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ABSTRACT 

Cellular senescence is a widespread stress response and is widely considered to be an 

alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a 

diverse set of sub-phenotypes; depending on which of its associated effector programs 

are engaged. Here we establish a simple and sensitive, cell-based, pro-senescence 

screen with detailed validation assays. We have characterized the screen using a focused 

tool compound kinase inhibitor library. We have identified a series of compounds that 

induce different types of senescence, including a unique phenotype associated with 

irregularly shaped nuclei and the progressive accumulation of pseudo-G1 tetraploidy in 

human diploid fibroblasts. Downstream analyses showed that all those compounds that 

induced tetraploid senescence, inhibited Aurora kinase B (AURKB). AURKB is the 

catalytic component of the chromosome passenger complex, which is involved in 

correct chromosome alignment and segregation, the spindle assembly checkpoint (SAC), 

and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific 

characterization of AURKB in the context of senescence is still required. This proof-of-

principle study suggests that our protocol is capable of amplifying tetraploid senescence, 

which can be observed only in a small population of oncogenic RAS-induced 

senescence, and provides additional justification for AURKB as a cancer therapeutic 

target.  
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INTRODUCTION 

Cellular senescence is a state of stable or ‘irreversible’ cell cycle arrest induced by 

various cytotoxic factors, including telomere dysfunction, DNA damage, oxidative 

stress, oncogenic stress, and some type of cytokines (Correia-Melo et al., 2014; Salama 

et al., 2014) Although senescence was originally defined in normal human diploid 

fibroblasts (HDFs), the best-characterized culture model of senescence, a similar 

phenotype can be induced in a wide range of cell types as well as in in vivo contexts that 

are associated with various pathophysiological contexts, such as tumorigenesis (Pérez-

Mancera et al., 2014), tissue repair (Krizhanovsky et al., 2008; Jun and Lau, 2010), 

ageing (López-Otín et al., 2013), and more recently embryogenesis (Chuprin et al., 

2013; Muñoz-Espín et al., 2013; Storer et al., 2013). Among all these, oncogene-

induced senescence (OIS), where excessive mitogenic stress provokes senescence 

effectors leading to progressive development of senescence phenotypes in culture and 

animal models, underscores the tumour suppressor role of senescence. In addition, it has 

been shown that senescence can also be induced by chemotherapeutic reagents in 

tumours (therapy-induced senescence, TIS), particularly in apoptosis-defective contexts 

(Poele et al., 2002; Schmitt et al., 2002; Xue et al., 2007; Gewirtz et al., 2008; Ewald et 

al., 2010; Dörr et al., 2013). Therefore, senescence has been considered as not only an 

intrinsic tumour suppressor but also an alternative therapeutic goal in cancer (Acosta 

and Gil, 2012; Cairney et al., 2012). However, it has been shown that senescence may 

also facilitate tumorigenesis: senescent cells often secrete a wide range of soluble 

factors, which confer a considerable impact on the tumour microenvironment and local 

immune response, providing anti- and/or pro-tumorigenic effects depending on the 

context (Coppé et al., 2010; Pérez-Mancera et al., 2014). 
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Senescence is typically a dynamic and a long-term process, which can involve many 

regulatory effector mechanisms, conferring a diverse and heterogeneous nature to the 

phenotype (Salama et al., 2014). Thus to qualitatively evaluate the senescence 

phenotype, various cellular and biochemical markers have been identified. Senescence 

markers include accumulation of senescence-associated-β-galactosidase (SA-β-gal) 

activity, a persistent DNA damage response, the senescence-associated secretory 

phenotype (SASP) (Kuilman and Peeper, 2009; Coppé et al., 2010), and autophagy 

(Salama et al., 2014). In addition, senescence is typically accompanied by enlarged 

cellular morphology with increased vesicular formation. Nuclei also can show distinct 

morphologic changes, including an enlargement of the nuclei and the nucleoli (Mitsui 

and Schneider, 1976; Bemiller and Lee, 1978), formation of senescence-associated 

heterochromatic foci (SAHF) (Narita et al., 2003; Zhang et al., 2005), up-regulation of 

promyelocytic leukemia (PML) nuclear bodies both in size and number (Ferbeyre et al., 

2000; Pearson et al., 2000; Bischof et al., 2002; 2005), alterations of lamin B1 and other 

components of the nuclear envelope (Maeshima et al., 2006; Barascu et al., 2012; 

Freund et al., 2012; Dreesen et al., 2013; Sadaie et al., 2013; Shah et al., 2013), and 

alteration of nuclear shape (Matsumura et al., 1979) (reviewed in (Goldstein, 1990; 

Cristofalo and Pignolo, 1993)). Hence it has been proposed that it is necessary to 

combine multiple markers, which can be either more common to or unique to different 

contexts, along with the validation of stable exit from the cell cycle, required for the 

phenotype to qualify as senescence (Campisi, 2013; Salama et al., 2014). 

 

AURKB is a member of the aurora family, which also comprises related kinases, 

AURKA and AURKC. Both AURKA and AURKB are ubiquitously expressed but their 

subcellular localization, binding partners, and substrates are highly distinctive. The 
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different isoforms are thus involved in different aspects of cell cycle regulation, whereas 

AURKC is mainly expressed in testis and its function is not well-characterized 

(Gautschi et al., 2008). While AURKA is a centrosomal protein, mainly related to 

centrosome function and bipolar spindle assembly, AURKB, the catalytic component of 

the chromosome passenger complex, plays a key role in correct chromosomal alignment 

and segregation by destabilising erroneous kinetochore-microtubule attachments, and is 

thought to be involved in the spindle assembly checkpoint (SAC). It also has a critical 

role in cytokinesis (Kelly and Funabiki, 2009; Lens et al., 2010; Carmena et al., 2012). 

Inhibition of AURKB in cell culture leads to a failure to bi-orientate chromosomes, 

perturbed cytokinesis and as a consequence, causes polyploidization and an eventual 

loss of viability (Ditchfield et al., 2003; Kaestner et al., 2009; Lens et al., 2010). It was 

recently shown that AURKs inhibitors that are more selective for AURKA induce 

senescence in melanoma cells (Liu et al., 2013). On the other hand, it has also 

previously been shown that the ectopic expression of AURKB in normal HDFs induces 

senescence (Jung et al., 2005). A more recent study, however, reported that AURKB 

overexpression delays senescence and siRNA-mediated AURKB knockdown induces 

senescence in HDFs (Kim et al., 2011). Thus there is room for a more detailed 

characterization of the senescence phenotype caused by the modulation of AURKB 

expression, and more specifically, enzymatic activity. 

 

Due to the diverse nature of senescence, identifying or developing senescence inducing 

factors would not only extend our cancer therapeutic modalities, it would also help in 

elucidating the effector mechanisms of senescence. While numerous genetic 

‘senescence bypass’ screens have been successfully conducted (Jacobs et al., 2000; 

Shvarts et al., 2002; Gil et al., 2004; Acosta et al., 2008; Kortlever et al., 2008; Leal et 
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al., 2008; Rovillain et al., 2011), attempts at ‘senescence inducing’ screens are still 

limited (Ewald et al., 2009; Lahtela et al., 2013). Here, taking advantage of a high 

content fluorescence image analyzing system, we set out simple primary screens for 

small molecules that can induce senescence-related nuclear phenotypes, namely an 

enlargement in nuclear size and SAHF-like chromatin spottiness, in HDFs, followed by 

secondary analyses for detailed senescence validation in both HDFs and tumour cell 

lines. Using a kinase inhibitor library, we identified compounds that induce senescence 

with different nuclear morphologies. Interestingly, although the substrate specificities of 

the kinase inhibitors used were rather limited, a subset of the hit compounds converged 

on AURKB to induce a unique senescence phenotype, where pseudo-G1 tetraploidy or 

polyploidy progressively accumulated. Our study provides a simple and sensitive pro-

senescence screen and the data reinforce the relevance of AURKB as a cancer 

therapeutic target.  
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RESULTS 

Identification of small-molecule compounds that induce senescence-associated 

morphological changes in nuclei 

To establish an image-based screen for senescence inducers, we focused on senescence-

associated nuclear morphological changes as readout using high-throughput fluorescent 

microscopy (Figure 1A). We chose IMR90 human diploid fibroblasts (HDFs), which 

are generally more sensitive to senescence than apoptosis in response to cellular stress, 

and have thus been well-characterized in terms of senescence (Serrano et al., 1997; 

Narita et al., 2003). To optimize the protocol for image acquisition and the analyses of 

nuclear size and nuclear foci (spots), we used normal and HRASG12V-induced senescent 

(RIS) cells, which exhibit prominent senescence-associated heterochromatic foci 

(SAHFs) (Figure 1B) (Narita et al., 2003). Cells were plated on 96-well plates, fixed, 

and stained with DAPI for the automated imaging of nuclei (Supplemental Figure S1, 

Supplemental Table S1). 

 

Using this system we treated normal proliferating IMR90 cells with 160 kinase 

inhibitors (InhibitorSelect, Calbiochem/Merck) and both the nuclear size and the area of 

any subnuclear foci per nucleus were quantified (Figure 1C). The scores from each well 

were normalized to those from the DMSO controls, and the hits were determined by 

setting a threshold of either 1.2-fold (‘relative nuclear average area’) or 3-fold (‘relative 

spot total area per nucleus’) above the control.  11 and 17, out of 160 compounds (tested 

at a standardized 5 µM), scored positive for nuclear size (large) and spottiness (spotty), 

respectively, with a substantial overlap (Figure 1D, Supplemental Table S2). Cells with 

an enlarged or spotty nucleus tended to show a low ‘relative object count per field’, 

which reflected the averaged cell density in the area scanned (Supplemental Figure 
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S1C), suggesting that those hit compounds have an anti-proliferative and/or pro-cell 

death activity. Similar results were obtained when we treated cells with the compounds 

at 3 µM (Supplemental Figure S1D). 

 

We also manually scored all the compounds by visually inspecting the scanned images. 

The nuclei from the cells treated with the 11 ‘size hits’ were all recognized as 

substantially enlarged, and the spotty nuclei in at least 8 of 17 hits-treated cells were 

confirmed by eye. Interestingly, in most of the size hits, the nuclei exhibited a severe 

malformation with a fragmented, cashew nut-like, or doughnut-like morphology, often 

accompanied by multiple micronuclei (‘Type I’), or a milder phenotype (‘Type II’) 

(Figure 1E, Supplemental Figure S1E). The size hits also included nuclei without any 

apparent irregularity (‘Large’). We termed the hit compounds that induced an irregular 

nuclear shape and spotty morphologies IRG and SPT, respectively, and examined 

whether these phenotypes are associated with cellular senescence. 

 

Hit compounds identified by the screen are capable of inducing cellular senescence 

To determine whether the hit compounds induce senescence in IMR90 cells, secondary 

assays were performed for a subset of compounds: those that scored positive as well as 

those that showed a stronger irregular phenotype (Type I) in the screen (Figure 2). To 

optimize the doses of compounds for senescence induction, we tested different 

concentrations of the compounds and chose the doses that did not induce substantial cell 

death (Figure 2A, Supplemental Figure S1F). Cells were exposed to these compounds 

for 4 days (d4), followed by a further incubation without the compounds for 5 days (d9) 

to examine the phenotype irreversibility, a critical feature of senescence.  
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We confirmed that the majority of IRG-treated cells exhibited enlarged and irregular-

shaped nuclei after 4-days treatment, and these nuclear phenotypes were maintained 

after the compounds had been removed (Figure 2A, Supplemental Figure S2).  IRGs 

also induced a stable cell cycle arrest, as determined by a reduction in Cyclin A2, the 

phosphorylation status of RB (Figure 2B), and BrdU incorporation (Figure 2C); even 

after compound removal. Consistently, the number of colony forming cells after two 

weeks’ incubation with compound-free medium was strongly reduced if they were pre-

treated with IRGs (Figure 2D), reinforcing the long-term nature of the observed cell 

cycle arrest. To further confirm that the IRGs induce senescence, we measured 

senescence-associated ß-galactosidase (SA-ß-gal) activity, a hallmark of senescence 

(Dimri et al., 1995). Cells pre-treated with the IRGs typically showed an enlarged 

cellular morphology with increased SA-ß-gal activity (Figure 2E). Although the levels 

of p16, a senescence-associated CDK inhibitor, were unaltered, p53 and its target p21 

(another CDK inhibitor), both of which play important roles in senescence in some 

contexts (Chang et al., 2000; 2002), were stably upregulated in IRG-treated cells 

(Figure 2B). Interestingly, the levels of HMGA2, a senescence marker associated with 

SAHFs (Funayama et al., 2006; Narita et al., 2006), were increased only at the later 

time point. Consistently, SAHF formation was also more evident at d9 (Figure 2F), thus 

senescence is progressively established even during the compound-free period. These 

results suggest that senescence is not an immediate outcome of the treatment, but rather 

a delayed phenotype. These compounds also induced senescence in BJ cells (another 

HDF), although some compounds induced a milder phenotype than in IMR90 cells 

(Supplemental Figure S3).  
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Similarly to IRGs, we also tested selected SPT hits in the secondary senescence assays. 

These compounds were more toxic than the IRGs and we used a lower concentration for 

our validation experiments. At the concentrations used (Figure 3A), the viability of cells 

24h after drug treatment was >90% (Supplemental Figure S1F). Although the nuclear 

phenotype was relatively modest compared to the IRG hits, the formation of DAPI foci 

(morphologically similar to SAHFs) were significantly increased after treatment the 

SPT hit compounds (Figure 3A). In addition, cells pre-treated with these compounds 

were stably arrested, and displayed hallmark features of senescence (Figure 3, B-E).  

Together, our data provide a proof of principle that the nuclear phenotypes can be 

utilized as readout for pro-senescence screens. For the further validation of the 

compounds and nuclear phenotypes in the context of senescence in this study, we 

decided to focus on IRGs and their associated phenotype, which were strong and highly 

distinctive. 

 

IRG compounds induce premature exit from M phase and tetraploidization 

To examine at which cell cycle stage the IRG-treated cells accumulate and become 

senescent, cell cycle profiles as well as the expression pattern of cyclins were analyzed 

by laser scanning cytometer and immunoblotting, respectively. Following treatment 

with IRGs, the number of cells with a 4n DNA content became markedly increased, 

compared to mock-treated cells (Figure 4A). In addition there was a slight increase in 

the number of cells with an 8n DNA content. Interestingly, immunoblot analysis 

showed that those cyclins enriched in G2 or M phase (Cyclin A2 or B1, respectively) 

were decreased whereas a G1 cyclin (Cyclin D1) was increased during IRG-induced 

senescence (Figure 4B). These data suggest that the increased 4n DNA content reflects 

cell cycle arrest in a pseudo-G1 phase after a failed mitosis (i.e. a tetraploid state), 
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rather than G2 arrest. This is highly reminiscent of Aurora kinase B (AURKB) 

inhibitors, which have been shown to induce irregular-shaped nuclear formation with 

polyploidization (Ditchfield et al., 2003; Hauf et al., 2003). Indeed, the IRGs included 

some compounds (Aurora kinase inhibitor II and SU6656) that can inhibit Aurora 

kinases (Bain et al., 2007). Therefore, we tested whether the inhibition of AURKB 

activity by ZM1 (ZM447439) (Girdler et al., 2006), a well-established AURKB 

inhibitor, causes cellular senescence in HDFs. Treatment of both IMR90 and BJ cells 

with ZM1 phenocopied the IRGs effect. Consistent with the previous studies, ZM1 

treatment induced tetraploidy with a highly irregular nuclear shape (Figure 4, A-C). 

Detailed senescence assays confirmed that ZM1-pretreated cells exhibited a stable exit 

from the cell cycle with increased senescence markers (Figure 4C). Similarly to cells 

exposed to IRG compounds, ZM1-treated cells ceased to proliferate by d4, at which 

point they had irregular nuclei and were mostly tetraploid. However, the establishment 

of senescence again appeared to be delayed, steadily developing beyond the 4d 

treatment (Figure 4C, see SAHF count and HMGA2 blotting). Together, these data 

suggest that IRG compounds may induce senescence at least in part through, directly or 

indirectly, inhibiting AURKB activity.  

 

To directly confirm the correlation between irregular nuclei and tetraploidy, the fate of 

mitotic nuclei was tracked by live-cell imaging of cells expressing H2B:EYFP, which 

had been treated with the compounds. As shown in Figure 4D, cells treated with the 

compounds entered M phase and condensed their chromosomes, yet they eventually 

decondensed without proper segregation and formed mostly single and irregular-shaped 

nuclei (Figure 4D, Supplemental Movies S1-S3, and data not shown). These data 

suggest that the irregular-shaped nuclei arise immediately after M phase without proper 
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chromosome segregation and that cell cycle arrest at the G1 tetraploid phase is 

maintained during senescence development in normal HDFs. 

 

Premature exit from M phase without chromosome segregation takes place after 

prolonged mitosis (mitotic slippage) (Gascoigne and Taylor, 2009) or when the spindle 

checkpoint is restrained (Vitale et al., 2011). Inhibition of microtubule dynamics by 

paclitaxel (taxol, a microtubule stabilizing agent) activates the mitotic checkpoint to 

keep cells arrested at the metaphase/anaphase boundary, at which the well-known 

mitosis markers Histone H3 phosphorylated at serine 10 (H3S10ph), a direct substrate 

of AURKB, and Cyclin B accumulate (Figure 4E, lane 2). It has been shown that 

treatment with AURKB inhibitors overrides the paclitaxel-induced SAC (Ditchfield et 

al., 2003; Hauf et al., 2003). To test whether treatment with the IRGs also cancels the 

paclitaxel-induced SAC, we synchronized IMR90 cells with paclitaxel treatment for 12 

hours, and then cells were released into paclitaxel with or without IRGs or ZM1 (Figure 

4E). Similar to ZM1 (Figure 4E, lane 9), the paclitaxel-induced checkpoint was rapidly 

cancelled by the addition of each of the IRGs (Figure 4E, lanes 4-8), while the 

accumulation of Cyclin B1 and H3S10ph was virtually unaffected by the treatment with 

SPTs (lanes 10-12, Supplemental Figure S4). These results further support our 

hypothesis that treatment with the IRGs induces the irregular nuclear phenotype with 

tetraploidization through AURKB inhibition. 

 

It has been shown that AURKB inhibition does not cause a substantial effect on the 

viability of non-proliferating cells (Ditchfield et al., 2003; Hardwicke et al., 2009). To 

ask whether cell cycle progression is required for IRGs to induce senescence, we treated 

quiescent IMR90 cells, induced by serum starvation, with the compounds for 3 days 
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(Supplemental Figure S5A). We then released the compound-treated cells from 

quiescent arrest into compound-free normal medium (10% serum). The pre-treated cells 

(during quiescence) failed to change their nuclear morphology (Supplemental Figure 

S5A, B) and exhibited virtually no reduction in their proliferative capacity 

(Supplemental Figure S5C). Therefore, IRGs and ZM1 induce senescence in 

proliferating, but not in non-proliferating cells. Together, these results suggest that, 

while these compounds have multiple targets, the downstream effects may converge on 

AURKB, which appears to be the dominant pathway for their senescence inducing 

activity. 

 

Specific inhibition of Aurora B kinase activity triggers formation of irregular-

shaped nuclei and cellular senescence 

We next tested whether the IRGs directly inhibit AURKB kinase activity using a 

biochemical kinase profiling assay. Consistent with the phenotypic similarity between 

IRGs and ZM1 treatment, all five IRGs exhibited a substantial inhibitory effect against 

AURKA and AURKB with stronger effects on AURKB, whereas the SPT hits showed 

virtually no effect on the activities of the AURKs (Figure 5A). Although ZM1-induced 

polyploidization has been attributed to AURKB inhibition (Ditchfield et al., 2003; Hauf 

et al., 2003; Girdler et al., 2006), ZM1 also inhibits AURKA, which has both a very 

distinct localization pattern and functions from AURKB, and, in addition to the AURKs, 

IRGs have multiple targets.  

 

To specifically suppress the AURKB activity, we next sought to apply either a stable 

RNAi or dominant negative approach. Using a micro-RNA (miR30) based design (Silva 

et al., 2005), we identified at least two sh-AURKB constructs, which substantially 
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down-regulated the endogenous levels of AURKB and induced comparable phenotypes 

in IMR90 cells when stably transduced (Supplemental Figure S6). We also generated 

retroviral constructs encoding either an EGFP-tagged wild-type or a kinase-dead 

AURKB mutant (AURKBD218N), which has previously been shown to function in a 

dominant-negative fashion (Girdler et al., 2006). Endogenous AURKB levels were also 

down-regulated in cells expressing AURKBD218N or treated with ZM1 (Figure 5B), 

perhaps due to the cell cycle arrest in pseudo G1 phase caused by AURKB inhibition 

(Gully et al., 2012). Immunoblot analysis showed that expression of AURKBD218N or 

sh-AURKB-1, or ZM1 treatment resulted in a reduction in H3S10ph (a substrate of 

AURKB), although cells expressing sh-AURKB-1 exhibited residual AURKB activity 

(Figure 5B). Cyclin A2, Cyclin B1, and phosphorylated RB were down-regulated, 

whereas Cyclin D1 (a G1 cyclin) was increased in AURKBD218N or sh-AURKB-1 

expressing cells, as observed in IRGs/ZM1-treated cells (Figure 5B, also Figure 4B). 

The nuclear phenotype with irregular shape was comparable between AURKBD218N 

expressing cells and ZM1-treated cells, whereas sh-AURKB-1 expressing cells showed a 

milder phenotype (Figure 5C). In addition, the senescence phenotype was also milder in 

the sh-AURKB-1 expressing cells (Figure 5, B-D), implying a negative correlation 

between the AURKB activity and senescence phenotype (see also Supplemental Figure 

S6, A and B). Together, these results indicate that AURKB inhibition-induced 

senescence progressively develops in tetraploid cells with a highly irregular nuclear 

morphology and that it is an immediate consequence of AURKB inhibition in normal 

HDFs.  

 

IRG compounds block the proliferation of cancer cells 
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AURKB inhibition in tumour cells leads to increased polyploidy, and cell cycle arrest or 

cell death depending on the cell type or context (Ditchfield et al., 2003; Hauf et al., 

2003; Gizatullin et al., 2006; Wilkinson et al., 2007; Yang et al., 2007). For example, it 

has been shown that in the presence of AURKB inhibitors, HeLa cervical carcinoma 

cells enter and exit mitosis normally, but fail to divide (Ditchfield et al., 2003; Hauf et 

al., 2003). However, long-term senescence development in tumour cells pre-treated 

with AURK inhibitors remains to be determined. To test whether these compounds 

cause therapy-induced senescence (TIS) in tumour cells, we treated HeLa cells with 

selective IRGs as well as ZM1. We first confirmed that cells were mostly viable (~80% 

at day 9, Supplemental Figure S7A) after treatment with the compounds at the 

concentrations used. Consistent with the phenotype of AURKB inhibition, after a 4-day 

treatment with these compounds the cells contained remarkably enlarged and highly 

irregular/multi-lobulated nuclei, or often they had numerous nuclei per cell (Figure 6A). 

At this stage, the cells showed only a modest retardation of cell cycle progression with 

little sign of senescence (probed through phosphorylation status of RB and BrdU 

incorporation) (Figure 6, B and C). This is perhaps consistent with the previous studies 

suggesting that deficiencies in the p53-p21 pathway enhance the endoreduplication 

caused by aurora kinase inhibitors (Ditchfield et al., 2003; Gizatullin et al., 2006; 

Kaestner et al., 2009). Although HeLa cells express a, functional, wild-type p53, its 

level is down-regulated by human papillomavirus (HPV) E6. After an additional 5-day 

incubation in compound-free medium, however, cells exhibited an accumulation of the 

G1-cyclin (Cyclin D1) and reduced markers of cell cycle progression, such as the S/G2-

cyclin (Cyclin A2), phosphorylated forms of RB, and BrdU incorporation (Figure 6, B 

and C), suggesting that the compound pre-treated cells eventually arrest at a pseudo-G1 

phase. These cells also showed a robust accumulation of SA-ß-Gal activity (Figure 6, D 
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and E). Thus the IRG compounds can induce senescence in HeLa cells. Their long-term 

arrest was confirmed by a colony formation assay in compound-free medium (Figure 

6F). Interestingly, we found up-regulation of the p53-p21 pathway and HMGA2 to be 

delayed (Figure 6B), reinforcing the progressive nature of senescence establishment 

after removal of the compounds.  

 

Since, in HeLa cells, p53 can escape from its E6-mediated down-regulation upon stress 

in some contexts (Wesierska-Gadek et al., 2002), we next asked whether these 

compounds induce senescence in tumour cells that completely lack p53; using H1299, 

the p53-null human lung cancer cell line. While some rounded-up or floating cells were 

observed at both d4 and d9, IRG-treated H1299 cells were largely viable (Supplemental 

Figure S7B). Similarly to HeLa cells, the cells which were attached exhibited highly 

enlarged irregular/lobulated nuclei and/or a multinuclear phenotype (Figure 7A), the 

progressive accumulation of G1-cyclin (Cyclin D1) (Figure 7B), and a significant 

reduction in BrdU incorporation (Figure 7C), suggesting that the IRGs/ZM1 pre-treated 

cells also develop the pseudo-G1 phenotype. Although the reduction in DNA synthesis 

and Cyclin A2 levels was less pronounced than in HeLa cells at d9, the pre-treated 

H1299 cells showed a strong senescence-like phenotype (Figure 7D) with a marked 

reduction in their colony forming capacity, likely due to a combination of senescence 

and cell death (Figure 7E). Altogether our data suggest that AURKB inhibition triggers 

senescence and that this senescence develops whilst the cells are in a tetraploid state or 

in the case of the tumour cells, with reduced or defective p53, a polyploid state. 
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DISCUSSION 

While the primary endpoint of conventional chemotherapy is generally cell death, 

senescence is gaining increasing attention as an alternative goal in cancer therapy 

(Acosta and Gil, 2012; Cairney et al., 2012). Senescence is a heterogeneous and 

collective phenotype mediated by multiple effector programs, which are often 

associated with distinct senescence markers (Salama et al., 2014). Thus this predicts the 

benefit of using diverse markers as a readout in screens for senescence inducers and/or 

senescence bypass.  For example, in our screens for nuclear/chromatin morphological 

alterations, we identified multiple compounds that induce ‘tetraploid senescence’, likely 

through a direct inhibition of AURKB in a progressive manner. Indeed, we observed a 

small increase in the 8n cell population in conventional RAS-induced senescent cells 

(Supplemental Figure S1), suggesting that our screen also allowed the enrichment, or 

‘purification’, of certain sub-types of the senescence phenotype. Although, as a proof of 

principle, we used normal HDFs, which are highly prone to senescence, and a kinase 

inhibitor library with a modest specificity and diversity (160 inhibitors), some of the 

hits were capable of inducing senescence in tumour cell lines. Thus the system is 

potentially applicable to TIS-screening, with a higher throughput and/or different types 

of libraries.  

 

The Aurora kinases are overexpressed in a wide range of human cancers, and they are 

considered as promising therapeutic targets and a number of clinical trials are currently 

at various stages (Keen and Taylor, 2004; Green et al., 2011; Goldenson and Crispino, 

2014). These studies are aimed at inducing cell death and the induction of a senescence-

like response has not been considered in these trials.  
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Inhibition of AURKB, the catalytic component of the chromosome passenger complex, 

overrides the SAC, which thus induces a premature exit from mitosis and interferes with 

cytokinesis, leading to tetraploid/binuclear cells (Keen and Taylor, 2009). However, 

how AURKB inhibition develops into a senescence phenotype in a tetraploid condition 

remains to be elucidated. In addition to an altered SAC, tetraploidization can also be 

induced by mitotic slippage after: a prolonged mitosis, cytokinesis failure, 

endoreduplication, telomere dysfunction, DNA damaging agents, or cell fusion 

(Storchova and Kuffer, 2008; Davoli et al., 2010; Davoli and de Lange, 2011; 

Panopoulos et al., 2014). In addition, it was recently shown that ‘mitotic skip’ is 

involved in tetraploid senescence, particularly induced by DNA damage, where p53 

activation during G2 plays a key role, although any functional relation between 

tetraploidization and senescence was not examined (Johmura et al., 2014; Krenning et 

al., 2014). Tetraploid cells, which possess two sets of homologous chromosomes, are 

suggested to be genetically unstable and have a risk of producing aneuploidy, a 

hallmark of cancer cells (Fujiwara et al., 2005; Ganem et al., 2007; Storchova and 

Kuffer, 2008; Davoli et al., 2010). It is therefore possible that normal diploid cells have 

mechanisms to block the further expansion of tetraploid cells. It was previously 

proposed that there is a p53-dependent G1 ‘tetraploidy checkpoint’, which senses an 

excessive number of chromosomes or centrosomes (Andreassen et al., 2001; Margolis 

et al., 2003), although several subsequent reports have shown that a significant 

population of tetraploid cells can re-enter the cell cycle under optimal culture conditions 

(Uetake and Sluder, 2004; Wong and Stearns, 2005; Hayashi and Karlseder, 2013). 

Thus the existence of the tetraploidy checkpoint has been controversial. Interestingly, 

however, Ganem et al. recently showed that tetraploidization can trigger a ‘G1 arrest’ 

without an apparent DNA damage response, through the activation of the Hippo and 
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p53 pathways (Ganem et al., 2014). It would be very interesting to test whether 

AURKB inhibition-induced senescence is, at least in part, dependent on these pathways.   

 

Our data suggest that senescence is a delayed process rather than an immediate 

consequence of tetraploidization. We also found that the senescence phenotype can still 

progress after AURKB inhibition in p53-defective cells, where cells can undergo 

endoreduplication, leading a highly polyploid senescence (Figures 6 and 7). Thus, 

although extra numbers of chromosomes might contribute to inducing senescence, 

particularly in normal cells, it is also possible that the pathophysiology behind 

polyploidization can provoke senescence effector mechanisms. Indeed, both senescence 

and tetraploidy are associated with some common pathophysiological contexts, 

including wound healing, ageing, and pre-neoplasia (Ermis et al., 1998; Ganem et al., 

2007; Davoli and de Lange, 2011; Gentric et al., 2012). In addition, it was recently 

shown that cell fusion can also induce senescence (Chuprin et al., 2013). In all 

conditions, genotoxic stress or DNA damage response (DDR) is involved in senescence 

(Bartkova et al., 2006; Di Micco et al., 2006; Davoli et al., 2010; Jun and Lau, 2010; 

Chuprin et al., 2013; López-Otín et al., 2013). 

 

While senescence involves diverse effector mechanisms, a persistent DDR is proposed 

to be a widespread mechanism behind senescence induction in diverse types of stress 

(Bartkova et al., 2006; Di Micco et al., 2006; Mallette et al., 2007; d'Adda di Fagagna, 

2008; Rodier et al., 2009). Interestingly, mitotic errors can cause lagging chromosomes, 

leading to formation of micronuclei, which are associated with DNA damage (Guerrero 

et al., 2010; Thompson and Compton, 2011; Crasta et al., 2012). For example, it was 

shown that cells bearing a mutated death inducer obliterator (Dido) gene, which causes 
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SAC dysregulation, show DNA damage localized at their centromeric regions, 

particularly in micronuclei, which are derived via a mitotic defect (Guerrero et al., 

2010). Unlike DNA damage in telomeric regions, which is not readily reparable 

(Fumagalli et al., 2012; Hewitt et al., 2012; Suram et al., 2012) and avoids end 

detection (Carneiro et al., 2010), centromeric DNA damage appears to be reparable 

(Guerrero et al., 2010). However, in addition to telomeric regions, senescence 

associated-persistent DNA damage (collectively called ‘DNA-SCARS’) can also be 

observed within the bodies of chromosomes, although the mechanism for the failed 

DNA repair in these regions remains to be determined (Rodier et al., 2011). It was also 

shown that micronuclei contain aberrant DNA replication-associated DNA damage, 

which can persist during G2, particularly in p53-deficient conditions (Crasta et al., 

2012). We confirmed that the micronuclei caused by IRGs/ZM1 treatment at d4 were 

often positive for both γH2AX (a DNA damage marker) and centromere protein A 

(CENPA) in HDFs (Supplemental Figure S8). Such DNA damage may provoke other 

senescence effectors, contributing to the progressive development of senescence.  

 

It has been proposed that mitotic failure can lead shortly afterwards to a distinct form of 

cell death. This process is called ‘mitotic catastrophe’, but it involves as yet poorly 

understood mechanisms (Vitale et al., 2011; Hayashi and Karlseder, 2013). In addition 

to cell death, senescence has also been implicated in this process (Shay and Roninson, 

2004; Vitale et al., 2011; Hayashi and Karlseder, 2013). For example, factors that 

dysregulate the SAC can also induce senescence, followed by eventual cell death due to 

mitotic catastrophe (Chang et al., 2000; Eom et al., 2005; Yun et al., 2009). In addition, 

HDFs extend their replicative life span when tumour suppressors, including p53, are 

lost and cells escape replicative senescence, eventually undergoing a net growth arrest 
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with a high rate of cell death (called M2 or ‘crisis’) likely due to mitotic catastrophe 

(Shay and Wright, 2005).  

 

The relationship between senescence ‘escapers’ and mitotic catastrophe raises an 

interesting possibility, a potential mode of selective killing for ‘unstable’ senescent cells. 

Particularly in the TIS context, the incomplete establishment of senescence in tumour 

cells may even promote tumour development and recurrence, in part through the longer-

term aspects of the non-cell-autonomous activities of senescence. Indeed, it has been 

shown that senescence-induction needs to be coupled with the subsequent elimination of 

senescent cells in order to achieve an efficient tumour suppression or pro-senescence 

therapeutic outcome (Xue et al., 2007; Rakhra et al., 2010; Kang et al., 2011). Currently, 

the proposed mechanisms for the ‘selective elimination of senescent cells’ are mainly 

mediated through the immune response (Xue et al., 2007; Krizhanovsky et al., 2008; 

Kang et al., 2011; Pérez-Mancera et al., 2014), while a recent study provided evidence 

that senescent cells can also be eliminated through metabolic perturbation in a TIS 

context (Dörr et al., 2013). Notably the mitotic catastrophe and cell death following 

senescence escape are often associated with deficiencies in the p53-p21 pathway 

(Chang et al., 2000; Shay and Roninson, 2004; Yun et al., 2009), which is often 

abrogated in cancer, thus reinforcing the therapeutic relevance of the pro-senescence 

cancer therapy of using SAC modulators. Consistently, it was recently shown that p53 

deficiency sensitizes cells to the premature mitotic exit caused by AURKB inhibition 

(Marxer et al., 2014). Also, the inhibitor of aurora kinases, VX-680, was previously 

shown to induce cell death preferentially in tumour cells with a compromised p53-

dependent post-mitotic checkpoint, although this effect appears to be highly cell type 

dependent (Gizatullin et al., 2006). The above is also perhaps consistent with our data 
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that p53-null H1299 cells treated with IRGs/ZM1 showed a defective colony forming 

ability with a relatively mild senescence phenotype (Figure 7). While senescence has 

often been suggested to be a ‘back-up’ of apoptotic failure (Schmitt et al, 2002), such 

potential reciprocal back-up interactions between senescence and cell death through 

mitotic catastrophe might provide additional justification for AURKB inhibitors, or 

other SAC modulators, as a therapeutic module in cancer.  
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MATERIALS AND METHODS  

Cell culture and gene transfer 

IMR90 and BJ human fibroblasts (ATCC) were cultured in phenol-red free DMEM 

with 10% FBS under 5% oxygen as described previously (Young et al., 2009). HeLa 

and H1299 cells (ATCC) were cultured in phenol-red free DMEM with 10% FBS. 

Retroviral gene transfer was carried out as described(Narita et al., 2006). RAS-induced 

senescence (RIS) was triggered by the addition of 4OHT to cells expressing H-RASG12V 

fused to the estrogen receptor (ER) ligand-binding domain (ER:RAS)(Young et al., 

2009). Quiescence was induced by incubating cells in DMEM with 0.1% serum for 3 

days. 

 

Plasmids 

The following retroviral plasmids were used: pLNCX2 (ER:H-RASG12V (ER:RAS)) 

(Young et al., 2009), pWZL-hygro (EGFP, EGFP:AURKB, EDFP:AURKBD218N). 

miR30-based shRNA; pMSCV-puro (sh-AURKB) (Silva et al., 2005). The following 

target sequences were used for pMSCV-miR30-AURKB: gaagggatccctaactgtt (#1), 

tttgtttaataaaggctga (#2), ggtccctgtcattcactcg (#3), and actgttcccttatctgtt (#4) 

 

Antibodies  

Antibodies used for Western blotting were as follows: Cyclin A2 (C4710, Sigma), 

Cyclin B1 (4135, Cell Signaling), Cyclin D1 (2926, Cell Signaling), p16 (sc-759, Santa 

cruz), p21 (sc-397, Santa Cruz), p53 (sc-126, Santa Cruz), HMGA2 (sc-30223, Santa 

Cruz), H3S10phos (ab14955, Abcam), Histone H3 (ab1791, Abcam), AURKB (ab2254, 

Abcam), ß-actin (A5441, Sigma), Rb (9309, Cell Signaling). 
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Compound screening 

IMR90 cells were plated in a 96-well plate (353948, BD Falcon) at 10,000 cells per well. 

After 24 hours, the medium was replaced by those containing 3 µM or 5 µM kinase 

inhibitors (InhibitorSelect kinase inhibitor library including 160 compounds, 

Calbiochem/Merck). 4 days after compound addition, cells were washed with PBS, 

fixed in PBS with 4% paraformaldehyde for 15 min, and washed with PBS three times. 

Fixed cells were stained with 1 µg/ml DAPI in PBS (+0.2% Triton X-100) for 5 min. 

Images of the nuclei were captured and analyzed by ArrayScan (Thermo Scientific) 

with the settings shown in Table S1. Briefly, nuclear contour was first determined 

(channel 1) and then spotty structures overlapping with the nuclei were identified 

(channel 2). To rank the compounds by nuclear size and spottiness, the parameters 

‘Relative nuclear average area’ and ‘Relative spot total area per nucleus’ over DMSO 

control were used for the analyses, respectively. The compounds that gave less than a 

count of 100 nuclei per well were categorized as ‘Toxic’ and excluded from analyses. 

Hit compounds from each category were further narrowed down and re-categorized by 

visual inspection. 

 

Compounds 

The final concentrations used for each individual compound was as follows. For HDFs 

and H1299 cells, Aurora kinase inhibitor II: 8 µM (CAS# 331770-21-9; 189404, 

Merck); Cdk2 inhibitor IV, NU6140: 4 µM (CAS# 444723-13-1; 238804, Merck); 

PDGFR tyrosine kinase inhibitor V: 8 µM (CAS# 347155-76-4; 521234, Merck); Rho 

kinase inhibitor IV: 10 µM (555554, Merck or CAS# 913844-45-8; 2485, Tocris); 

SU6656: 10 µM (CAS# 330161-87-0; 572635, Merck); ZM1 (ZM-447439): 2 µM 

(CAS# 331771-20-1; sc-200696, Santa Cruz); EGFR inhibitor: 0.5 µM (CAS# 879127-
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07-8; 324674, Merck); JNK inhibitor IX: 0.5 µM (CAS# 312917-14-9; 420136, Merck); 

MK2a inhibitor: 0.7 µM (CAS# 41179-33-3; 475863, Merck). For HeLa cells, Rho 

kinase inhibitor IV, Cdk2 inhibitor IV and ZM1 were used at the concentration of 1.5, 4 

and 1.5 µM, respectively. Nocodazole: 200 ng/ml (CAS# 31430-18-9; 487928, Merck); 

Paclitaxel: 10 µM (CAS# 33069-62-4; T7402, Sigma).  

 

Senescence and viability assays 

Cells were treated with the hit compounds for 4 days (d4), followed by 5 days 

incubation in compound-free media (d9) unless stated. BrdU incorporation, SA-ß-gal 

and colony formation assays were conducted as described(Narita et al., 2003). Primary 

antibody for BrdU incorporation: 555627, Becton Dickinson. Cell viability was 

determined by trypan blue exclusion. 

 

Immunofluorescence and laser scanning cytometer (LSC) 

Immunofluorescence was performed as described (Narita et al., 2003). Primary 

antibodies: H3K9me3 (07-523, Millipore), H3K36me3 (13C9) (Chandra et al., 2012), 

LMNA (sc-20680, Santa Cruz), α-Tubulin (T5168, Sigma). Images were acquired with 

confocal (when stated) or wide-field fluorescence microscopy. LSC (Compucyte iCys) 

was used to determine cell cycle profile and nuclear size distribution.  

 

Live cell imaging 

IMR90 cells stably expressing Histone H2B:EYFP were synchronized at the G1/S 

border using a double thymidine treatment. Briefly, cells were plated at a density of 

1.76 x 104 cells (in 300 µl medium) per well on to an 8 well µ-slide (80826, ibidi). One 

day after plating, the medium was replaced with that containing 2 mM thymidine and 



! 27 

incubated for 14 hours. Cells were washed three times with pre-warmed 200 µl PBS and 

released into thymidine-free medium for 12 hours. Then cells were again incubated 13 

hours in the medium containing thymidine. These synchronized cells were washed three 

times with pre-warmed 200 µl PBS and released into medium containing the 

compounds. 10 hours later, imaging was started and continued for ~5 hours (5 min 

interval) with Eclipse TE2000 PFS Color microscope (Nikon). Conditions for the 

imaging were as follows: x10 objective; three focal planes, 3 µm apart; three fields per 

well; exposure time (bright field: 20 ms; YFP: 400 ms); gain: 13.6x; ND filter: 1. Movie 

and individual files were processed by NIS-Elements software and ImageJ 1.48s. 

 

In vitro kinase assay 

The IC50 of the compounds was identified using a Z’-LYTE in vitro kinase assay and 

was carried out by the SelectScreen biochemical kinase profiling service (Invitrogen). 

The assay was conducted at ten points from 1 nM up to 2 mM with the ATP 

concentration shown: 10 µM for AURKA; 81µM for AURKB.  
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FIGURE 7. p53-null cancer cells undergo cellular senescence by treatment with IRGs. (A) Phase contrast and DAPI images of the H1299 cells, which were treated with selected IRG compounds and ZM1 for 4 days, followed by a 5-day culture in compound-free medium (d9) as in Figure 2A. (B) Immunoblot analysis for the indicated proteins in H1299 cells at d4 and d9. (C) Percentage of the BrdU incorporation positive cells. (D) SA-β-galactosidase assays for the compound-pre-treated H1299 cells at d9; representative images (D) and quantitative data (E). Values are mean ± SEM from 3 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001. (E) H1299 cells pre-treated with the indicated compounds for 4 days were maintained in normal media for colony formation assay.
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SUPPLEMENTAL FIGURE S1. Increased large and spotty nuclei in RAS-induced senescent cells. (A) Oncogenic RASG12V-induced senescent (RIS) IMR90 cells were stained with DAPI and assessed for DNA content and nuclear size using a laser scanning cytometer (iCys). (B) Percentage of SAHF-positive senescent cells was manually counted. Prolif, proliferating. (C) 2-D plots for the indicated parameters measured by automated detection using ArrayScan. Cells were treated with library compounds either at 5 μM (top) or 3 μM (bottom) for 4 days. An arbitrary threshold for relative nuclear average area (compounds/DMSO) (representing ‘nuclear size’) were set at 1.2 for both concentrations, whereas thresholds for relative spot total area per nucleus (compounds/DMSO) (representing ‘spottiness’) were set at 3 or 2.5 for 5 μM or 3 μM libraries, respectively. (D) Screening of compounds at 3 μM. Score distributions of relative nuclear average area or relative spot total area per nucleus were shown as in Figure 1C. Number of hits identified by automated detection and subsequent visual inspection are summarized (right). *Compounds that gave counts of less than 100 nuclei. (E) Confocal images of IMR90 cells treated with indicated compounds (d3). Cells were stained using the indicated antibodies. LMNA, Lamin A. (F) Cell viability was determined by trypan blue exclusion assay after 24h incubation of IMR90 cells with indicated compounds at different concentrations.
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SUPPLEMENTAL FIGURE S2. Increased nuclear size in cells treated with the IRGs. Histograms show distribution of nuclear size in cells treated with the indicated kinase inhibitors as in Figure 2. Cells at d4 and d9 were stained with DAPI and analyzed by laser scanning cytometer.
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SUPPLEMENTAL FIGURE S3. Treatment with IRG hits or ZM1 induces senescence in BJ cells. (A-F) BJ cells were treated with indicated compounds as in Figure 2A, and assessed for nuclear shape (A), cell cycle profile (B), protein expression (C), BrdU incorporation (D), SA-β-galactosidase activity (E), and colony forming capacity (F). Values are mean ± SEM from 3 independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001.
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SUPPLEMENTAL MOVIES S1-S3. IMR90 cells treated with compounds exit M phase without chromosome segregation. IMR90 cells expressing H2B-EYFP were synchronized at the G1/S border with double thymidine treatment, and released into medium containing DMSO or indicated compounds. Ten hours after the release, time-lapse images of H2B-EYFP were taken every 5 minutes. Movie S1. Representative time-lapse images of control cells treated with DMSO. Movie S2. Representative time-lapse images of cells treated with PDGFR-V (Large image field). Movie S3. Representative time-lapse images of cells treated with ZM1.



 

SUPPLEMENTAL TABLE S1. Optimized ArrayScan settings for detecting nuclear 

morphological changes. 
Category Parameter Setting Comments 

Assay 

Assay algorithm SpotDetector.V3 
Name of BioApplication – optimized for spot 
detection 

Protocol name SAHF_compounds_20x_Spots 

# channels 2 (both DAPI) 
Allows collection of two images with differing 
saturation 

Form Factor Falcon 96 well Microplate template 

Image Acquisition 

Objective 20x 
Highest magnification available to permit 
detection of distinct puncta 

Acquisition camera mode Standard Pixel resolution 1024x1024; 2x2 binning  

AutoFocus camera mode AutoFocus 
Pixel resolution 1024x1024; 4x4 binning (faster 
focusing) 

Scan Limits 

Max Fields for Well 60 Maximum number of images taken per well 
Min Objects for Well 600 Min # of objects (nuclei) to detectfor each well  

Max Sparse Fields for Well 4 
# of images taken of ‘Sparse wells’ before 
moving to next well 

Min Objects for Field 5 ‘Sparse well’ defined as one with <5 nuclei 

Channel 1: Nuclei 

Dye XF100 - Hoechst Name of fluorescence filter  

Exposure Fixed: 40% saturation 
These settings set the threshold for detecting 
nuclei as single objects (i.e. whole nuclei). 
Typical exposure time = 0.054secs. Threshold 
depends on signal intensity. Object identification Fixed Threshold: 20 – 100 

ObjectAreaCh1 
Min: 200 Defines min and max size of a nucleus in pixels 

(eliminates debris and large nuclear clumps) Max: 2500 

ObjectAvgIntenCh1 
Min: 0 

Rejects very bright objects – most likely debris 
Max: 2000 

Channel 2: Spots 

Dye XF100 - Hoechst Name of fluorescence filter  

Exposure Fixed: 25% saturation Using a lower saturation helps improve 
sensitivity of spot detection. Typical exposure = 
0.034secs Object identification Fixed Threshold: 20 – 100 

SpotAreaCh2 
Min: 0 

Defines min and max size of spots in pixels 
(improves assay sensitivity by eliminating 
larger areas of nucleus with different DAPI 
intensities) Max: 30 

Assay Parameters 

Use reference wells 1 

Turns on function which allows data to be 
expressed as % responders vs control wells.  
(Responder value set as 2SDs away from 
control) 

SpotDetectRadiusCh2 3 

Determines the size of spots (in pixels) to be 
detected – helps to increase signal:noise by 
eliminating large variances in nuclear staining 
being detected as spots 

SpotSmoothFactorCh2 0 
Turns off smoothing so that only bright spots 
with large contrast cf background are detected 
– improves signal:noise 

RejectBorderObjectsCh1 1 Rejects all nuclei at edge of image 

ObjectSegmentationCh1 0-7 

Splits clumped nuclei into individual objects – 
important for assay sensitivity as SAHF 
phenotype is not 100% penetrant, and nuclear 
area is an important indicator of senescence 

Background CorrectionCh1 35 
Improves signal:noise 

Background CorrectionCh2 10 



 

SUPPLEMENTAL TABLE S2. Size hits (nucleus average area) 
Compound name* Primary target kinases* 3 µM 5 µM 
Aminopurvalanol A Cdk1/cyclin B, Cdk2/cyclin A, Cdk2/cyclin E, Cdk5/p35 II L 
Aurora Kinase Inhibitor II Aurora Kinase �  I 
Gö 6976 PKC L �  
Herbimycin A, Streptomyces sp. P60v-src L �  
JAK3 Inhibitor VI JAK3 �  I 
Met Kinase Inhibitor met kinase activity �  I 
Rho Kinase Inhibitor IV ROCK II I I 
SU9516 Cdk2/A II II 
BAY 11-7082 TNF-α-inducible phosphorylation of IκBα L Toxic 
Cdk2 Inhibitor IV, NU6140 Cdk1/cyclin B I I 
GSK-3 Inhibitor XIII GSK-3 II Toxic 
IC261 CK1δ L �  
JAK Inhibitor I murine JAK1 II I 
Kenpaullone Gsk-3β II II 
PDGF RTK Inhibitor PDGFR I I 
SU6656 Src I I 
(Cut-off threshold) �  (≥1.2) (≥1.2) 

Hits identified by Arrayscan are highlighted in grey 
I: Irregular (Type I) 
II: Irregular (Type II) 
L: Large 
Toxic: gives count of less than 100 nuclei per well 
* as shown in the Merck Millipore website 

  



 

SUPPELMENTAL TABLE S3. Spotty hits (spot total area per nucleus) 
Compound name* Primary target kinases* 3 µM 5 µM 
Aminopurvalanol A Cdk1/cyclin B, Cdk2/cyclin A, Cdk2/cyclin E, Cdk5/p35 �  - 
Aurora Kinase Inhibitor II Aurora Kinase �  S 
Chelerythrine Chloride PKC S Toxic 
Cdk2 Inhibitor III Cdk2/A, Cdk2/E �  S 
EGFR Inhibitor EGFR S S 
GTP-14564 Class III receptor tyrosine kinases �  S 
Herbimycin A, Streptomyces sp. P60v-src - �  
JAK3 Inhibitor VI JAK3 - - 
MK2a Inhibitor Mk2α S S 
Rho Kinase Inhibitor IV ROCK II S S 
SU9516 Cdk2/A - - 
BAY 11-7082 TNF-α-inducible phosphorylation of IκBα - Toxic 
Cdk2 Inhibitor IV, NU6140 Cdk1/cyclin B - - 
EGFR/ErbB-2/ErbB-4 Inhibitor EGFR/ErbB-2/ErbB-4 �  S 
GSK-3 Inhibitor XIII GSK-3 - Toxic 
IC261 CK1δ �  S 
JAK Inhibitor I murine JAK1 �  - 
JNK Inhibitor IX JNK2, JNK3 S �  
Kenpaullone Gsk-3β �  - 
PDGF RTK Inhibitor PDGFR - - 
SB220025 P38MAPK �  - 
SU6656 Src - - 
(Cut-off threshold) �  (≥2.5) (≥3.0) 

Hits identified by Arrayscan are highlighted in grey 
S: Spotty 
-: Not obvious 
Toxic: gives count of less than 100 nuclei per well 
* as shown in the Merck Millipore website 
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