achieved with a fluted tool than with a flat tool. In contrast,
Al 6111 to Zn coated DX54Z steel shows comparable strength to
6111–6111, with 65% of the failure energy, but at the penalty of a
much slower weld cycle.

Material flow was studied for the ranges of process conditions
used to identify the optimum lap shear performance, with the aim
of understanding how the flow influenced the welding mechanism
and joint quality. Metal flow in the deforming Al layers was revealed
via a contrast technique. Strips of identical thickness were cut from
a similar aluminium alloy, 6082, which has a lower copper content
than 6111. The objective in choosing 6082 was to have a similar
deformation response, but with the two copper contents provid-
ing differential etching and colour contrast in micrographs. Prior to
welding, the 6082 alloy was aged to the same hardness as the 6111-
T4 material (80HV), though it is recognised that the two alloys may
diverge in their hot flow properties as they heat up during welding.
To observe the flow, welds were produced in a range of configu-
rations, with 6082 substituted for 6111 in part of the weld zone
(Fig. 2). The flow in conventional Al–Al lap welds was studied by
replacing either the lower sheet with 6082, or by a “double-butt”
arrangement with a butt joint between the two Al alloys in both the
top and bottom layers. For Al-steel welds, a single-butt between
the Al alloys was used for the top layer. The welded joints were
sectioned vertically, at right angles to the original plane of the butt
interface, and characterised by optical microscopy.
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Table 2
Lap shear strength and failure energies of joints produced with the different tool and material combinations, for welds produced with the optimised conditions in each case.
The total weld cycle time includes the nominal plunge, dwell, and retraction times.

Material combination Tool type Total weld cycle time (s) Maximum lap shear strength (kN) Failure energy (kN mm)

6111-T4 Al/6111-T4 Al Short flute 1.1 3.4 7.0
6111-T4 Al/DC04 steel Flat-steel 1.9 2.2 0.7
6111-T4 Al/DC04 steel Short flute 1.9 2.8 1.5
6111-T4 Al/DX54Z steel Flat-WC 10 3.7 4.6

Fig. 2. The alternative lap configurations within the weld zone using dissimilar Al alloys 6111 and 6082: (a) horizontal lap; (b) vertical double-butt (both layers); (c) vertical
single-butt (top layer only, with steel bottom layer).

3. Observations of material flow

3.1. Contrast alloys in Al–Al FSSW

Fig. 3 shows a series of micrographs for sections through Al
6111-Al 6082 welds in the horizontal lap configuration, with 6082
being the bottom sheet material. For the flat tool (Figs. 3a,b) the
two layers remain distinct from one another with some evidence
of inter-layering of the two alloys close to the interface for the 1 s
weld. The short flute tool produces a similar deformation pattern
after 1 s, but is distinctly different after 2.5 s. Now the lower sheet is
drawn upwards and fully penetrates the upper sheet through to the
tool interface, hence enclosing a volume of the upper sheet within a
ring of material formed from the lower sheet. The enclosed volume
from the upper sheet is pushed downwards below the interface,
and reduces in diameter, to conserve volume. Bakavos et al. (2011)

describe this phenomenon in lap joints as “hooking”. It is consistent
with a slow circulation of material, flowing inwards radially near
the top surface, driven by the flutes on the tool, and downwards
through the weld centre. However, it should be recognised that the
predominant flow direction remains circumferential – in the limit
of sticking to the tool, the circumferential material velocity matches
that of the tool at the surface.

Greater insight is obtained by comparing micrographs from
identical welds with the dissimilar alloys in two different configu-
rations. Horizontal lap and double-butt welds in Al 6111-Al-6082
are shown in Fig. 4, for 1 s and 2.5 s dwell times, using the long flute
tool.

First we note from Figs. 4a,c that the long flute tool leads to hook-
ing in a similar manner to the short flute (compare with Fig. 3c,d).
But now the double-butt configuration reveals the axisymmetric
material flow driven by the tool rotation. Fig. 4b shows distinct

Fig. 3. Micrographs of sections through friction stir spot welds in dissimilar Al alloys in the horizontal lap configuration (all welds made at 2000 rpm, with 0.2 mm plunge):
(a,b) flat tool, for dwell times of 1 s and 2.5 s respectively; (c,d) short flute tool, again for 1 s and 2.5 s respectively.
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Fig. 4. Micrographs of sections through friction stir spot welds in dissimilar Al alloys with the long flute tool (all welds made at 2000 rpm, with 0.2 mm plunge, and the long
flute tool): (a,b) dwell time of 1 s; (c,d) dwell time of 2.5 s; (a,c) horizontal lap configuration, showing hooking; (b,d) double-butt configuration. In (d) the boundary between
the bottom and upper sheets is superimposed, using image (c).

inter-layering of the two alloys in the lower part of the deforma-
tion zone, with horizontal banding extending far up the centre
of the weld. In Fig. 4d, the boundary between the original two
horizontal sheets (from Fig. 4c) has been superimposed on the
double-butt micrograph. The inter-layering of the two alloys is con-
tinuous within the material which was initially in the lower sheet.
In contrast the top sheet is more strongly associated with the “swirl”
pattern of circulating flow driven by the hooking behaviour, and
this disrupts the regular layered pattern.

The micrographs of Figs. 3 and 4 demonstrate that the dissimilar
alloy marker technique works well, with the overall deformation
pattern being retained, regardless of the difference in the Al alloys.
The deformation is complex in Al–Al welds, particularly with the
fluted tools, combining hooking between the layers and circulating
radial flow, with apparent layering of material from opposing sides
of the weld, within each original sheet. As will be shown below,
the issue of hooking does not arise in Al-steel welds, because the
lower steel sheet does not deform, so the layering behaviour has
been investigated further in Al-steel welds, using the single-butt
configuration with dissimilar Al alloys in the top layer (Fig. 2c).

3.2. Contrast alloys in Al-Steel FSSW

Fig. 5 shows micrographs of friction stir spot welds between Al
(butted 6111 and 6082) and uncoated DC04 steel. Fig. 5a shows that,
with a flat tool, the inter-layering extends over the entire deforma-
tion volume. As there are no features on the tool, this confirms that
the layering is driven by axisymmetric flow associated with the tool
rotation. With the short flute tool, the layered flow is still evident,
but with the annular swirl region associated with the flute-driven
flow superimposed and disrupting the layers (as was observed pre-
viously with the long flute). What is striking in both cases is that

the layers of the two alloys remain so distinct, and that the layering
is very symmetrical about the vertical centre-line, with each alloy
mirroring the other across the weld. This layered pattern suggests
that the deformation pattern in FSSW is kinematically highly con-
strained: the surface flow is closely related to the rotational velocity
of the tool interface, while the lower face of the sheet is effectively
stationary. This provides the starting point for modelling the pro-
cess in the next section. Further evidence is provided by Fig. 5(c,d),
which show two deeper plunge welds using the flat tool, for widely
different rotation speeds, with a dwell time of 1s. It is clear that the
layering persists in all cases, with the intense deformation zone
extending beyond the edge of the tool, to conserve volume as the
tool plunges further into the top sheet. What is also now appar-
ent across all of Fig. 5 is that the number of layers increases with
rotation speed, and hence with number of revolutions in a fixed
dwell time. A secondary detail to note is that the layer thickness
decreases progressively from the bottom of the deformation zone
up to the tool interface.

The relationship between number of layers and the number of
rotations was investigated by gathering data from all Al-steel welds
in which the layers could reasonably be counted through the entire
deformation depth. These were primarily welds using the flat tool,
which produced the clearest patterns (see Fig. 5), supplemented
with a few short flute welds. Plunge depths were 0.1, 0.3, or 0.5 mm,
weld dwell times mostly 1 s (with a few 0.5 s) and rotation speeds
were 300, 800, 1600, and 2000 rpm. Longer duration welds and long
flute welds were qualitatively similar, but the layers could not be
distinguished with sufficient accuracy.

The layers were counted in “double-layers”, i.e., each band of
two colours, that is, half the number of interfaces between the
two alloys. The reasons for this will be explained in the mod-
elling section below. The number of layers was then compared with
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Fig. 5. Micrographs of sections through friction stir spot welds between Al and uncoated steel, with dissimilar Al alloys in single-butt configuration in the top sheet (all welds
made with dwell time of 1 s): (a,b) 1600 rpm, plunge depth 0.1 mm, with flat and short flute tools respectively; (c,d) flat tool, plunge depth 0.5 mm, with 800 and 2000 rpm
respectively.

Fig. 6. The number of revolutions against the experimentally observed number
of double layers formed in single-butt Al-steel DC04 welds, for a range of plunge
depths, rotation speeds, dwell times and tools.

the number of revolutions the tool would make from the point of
first contact to the start of retraction, i.e., the sum of the (nomi-
nal) plunge time (=depth/plunge speed) and the dwell time. Note
that in practice, the resistance of the sample during the vertical
plunge may reduce the plunge speed, such that the tool continues
to advance to the final plunge depth throughout both plunge and
dwell time.

Fig. 6 shows the number of tool rotations against the number
of double-layers estimated from micrographs such as Fig. 5. The
diagonal line represents equality between these two quantities.

The correlation is clear, with the number of layers being a high
proportion of the number of rotations in every case, regardless of

the plunge depth, rotation speed, dwell time, or tool type. As the
plunge depth increases, the same number of layers is formed but the
layers are compressed vertically and expanded radially by the over-
all forging effect of the tool. In conclusion therefore, it is proposed
that every rotation is associated with the creation of a horizontal
double-layer of material drawn from opposing sides of the original
vertical plane through the weld centre. The close correlation con-
firms the kinematically constrained nature of the process, and the
mechanism for formation of these layers will be revealed by mod-
elling the process, assuming simple kinematic boundary conditions
on the flow.

Finally, the sections in Al-galvanised steel welds show a com-
plete contrast in behaviour. Fig. 7 shows two welds produced at
different rotation speeds in deep plunge, long duration welds in
single-butt configuration with the Zn-coated steel. It is interesting
to note that now the material layering is largely perpendicular to
the weld interface, with a small dish-shaped region at the centre
of the higher rotation speed weld. Detailed investigation showed
that, owing to the low temperature eutectic reaction in the Al–Zn
system (stated by Murray (1986) to be 382 ◦C), melting of the Zn
coating occurred in these welds. Hence it may be assumed to pro-
vide little or no constraint to the underside of the Al sheet. The
kinematic model has therefore been used to investigate these lay-
ering patterns, by modifying the boundary condition between the
workpieces.

4. Kinematic model of material flow in FSSW

4.1. Basis of the model

The experimental observations indicate that FSSW in thin sheet
material is highly constrained. Metal flow takes place within a
thin deformation zone defined by stationary or uniformly rotating
boundaries. This suggests that the flow pattern is largely kinemati-
cally determined, so this will be investigated using a simple model
that proscribes viable velocity fields, and tests their validity by
simulating the welding of dissimilar Al alloys.
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Fig. 7. Micrographs of sections through friction stir spot welds between Al and Zn-coated steel, with dissimilar Al alloys in single-butt configuration in the top sheet (dwell
time of 1 s): (a) 800 rpm and (b) 2000 rpm.

Fig. 8. Surface velocity profiles, with tool sticking to various fractions of the shoulder
radius, with a surrounding region of slip.

The core assumptions of the model are as follows: (a) the steel
tool and backing plate are rigid bodies; (b) the deformation volume
is assumed to be a through-thickness cylinder of diameter equal to
the tool diameter, with zero velocity proscribed on the cylindrical
surface; (c) radial flow is negligible, as the shoulder diameter to
sheet thickness ratio is of order 5–10, so radial flow is constrained
by friction against the tool and backing plate; (d) metal flow is
purely axisymmetric (i.e., most directly applicable to the flat tool).

The model works by imposing a radially varying angular veloc-
ity distribution to the tool-workpiece interface, and then making
various assumptions about the variation of this velocity with depth,
that is v = v(r,z) (i.e., there is no variation with �). For the case of full
sticking at the tool-workpiece interface, v = ω × r for z = 0 (the top
surface). However, as noted earlier, at some radius Rs (close to the
tool radius) the velocity must fall to zero, for continuity with the
surrounding material. This leads to a transition region between the
sticking region and the periphery, giving a slip region where the tool
moves faster than the workpiece with which it is in contact. Fig. 8
shows three idealised surface velocity profiles, with progressively
higher degrees of slip. For simplicity, the surface velocity profile
imposed was assumed to be constant during a weld, though it could
vary with time. And in the first instance, the contacts between the
workpiece sheets, and between backing plate and lower sheet, are
assumed to be fully sticking.

The three velocity profiles are defined by two parameters: a
radius r1 at which slipping first occurs (with full sticking taking
place inside this radius), and a radius r2 which denotes the point
from which the slip regime starts to taper linearly to zero at the
radius Rs. For profiles 1 and 2, r1 = r2, giving triangular profiles
(Fig. 8). The profile is assumed to be piece-wise linear between
the proscribed points. The velocity profile may be expressed math-

Table 3
Definition of the slip velocity v’ between the tool and workpiece for the kinematic
model.

Radial region (Fig. 8) Slip velocity (relative velocity
between tool and workpiece)

r < r1 v′ = 0
r1 < r < r2 v′ ∝ (r − r1)

r > r2 v′ ∝ (r − r1) +
(

r−r2
Rs−r2

)

ematically in terms of the relative slip velocity v’, the difference
between the velocity of the tool and the surface velocity of the
workpiece, as summarised in Table 3.

A further consideration is the effect of the plunge, when mate-
rial is expelled laterally from beneath the tool (to conserve volume).
Nominally the plunge duration is much shorter than the dwell time,
though it is likely that the machine plunge velocity is retarded by
the build-up of significant pressure under the tool. Again for sim-
plicity, it is assumed that the thickness of the deforming workpiece
below the tool is fixed. This is most reasonable for Al–Al welds
in which the plunge was typically only 5–10% of the total work-
piece thickness. In deeper plunge welds, a radial flow should strictly
be superimposed, to account for axisymmetric forging of the disc
below the tool. However, it is reasonable to assume that this veloc-
ity field will be axisymmetric, and will vary uniformly with radius
and depth. Hence in principle the imposed axisymmetric flow pat-
tern in the model could be compressed vertically, and stretched
radially, to account for the plunge. Reilly (2013) has shown that
this does not change the first order axisymmetric behaviour, and
so the effect of the plunge has not been investigated further here.

4.2. Flow visualisation in the model

Consider first a homogeneous cylindrical block, with a rotation
applied (anticlockwise) at the top surface following one of the pro-
files in Fig. 8. If there is no variation in flow strength with depth
(i.e., it assumed to be isothermal), this results in a uniform strain
field, such that the velocity at any depth follows the same profile as
that at the surface, but scaled linearly with depth, i.e., ∂v/∂z = C0
where C0 is a constant (such that v = 0 at the lower interface). The
circumferential velocity of any material point is then defined, and
hence the circumferential displacement of an initially vertical plane
is known after a given time. The interface between the dissimilar
alloys in the single or double butt configuration can then be tracked
and defined in 3 dimensions for any given number of tool rotations,
and the resulting model sectioned for comparison with the weld
section micrographs.

A visualisation tool was produced using Matlab to show the final
position of an initial vertical plane that passes through the axis of
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Fig. 9. Representation of the interface between dissimilar Al alloys in the double-
butt configuration of the kinematic model. The interface between the materials
within the deforming cylinder is coloured to represent the advancing face of each
alloy at the interface, for anticlockwise rotation.

the tool – see Fig. 9. First, both top and bottom workpieces to either
side of the vertical plane are highlighted in different colours. Each
colour therefore corresponds to one of the two Al alloys in a butt
configuration, with the plane being the interface between them.
Half of this vertical plane represents the advancing face of one alloy,
and half of it that of the other alloy, as illustrated in the lower part
of Fig. 9. Subsequent figures show the final position of this plane,
such that the colour of this interface is always that of the material
immediately behind the interface.

To illustrate the method, consider a homogeneous cylinder
through both sheets, with a top surface velocity profile equal to
v = ω × r for all radii out to the tool radius Rs (the dotted line in
Fig. 8). The velocity discontinuity at the outer edge of the cylinder is
initially ignored, to convey the model concept. This case represents
a condition of full sticking between the top and bottom surfaces of
the cylinder, which is unconstrained on its outer curved surface,
while the top rotates with respect to its stationary base. Fig. 10
shows the final position of the bi-coloured butted interface, in a
series of isometric views up to 1.5 rotations. This simple approach
shows clearly that rotation of the tool results in the original vertical
planar interface between the dissimilar alloys being converted into
a spiral ‘corkscrew’ by the continuous twisting of the top interface.

4.3. Through-thickness metal flow in Al–Al and Al-steel welds

To model real welds, the edge discontinuity in velocity must
be enforced. This is illustrated first for double-butt Al–Al welds
(Fig. 2b), assumed to be deforming through-thickness from the start
of welding. Fig. 11a shows the isometric views found by imposing
velocity profile 1 from Fig. 8, up to 0.5 rotations. The central sticking
region forms the same corkscrew shape, but the edges of the plane
remain fixed, giving a smooth curved surface between the limit of
sticking and the outer radius.

For joining aluminium to steel, the deformation is restricted
to the top workpiece, so the model is adapted to the single-butt
configuration, with no deformation in the lower layer (Fig. 2c). For
Al-ungalvanised steel welds, the boundary condition at the base of
the aluminium is the same as before, that is, full sticking is assumed.
The result is shown in Fig. 11b, using the same interface conditions
as in Fig. 11a and a half rotation. The same pattern develops with
tighter spirals, as the same rotation is accommodated in half the
depth – the final pattern in Fig. 11a is exactly the same as that in
the top half of Fig. 11b, magnified vertically by a factor of two.

4.4. Modelling weld sections

The isometric view gives useful insight into the process, but
sectional views provide more useful output for comparison with

experimental results. These views are generated by modelling the
final position of the interface as above, and then “filling in” the
space behind the interfaces to give a solid model, which is then
sectioned horizontally and vertically. This is why the vertical plane
was coloured according to the alloy behind the interface, on each
side of the weld axis. Hence starting from any point on the inter-
face coloured for material 1, a circumferential path back around
the rotation axis all lies within material 1, until the next inter-
face of opposite colour is encountered and the material switches to
type 2.

Fig. 12 shows a series of three outputs from the model: isometric,
top-down surface plan view, and vertical cross-section. The weld
modelled is an Al-steel lap joint in the single-butt configuration,
with surface velocity profile 2 from Fig. 8, and with the analysis
extended to 5 rotations (equivalent to 0.15 s at 2000 rpm). The iso-
metric and top–down views in Fig. 12 shows a central undeformed
region (stuck to the tool), surrounded by nested spirals of the two
alloys in the outer slip region, with the number of layers of the
two alloys increasing with the number of rotations. Note that this
pattern appears with zero inward flow of the material. In the cross-
sectional views, the alloys appear in alternate layers, once there has
been at least one rotation. In the sticking region of the contact the
interfaces are horizontal, consistent with the “corkscrew” form of
the deformation in this region. At the edges, the interfaces curve
upwards to intersect the surface (resulting in the spiral pattern of
layers). It is also observed that the sections are mirror images about
the centre-line between the two different Al alloys, as observed
experimentally (Fig. 5a,b).

The cross-sections show that once the layered pattern is estab-
lished, the number of interfaces between the two materials is
equal to exactly twice the number of rotations of the tool. Hence
the number of double layers (one of alloy 1 and one of alloy 2)
is equal to the number of rotations – which explains why this
parameter was used in the analysis of the experiments (Fig. 6).
The layering predicted by the models is therefore consistent
with the pattern seen in experimental welds, confirming that the
tools stick to the workpiece for the majority of the process. Two
refinements to the model are now explored: firstly, the effect
of varying the stick-slip conditions at the top surface; and sec-
ondly, allowing the depth of the deformation zone to evolve with
time.

The influence of the assumed stick-slip profiles on the weld pat-
terns is clearest in vertical cross-sections, as shown in Fig. 13. The
main effect is to change the position of the ‘kink’ in the layers, at
the radial limit of sticking, where the layers turn towards the top
surface. Profile 1, with r1 = 0.9Rs, imposes very intense deformation,
as all the layers fall into a narrow outer slip region. Profile 2 broad-
ens this zone somewhat, while Profile 3, with a more progressive
transition in slip velocity, leads to a smoother bowl-shaped pattern
of layers. To be consistent with the experimental observations in
Figs. 4 and 5, this suggests that the horizontal layering is associ-
ated with tool sticking, while in practice the slip zone will show a
smooth velocity variation through a peak value and back to zero at
the periphery.

The top–down views also reflect the assumed velocity pro-
files, although this is not a conventional metallographic section
to take experimentally. However, selected samples were ground
and polished back to a shallow depth to remove surface features
left by the tool plunge and retraction. Fig. 14 shows an experi-
mental top–down micrograph for a single-butt Al-steel weld, and
the corresponding kinematic model prediction for velocity pro-
file 3 after 10 rotations. The pattern is well-replicated, with a
central zone in which the alloys remain separated, surrounded
by tight spiral layers of the two Al alloys. This too suggests that
the central sticking zone has a radius roughly half that of the
shoulder.
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Fig. 10. Kinematic model output, using a surface velocity profile for complete sticking, shown at 0, 1/4, 3/4 and 1.5 rotations. All dimensions are in mm (note that the vertical
scale has been stretched for clarity).

Fig. 11. Kinematic model output: (a) for the double-butt configuration, with surface velocity profile 1, at 0, 0.25 and 0.5 rotations; (b) for the single-butt configuration, also
after 0.5 rotation.

Fig. 12. Kinematic model output using velocity profile 2: isometric, top–down and section views – dimensions are as shown in previous figures (with expanded vertical
scale), omitted for clarity.

4.5. Effect of progressive softening

In the model so far, the deformation has been imposed through-
thickness, with a linear gradient in velocity with depth, giving
a constant circumferential shear strain-rate. In practice however,
FSSW generates heat over the tool-workpiece interface, and the
deformation progressively extends into the bulk of the material as
it heats up and softens. For a tool radius that is much greater than
the thickness, the heat flow is predominantly 1D in the through-
thickness direction, giving approximately horizontal isotherms. A
simple “softening law” has therefore been applied to capture the
essence of this z-axis heat flow and the associated drop in strength

with temperature, without recourse to thermal analysis. To sim-
ulate this, the depth of the deformation zone h’ is assumed to
increase linearly with time, h’ = C1 t. This continues until defor-
mation reaches the backing plate (in an Al–Al weld) or the lower
workpiece (in an Al-steel weld), after which time, h’ = h and remains
constant.

The process has two characteristic timescales, and it is helpful
to quantify their relative magnitudes: (i) the time for one rotation
(=2�/�); (ii) the characteristic heat flow time through the thick-
ness, which ≈h2/a (where a is the thermal diffusivity). We define
the ratio of these times as a characteristic dimensionless group

for the process: ω̄ = h2/a
2�/ω

= ωh2

2�a . It is expected that the time for
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Fig. 13. Section views of the kinematic model after various numbers of tool rotations, for three surface stick-slip conditions (velocity profiles 1, 2 and 3 respectively from
Fig. 7).

Fig. 14. A top–down micrograph for a single-butt Al-steel weld, and the corresponding kinematic model prediction, using velocity profile 3 and 10 tool rotations.

deformation to penetrate to the bottom surface, at thickness h, will
scale closely with the heat flow timescale, that is, the constant C1
is given by: h/C1 ≈ h2/a, or C1 ≈ a/h. Hence the effect of the rate of
softening with depth, characterised by C1, can also be described by
varying ω̄, that is, when ω̄ is of order unity, the deformation reaches
the back face in approximately one rotation. For ω̄ >> 1, it takes
many tool rotations for the deformation to penetrate the full thick-
ness; and conversely, for ω̄ << 1, through-thickness deformation
is effectively immediate.

Fig. 15 shows cross-sectional views for various values of ω̄ using
surface velocity profile 3 from Fig. 7. For values of ω̄ << 1, the
profiles in Fig. 15 are essentially the same as in Fig. 13, since
the deformation depth reaches the mid-thickness limit in a frac-
tion of a rotation. But as ω̄ increases, the progressive growth in
deformation depth becomes apparent, with the deformation only

penetrating through the top sheet in 10–20 rotations, for ω̄ = 10.
A second change is more subtle: the total number of double lay-
ers remains equal to the number of rotations, but the thickness of
the layers of the two alloys becomes non-uniform, with thinner
layers nearer the surface – this is most apparent for example in the
image for ω̄ =10, after 10 rotations. A representative value of ω̄ may
be found using typical values of ω, h and a from the experiments:
� = 2000 rpm = 209 rad/s; h ≈ 0.5 mm, and a = 6.1 × 10−5 m2/s, giv-
ing ω̄ = 14, which is of similar order to the bottom row of Fig. 15, in
which the variable layer thickness was apparent. So even though
a linear rate of penetration of the deformation zone has been
assumed in the model, it confirms the hypothesis from the exper-
iments, that the observed increase in layer spacing with depth
(Fig. 5) is associated with a deformation front progressively spread-
ing through-thickness as the material softens as it heats up.
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Fig. 15. Predicted section views for various values of ω̄ after increasing times, using slip profile 3 for the top surface.

4.6. Modelling of Al-galvanised steel: effect of interface melting

Finally, it was observed experimentally that welds between Al
and galvanised steel produced a very different layering pattern in
the single-butt configuration, and it was proposed that this was due
to extensive slip at the interface between the sheets. The kinetic
model is also able to provide visualisation of this behaviour.

First consider a cylinder of material in the top sheet of a single-
butt configuration Al-steel weld. A stick-slip velocity profile is
imposed as before – here we use profile 3–with the zero veloc-
ity constraint imposed on the outer radius of the cylinder. But now
the bottom interface is free to slip. As a result, there is no varia-
tion in the velocity field through the whole thickness – it is the
same as that imposed by the tool, at all depths. But due to the con-
straint on the outer cylindrical surface, the two Al alloys are driven
into spiral layers, now with their interfaces in the vertical direction
– Fig. 16a shows these layers evolving at intervals up to 20 rota-
tions. Note that the layers are confined to the outer slipping part of
the tool, while the sticking region rotates as a rigid body attached
to the tool. These vertical boundaries, concentrated towards the
tool periphery, resemble those observed in the Al–Zn-coated
welds.

In real welds, there must initially be some rotations of the tool
before the Zn melts, since heat must be generated and conducted
to the interface. So there may be some rotations before the onset of
slipping, though because the Zn layer is soft, slip may be possible
prior to melting. In the model, the transition in interface slip has
been simulated by a two stage analysis: (a) an initial period with
the lower interface sticking, generating some horizontal layering;
(b) a switch to the second axisymmetric velocity field, with full
slipping at the interface. Fig. 16b shows the resulting section though
a model with the switch between mechanisms after an arbitrary 5
rotations, with 20 rotations in total. The treatment is crude, but
suggests how it is possible to generate a combination of a central
zone with horizontal layers, surrounded by thinner vertical layers
– as observed experimentally in Fig. 7. Note that this occurred in
the high rpm weld, but not in the low rpm weld–in the latter case
the downforce was lower, so the interface may effectively slip from
the start.

5. Discussion

Taken together, the experimental results indicate that from an
early stage in the FSSW process, a sticking condition dominates
over the central region of the tool surface. But due to the veloc-
ity discontinuity at the edge, between the tool peripheral velocity
and the stationary surrounding material, there must be an annular
slip region to provide a transition from the sticking velocity (�r)
at some radius down to zero. The correlation between the number
of double layers in the dissimilar Al alloy welds and the number of
tool rotations (Fig. 6) provided evidence that only a small propor-
tion of the revolutions are required to obtain sticking. This implies
that frictional heating rapidly softens the surface of the Al sheet,
leading to seizure within a small number of revolutions. Compared
to the flat tool, the fluted tools produce more complex deforma-
tion, with a superimposed inwards flow at the surface. But the
overall conclusion is unchanged, with contact (and thus heat gen-
eration) governed by sticking contact with a peripheral slip region.
It was also apparent that the interface between the sheets was
effectively stuck, in both the Al–Al and Al-uncoated steel welds.
In contrast, for the Al-galvanised steel, the presence of the soft Zn
layer (which melts during welding) led to a rapid transition to low
friction slipping at the interface between the sheets. The layering of
the dissimilar Al alloys then becomes predominantly vertical rather
than horizontal.

The kinematic modelling has confirmed these interpretations
of the material flow. Material layering in the single-butt dissimilar
alloy welds is achieved with purely circumferential flow, with no
need to invoke radial flow. Horizontal layers in the cross-sectional
views are associated with sticking to the tool, while the curve
upwards towards a vertical orientation at the edge satisfies the
boundary condition of zero velocity in the surrounding material.
The model was also consistent with the near-surface plan views of
the deformation region, with a central disc stuck to the tool, sur-
rounded by spiral layers of material from initially opposing sides
of the weld. In addition, the variation in layer thickness was con-
sistent with a progressive increase in the depth of deformation
with heating and softening of the Al sheets. This occurs because
the thinner surface layers have made more circuits of the tool axis
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Fig. 16. Predicted section views for single-butt Al with Zn-coated steel, using slip profile 3: (a) with full slipping at the Al-steel interface, for 2, 5 and 20 rotations; (b) with
an initial 5 rotations of sticking at the Al-steel interface, followed by 15 rotations with full slipping.

than those at the base of the deformation zone, which started to
deform at a later time. Finally it is apparent that increasing the tool
plunge depth will not change this overall deformation pattern –
the cross-sectional pattern will be compressed to a thinner section,
with radial expulsion of material at the edge to conserve volume.

These observations are of fundamental significance in friction
stir processing generally, since the tool contact conditions, and the
distribution of plastic deformation, directly control the heat gener-
ation rate and its spatial distribution. The review by Shercliff and
Colegrove, 2007 shows that thermal modelling efforts in friction
stir welding commonly assume a uniform friction condition over
the whole shoulder area, with either sticking friction or Coulomb
friction, or assume a distribution of power density at the tool inter-
face that reflects an assumed underlying frictional contact. As the
power input to the weld is rarely measured directly, experimen-
tal calibration is used to fit the friction conditions or power input
to thermocouple data. But it is commonly found that the power
input is over-estimated, which indicates that the slipping region
has not been taken into account. In one CFD model developed by
Colegrove and Shercliff (2006) and Colegrove et al. (2007), this was
recognised and managed empirically by applying the heat genera-
tion over a reduced radius, typically 90% of the true shoulder radius.
The simple kinematic model could not realistically be extended to
incorporate the inwards radial and downwards flow induced by the
fluted tools. Nonetheless it is apparent that there will be a (modest)
additional contribution to plastic deformation in the swirl region,
at a radius around 0.4–0.7 of the tool radius. Jedrasiak et al. (2013)
have used this observation to guide the calibration of the radial
distributions of heat input in a thermal model developed for FSSW.
This thermal model has shown that the differences in thermocouple
data for welds with flat and fluted tools could be predicted suc-
cessfully by using a different radial heat input distribution for each
tool type. It should also be noted that the observation that tool
sticking drives the deformation implies that the metal flow and
heat generation are closely tied to the material hot flow strength.
Shercliff and Colegrove (2007) noted that as the surface approaches
its solidus temperature, the maximum possible interface shear trac-
tions will fall rapidly, so the heat input is self-regulating in friction
stir processing.

The deformation patterns also govern the formation of
metal–metal bonding at the sheet interface and hence the joint
strength and failure energy. In Al–Al, the two layers are effec-
tively stuck under the high pressure below the tool, so deformation
propagates continuously through the interface as if it is a sin-
gle workpiece (provided the process conditions give enough heat
input and time for plasticity to extend to that depth). The interface
remains fairly flat with a flat tool, but is deformed by the fluted tools
– producing a “hook” of lower sheet material which eventually pro-
trudes right through the upper sheet to the tool interface, pushing
the interface downwards in the weld centre. This stretches the bond
line, exposing new clean surface and contributing to break-up of
the oxide layer – though in FSSW the normal strains parallel to the
interface are modest, so oxide break-up and metal–metal bonding
relies on intense shear deformation of material on both sides of the

interface. Hooking however has the negative impact of orienting
a relatively weak interface perpendicular to the tensile stress in a
loaded lap-shear joint.

In the Al-uncoated steel welds, the interface cannot be re-
shaped by hooking, due to the higher strength of the steel at the
weld temperatures, so intense shear is limited to the deforming Al
layer, with a sticking condition at the weld interface. Hence the rela-
tive motion across the interface between the top and bottom sheets
is limited, which accounts for the relatively poor performance of
these joints. Al-uncoated steel FSSW with this tool arrangement
is perhaps therefore effectively a process of diffusion bonding,
facilitated by frictional heating and a high interface pressure. The
deformation zone must penetrate to the bottom of the top sheet, as
it is much more difficult to disrupt the oxide contaminated surfaces
of both materials when one does not deform.

In contrast, in the welds produced with Al–Zn coated steel, the
deformation of the Al layer was much less over most of the interface
below the tool, as the Zn layer provides effectively no resistance,
as it melts during welding, giving a sliding condition at the inter-
face. Nonetheless, expulsion of most of the Zn could be achieved
with slower processing times, leading to a joint strength that was
superior to the uncoated case, and comparable to that of the Al–Al
joints. These welds should perhaps be considered to be Zn-brazed
joints rather than solid-state welds, with the lap shear strength
being largely due to the high degree of constraint imposed on the
thin interfacial layer of solidified Zn-rich liquid.

Finally, in Al-steel (and other dissimilar alloy) FSSW, the radial
variation of both deformation and temperature will govern the
formation and thickness of intermetallic reaction layers, and
microstructural changes in the precipitation hardened Al-6111
alloy, both of which are also critical to joint performance. Modelling
efforts such as those by Jedrasiak et al. (2013) aim to predict the
temperature distribution in the heat-affected zone, and at the weld
interface, to interpret and model these microstructural changes.
These thermal models use surface heating distributions guided by
the kinematic interpretation of contact conditions provided in this
paper.

6. Conclusions

The material flow in friction stir spot welding of Al to Al, and Al
to steel, has been investigated experimentally and simulated with
a kinematic modelling approach. The differential etching response
of dissimilar Al alloys in the joints revealed how material from the
two sides of the weld becomes inter-layered, depending on the tool
design, welding conditions, and surface coating of the steel sheet.
The main conclusions of the experiments were that:

• metal flow in FSSW is predominantly circumferential (with fluted
tools adding a degree of inward radial flow at the surface);

• the central region of the workpiece sticks to the tool, with a slip
region towards the outer periphery (for compatibility with the
stationary surrounding material);
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• sticking appears to be achieved in very few rotations after initial
contact of the tool.

A novel kinematic model was developed assuming purely cir-
cumferential flow, providing a consistent interpretation of the
experimental observations. The model illustrated:

• the importance of the surface velocity profile imposed by the tool,
and the kinematic need for a stick-slip boundary within the tool-
workpiece contact area;

• the progressive increase in the depth of the deformation zone
with time, due to progressive heating and material softening.

The interpretation of the tool-workpiece contact in friction stir
processing has been debated at length since the first development
of FSW. The results in this paper inform the handling of this contact,
and the related heat input distribution, in thermal modelling of
friction processing.
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