
Modelling energy efficiency for computation

Charles Reams

University of Cambridge

Computer Laboratory

Clare College

April 2012

This dissertation is submitted for

the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing that is the outcome of

work done in collaboration except where specifically indicated in the text. This dissertation

does not exceed the regulation length of 60 000 words, including tables and footnotes.

Work done in collaboration

Chapter 3 of this thesis comprises an extended revision of an article co-authored with

David Brown, which appeared in the Communications of the ACM [Brown and Reams,

2010]. The remaining work is my sole undertaking.

Summary

In the last decade, efficient use of energy has become a topic of global significance, touching

almost every area of modern life, including computing. From mobile to desktop to server,

energy efficiency concerns are now ubiquitous. However, approaches to the energy problem

are often piecemeal and focus on only one area for improvement.

I argue that the strands of the energy problem are inextricably entangled and cannot

be solved in isolation. I offer a high-level view of the problem and, building from it,

explore a selection of subproblems within the field. I approach these with various levels of

formality, and demonstrate techniques to make improvements on all levels. The original

contributions are as follows.

Chapter 3 frames the energy problem as one of optimisation with constraints, and explores

the impact of this perspective for current commodity products. This includes considera-

tions of the hardware, software and operating system. I summarise the current situation in

these respects and propose directions in which they could be improved to better support

energy management.

Chapter 4 presents mathematical techniques to compute energy-optimal schedules for

long-running computations. This work reflects the server-domain concern with energy

cost, producing schedules that exploit fluctuations in power cost over time to minimise

expenditure rather than raw energy. This assumes certain idealised models of power,

performance, cost, and workload, and draws precise formal conclusions from them.

Chapter 5 considers techniques to implement energy-efficient real-time streaming. Two

classes of problem are considered: first, hard real-time streaming with fixed, predictable

frame characteristics; second, soft real-time streaming with a quality-of-service guarantee

and probabilistic descriptions of per-frame workload. Efficient algorithms are developed

for scheduling frame execution in an energy-efficient way while still guaranteeing hard

real-time deadlines. These schedules determine appropriate values for power-relevant pa-

rameters, such as dynamic voltage–frequency scaling.

A key challenge for future work will be unifying these diverse approaches into one “Theory

of Energy” for computing. The progress towards this is summarised in Chapter 6. The

thesis concludes by sketching future work towards this Theory of Energy.

Acknowledgements

First I would like to thank my supervisor Prof. Alan Mycroft, whose faith in my ability to

complete this work always exceeded my own. I hope I have repaid the trust and freedom

he has granted me over the last three and a half years.

I must also thank my family, who unknowingly put me on the road to this PhD twenty

years ago when they would allow me to play on my Game Boy until (the agony!) the

batteries ran out. I would also like to thank Emma Seaber, who tolerated the long and

difficult labour that birthed this thesis with exceptional grace, and feigned interest in

Pareto frontiers far beyond the call of duty. There are not enough Nutrageouses to repay

you.

Many more people deserve a mention than this space will allow, but to select a few:

Michael Wallace, Miloš Puzović, and Greg Chadwick for making it so much more than

the work, and David Brown, who on many occasions showed me the light at the end of

the tunnel. Thank you all.

My final thanks belong to Clare College, whose Domestic Research Scholarship supported

me throughout my studies.

This thesis is dedicated to the memory of my late grandfather, Jim Burnett, who lived

to see the first words of this thesis but not the last. As the more mathematical chapters

demonstrate, I have inherited his enthusiasm for brackets.

Contents

1 Introduction 13

1.1 Central thesis . 14

1.2 Contributions . 15

1.3 Chapter plan . 15

2 Survey of previous work 17

2.1 The meaning of energy awareness . 17

2.2 Energy-aware hardware . 18

2.2.1 Historical trends in hardware energy efficiency 20

2.2.2 Future tends in hardware energy efficiency 23

2.2.3 Energy characteristics at sub-peak performance 26

2.3 Energy-aware operating systems . 29

2.4 Energy-aware protocols . 30

2.4.1 Energy-aware data protocols . 30

2.4.2 Energy management protocols . 32

2.5 Energy-aware software . 33

2.6 Summary of related work . 35

3 Towards energy-efficient computing 37

3.1 Energy in the computing space . 38

3.2 Modern power management . 41

CONTENTS CONTENTS

3.2.1 ACPI . 43

3.3 Energy efficiency in computing . 43

3.3.1 Maintenance of required performance 44

3.3.2 Response to changes in demand . 45

3.3.3 Power capping . 46

3.3.4 Summary of constraints . 46

3.4 Directions toward a solution . 47

3.4.1 Power model . 47

3.4.2 Workload constraints and performance assessment 48

3.4.3 Energy optimisation by the system 49

3.5 Routes towards energy efficiency . 51

3.5.1 Considerations for the operating system 51

3.5.2 The evolution of application software 56

3.6 Conclusion . 57

4 Cost optimisation for power-aware computing 59

4.1 Motivation . 59

4.2 Related work . 61

4.2.1 Dynamic voltage–frequency scaling 62

4.2.2 Other formal methods . 65

4.3 Definition of terms . 65

4.4 Problem statement . 66

4.5 Formal model . 66

4.5.1 Assumptions and justification . 68

4.6 Solutions for specific cost models . 70

4.6.1 Constant cost . 70

6

CONTENTS CONTENTS

4.6.2 General discrete variable cost . 75

4.6.3 Real-world example . 77

4.6.4 Exponential cost . 80

4.6.5 Generalised time intervals . 81

4.6.6 Summary of cost model-specific solutions 84

4.7 General methods . 85

4.7.1 Monotonic cost functions . 85

4.7.2 Constant spending . 87

4.8 Conclusion . 88

5 Energy-efficient real-time streaming 93

5.1 Introduction . 93

5.1.1 Definition of an operating point . 96

5.1.2 Assumptions regarding operating points 97

5.2 Problem statement . 99

5.3 Related work . 102

5.4 Algorithm description . 105

5.4.1 Dominated points . 107

5.4.2 Downscaling . 110

5.5 Evaluation . 111

5.5.1 Diminishing returns . 111

5.5.2 Simulation . 113

5.5.3 Heuristic improvements . 116

5.5.4 Evaluation of domination . 116

5.6 Probabilistic generalisation . 117

5.6.1 Probabilistic model . 117

7

CONTENTS CONTENTS

5.6.2 Suitability for practical soft real-time problems 119

5.6.3 Assumption of normality . 120

5.6.4 Probabilistic manifestation . 121

5.6.5 Probabilistic algorithm . 122

5.6.6 Generalised domination . 124

5.6.7 Probabilistic evaluation . 126

5.6.8 Probabilistic summary . 130

5.7 Conclusion . 130

6 Conclusions 135

6.1 Concluding argument . 135

6.2 Future directions . 137

6.2.1 Future work on the theory of energy-efficient computing 138

6.2.2 Future work on cost-efficient computing 139

6.2.3 Future work on energy-efficient streaming 140

Appendices 141

A Future work: online learning in hard real-time 141

A.1 Introduction . 141

A.2 Motivation . 141

A.3 Problem outline . 143

A.4 Proposed methodology . 144

A.5 Challenges . 144

A.6 Related work . 146

Bibliography 149

Glossary 169

8

List of Figures

2.1 Graph of computations per unit energy through history, in support of

Koomey’s Law. Reproduced from [Koomey et al., 2011]. 19

2.2 Size comparison of a set of DEC Alpha cores from a heterogeneous multi-

core chip; each core is labelled with the single-core chip in which it originally

appeared. Reproduced from [Kumar et al., 2003]. 23

2.3 Plot of power consumption against nominal parallel efficiency for various

numbers of cores. Reproduced from [Li and Mart́ınez, 2005]. 24

2.4 Transistor behaviour in sub-, near-, and super-threshold operating voltage

regions. Reproduced from [Dreslinski et al., 2010]. 28

3.1 Energy usage breakdown by equipment type in United States, from 2000

to 2006. 39

3.2 Time-throughput diagram showing latency to reach maximum performance. 46

4.1 Potential cost saving λ, as a percentage, against static fraction µ, for some

realistic α values. 74

4.2 Cost incurred to perform a long-running computation, for various ratios of

static to dynamic power. 78

4.3 Energy required to perform a long-running computation, for various ratios

of static to dynamic power. 79

4.4 A continuous cost function and two different methods of discretising it into

ten steps. 82

LIST OF FIGURES LIST OF FIGURES

4.5 Schedules for two different quantised approximations to the same continu-

ous cost function. Arbitrary units of rate. 83

4.6 Comparison of cost overheads incurred by regular and fitted quantisations

for several values of α. Horizontal axis is on a logarithmic scale. 84

5.1 Comparison of the traditional Turing model and streaming computation. . 94

5.2 Example set of operating points. 96

5.3 An example set of operating points and a per-frame deadline shown in

energy–time space. 99

5.4 Example set of operating points, showing dominated and undominated

points, arbitrary units. 108

5.5 Probability that integer time values generated uniformly at random have

a common factor, as a function of m, the number of values. 110

5.6 qν for increasing values of ν, averaged over one hundred random examples.

Note that the vertical axis starts at 0.4. 112

5.7 Energy–time diagram for real BSOM operating points. 113

5.8 Comparison of the per-frame energy reduction achieved by my static algo-

rithm and a dynamic greedy algorithm. 114

5.9 Comparison of the per-frame energy reduction achieved, as a fraction of

the available maximum. 115

5.10 Diagram showing the variable deadline encountered by the dynamic frame

scheduling algorithm. 127

5.11 Comparison of the energy reduction achieved by my static algorithm and

a dynamic greedy algorithm for normally distributed execution times. . . . 128

5.12 Two different forms of operating point energy–time description, represented

graphically. 130

10

List of Tables

3.1 Energy usage breakdown for computing equipment in the United States.

Energy figures are in billions of kWh. 40

5.1 Average solution time. 116

5.2 Point counts for BSOM data, and comparison to heuristic estimates. 117

5.3 Power reductions measured for the BSOM benchmark. For meaning of col-

umn headings, see text. 129

List of Algorithms

1 Dynamic programming algorithm to find minimal energy which meets the

throughput requirement. 106

2 Algorithm to find undominated operating points. 108

3 Brute-force algorithm to find frequencies which minimise expected energy

and meet the probabilistic timing constraint. 122

Chapter 1

Introduction

Many fields of computing are currently experiencing a new or renewed interest in energy

efficiency. In desktop computing, ecological concerns are forcing hardware designers to

refine their traditional assumption that mains electricity is an unlimited source of power.

In the server space, energy demands over the lifetime of the hardware are rapidly increasing

and may come to dominate the cost of the hardware itself [Barroso and Hölzle, 2007]. In

both contexts, reducing power demand from electronic components also reduces the power

demand of the cooling subsystem, so savings are multiplied. And of course any form of

mobile computing, a huge growth area in the last decade, must consider power efficiency;

most obviously from the perspective of maximising battery life, and additionally from the

complication of cooling in a mobile context.

The energy problem has diversified considerably in recent years. The range of use cases and

attendant hardware and software, from servers to desktops to laptops to tablets to mobile

telephones to embedded devices and so on, is now so vast that it is infeasible to attempt to

approach all of them simultaneously. This is particularly true if one seeks analytic rather

than heuristic solutions, as will generally be the case in this thesis. One might compare

the situation to that of physics in the 19th Century; the great breakthrough of James

Clerk Maxwell’s unification of electricity and magnetism was not possible until the two

phenomena were individually well-understood.

In recognition of these difficulties, I make a two-part argument in this thesis: on the one

hand, we should not be too hurried to solve all the problems of energy-efficient computing,

since such a solution is clearly intractable with our current understanding; on the other

13

14 1.1. CENTRAL THESIS

hand, we should remain aware of the larger picture as we advance the subproblems, so

that opportunities to unify and generalise can be uncovered as they come within reach.

Furthermore, with the central argument in mind, I make headway on some of these par-

ticular problems: power cost management and real-time streaming. My intention is that

these pieces will ultimately be fitted into a “grand unified theory” of energy-efficient

computing.

In power cost management, I generalise traditional notions of energy efficiency to include

energy cost efficiency, and argue that these concerns are connected but not identical and

that cost optimisation presents an interface to economic reality that is not available if

one simply “counts joules”. I present formal models connecting power, performance, and

cost, and show formal optimisation methods for them. I then investigate whether these

optimisations present adequate efficiency savings to justify their deployment in practice.

In real-time streaming, I develop a framework in which tasks in a (potentially infi-

nite) stream can be processed energy-efficiently while still meeting hard real-time dead-

lines. This framework includes an abstraction from the particular characteristics of the

workload—hardware or software—and, on this platform, presents a generalisation of tra-

ditional energy-efficient scheduling techniques such as voltage dithering. I also present

algorithms to find these schedules, and explore whether it is possible to compute them

in a time- and space-efficient manner. Again, the results of the schedules are tested by

simulation against existing approaches, and the energy differential measured.

I conclude with a discussion of what is still to be done towards a unified theory of energy-

efficient computing.

1.1 Central thesis

My central thesis is that the subproblems of the energy problem as it pertains to computing

are deeply interrelated, and it is necessary to consider the whole before addressing the

parts. To support this argument, I survey and discuss the state of the field, and in later

chapters, make headway on certain parts—in particular, power cost management and

real-time streaming—and relate these back to the problem as a whole.

CHAPTER 1. INTRODUCTION 15

1.2 Contributions

My contributions to the field are as follows:

• An extensive description of the current situation “on the ground” with regards to

energy efficiency, across the server, desktop and mobile sectors.

• The proposal of energy cost as the true metric of optimisation in energy-aware

computing.

• Formal methods for solving energy cost problems under realistic cost and perfor-

mance models.

• The proposal of the operating point as a clean abstraction of execution details (in

both hardware and software), suitable for general-purpose energy-aware modelling.

• The description of precise algorithms for solving operating point problems in energy-

efficient streaming, and their time and space characteristics.

1.3 Chapter plan

Following this chapter, the chapter structure of this thesis is as follows:

• Chapter 2 surveys various strands in the field of energy-aware computing.

• Chapter 3 presents a large-scale view of several pragmatic levels on which the energy

problem might be approached, with a particular emphasis on the view from industry.

• Chapter 4 introduces the concept of energy cost minimisation, describes mathe-

matical techniques by which such minimisation may be achieved, and measures the

utility of these techniques.

• Chapter 5 defines the “operating point” and develops a framework for energy-

efficient hard real-time streaming, based on the concept of operating point dithering.

• Chapter 6 synthesises the results of previous chapters into a single argument, making

the final demonstration of the central thesis.

16 1.3. CHAPTER PLAN

Chapter 2

Survey of previous work

Given the diversity of the topics considered in this document, this survey of prior work

does not attempt to introduce all of the detailed context immediately; instead, much of

the relevant material will be introduced directly in the appropriate chapter. Rather, this

chapter serves as a general summary of the state of the art in energy-aware computing,

and thereby puts the specific work of later chapters in broader context. Of course, it

makes no pretension to cover every area, and is necessarily highly selective in those that

are covered, but nevertheless its purpose is the provision of an adequate foundation for

the details of what follows.

2.1 The meaning of energy awareness

The phrase “energy-aware computing” is carefully chosen, because there are many possible

interactions between computation and the energy it requires. For example, in a battery-

operated device, the usual objective is to minimise the total energy of a computation;

that is, the integral of power with respect to time over the whole computation. In other

devices, peak instantaneous power is the more pressing constraint. Some machines, such

as spacecraft, may combine solar power with battery back-up, and so are subject to

both constraints. Other constraints might include a thermal dissipation limit imposing

a maximum average power over a given period of time. Additionally, there are various

classes of problem depending on which performance, energy, power and so forth are to

be optimised and which are constrained. To further complicate matters, batteries require

17

18 2.2. ENERGY-AWARE HARDWARE

quite specific usage profiles to give optimal performance, as described below. Moreover,

the machine may not be intended for energy efficiency at all, but pure energy awareness,

simply measuring its own energy usage and displaying this to the user or relaying it

to an external reporting service. In practical systems, resolving these requires a different

approach in each case, so this survey presents as broad coverage of these areas as possible.

To recapitulate, my central thesis is that the different parts of the energy problem are

closely related and must be considered as one. Consequently, while this chapter catalogues

the related work according to the particular area that it targets–hardware, operating

system, protocols, and software–this taxonomy does not quite carve nature at the joints,

and so the chapter concludes with a discussion of some interdisciplinary work.

2.2 Energy-aware hardware

To call hardware energy-aware seems almost tautological, since hardware is definitionally

composed of physical objects subject to the usual laws of thermodynamics. However there

is still a distinction to be drawn between three areas of work: techniques by which the

hardware itself is made more energy-efficient; mechanisms for monitoring and communi-

cating power and energy values to higher levels; and hardware features that these higher

levels may use to further improve the energy profile, closing the loop.

In fact, the historical trend of increasing performance closely tracks increases in energy

efficiency, and this is encapsulated in an analogue of Moore’s Law known as Koomey’s

Law [Koomey et al., 2011]. Moore stated that the number of components (latterly transis-

tors) per chip doubled every two years; Koomey observed that computation per kilowatt-

hour has followed a similarly exponential trend, doubling every 1.57 years. This trend is

seen to hold throughout the history of computing, from the 1946 ENIAC to the most

recent laptop and desktop machines, as shown in Figure 2.1. It has been said that “in

1978, a commercial flight between New York and Paris cost $900 and took seven hours. If

the principles of Moore’s Law were applied to the airline industry, that flight would now

cost about a penny and take less than one second” [Semiconductor Industry Association,

2005]. If Koomey’s Law were applied analogously, the aircraft would now require less than

27 milligrams of fuel1.

1This assumes a Boeing 777 at its maximum 150 MW power output and BP Avgas 80 fuel producing

CHAPTER 2. SURVEY OF PREVIOUS WORK 19

Figure 2.1: Graph of computations per unit energy through history, in support of

Koomey’s Law. Reproduced from [Koomey et al., 2011].

Koomey’s Law is an empirical observation about machines operating at peak performance

44.5 MJ/kg, considered independently from the reduction in flight time. Values taken from the BP Hand-

book of Products, 2000. http://www.bp.com/liveassets/bp_internet/aviation/air_bp/STAGING/

local_assets/downloads_pdfs/a/air_bp_products_handbook_04004_1.pdf

20 2.2. ENERGY-AWARE HARDWARE

and consequently maximum power consumption. This suggests a neat partition of the

existing work on hardware power-awareness into three parts: how such reductions have

actually been achieved historically; to what extent this trend can be expected to continue

into the future; and, how machines behave when operating at less-than-peak performance.

2.2.1 Historical trends in hardware energy efficiency

Koomey’s central collection of evidence is presented in Figure 2.1. The trend is clear to the

naked eye, and is borne out by the line of best fit, with an R2 value of 0.983.2 Furthermore,

since Koomey’s observation is more recent, it is less vulnerable than Moore’s Law to the

criticism that it is a self-fulfilling prophecy, with the semiconductor industry adjusting its

goals to meet the predictions. Therefore one can be reasonably confident of its robustness.

First, I address the historical explanation of Koomey’s observation. There are several

salient features of Figure 2.1. The leap seen in the early 1960s is explained by the transition

from vacuum tube computing to the transistor, and progress through the 1970s can be

attributed to the adoption and eventual dominance of CMOS, but since then progress

has been steadier. The continued reductions can be understood by consideration of the

three main ways in which energy is expended in a CMOS circuit: leakage, direct-path

short-circuiting, and switching [Chandrakasan et al., 1995].

Leakage power is given by IleakageVdd, where Ileakage is the leakage current and Vdd the

supply voltage. Traditionally neglected, leakage current is determined primarily by the

CMOS fabrication technology, and has increasingly become a limitation in modern chip

design since its reduction has been rather slower than that of other factors [Roy et al.,

2003]. Only in the last decade has it been a significant explanatory factor in Koomey’s

Law, and its future is discussed below.

Direct-path short circuiting occurs when the N- and P-transistors of a CMOS unit are

both activated at once, briefly connecting the supply to ground, and is given by Psc =

IscVdd; again Isc is another hardware-determined constant, typically small in well-designed

circuits.

2The traditional coefficient of determination R2 can only increase as more variables are added, encour-

aging over-fitting. R2, or adjusted R2, is a modification that penalises models for each additional variable

they introduce. Koomey’s model is bivariate so the adjustment is very slight.

CHAPTER 2. SURVEY OF PREVIOUS WORK 21

Finally, the switching power is given by perhaps the most important equation in the field:

Pswitch = αCLV
2
ddf (2.1)

where Pswitch is the switching power expended, α the switching activity, CL the load ca-

pacitance, and f the clock frequency. Historically, switching power has been the dominant

contributor to total power in CMOS, and prior work has targeted all four of these factors.

The switching activity 0 ≤ α ≤ 1 is a constant denoting the fraction of clock cycles on

which a transition occurs; CMOS consumes little power except during such a transition.

Some techniques addressing α occur at the compiler or ISA design level, addressed be-

low, but other work targets hardware components directly. For example, the Bus-Invert

method reduces the switching factor on an I/O bus by sending data inverted if this would

produce fewer state switches; this inversion must itself be signalled, which may require an

additional switching event. This trade-off is in fact a profitable one, as empirical results

show that Bus-Invert produces a mean reduction of 25% in average power and 50% in

peak power [Stan and Burleson, 1995]. Address buses are another attractive target, since

they follow naturally long paths within and across the chip boundary, and carry fairly

predictable data; for example, adjacent instructions are usually accessed sequentially, and

therefore the instruction addresses tend to be consecutive or nearby integers. This sug-

gests that use of a Gray code for instruction addresses might substantially reduce the

expected number of transitions on the bus; indeed, in simulations a 58% reduction in α

was observed by use of this technique [Su et al., 1994b].

Load capacitance is a physical characteristic determined by the chip’s wiring. Modern

place-and-route tools seek (among many competing objectives) to minimise the total

routed wire-length (RWL), and in particular to shorten long wires, which are the main

culprits for high CL values [Alpert et al., 2010]. One simple optimisation, typically per-

formed as one of the last phases in place-and-route, is to insert additional repeaters into

long wires off the critical path, transforming the path into multiple shorter wires [Alpert

et al., 2010, p. 9]. Capacitance also scales up with increasing wire diameter, and of course

wider wires are more difficult to route and (like repeaters) increase delay [Li et al., 2008].

More recently, the advent of three-dimensional integrated circuits has allowed substan-

tial reductions in RWL. The extra dimension afforded by stacking multiple planes of

transistors on top of one another, while presenting many new challenges in design and

22 2.2. ENERGY-AWARE HARDWARE

manufacturing, is known to afford remarkable improvements in overall routing quality;

in a typical set-up, it was shown to reduce the RWL by 28–51% and the length of the

longest wire by 31–56% [Das et al., 2003].

The supply voltage is the most obvious target in Equation 2.1 due to its quadratic propor-

tion to the switching power. Miniaturisation of MOSFETs, and the consequent shrinkage

of CMOS, naturally allows lower supply voltages. Modern chip designs often permit the

supply voltage to be varied dynamically, at the cost of some performance, but this dis-

cussion is left for Section 2.2.3.

Clock frequency is primarily determined by the delay of the critical path, although clock

distribution imposes additional limitations. Frequency has become something of a con-

troversial issue in the last twenty years, as frequency became a quotable marketing point

for competing processor manufacturers. Some retailers promoted the notion that a higher

number simply denoted better performance: the so-called “megahertz myth”.3 While this

is typically true for a given architecture, the comparison between architectures is a good

deal more complex. While Intel’s design focused on maximising clock speed, rival man-

ufacturer AMD explored some of the techniques by which comparable performance can

be achieved with a lower clock speed; in particular, superior superscalability and reduced

memory latency [Matsui, 2006]. As discussed below, varying the clock frequency dynam-

ically is also a well-explored field.

It is worth noting, finally, that the rate of improvement in battery technology has been very

modest in comparison with the explosive trend of Koomey’s Law, and that we therefore

cannot rely on increasing the total energy available in order to lengthen time between

charges. Also, modern batteries do not simply provide a fixed amount of energy; rather,

their efficiency depends on the current drawn, which should ideally be low [Pedram and

Wu, 1999]. In other words, doubling the current drawn by a device would reduce the

battery life by substantially more than half. The variability of the current over time

also has an impact, with more stable currents correlating with higher efficiency. This

complication is rarely considered in the literature to date.

3The origin of the term “megahertz myth” is unknown, but it had been adopted by the main-

stream press by the early 2000s, for example http://www.guardian.co.uk/technology/2002/feb/28/

onlinesupplement3.

CHAPTER 2. SURVEY OF PREVIOUS WORK 23

2.2.2 Future tends in hardware energy efficiency

Early transistor improvements were driven by so-called “Dennard scaling”: ever-improving

miniaturisation, with attendant improvements to supply voltage and clock speed [Den-

nard et al., 1974]. Pure Dennard scaling ended around the year 2000 with the 130 nm

CMOS process; since then, other techniques have been required to keep pace with Moore’s

Law [Kuhn, 2009]. The International Technology Roadmap for Semiconductors4 estimates

that the current 22 nm CMOS production process will be reduced to 16 nm by 2013 and

11 nm by 2015. However, the majority of the future improvements will have to lie else-

where.

Figure 2.2: Size comparison of a set of DEC Alpha cores from a heterogeneous multi-

core chip; each core is labelled with the single-core chip in which it originally appeared.

Reproduced from [Kumar et al., 2003].

On the general rate of energy reduction, Koomey notes cheerfully that “we fully expect

those improvements to continue in coming years” [Koomey et al., 2009]. Indeed, work

is underway in many areas that are expected to yield further increases in computations

per unit energy irrespective of miniaturisation. It is now widely agreed that the future

of processing lies in more cores per chip—the so-called “chip multi-processor” (CMP)

era—for the following reasons. As mentioned above, leakage current is now a significant

factor of total power, and this can be controlled effectively by disabling individual cores.

Another motivation is Pollack’s Rule, which states that [Borkar, 2007]

performance ∝
√

complexity (2.2)

4International Technology Roadmap for Semiconductors, 2011 Edition. http://www.itrs.net/

Links/2011ITRS/Home2011.htm

24 2.2. ENERGY-AWARE HARDWARE

N
or

m
al

iz
ed

 p
ow

er
 c

on
su

m
pt

io
n

(6
5n

m
, T

1
=

 1
00

°C
)

Nominal parallel efficiency εn(N)

Figure 2.3: Plot of power consumption against nominal parallel efficiency for various

numbers of cores. Reproduced from [Li and Mart́ınez, 2005].

and this mitigates against very large-area cores; therefore, it is better to invest the die area

in a larger number of small-area cores. Options more flexible than completely disabling

cores are available. One approach is use of heterogeneous multi-core architectures, with

each core (or set of cores) placed at a different point in the power-performance trade-off;

workloads are then assigned to an appropriate core dynamically. Tests show that, for an

example set of DEC Alpha cores running the SPEC benchmarks, one can reduce total

energy by an average of 39% while increasing execution time by just 3% [Kumar et al.,

2003]. This particular configuration, in which various generations of the same processor

family are loaded onto a single die, has multiple benefits: first, the die size is kept man-

ageable, since the most recent generation is typically at least as large as the previous

generations combined, as shown in Figure 2.2; second, the design and verification is more

straightforward since the components already exist and are known to work. So we can

expect to see more such designs in the future.

For applications that exhibit a high degree of internal parallelism (as opposed to the exter-

nal parallelism of multiple applications running independently), multicore offers another

CHAPTER 2. SURVEY OF PREVIOUS WORK 25

opportunity for energy saving. Define the nominal parallel efficiency εn(N) of such an

application when run on N processors as

εn(N) =
C1

NCN
(2.3)

where Ci is the number of cycles the program will consume when executed on i cores.

(Note that in general, Ci > C1 for i > 1 because the program must perform extra work to

communicate data and synchronise control flow between the threads.) Existing work shows

that, for certain values of εn(N), a higher value of N may produce the same performance

for less energy [Li and Mart́ınez, 2005]. Tests were conducted on an example program

running on a typical 65 nm processor; Figure 2.3 plots its power consumption against

εn(N) for a given performance requirement; the plot shows the power for N = 2, 4, 8, 16

and 32, normalised by the power required for the same program on a single core. Evidently,

for εn(N) & 0.25, energy can be saved by deploying more cores, although the optimal

number of cores bears a complex relationship with the value of εn(N). Even for values

close to one (denoting perfect linear speedup), it is not necessarily optimal to enable as

many cores as possible. This demonstrates that savings can also be made on homogeneous

systems.

Theoretical limits to computational energy

One might reasonably ask how long Koomey’s Law can continue to hold before some the-

oretical bound is reached. In fact, the question of computational energy bounds has been

explored since well before the formulation of Koomey’s Law, and wide-ranging arguments

have been made on the subject for several decades [Bennett and Landauer, 1985]. In 1985,

Richard Feynman estimated that the amount of electricity per unit computation might

be reduced by a factor of 1011 [Koomey et al., 2011]. Improvements since then amount to

around 105, and if Koomey’s Law continues, such a limit would be reached sometime in

the year 2041.

More fundamentally still, Landauer’s Principle gives a thermodynamic lower bound on

the amount of energy expended in changing a single bit of information in any physical

representation [Landauer, 1961]. This Landauer limit is kT ln 2, where k is the Boltzmann

constant and T is the absolute temperature of the relevant physical object. Let us assume,

very optimistically, that a computation required only a single bit change and occurred at

26 2.2. ENERGY-AWARE HARDWARE

the background temperature of the universe, the lowest temperature one can reach without

expending further energy on cooling. In this case, T = 2.725 K and a computation could

be performed in 7.2× 10−33 kilowatt-hours. This limiting value is the efficiency predicted

by Koomey’s Law for the year 2098.

In fact, one can go further still, by application of reversible computing, a mode of comput-

ing in which information is not destroyed and therefore Landauer’s entropic argument can

be sidestepped [Bennett, 1973]. Although it is not possible to build a computer that pre-

serves information perfectly in its state transitions, there is, in our current understanding

of physics, no limit to how closely one might approach this limit. So, at least in theory, we

may see Koomey’s Law upheld for some time yet. Neatly enough, the promising field of

quantum computing, a form of reversible computing, also originates with Feynman [Feyn-

man, 1982].

2.2.3 Energy characteristics at sub-peak performance

Koomey’s Law addresses the efficiency of a computer running at peak performance. How-

ever, machines often allow a much wider range of dynamic performance-power trade-offs.

This is discussed in greater detail in Chapter 3, but some points are of general relevance.

Many devices now provide low-power idle states, in which they are not usable but must in-

stead be transitioned back to the active state. (Of course the transition itself also requires

some time and energy.) Modern CPUs are among the most dynamic of these. For much

of their history, CPUs simply executed no-ops when they had no useful work to perform.

This was the basis for many of the early “crowdsourcing” computational projects, such

as the Great Internet Mersenne Prime Search5, SETI@home6, and distributed.net7, since

these cycles would otherwise have been wasted. More recent designs allow CPUs to tran-

sition between various idle states, among other power-saving measures, such as dynamic

voltage–frequency switching.

5http://www.mersenne.org
6http://setiathome.berkeley.edu
7http://www.distributed.net

CHAPTER 2. SURVEY OF PREVIOUS WORK 27

Dynamic voltage–frequency scaling

Equation 2.1 demonstrates the relationship between supply voltage and switching power,

the latter of which has until recently accounted for the majority of the processor’s power

consumption. Many modern designs allow dynamic voltage scaling (DVS), in which the

operating voltage of a processor can be adjusted on-the-fly so as to trade performance for

power. However, the circuit delay also varies with the operational voltage, according to

the equation

t ∝ VDD
(VDD − VT)α

(2.4)

where VDD is the operational voltage, VT the threshold voltage, and α the so-called velocity

saturation index [Taur and Ning, 1998, pp. 269–271]. (The latter two are parameters of the

CMOS technology.) Since the maximum clock frequency is in turn limited by the circuit

delay, one typically scales frequency and voltage in concert: dynamic voltage–frequency

scaling (DVFS). Since the power is reduced quadratically while the performance degrades

only linearly, there is a net linear saving in total energy. Therefore, at least in the region

for which the switching power is the dominant contributor to total power, we can expect

approximately linear energy savings as the time allowed for computation increases. Of

course, DVFS is not without its drawbacks. Changing the supply voltage often requires a

processor stall, incurring a time delay of 10–100 µs [Von Kaenel et al., 1990]. The energy

savings will therefore be obliterated by the overhead of changing voltages unless the

system can make accurate predictions about the future performance requirements on the

order of milliseconds. Recent work has explored techniques for reducing this delay to the

nanosecond range, but there are many complications and this is not yet widely deployed

in practice [Kim et al., 2008]. A further disadvantage is that the thermal variation induced

by varying the voltage may cause microscopic damage to the device and ultimately reduce

its lifespan [Lee, 2000]. Notwithstanding these limitations, later chapters discuss the many

and varied ways in which DVFS can be leveraged to save energy.

Near-threshold computing

An exciting development at the extremes of the power-performance trade-off is near-

threshold computing (NTC). The model embodied by Equation 2.4 does not apply to

operating voltages below the threshold voltage, in which region the behaviour of the tran-

28 2.2. ENERGY-AWARE HARDWARE

Figure 2.4: Transistor behaviour in sub-, near-, and super-threshold operating voltage

regions. Reproduced from [Dreslinski et al., 2010].

sistor is slower, more complex, and vastly more erratic; see Figure 2.4. Sub-threshold

computing, although certainly low-power, has therefore never found widespread applica-

bility, while traditional computing has reserved itself to operating voltages safely in excess

of the threshold. However, NTC operates in the region at which VDD ≈ VT , which offers

significant energy benefits and only a subset of the difficulties faced in the sub-threshold

region: in comparison to normal super-threshold operation, the circuit experiences an or-

der of magnitude reduction in performance; five orders of magnitude increase in memory

failures; a fivefold increase in inter-device variability with regards to performance; and

doubled increase in sensitivity to operating temperature [Dreslinski et al., 2010]. Recent

work has made significant developments in managing the impact of these limitations; in

particular, the introduction of highly parallel architectures to ameliorate the loss of per-

formance and device stability, and the use of transistors and SRAM blocks designed for

sub-threshold reliability. Further experiments have justified other enhancements, such as

the use of dual operating voltages, both in the near-threshold range, to offset a significant

fraction of the performance penalty [Kakoee et al., 2010]. On the theoretical side, recent

circuit models describe near-threshold behaviour much more precisely than was possible

CHAPTER 2. SURVEY OF PREVIOUS WORK 29

with earlier approximations [Harris et al., 2010]. Superior understanding of the underlying

behavioural properties will inevitably lead to improvements in the practicality of NTC,

and practical NTC-purposed cores have now been constructed; for example, the Phoenix

processor, which operates in the near-threshold region (among many other optimisations),

requires only 2.8 pJ per cycle when executing at full speed [Seok et al., 2008]. Including

its on-die battery, the Phoenix occupies less than one cubic millimetre and, in a sensor

network (its intended environment) can run on this battery for over a year. All of this

suggests that NTC may soon find real-world deployment in particularly energy-sensitive

devices.

2.3 Energy-aware operating systems

The operating system makes multiple important contributions to the overall picture of

an energy-aware system. First, while the hardware can address some power concerns

directly, it can also provide facilities for higher layers to exploit; for example, DVS simply

allows performance to be traded for power, and it is the task of the operating system

to set the proportions of this trade-off in order to achieve actual savings. Making these

decisions is the motivating problem for the area of energy-aware scheduling, and a full

description of this work is left for Chapter 4 where it is more pertinent. Such decisions

may theoretically be made in hardware, but in general there are typically some features

that are better handled by a higher level.

A second factor in the operating system’s contribution to energy-awareness is that the

kernel is itself a process that must be executed and therefore requires energy. In the future

we may see operating systems optimised for energy as any other piece of software might

be. However, the operating system presents some unique opportunities. One particular

example is the recent development of a “tickless kernel”, detailed in Section 3.5.1, which

dispenses with the traditional polling-based implementation of thread preemption. Similar

re-examination of fundamental operating system constructs has been considered in other

operating systems, such as OpenSolaris’ Tesla Project.8

8The Tesla Project is no longer active, although it did make some lasting contributions such as

the PowerTOP power monitoring tool, http://hub.opensolaris.org/bin/view/Community+Group+

pm/powertop.

30 2.4. ENERGY-AWARE PROTOCOLS

2.4 Energy-aware protocols

Computing is a world of protocols, but in reference to energy-awareness, one usually means

networking protocols; there has been little research on energy usage for internal protocols

such as APIs at the operating-system level. Network protocol design is an important

field: 1997 figures suggest that around 18% of a laptop’s power is expended in the wireless

card, and, while there is a dearth of comparable measurements for modern hardware, the

current figure is perhaps higher, since the hardware improvements of Section 2.2 do not

substantially impact the cost of radio broadcast itself [Stemm and Katz, 1997]. Within

networking protocols, one can distinguish two independent strands of work: on the one

hand, energy concerns in communication protocols, which typically means modifying the

existing protocol stack to improve energy efficiency; on the other hand, creation of new

protocols intended for energy management per se. This section describes each in turn.

2.4.1 Energy-aware data protocols

Wireless networks are typically taxonomised into infrastructure networks, in which wire-

less devices communicate with a wired base station in a single hop, and ad hoc networks, in

which multiple mobile devices communicate amongst each other, and may be completely

isolated from any non-mobile power source. Clearly these pose quite different challenges

from an energy perspective. When a fixed device transmits to a mobile device, it is worth

expending a substantial amount of power in the transmitter to save power in the receiver,

and similarly when the mobile device is to transmit, mutatis mutandis. On the other hand,

when communication is mobile-to-mobile, interacting concerns of efficiency and fairness

arise. This summary will mainly consider infrastructure networks since this is the under-

lying assumption of later chapters. The Open Systems Interconnection (OSI) model is the

standard characterisation of the layers of the network stack, so this summary categorises

the relevant work according to these layers [Zimmermann, 1980].

The challenges of the physical layer are well-known, such as hidden and exposed terminals

and frequency-band collisions. No more will be said about these directly, although the tight

layer integration requires close consideration of the physical layer in what follows.

At the data link layer, the focus is on reducing the overhead of retransmissions. Two tech-

CHAPTER 2. SURVEY OF PREVIOUS WORK 31

niques dominate: forward error correction (FEC) and automatic repeat request (ARQ).

FEC extends packets with redundant information such that, up to some maximum number

of bit errors, the original information can be recovered even if some of the data is damaged

in transit. Clearly this redundancy is a data overhead in itself, and the optimal trade-off

depends on the expected fidelity of the connection. Modern “turbo codes” can very closely

approach the Shannon limit, the theoretical maximum for data transmission over a noisy

channel [Berrou et al., 1993]. Resultant work also exists on decoding these turbo codes

in an energy-efficient manner [Leung et al., 1999]. In ARQ, intermediate nodes in the

network detect dropped packets without explicit notification from the end-point and re-

quest retransmission immediately, thereby reducing latency and eliminating the need for

some metadata packets from the receiver. ARQ may hook directly into the physical layer,

suggesting the optimal transmission power, which must balance the obvious trade-off be-

tween energy required per packet and the probability of a retransmission being required;

existing work suggests that this may well be a profitable approach, although empirical

measurements are hard to obtain [Arulselvan and Berry, 2002]. There is a similar trade-off

with packet size versus retransmission probability, which has been analysed in an energy-

aware context [Modiano, 1999]. The optimal packet size is relatively straightforward to

derive given an accurate model of the channel, and surprisingly an adequate model can be

learnt relatively quickly, in perhaps 104 bits of transmission. These results illustrate the

general principle that close integration of layers in the network stack is often necessary

for optimisation, and this is no less true for energy than for other performance metrics.

Further illustrating the principle, system designers frequently coalesce the network and

transport layers in energy-aware devices, following observations on the substantial en-

ergy benefits this can bring [Raisinghani and Iyer, 2004]. In almost all cases this means

“TCP/IP”; the Transmission Control Protocol9 at the transport layer, above the Internet

Protocol10 at the network layer. Early results indicated that none of the basic variants of

TCP performed particularly satisfactorily from an energy standpoint, with TCP Tahoe

being generally the least bad among them [Tsaoussidis et al., 2000]. This motivated the

development of more suitable TCP variants. Energy-efficient TCP (E2TCP) was proposed

9See RFC 793, Transmission Control Protocol: Darpa Internet Program: Protocol Specification, http:

//www.ietf.org/rfc/rfc793.txt.
10See RFC 791, Internal Protocol: Darpa Internet Program: Protocol Specification, http://tools.

ietf.org/html/rfc791.

32 2.4. ENERGY-AWARE PROTOCOLS

soon afterwards, with several refinements [Donckers et al., 2002]. To reduce data overhead,

E2TCP uses header compression, and supports selective acknowledgements to minimise

retransmitted data. Furthermore, while traditional TCP attributes all dropped packets

to congestion and consequently backs off rapidly, E2TCP recognises the distinct problem

of burst errors (from, say, wireless interference) as essentially transient, and handles this

situation differently. In tests, E2TCP was shown to have slightly superior data efficiency

but vastly superior time efficiency, allowing the wireless card to be placed into a low-

power state earlier and to remain so for longer. In tests, the two protocols were used to

support real-time streaming of the kind explored in Chapter 5. The energy overhead of

each protocol was then calculated by reference to the theoretical minimum energy for

transmission. When the channel entered a “bad” state (indicating high probability of bit

errors) for two seconds for every twenty seconds of clean transmission, E2TCP incurred

2% energy overhead to Tahoe’s 5%; with more frequent cycling, such as 0.1 seconds of

bad transmission for every second of clear transmission, E2TCP required 6% overhead

and Tahoe 10%. This demonstrates not only the amount of energy improvement available

for traditional TCP variants but also the headroom for further improvement on E2TCP.

Higher layers in the OSI model (session, presentation, and application) are addressed in

Section 2.5.

2.4.2 Energy management protocols

A newer area is the development of protocols to manage and coordinate power directly.

This area emerged in ad hoc wireless networks, where it is a fundamental concern, but

now has applications more relevant to this document, such as web server management.

For example, consider the following: a modern web service typically adopts a multi-tiered

architecture, such as a Web interface to business logic with a database back-end. Each tier

is run on a separate machine or set of machines. Therefore, depending on the demands

of each tier, the performance of each one may be traded off differently for energy, subject

to (for example) a latency constraint on the whole stack. Previous work has developed

a protocol based on the “Weighted Feedback DVS” algorithm, by which the tiers may

communicate to coordinate the performance-power points selected [Horvath et al., 2007].

In tests, a Linux implementation of the protocol was shown to reduce energy consumption

CHAPTER 2. SURVEY OF PREVIOUS WORK 33

by up to 30% compared to the native power-saving mode. Further developments extend

the control loop to include virtualised servers, in which it is not so straightforward to power

down or scale back hardware components [Wang et al., 2008]. Empirical evidence in this

case suggests that such an approach can reduce average power from 240 W to around

205 W for an example system, while still maintaining adequate average response time.

Future work may explore the coordination of other hardware and software configuration

choices.

2.5 Energy-aware software

Energy efficiency at the higher layers of the OSI stack—the session, presentation, and

application layers—is naturally a highly domain-specific problem and therefore the focus

has been on providing developers with tools to profile their own implementations and im-

prove performance directly. An early contribution to this area was PowerScope [Flinn and

Satyanarayanan, 1999]. PowerScope is analogous to a traditional profiler, but measures

the energy rather than the time and space demanded by each point in the call stack; then,

as with CPU or memory profiling, the programmer can direct his or her efforts towards

improving the most energy-intensive parts of the application. In an example given by the

authors, such analysis and improvement allowed a 46% reduction in the energy consump-

tion of a certain video decoding program. A measure of the success of this work is that

most mobile device manufacturers now produce their own tools to measure the power

usage of various hardware components, such as Nokia’s Energy Profiler11.

Another general approach targeting the software layer is energy-aware compilation. Typ-

ical compiler techniques are manipulations intended to improve the energy efficiency of

the program with little or no loss in performance, and therefore they form part of the

general literature of optimising compilers, albeit with a novel metric of optimisation. One

approach is based on profile-driven compilation, in which measurements of the program’s

behaviour are taken on representative input data during compilation and used to optimise

various code features for that data. For example, one example system looks for regions

that are mostly memory-bound and, using DVFS, slows the CPU in these regions [Hsu and

11http://www.developer.nokia.com/Resources/Tools_and_downloads/Other/Nokia_Energy_

Profiler/

34 2.5. ENERGY-AWARE SOFTWARE

Kremer, 2003]. This system is carefully designed for practical use, allowing for non-CPU

static power, transition time and energy penalties, battery discharge characteristics, and

other details. Consequently, when measured on a real laptop, it produces energy reduc-

tions for various benchmarks averaging 11%, reaching 28% in the most favourable cases

although with essentially no benefit in the hardest cases; performance is only reduced

by a few per cent. An alternative approach, requiring more programmer intervention, is

to insert “checkpoints” at the beginning of every basic block, and require annotations

describing the maximum time that execution may take to make all possible transitions

between these checkpoints; in other words, to ascribe maximum time values to every arc

in the control flow graph [Azevedo et al., 2002]. A run-time system, again using DVFS,

adjusts the performance within each block to meet these values in a best-effort fashion; it

is shown empirically that a good heuristic for estimating the frequencies is the minimum

time between the checkpoints. This is shown to reduce the energy of the processor by up

to 82%, although whole-system values are not provided.

Register allocation has been another popular mechanism to address. Traditional metrics,

such as minimising register spillage, certainly correlate positively with energy efficiency,

but more can be done. For example, successive reads of a register allocated to the same

variable are not relevant to traditional liveness analysis, which defines the lifetime of a

variable as spanning from its first write to its final read; however, each of these reads

incurs an energy cost, which must be factored in to the total analysis. At the register

allocation phase, one can also employ a detailed model of register and main-memory en-

ergy consumption, including the benefits of locality of reference in main memory. One

implementation of this technique was able to reduce the energy consumption of the mem-

ory hierarchy by 87–90%, under the assumption that a memory access requires about

thirty times as much power as a register access [Zhang et al., 2002]. However, this was

only evaluated against small example programs, although the compilation technique is

efficient enough computationally to attack larger examples.

There are numerous other strands of work in this area. For example, one might aim to

reduce register spills (even with a large L1 cache) or to reduce the activity factor [Tiwari

et al., 1994, Su et al., 1994a]. As seen in Equation 2.1, the leakage energy is another

relevant factor, and an increasingly significant one in modern architectures. Leakage can

be reduced by disabling unused functional units within the CPU. A compiler implementa-

CHAPTER 2. SURVEY OF PREVIOUS WORK 35

tion has been presented that inserts explicit enable/disable instructions into basic blocks

according to which units are required, subject to the competing consideration of the

units’ start-up latencies, and was able to reduce average leakage by 45.4% over various

examples from the MediaBench and Spec benchmark suites [Zhang et al., 2003]. This is

particularly beneficial on complex architectures, which provide various subunits such as a

floating-point co-processor, which, while vital for some applications, are largely irrelevant

for others, and can be disabled completely.

This document will not consider compilation techniques much further, but rather assumes

that the software is provided as-is in binary form, and primarily targets techniques that

could be provided by the operating system rather than the application programmer. This

is motivated by the argument that software engineers are already overwhelmed with com-

peting considerations, and would be unlikely to extend their development cycles in pursuit

of reducing an energy bill incurred, for the most part, by someone else (their customers).

This is discussed further in Chapter 3.

2.6 Summary of related work

Evidently, a vast range of work has been undertaken on the energy problem, and there

is much more to come. At the hardware level, Koomey’s Law continues to drive up the

number of computations per unit energy, and to provide new features for exploitation by

higher layers. In the operating system, the multicore era creates highly complex scheduling

problems which must still be solved quickly if they are to remain essentially transparent to

the user. Energy-aware protocols impact more and more devices as Internet connectivity

becomes expected on ever-smaller and more portable devices. And software engineers,

already challenged by the demands of highly parallel programming, now face a second

front from the demands for energy-efficient operation at every level of the execution stack.

Furthermore, beyond the four-piece taxonomy used above lie many interactions between

these areas; for example, the shift to a large number of simple cores may ultimately reduce

the necessity of kernel quiescence, since waking one core among thousands is a much less

significant event than waking a single monolithic processor. To give another example, the

low voltage of near-threshold computing offsets some of the difficulties of power dissipa-

tion in three-dimensional circuit integration. And there are further issues external to the

36 2.6. SUMMARY OF RELATED WORK

taxonomy given here; for example, power generation, while certainly outside the scope

of computer science, impacts the way in which power can be used within a computing

context. However, these details are rather specific and are left for the relevant chapters.

This document does not, of course, attempt to tackle all of these problems at once,

but rather argues that to improve on certain details it is valuable to understand the full

picture. In my own contributions, I generally take the hardware as a given, representing an

immutable background above which other optimisations take place. The protocol stack

is significant firstly because it suggests the sort of devices that will be expected to be

networked in the future (which is to say: all of them) and secondly because it gives an

idea of the performance and characteristics of networking on those devices; the latter is

of particular significance in Chapter 5. I also generally consider the software layer to be

out of reach, because the diversity of software energy challenges is too great to describe

completely general methods for them; also, as discussed, the pressures on modern software

engineers are already substantial, and therefore techniques making further demands on

them (such as annotation) are unlikely to gain traction in industry. Instead, my focus

lies primarily in the middle: in deciding how the hardware’s features may be best used

to improve the energy of the system, which decisions the operating system can make

transparently, and, contrariwise, which features the system might expose directly to the

software layer. This is the topic of the succeeding chapters.

Chapter 3

Towards energy-efficient computing

The majority opinion in both corporate and academic circles is that the “energy problem”

is now real and pressing; humanity’s primary sources of energy are running out while the

demand for energy in commercial and domestic environments is increasing, and the side-

effects of energy use have important environmental considerations on a global scale. The

emission of greenhouse gases such as CO2, now seen by most climatologists to be linked

to global warming, is only one issue.

World leaders and pre-eminent scientists are perhaps most focused on a strategic solution:

the need to develop new sources of clean and renewable energy if humanity is to ultimately

overcome its energy problem. Lord Rees, president of the Royal Society, emphasised its

urgency in an annual address delivered in 2008, saying1

“At this year’s G8 summit, in Japan, the member nations formally espoused the goal

of reducing global CO2 emissions, by 2050, to half the 1990 level. . . . Realistically, there

is no chance of reaching this target, nor of achieving real energy security, without new

technologies.”

However, the realisation of new sources of sustainable energy is expected to be at least

three decades away. Steve Chu, director of the Lawrence Berkeley National Laboratory

prior to his appointment as United States’ Secretary of Energy, placed this in context,

saying2

1Quoted from Lord Martin Rees of Ludlow’s Anniversary Address to the Royal Soci-

ety, 2008, http://royalsociety.org/uploadedFiles/Royal_Society_Content/about-us/history/

Anniversary_Address_2008.pdf.
2Quoted from The energy problem and Lawrence Berkeley National Laboratory, talk given to the

37

38 3.1. ENERGY IN THE COMPUTING SPACE

“A dual strategy is needed to solve the energy problem:

1. Maximise energy efficiency and decrease energy use.

2. Develop new sources of clean energy.

Number 1 will remain the lowest-hanging fruit for the next few decades.”

3.1 Energy in the computing space

Energy is an inescapable problem in computing. Even if future improvements in power

efficiency adhere to Koomey’s Law and increase the available energy for computation

beyond our current imagination, as discussed in Section 2.2.2, there are fundamental

limits to what can be computed with a given amount of energy. More currently, power

distribution and cooling is already a significant challenge in the data centre, and future

hardware refinements are only likely to exacerbate this [Fan et al., 2007]. Put simply,

the conclusion of thermodynamics is that energy is the ultimate limited resource in the

universe.

In August 2007, the Environmental Protection Agency (EPA) issued a report to the

U.S. Congress on the energy efficiency of servers and data centres [U.S. Environmental

Protection Agency, 2010]. Some key findings from the report include:

• Servers and data centres consumed 61 billion kilowatt-hours of energy in 2006.

• This was 1.5% of total U.S. electricity consumption that year, amounting to $4.5

billion in electricity costs, which is equivalent to 5.8 million average U.S. households.

• Electricity use in this sector doubled between 2000 and 2006, a trend that is expected

to continue.

• Infrastructure systems necessary to support the operation of IT equipment (such as

power delivery and cooling systems) also consumed a significant amount of energy,

comprising 50% of annual IT electricity use.

California Air Resources Board in February 2009.

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 39

2000 2001 2002 2003 2004 2005 2006
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0
Site infrastructure
Network equipment
Storage
High-end servers
Mid-range servers
Volume servers

Year

An
nu

al
 e

le
ct

ric
ity

 u
se

 (b
ill

io
n

kW
h)

Figure 3.1: Energy usage breakdown by equipment type in United States, from 2000 to

2006.

Excerpts from the EPA report are shown in Figure 3.1 and Table 3.1. There are two partic-

ularly notable points in the data. The first is that as much energy is being consumed by site

infrastructure as by the computing equipment itself. This infrastructure primarily repre-

sents HVAC (heating, ventilation, and air-conditioning) equipment, as well as that used to

convert and transmit power and to maintain its continuity; this includes transformers and

in-building power-switching and transmission equipment, as well as power-conditioning

and sustaining equipment such as uninterruptible power supplies. This factor is of great

consequence because it suggests that energy savings at the computing level would have

an attendant impact on HVAC as well.

Within the computing equipment itself, however, is the second point of interest. Of the

five types of IT equipment studied, volume servers alone were responsible for the majority

(68%) of the electricity used. Assuming that the 17% combined annual growth rate of

volume servers continues, this suggests that they are the prime targets for energy reduction

in the server space. The 20% growth rate of storage devices shown here—a rate that more

recent data suggests is accelerating—indicates another significant trend.

If the exponential growth of data-centre computing equipment revealed by this study

40 3.1. ENERGY IN THE COMPUTING SPACE

Component Energy (2000) % Total Energy (2006) % Total CAGR

Site infrastructure 14.1 50% 30.7 50% 14%

Network equipment 1.4 5% 3.0 5% 14%

Storage 1.1 4% 3.2 5% 20%

High-end servers 1.1 4% 3.2 5% 20%

Mid-range servers 2.5 9% 2.2 4% -2%

Volume servers 8.0 29% 20.9 34% 17%

Total 28.2 – 61.4 – 14%

Table 3.1: Energy usage breakdown for computing equipment in the United States. Energy

figures are in billions of kWh.

continues, the demand for electricity in data centres seen in 2006 is expected to have

roughly doubled by the time of writing. This poses challenges beyond the obvious economic

ones. For example, peak instantaneous demand is expected to have risen from 7 gigawatts

in 2006 to 12 gigawatts in 2011, and ten new base-level power plants would be needed to

meet such a demand.

Physical limitations on power availability are already a constraint for data centres in

some areas; a managing director of IT for Morgan Stanley observed in 2009 that the

company is now physically unable to source the power needed for a new data centre

in Manhattan. The seriousness of the situation is demonstrated by the zeal with which

corporations such as eBay, Google, Amazon, Microsoft, and Yahoo have pursued suitable

locations in which the data centres required to run their contemporary Web applications

and services can be constructed [Katz, 2009]. A number of these companies have already

negotiated with certain states in the U.S., as well as internationally, to construct these

facilities along with the power plants necessary to supply them. In 2006, Google triggered

a “multibillion-dollar face-off” after situating a new facility along the Columbia River

in Washington [Markoff and Hansell, 2006]. The combined benefits of lower land cost,

lower external ambient temperature, and the availability of running water for cooling and

hydroelectric power generation are intended to provide relief for Google’s acute energy-

availability and energy-cost problems.

The U.S. Energy Information Administration showed in their report to Congress3 that in

3Energy Information Administration Residential Energy Consumption Surveys 2001, http://www.

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 41

2001, PCs and printers in American households consumed 23.1 terawatt-hours of energy;

the figures were similar in 2006 [Roth and McKenney, 2007]. This suggests that the amount

of energy consumed by mobile and desktop computing equipment is of roughly the same

magnitude as that used by servers in data centres, although there is no correspondingly

comprehensive and authoritative current study to refer to. The EPA data presented here

provides some detailed perspective on where the energy goes in the important and growing

server segment of the computing landscape. Also, some groundwork has already been laid

in the mobile and desktop computing space as a result of the earlier focus of the EPA’s

EnergyStar program on consumer electronics, which includes computer systems.

3.2 Modern power management

Perhaps the key factor to consider with today’s computer systems is that the amount

of power they consume does not adjust gracefully according to the amount of work the

system is doing. The principal design objective for most general-purpose computer systems

to date has been to maximise performance (or perhaps performance at a given price point)

with very little consideration given to energy use. This is changing rapidly as we near the

point where the capital cost to acquire computing equipment will be exceeded by the cost

of energy to operate it, even over its relatively short (three- to five-year) amortisation

period, unless we pay some attention to energy-conscious system design.

The case has been made for energy-proportional computing [Barroso and Hölzle, 2007].

This is the design ideal in which the amount of power a system (or component) requires

corresponds directly to its degree of utilisation. However, this is far from the current

situation. Many components of computer systems today exhibit particularly poor effi-

ciencies at low levels of utilisation, and most systems spend a great proportion of their

time operating at relatively low usage levels. Power supplies have been notorious for their

inefficiency, especially when at low load, and fans can also waste a significant amount

of energy when operated carelessly. In just four years, however, the efficiency of power

supplies has improved markedly4, and algorithms are emerging that continuously adjust

fan speeds in response to thermal need, rather than using just a few discrete speed points.

eia.doe.gov/emeu/recs/recs2001/enduse2001/enduse2001.html.
4Recent standards for power supply efficiency; http://www.80plus.org

42 3.2. MODERN POWER MANAGEMENT

The majority of hardware components in today’s computer systems must still be managed

explicitly, however, and the current widely deployed conceptions and facilities for power

management in computer systems remain rudimentary.

There are two basic modalities for power management: a running versus suspended (not-

running) aspect in which a component (or whole system) can be powered off when not

in use and turned on again when needed; and a performance-adjustment aspect (while

running) in which the performance level of a component can be lowered or raised in

reaction to either the observed or predicted level of utilisation or other needs of the

workload.

The running versus not-running choices are often called the component’s (or system’s)

power states. Typically a single state represents running, while different levels of suspen-

sion may be distinguished into multiple states. The latter allows power to be progressively

removed from more of the hardware associated with the component (or system) if there is

some important power-relevant structure to its implementation. CPUs, for example, may

have their execution suspended simply by stopping the issuance of instructions or by turn-

ing off their clock circuitry. “Deeper” power states, however, might successively remove

power from the processor’s caches, translation lookaside buffers, memory controllers, and

so on. While more energy is saved as more of a component’s hardware has its power re-

moved, there is then either a greater latency to recommence its operation, or extra energy

is required to save and restore the hardware’s contents and restart it, or both.

The performance-adjustment choices while running are most naturally called the com-

ponent’s performance states. A widely applied technique for adjusting performance is

to change the component’s operating frequency. When clock speed is slowed, operating

voltage levels can also be reduced, and these two factors together—the dynamic voltage–

frequency scaling of Section 2.2.3—result in a compound power saving, a fact exploited

in later chapters. Performance states were first introduced for CPUs, since processors are

among the most consequential consumers of power on the hardware platform (something

in the range of 35 to 165 watts is typical of a contemporary multicore CPU). Performance

states might also be used to control the active cache size, the number and operating rates

of memory and I/O interconnects, and so on.

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 43

3.2.1 ACPI

For reference in later discussion, it is worth presenting the most widely implemented ar-

chitecture for power management in use today: the Advanced Configuration and Power

Interface (ACPI). ACPI has evolved together with the Intel architecture, the hardware

platforms based on the most widely available commodity CPUs and related components.

Although there are many detailed aspects to the specification, ACPI principally offers

the controls needed to implement the two power-management modalities just described.

It defines power states: seven at the whole-system level, called S-states (S0–S6); and four

at the per-device level, called C-states (C0–C3) in the case of CPUs and D-states (D0–

D3) for other devices. The semantics of each non-running power state are specific to the

device (or device class) in question. The zero-numbered state—S0 for the system, or D0

for each device—indicates the running (or active) state, while the higher-numbered states

are non-running (inactive) states with successively lower power and correspondingly de-

creasing levels of availability (run-readiness). ACPI also defines performance states, called

P-states (P0–P15, allowing a maximum of sixteen per device), that affect the component’s

operational performance while running. Both power states and performance states affect

power consumption.

3.3 Energy efficiency in computing

Although ACPI is an important de facto standard with reasonably broad support from

manufacturers, it provides nothing more than a mechanism by which aspects of the system

can be controlled to affect their power consumption. This enables but does not explicitly

provide energy efficiency. Higher-level aspects of the overall system architecture are needed

to exploit this or any similar mechanism.

One might ask how energy-efficient computing differs from power management, and how

one would know that the energy-efficiency problem had been “solved” for a given com-

puter system. A simple criterion might be: the system consumes the minimum amount

of energy required to perform any task. In this formulation, energy efficiency is simply

an optimisation problem. Such a system must adjust the system’s hardware resources

dynamically, so that only what is needed to perform those tasks (whether to complete

44 3.3. ENERGY EFFICIENCY IN COMPUTING

them on time, or analogously, to provide the throughput and latency required to maintain

a stated service level) is made available, and that the total energy used is minimised as a

result. Section 2.1 demonstrated that this formulation is inadequate, but it is instructive

to consider the complications of even this simplest of objectives.

Traditionally, systems have been designed to achieve maximum performance for the work-

load. In an energy-efficient system, maximum performance for some tasks (or the whole

workload) will still be desired in some cases, but even within that constraint the system

must also minimise energy use. Performance and energy efficiency are not mutually exclu-

sive. For example, even when achieving maximum performance, any resources that can be

deactivated, or whose individual performance can be reduced without affecting the work-

load’s best possible completion time or throughput, contribute to energy optimisation.

Indeed, for a typical desktop or server machine, it is almost impossible to simultaneously

demand the full performance of every component; in fact, this has security consequences

seen in the relatively young field of study surrounding “thermal viruses”, malicious code

designed to place specific parts of the system under maximum energy load, thereby dam-

aging them or overloading the cooling system [Dadvar and Skadron, 2005, Hasan et al.,

2005]. Systems that strive to achieve maximum performance at all times are notoriously

over-provisioned and correspondingly under-utilised; however, dynamic capacity planning

and provisioning is a difficult problem and is far from solved.

Energy optimisation is obviously subject to certain constraints. Some examples follow.

3.3.1 Maintenance of required performance

The system must generally endeavour to meet deadlines, where they exist. In the general

case, a deadline is specified for a task or the workload. When any deadline is specified

that is less than or equal to the optimum that the system can achieve with any or all of

its hardware resources, this can be taken to maximum performance; this is effectively the

degenerate case. Maximum performance for a task or the workload provides an implicit

stipulation of the optimal deadline to, or “as soon as possible”. All values of the deadline

D less than the shortest achievable deadline to is equivalent to setting D = to. We can

therefore denote maximum performance by D = 0. In this case, energy optimisation is

restricted to those resources that can be deactivated, or whose individual performance

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 45

can be reduced, without affecting the workload’s best possible completion time; alterna-

tively, there may be several resource configurations that produce the same latency and

throughput, in which case optimisation is free to select among them according to lowest

energy, instantaneous power, or other thermal concerns.5

If a deadline later than the best achievable deadline is specified, the computation may

take any length of time up to this deadline, and the system can seek a global energy

minimum for the task (or workload). Deadlines might be considered “hard”, in which

case the system’s energy-optimising resource allocator must somehow guarantee to meet

them (raising difficult implementation issues), or “soft”, in which case a best effort can

be tolerated. In the latter case, some sort of “quality of service” metric must be provided,

describing how, when, and by how much deadlines may be missed.

Services must operate at their required throughput. For online services, the notion of

throughput may be more appropriate than that of a completion deadline. Since services,

in their implementation, can ultimately be decomposed into individual tasks that do

complete, we expect there to be a technical analogue, although the most suitable means

of specifying its performance constraint might be different.

3.3.2 Response to changes in demand

Real workloads are typically not static: the amount of work provided and the resources

required to achieve a given performance level will vary over the course of execution, and

from instance to instance. Dynamic response is an important practical consideration re-

lated to service level. Figure 3.2 shows the relationship diagrammatically; stated formally,

the system must be able to reach its maximum throughput Tmax from any throughput T0

within latency L. Therefore, whenever a spike in the demand for the service occurs, the

system can react to it, re-enabling or scaling up the performance of the relevant compo-

nents, within the given time limit. Specification of the maximum latency within which

reserved hardware capacity can be activated or its performance level increased seems a

clear requirement, but this must also be related to the performance needs of the task or

workload in question.

The meaning of “throughput” is dependent on the nature of the task. A metric such as

5This suggests a higher-dimensional version of the Pareto frontier that will be introduced in Chapter 5.

46 3.3. ENERGY EFFICIENCY IN COMPUTING

Maximum
throughput Tmax

Initial
throughput T0

TimeDemand spike
occurs

Maximum resources
brought online

Latency L

P
er
fo
rm
an
ce

Figure 3.2: Time-throughput diagram showing latency to reach maximum performance.

transactions-per-second (TPS) might be relevant for database system operation, triangles-

per-second for the rendering component of an image-generation subsystem, or correspond-

ing measures for a filing service, I/O interconnect, or network interface. Interactive use

imposes real-time responsiveness criteria, as does media delivery: computational, storage,

and I/O capacity required to meet prescribed audio and video delivery rates. A means

by which such diverse throughput requirements might be handled in practice is suggested

below.

3.3.3 Power capping

Instantaneous power must never exceed a specified power limit P . A maximum power

limit may be specified to respect practical limits on power availability, whether to an

individual system or to some aggregated structure, such as a data centre. In some cases,

exceeding this limit briefly may be permissible, although this requires a more detailed

system description to manage the thermal consequences.

3.3.4 Summary of constraints

Other constraints are also possible. Combinations of such constraints mean that over-

constraint must be expected in some circumstances, and therefore a policy for constraint

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 47

relaxation will also be required. A strict precedence of the constraints might be chosen or

a more complex trade-off made between them. This area is not currently well-understood.

3.4 Directions toward a solution

Given this concept for energy-efficient computing, a natural question is how such a system

might be constructed, and in general, how one would expect an energy-efficient system

to operate. A system has three principal aspects that could solve this problem, each of

which represents a significant body of existing work.

1. The system must be able to construct a power model of how and where power is

consumed, and how it can manipulate that power, since this is the basis for enacting

any form of power management.

2. The system must have a means for determining the performance requirements of

tasks or the workload, whether by observation or by some more explicit means of

communication. This is the constraints-determination and performance-assessment

component.

3. Finally, the system must implement an “energy optimiser”: a means of deciding on

an energy-efficient configuration of the hardware at all times while operating. The

optimisation may be relative (heuristically decided) or absolute (based on analytical

techniques). This is the capacity-planning and dynamic-provisioning component.

Each of these are discussed in detail below.

3.4.1 Power model

In order to manage the system’s hardware for energy efficiency, the system must know the

specific power details of the physical devices under its control. The “system” here most

naturally suggests the operating system, although it is clear that this must include the

hypervisor for virtualised systems; one can reasonably expect that this concept will need

to be broadened to include some aspects of the firmware and even hardware components

(on the low end) and important runtimes, such as the Java Virtual Machine, which have

48 3.4. DIRECTIONS TOWARD A SOLUTION

responsibility for, or particular knowledge of, resource allocation. Power-manageable com-

ponents must expose the controls that they offer, such as their power and performance

states (D-states and P-states, respectively, in the ACPI architectural model). To allow

modelling of power relative to performance and availability—in other words, relative to

its activation responsiveness—the component interface must also describe at least the

following:

• The per-state power consumption (for each inactive state) or power range (for each

active state).

• State-transition latency (time required to make each state transition).

• State-transition energy (energy expended to change state).

Once the system has such a power model, consisting of all its power-manageable hardware,

it has the basic foundation for operating to optimise energy. Importantly, it has the

knowledge of those components that consume the most power and those that have the

most highly responsive controls that can be used to affect power use and effect power

reduction.

3.4.2 Workload constraints and performance assessment

In order to impose appropriate constraints on the optimisation of active hardware and

energy consumption, a system must also be able to measure the throughput of its ap-

plications to ensure that they still meet the relevant service levels and deadlines. The

assessment of throughput is subject to the task or application in question. The oper-

ating system can observe the degree to which its various resources have been and are

currently being used, and it might use these observations as its best basis for prediction

of future resource needs, thus shrinking or enlarging what is available. This is a relatively

weak basis to determine what the workload will need, especially to anticipate its dynamic

responsiveness sensitivities. As a result, the system will inevitably be much more conser-

vative in its reduction of available resources or their performance levels. It seems clear

that the best result will be realised if applications assess their own throughput relative

to their service-level requirements or completion deadlines, and can convey that informa-

tion to the operating system through an interface. This is counterbalanced by the desire

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 49

to avoid overloading the application programmer with additional programming language

complexity. However this is resolved, the system can then use this information to make

potentially much more aggressive resource adjustments and realise an improved overall

energy-optimisation solution accordingly.

Perhaps the suitable division of labour is to make the system responsible for solving the

energy-optimisation problem subject to the resources it allocates, while the application

is responsible for monitoring its own performance level and informing the system so that

appropriate resources can be provided to meet them. Thereby the application needs only

a domain-specific metric of performance to feed back to the operating system; it does not

need to be concerned with the details of energy per se.

3.4.3 Energy optimisation by the system

Once provided with the hardware’s power characteristics, and possibly descriptive infor-

mation from application-level software about its constraints, the operating system must

begin the dynamic process of adjusting the hardware’s performance and availability lev-

els to control power consumption and improve system-wide energy use. The following

techniques might form part of this decision.

Heuristic methods

Provisioning for maximum throughput may, in some cases, optimise energy. This is the

conjecture that “[maximum] performance is green,” reflected in the ideas of race-to-idle

or race-to-sleep [Garrett, 2007]. Although there is some evidence that this approach has

merit in client-side computing when the system becomes idle—especially for embedded

and mobile systems where 95% of the energy may be saved if the entire system can be put

into a suspended state—it is not clear how applicable this is to server-side computing. A

super-linear increase in the power required to get linear speed-up (or throughput) exists in

some cases (Intel’s Turbo mode on contemporary CPUs being one example) and hence, the

energy optimum will not be found at a provisioning and performance point commensurate

with maximum throughput in all cases.

A widely used heuristic for energy improvement on active systems is to adjust the hard-

ware’s performance level dynamically, based on its current utilisation: downward with low

50 3.4. DIRECTIONS TOWARD A SOLUTION

utilisation or upward with high utilisation (with some hysteresis). This can be an effective

technique but is restricted to situations in which both the latency and the energy to make

the state change are so low as to be inconsequential.

Constrained optimisation

In some cases, it may be possible to idealise the problem into precise mathematical models,

and from these derive a complete analytical solution. For example, if we consider only a

single task on a single CPU with a well-understood power–performance trade-off, it is

relatively straightforward to completely specify a schedule in which the task will meet its

deadline with the minimum total energy; more general formal results are also possible, as

demonstrated in Chapter 4. This relies, however, on a number of assumptions, such as good

estimates of the total work required by a process, which are often uncomputable or hard

to obtain in practice. Weaker assumptions can also lead to formal work, as demonstrated

in Chapter 5, although, in existing systems, optimisation is typically performed by online

heuristic algorithms. There is some existing work in this area but not yet enough to

underpin a general-purpose operating system [Yao et al., 1995].

For an optimisation-based approach to be generally applicable, a range of techniques will

be necessary. In the simplest cases, autonomous device-level operation is possible; for

example, at the hardware level, a graphics co-processor (GPU) can power down unused

hardware pipelines aggressively, based solely on instantaneous assessment of their utilisa-

tion levels, because the latency to bring those pipelines back up as they become necessary

is inconsequential. Similar practices appear to be applicable in the use of CPU P-states,

since both the state-transition energy and latency are very low.

Hardware state changes that affect power require a different treatment if they exhibit a

much greater transition latency or energy. An obvious example is spinning down a hard

disk, considering the long latency to bring it back to full performance, but reactivation

latency is not the only concern. Semiconductor memory systems in which part of the

total physical memory could be powered off if not required, and where power-on latency

may be near zero, will still have a consequential transition energy, since a great many

in-memory transactions may be required to gather the working set into those physical

pages that will remain active. One might consider whether traditional heuristics might

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 51

have analogues in energy optimisation, such as the Five-Minute Rule, proposed in 1986 as

a memory hierarchy heuristic and renewed several times since [Gray and Putzolu, 1987,

Gray and Graefe, 1997, Graefe, 2007]. Resources of this class require greater knowledge

of the task or workload behaviour, as well as an anticipatory treatment of the required

hardware resources, to ensure that the activation latency can be tolerated or managed

and that the state-change energy will be exceeded by the energy that will be saved while

in that state.

Some common optimisation techniques may be based on state-change latency, their energy

demands, and so on, and a taxonomy of such techniques might arise from this, some formal

or analytical, some based on more numerical or heuristic methods.

Although we expect the specific techniques for energy optimisation appropriate to different

hardware resources or subsystems to be somewhat different, subject to the properties of

the hardware resources in question, the hope is that the composition of energy-efficiency

optimisers for all such resources will accumulate to form an efficiency scheme for the

whole system. On the other hand, such reductionism may be overly optimistic if there are

interactions between the resources allocated by different subsystems, and a more holistic

approach may then be necessary in systems for which “every joule is precious” [Vahdat

et al., 2000].

3.5 Routes towards energy efficiency

The vision of system-wide concessions to energy efficiency cannot be accomplished in a

single swift step. Today’s systems software is not equipped in the ways described, nor are

applications written in a way that could exploit that capability. This section discusses how

this outcome might be achieved in practical terms, and what steps are already underway.

3.5.1 Considerations for the operating system

As a first consideration, systems need to be revised to pay attention to their use of energy;

even the operating system itself, while always running, has not yet been optimised in its

own use of energy, as discussed in Section 2.3. To date, almost all software, including

systems software, has been optimised (quite understandably) for performance, robustness,

52 3.5. ROUTES TOWARDS ENERGY EFFICIENCY

and scalability with no consideration of energy. An initial step, therefore, is the redesign

and implementation of the operating system so that its operation is energy efficient. This

is a significant undertaking, and its full implications are not yet well understood. It is

not clear whether modifying existing operating systems to consider energy as a first-

class constraint is feasible, although this would certainly be preferable. Experience with

system security, multi-tasking, multimedia and so forth suggests that introducing such

fundamental considerations after the fact is fraught with complications [Loscocco and

Smalley, 2001, Leslie et al., 1996]. We can certainly anticipate fundamental new structures

within systems software, and perhaps even that new operating systems will emerge as a

result of the energy-efficiency pressure.

At the very least, resource-management facilities within the operating system must be

adapted for energy awareness, and then for energy optimisation. This section surveys the

components common to most server systems and the energy issues which surround them.

Processor efficiency

A significant fraction of power on contemporary computing platforms can be attributed

to CPUs (and the early introduction of power-management features on them as a result),

and much progress has already been made with operating-system schedulers and thread

dispatchers. Reactivation of idle hardware components when there is no useful work to be

done is a common culprit; polling within the operating system (or within applications)

is an obvious example, and the use of a high-frequency clock-tick interrupt as the basis

for timer events, time-keeping, and thread-scheduling can be equally problematic. If the

OS supports preemptive scheduling, this is typically implemented by scheduling a regular

interrupt, known as a tick, that passes control to the OS and allows it to select which

thread is to be executed. Both kernel space and user space permit the scheduling of further

regular timers to handle periodic events in a non-blocking fashion; this may be used as

the basis for a polling system, for example. From a design and performance standpoint,

this is preferable to a busy-wait methodology when implementing regular events, but does

present an unfortunate interaction with CPU sleep modes. If a timer is scheduled for, say,

every 10 ms, an otherwise-idle CPU is woken by an interrupt at least this often, and is

therefore unable to enter a deep sleep state or to remain in a shallow sleep state for any

substantial period of time. As the number of timers increases, each with an independent

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 53

offset and period, the length of time until the next interrupt dwindles rapidly, and this has

a significant impact on power efficiency, especially for devices for which the CPU is the pre-

eminent power consumer. One proposed solution to this is the “tickless kernel”, for which

a working implementation is now available in Linux [Siddha et al., 2007]. This introduces

several techniques to reduce the number of interrupts generated. One is the concept of a

jiffy, which is an approximate unit of time used to schedule events for which the precise

periodicity is not important; the kernel then coalesces all events to jiffy boundaries and

executes them at once. For example, instead of scheduling twenty events with 8 ms of work

to do each second, the kernel schedules a single interrupt every second which then triggers

160 ms of contiguous work, allowing the CPU to enter a sleep state for the rest of the

second. In tests, the number of interrupts on an idle system was reduced by this technique

from 2 002 per second to 118, and the average time spent in an idle state increased from

651 µs to 10 161 µs. The tickless kernel also presents a new deferrable timer API; a

deferrable timer will trigger normally when the CPU is busy anyway, but is deferred

when the CPU is idle; many device drivers naturally tolerate the consequent variability in

latency. This further doubled the average time between state transitions. This work has

motivated sweeping changes to other parts of the OS, middleware, and software, all in

pursuit of increasing interrupt quiescence and further decreasing the number of interrupts

on an apparently idle system6.

The confluence of features on modern processors—CMT (chip multithreading), CMP

(chip multiprocessor), and NUMA (non-uniform memory access) for multiprocessor sys-

tems with multiple sockets—invites a great deal of new work to implement optimal-

placement thread schedulers [Fedorova, 2006]. The ability to alter performance levels and

the expected introduction of heterogeneous multicore CPUs7 will only introduce further

opportunities for successive improvement [Shelepov et al., 2009, Fedorova et al., 2009].

6A bug filed against the Fedora kernel, reporting excessive wake-ups caused primarily by driver polling,

has at the time of writing aggregated seventy-three dependent fixes! https://bugzilla.redhat.com/

bugzilla/showdependencytree.cgi?id=204948
7A heterogeneous CPU means, in this instance, a multicore CPU in which cores of different perfor-

mance levels and different microarchitectures are included in the same multicore package; the power

consumption characteristics are consequently very different to those of traditional single-core or homoge-

neous multicore processors.

54 3.5. ROUTES TOWARDS ENERGY EFFICIENCY

Storage efficiency

Compared with CPUs, the power consumed by a disk drive does not seem especially large.

A typical 3.5-inch, 7200-RPM commodity disk consumes about 7 to 8 watts, only about

10% of a typical multicore CPU’s consumption. Although higher-performance 10 000-

RPM spindles consume about 14 watts, and 15 000-RPM drives perhaps use around 20

watts, this is still a small consideration. The alarming relative rate of growth in storage,

mentioned earlier, could quickly change the percentage of total power accounted for by

storage devices. Performance and reliability factors have already resulted in the common

application of multiple spindles to implement a simple RAID solution, even on commodity

desktop systems. In the data centre, storage solutions are scaling up faster still. Low-end

volume server boxes now routinely house a dozen or more drives; an example 4U rack-

mount storage array product from Sun accommodates 46 3.5-inch drives. A single instance

of the latter unit, if it used 10 000- or 15 000-RPM industrial drives, might therefore

account for 1.1 to 1.6 kilowatts, rather a more significant energy-use picture.

Storage subsystems are now obviously on the radar of the energy-attentive. There are

at least two immediate steps that can be taken to help improve energy consumption by

storage devices. The first is direct attention to energy use in traditional disk-based stor-

age. Some of this work has been started by the disk hardware vendors, who are beginning

to introduce disk-drive power states, and some has been started by operating-system

developers working on contemporary file systems (such as ZFS) and storage resource

management. The second, particularly derived from the recent introduction of large in-

expensive flash memory devices, is a more holistic look at the memory hierarchy [Graefe,

2007]. Flash memory fills an important performance/capacity gap between main mem-

ory devices and disks but also has tremendous energy-efficiency advantages over rotating

mechanical media [Leventhal, 2008, Mogul et al., 2009].

Memory efficiency

Main memory, because of its relatively low power requirement (on the order of 2 watts

per DIMM), seems at first glance to be of even less concern than permanent storage.

Its average size on contemporary hardware platforms, however, may be poised to grow

rapidly. With hardware system manufacturers’ focus primarily on performance levels (to

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 55

keep up with the corresponding performance demands of multicore CPUs), maintaining

full CPU-to-memory bandwidth is critical. The consequence has been an evolution from

single- to dual-channel and now to triple-channel DIMMs along with the corresponding

DDR, DDR2, and DDR3 SDRAM technologies. Although reductions in the process feature

size (DDR3 is now on 50-nanometer technology) have enabled clock frequency to go up

and power per DIMM to somewhat decline, the desire for even greater performance via

an increase in DIMMs per memory channel is still increasing the total power consumed

by the memory system.

For example, a current four-socket server system (based on the eight-core Sun Niagara2

CPU) with 16 DIMMs per socket using DDR2 dual-channel memory technology has 64

DIMMs total. This would increase to 24 DIMMs per socket (96 total) if its faster successor

used DDR3 triple-channel memory instead. A representative DDR2 DIMM consumes

1.65 watts (or 3.3 watts per pair), whereas the lowest-power edition of the current DDR3

DIMMs consumes 1.3 watts (or 3.9 watts per triplet). The result appears to be an increase

in power consumption of only 20%, increasing from about 100 to 120 watts total in the

example given.

Since the next-generation CPU will also have twice as many cores per socket, however,

a possible scenario is also to desire twice the number of memory sets per socket (for a

possible 192 total DIMMs) to balance overall memory system performance. The result,

therefore, could be an increase from 100 watts to 240 watts: a 140% increase in power

consumption for the whole memory system! This trend is even being observed on desktop-

class machines, admittedly at a much smaller scale, as systems containing quad-core

hyperthreaded CPUs (such as Intel’s Nehalem) have appeared.

If available physical memory is to be enabled and disabled, and perhaps correspondingly

reconfigured as a system’s processing capacity is dynamically adjusted, some new func-

tionality will be required of the operating system’s memory-management subsystem. The

design of a future-looking virtual memory system that is energy-aware and able to adjust

physical memory resources while running is an open problem.

56 3.5. ROUTES TOWARDS ENERGY EFFICIENCY

I/O efficiency

Energy aspects of the I/O system on hardware platforms will likely become more impor-

tant as well. As a simple example, present-day local-area networking interconnect and

subsystems have evolved in two important respects: link-aggregation is increasingly used

to bolster network bandwidth and reliability; and individual interconnect speed has ad-

vanced from 1 Gb to 10 Gb, with 40 Gb on the horizon. A transceiver for a 10-Gb network

interface card may now require as much as 14 watts when operating at full speed, with

a consequential power reduction when its link speed is reduced to 1 Gb or lower (about

3 watts at 1 Gb, 1 watt at 100 Mb). Other high-speed interconnects such as InfiniBand

can be expected to have similar energy implications for the overall system.

3.5.2 The evolution of application software

The most strategic aspect of energy-efficient computing will be the evolution of appli-

cation software to facilitate system-wide energy efficiency. Although we can certainly

expect new application interfaces to the system software, supporting the development of

new energy-efficient applications, the transition of historical and present-day applications

represents a long-term evolution. There is a significant question as to how the problem

of greater energy efficiency for the remainder of the installed base might be addressed in

the interim. Obviously, it will not be brought about as the result of a unique epoch in the

implementation of all existing applications.

One possibility for addressing the energy agnosticism of existing applications is to perform

extrinsic analysis of their runtime behaviour. Empirical data can be gathered about the

degree to which application performance is sensitive to varying levels and types of resource

provisioning. For example, one can observe the degree to which performance is increased

by the addition of CPU resources, or the allocation of a CPU with higher-performance mi-

croarchitecture, and so on [Shelepov et al., 2009]. The application might then be labelled,

in its binary form, with its measured degree of sensitivity, without requiring the alteration

of its existing implementation. The operating system could use this metadata to assign

resources that pursue a certain specified performance level or to locate an appropriate

power-performance trade-off.

By analogy with memory management, it seems likely that a combination of techniques

CHAPTER 3. TOWARDS ENERGY-EFFICIENT COMPUTING 57

will be needed: explicit, in which the application itself informs the system of its throughput

and resource provisioning needs; and implicit, in which static and dynamic analysis is used

to model resource needs relative to performance and energy consumption.

3.6 Conclusion

We are still at the debut of energy-conscious computing, with a great deal of the indus-

try’s attention directed at the introduction and use of power-management mechanisms

and controls in individual hardware components rather than the broader problem of en-

ergy efficiency: the minimisation of total energy required to run computational workloads

on a system. This chapter suggests an overall approach to energy efficiency in comput-

ing systems. It proposes the implementation of energy-optimisation mechanisms within

systems software, equipped with a power model for the system’s hardware and informed

by applications that suggest resource-provisioning adjustments so that they can achieve

their required throughput levels or completion deadlines.

In the near term, a number of heuristic techniques designed to reduce the most obvious

energy waste associated with the highest-power components, such as CPUs, are likely to

remain practical. In the longer term, and for more effective total energy optimisation,

increasing importance must be attached to techniques able to model performance relative

to the system’s hardware configuration (and hence its energy consumption), alongside

improved understanding of workload prediction. In Chapter 4, I explore one respect, the

processor speed, in which the operating system can schedule tasks for greater efficiency.

58 3.6. CONCLUSION

Chapter 4

Cost optimisation for power-aware

computing

4.1 Motivation

In this chapter, I turn to a particular class of problem in the field of energy-efficient com-

puting, and illustrate the value of developing a solution with understanding of the broader

context. The problems are those surrounding energy cost for long-running computations

with deadlines. The existence of a deadline implies that the work is time-sensitive, but

that there is no particular benefit to completing the work quickly provided the deadline is

respected. Such problems occur most commonly in the server environment; perhaps, for

example, a large scientific calculation that must finish analysing the daily dataset before

the next day’s dataset arrives. This subspace in the vast space of energy optimisation

problems is large enough to be of some useful generality, since I do not make any specific

assumptions about the type of work that is being undertaken, and only weak assump-

tions about the nature of the hardware on which the task is run; on the other hand, the

subspace is small enough that strong results can be derived in a precise mathematical

framework.

In recognition of a consideration common in the server environment, I will be consider-

ing a more general problem than total energy consumption. For many institutions, the

financial incentive to reduce energy consumption is stronger than the ecological one; in

other words, they are more concerned with spending less on energy than using less energy

59

60 4.1. MOTIVATION

per se. Of course, these two considerations are connected and until now have generally

been considered identical, and, accordingly, previous work has been most concerned with

minimising total energy rather than total cost of energy. But there are good reasons to

separate the two quantities. As shown in Chapter 3, American data centres account for 61

billion kWh of electricity every year at a cost of $4.5 billion, so even a small reduction in

this cost would have significant impact on the bottom line [U.S. Environmental Protection

Agency, 2010]. The distinction is relevant when power cost varies over time, such as with

the daily off-peak period, by season, or with some stochastic element from the energy

market. In this chapter I will describe the cost using a cost function parametrised by

time. The cost is typically constant over short timespans, but here I am concerned with

long-running computations; the simpler case can be recovered by supplying a constant

cost function.

The term “cost function” naturally suggests monetary cost, but this need not be the case.

For example, cost might incorporate rising user dissatisfaction as a server request takes

longer to resolve. By constructing a mathematical model that includes this dissatisfaction

alongside real energy usage, cost minimisation could be used to balance user satisfaction

with monetary cost, although construction of such detailed models is not attempted here.

Nevertheless, this problem and many others could be described and in some cases solved

within the framework established here.

My approach is to describe algorithms or, when possible, closed-form equations to de-

cide the rate at which computation should proceed in order to minimise cost while still

respecting the deadline. I generally assume that this rate change is effected by dynamic

voltage–frequency scaling although other implementations are amenable to a similar anal-

ysis. For reasons discussed in Chapter 3, I do not consider source or binary manipulation,

but only the “how” and “when” of execution. Of course, it is well known that incorpo-

rating power considerations into the scheduling algorithm, alongside traditional time and

resource allocation, can be an effective approach to energy efficiency [Hong et al., 1999].

The originality of my contribution derives from the particular class of problem considered,

the precise analytical nature of the results, and the generalisation to power cost.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 61

4.2 Related work

Long-running workloads are common across divers areas of computation. Some are purely

numerical, such as the Lucas-Lehmer test used by Great Internet Mersenne Prime Search1,

which manipulates huge integers and takes several weeks to determine if large values of a

certain form are prime. Others are the largely recreational, such as the two-decade effort

to completely solve the game of draughts [Schaeffer et al., 2007]. And still others have sig-

nificant implications for the security of some of the world’s most important cryptographic

systems, such as the contests to break the once-popular DES encryption system by brute-

force search of the key space2. In these and many other cases, a level of parallelism exists

in the problem, but the granularity of efficiently exploitable parallelism is such that even

the subproblems are long-running non-parallel workloads in themselves. For example, the

Great Internet Mersenne Prime Search allocates candidate Mersenne numbers to indi-

vidual users; each user then evaluates the candidate for primality, and, weeks or months

later, returns the result to a central server. At the time of writing, the project has access

to around 30 000 machines in a typical month, with a throughput of approximately 80

teraflops.3 Evidently the candidates are processed on a hugely parallel scale; however,

each individual test requires a large number of sequential operations which cannot be

parallelised, since each step of the Lucas-Lehmer test is contingent on the result of the

previous step. In some cases, such as the Mersenne numbers, the problem size is logically

unbounded4 and therefore the granules of parallelism expand naturally until they become

long-running on any given hardware. Likewise there are problems which are provably in-

tractable and difficult to parallelise, which are likely to favour single-processor execution

1Great Internet Mersenne Prime Search: The Math, http://www.mersenne.org/various/math.php.
2In the late 1990s, RSA Security Inc. proposed three challenges, with large cash prizes, to anyone

who could recover the plaintext of a series of DES-encrypted messages. Although DES encryption was

not broken per se, its 56-bit key size was shown to be inadequate, as the first message was recovered

ninety-six days after release, while the final challenge lasted just twenty-two hours. An archive of these

contests is available online at http://www.rsa.com/rsalabs/node.asp?id=2092.
3Figures drawn from GIMPS PrimeNet, urlhttp://www.mersenne.org/primenet/.
4It is not known whether the number of Mersenne primes is infinite, although there are many conjec-

tures that imply it [Gillies, 1964]. In either case the number of Mersenne candidates is obviously infinite,

since they are simply 2p − 1 where p is prime. Other classes of efficiently-testable prime candidates,

such as Proth numbers, would provide comparably difficult problems if the Mersenne primes were to be

exhausted.

62 4.2. RELATED WORK

for the foreseeable future. For example, algorithms for analysis of abstract strategy games

such as generalised chess, Go and Reversi are PSPACE-complete with respect to the size

of the board [Fraenkel and Lichtenstein, 1981, Lichtenstein and Sipser, 1980, Iwata and

Kasai, 1994]; they also have complex control flow and intricate data dependencies, making

efficient parallelisation very challenging as 64- or 128-core machines become available [Soe-

jima et al., 2010, Brockington, 1996]. Given human nature, we must assume that these

problems are likely to remain of interest as our computational power grows. Therefore

we must recognise that long-running unparallelised workloads are a permanent feature of

the computational landscape no matter what conceptual or technical improvements might

arise in the future.

In this chapter I address only a specific subset of large-duration energy problems and a

certain type of solution to them, and I cannot make an argument for the logical perma-

nence of either, but I have tried to relax the assumptions made as far as possible to make

the contribution useful in practice, notwithstanding its mathematical abstraction. I par-

ticularly address the problem of energy-efficient scheduling; that is, given a particular task

to be run and hardware on which to run it, how that hardware should be used in order

to complete the task and optimise the energy usage according to some metric, under var-

ious constraints. Formal methods have often been applied to problems of energy-efficient

scheduling. The simplest model takes the machine as a set of components which have

an active state and some number of sleep states, each trading idle power for latency of

transition to activity. An energy-efficient strategy is then a path through the set of states,

which can be seen as a Markov decision process and solved exactly [Benini et al., 1998].

4.2.1 Dynamic voltage–frequency scaling

This chapter asks what part computer equipment plays in the demand for energy, and

where we must focus to reduce consumption and improve energy efficiency in the future.

Recent work has explored the continuous and relatively low-latency power scaling afforded

by DVFS. DVFS exploits the observation that reducing the operating voltage of a chip

reduces its operating power approximately quadratically, while necessitating only a linear

decrease in operating frequency; therefore, the execution time also increases linearly, and

a net gain in total execution energy can be made [Burd and Brodersen, 1995]. The voltage

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 63

can be varied quite freely during execution and can be controlled by the processor itself,

closing the loop; the machine thereby controls a crucial component of its own energy

footprint. Typically a chip has some minimum and maximum voltage, and may support

only a limited number of voltages between these extremes, but the relatively low time

and energy penalties for transitioning between voltages makes for much greater flexibility

in scheduling than could be achieved by discrete sleep states. Consequently there already

exists a vast body of work on the subject, and even summary papers are quite numer-

ous [Chen and Kuo, 2007, Tiwari et al., 1994]; there is only space here to discuss some

particularly pertinent strands.

Some approaches require a probability density function (pdf) over the number of cycles

required to complete the task; this pdf must be zero beyond some maximum value, known

as the worst-case execution cycles (WCEC), or more precisely, the worst-case execution

cycle count. (In this chapter, I do not draw a distinction between instructions and cycles;

a multi-cycle instruction is simply considered as separate instructions.) One particularly

powerful technique, requiring a concrete power model and an execution time pdf, can

derive precise optimal operating voltages for various situations: energy minimisation for

a given deadline, time minimisation under an energy constraint, and minimisation of

a generalised penalty model proportional to energy and time together [Barnett, 2005].

However, while this work is mathematically powerful and quite general in its arguments—

supporting, for example, any execution time pdf with finite support—its relevance is

limited by the lack of empirical data. The schedules, while formally optimal, are not

tested with concrete parameters, so it is unclear how much improvement they can provide

over a simpler approach; this is a limitation I attempt to address in my work. In other

work, a similar approach is used to schedule a set of sequential tasks to run in an energy-

efficient way, assuming (as in this chapter) a particularly idealised processor [Xu et al.,

2005]. Again this work considers DVFS exclusively as the method of energy efficiency.

Each task is scheduled to execute at a certain speed (and therefore voltage); speeds are

chosen such that all tasks are completed before the specified deadline, while the total

energy is minimised. It is shown that such a schedule can be found quite efficiently;

although formal bounds are not derived, the algorithm requires minimisation of N convex

functions, where N is the number of tasks, and of course highly efficient algorithms for

convex minimisation are well known [Boyd and Vandenberghe, 2004, pp. 457–513].

64 4.2. RELATED WORK

Other approaches to static scheduling are possible. For example, Qu and Potkonjak also

establish a theoretic framework similar to that used here, and go on to describe mul-

titask scheduling as a “utility maximization problem”; they show this problem to be

NP-complete, and then describe powerful approximations to efficiently compute sched-

ules arbitrarily close to the optimal [Qu and Potkonjak, 2000]. On the other hand, Irani

et al. describe the Dynamic Speed Scaling with Sleep algorithm (DSS-S), which assumes

a convex power function, availability of DVFS, and zero-energy transitions in and out

of sleep; all assumptions in common with this chapter [Irani et al., 2007]. In contrast to

my approach, DSS-S is not a scheduler per se, but rather a method for improving an

established schedule by reducing its energy usage without affecting (soft) deadline misses

or increasing deadline overshoot times. A static scheduling approach more similar to mine

is given by Hong et al., who propose the treatment of voltage as “an optimization de-

gree of freedom for . . . applications with real-time constraints” [Hong et al., 1999]. They

then propose an algorithm to perform this constrained optimisation, which simulation

suggests is a successful approach. However, they do not attempt to bound or restrict the

computational complexity of the algorithm, so its practicality is not clear even as an of-

fline solution. Work on soft deadlines can also support energy minimisation, although the

characterisation of the problem as one of reward maximisation is not transferrable to the

case where all deadlines must be met [Melhem et al., 2002].

Online (dynamic) scheduling methods are generally heuristic in their approach, but work

also exists on more formal techniques in this space. For example, by applying techniques

from differential calculus to the execution-cycle pdf, one can derive an optimal execution

speed which reacts to the progress of the task so as to minimise the expected total energy

of execution [Gruian, 2001]. Clearly this reactive approach can only improve on the static

case, but does incur a computation penalty in practice. The techniques in this chapter also

employ calculus but do not demand an execution time pdf, which is often very difficult

to obtain. An alternative approach generalises the Markov state model to a continuous-

time decision process, and can be shown empirically to outperform heuristic policies [Qiu

and Pedram, 1999]. However, the computational overhead of solving such a process is

considerable and again this consideration is not factored into the total energy expenditure.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 65

4.2.2 Other formal methods

To illustrate the full gamut of formal methods for energy, it is worth observing that there

are other benefits to energy efficiency, and other objectives than the minimisation of total

energy.

For example, all hardware has a maximum operating temperature, and we might wish

to schedule computation so as to minimise the peak temperature of the cores during

computation. Assuming Fourier Law cooling and making some further (quite reasonable)

assumptions about hardware characteristics, Bansal et al. give an efficient algorithm to

calculate such a schedule, using the same polynomial power model assumed here [Bansal

et al., 2004].

Early energy-efficiency work considered the reliability impact of the rapid temperature

changes potentially caused by voltage scaling [Lee, 2000], but this area has itself been

scaled back to a low intensity in recent years. Energy efficiency also has an impact on

reliability, since low-power computing is more susceptible to transient faults from radiation

events and so forth; modelling and managing this trade-off has also been the subject of

some formal work [Zhu et al., 2004, Zhu, 2006].

4.3 Definition of terms

The following terms will have these specific meanings in this chapter:

• The workload (or WCEC) is the maximum number of instructions to be executed

in order to complete the task.

• The deadline is a point in time by which all work must be completed. This is a hard

deadline; in other words, any admissible schedule must guarantee that the deadline

is met.

• The cost function describes the price per unit energy for all points in time until the

deadline.

• The power model characterises the interaction of energy consumption with perfor-

mance.

66 4.4. PROBLEM STATEMENT

4.4 Problem statement

Having outlined the general class of problem that this chapter addresses, I state the

problem precisely as follows: given the workload, deadline, and power and cost functions,

determine the rate of computation for all points in time (from “time zero” until the

deadline) which minimise the total cost of the energy expended, while still completing all

work before the deadline.

My approach is as follows.

• In Section 4.5, I justify a simple and approximate mathematical model of computa-

tional power consumption in terms of utilisation.

• In Section 4.6, I demonstrate optimal strategies for this model in some plausible

cost models, and show that these strategies could produce significant cost savings

in reasonable cases.

• In Section 4.7, I outline mathematical tools for the solution of more general cost

models.

4.5 Formal model

Some simplifying assumptions are always required in order to construct a precise math-

ematical model. For simplicity, this section presents the model directly; the assumptions

are defended at length below.

Let W be the number of instructions to execute (the workload) and let T be the time

available to complete the task (the deadline). By convention t denotes some time value

in the range [0, T].

Power consumption is assumed here to follow the polynomial dynamic model [Cho and

Melhem, 2008], which is

P (t) = (σ +Rα(t))I(t) (4.1)

(Throughout this chapter fn(x) stands for [f(x)]n rather than repeated application of f ,

although f−1 denotes the inverse of f .)

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 67

In this model, σ is the static power, R : [0, T] → R+ is a function indicating the work

rate (in cycles per unit time) of the processor at time t, and α is a constant that controls

the relationship between power and work rate, which is determined by the hardware

configuration. Typical values would be α ≈ 2 or α ≈ 3 [Cho and Melhem, 2008]. I :

[0, T]→ {0, 1} is a simple indicator function denoting whether the system is powered on.

The ordered pair (I, R) is referred to as a “strategy”, since it determines the behaviour

of the system, and consequently how much power it requires at any given time.

The cost function U : [0, T] → R+ denotes the unit cost of energy at time t, so that the

total cost of the computation, C, is given by

C =

∫ T

0

P (t)U(t) dt (4.2)

The formal problem statement is

Given U , α, σ, T and W , find the strategy (I, R) which minimises C.

The following constraints apply:

• Work cannot be undone and energy has some value; this is encapsulated in the

restriction of the codomains of R and U to R+.

• The power function is strictly increasing. In the polynomial model, this simply

implies that α > 1.

• The power function is convex. This has a simple consequence for the polynomial

model, since a function is convex over a region if its second derivative is non-negative

throughout that region [Rudin, 1987, p. 61]. This implies that

∂2P

∂r2
= α(α− 1)rα−2 ≥ 0 (4.3)

for r ≥ 0, and therefore simply that |α| ≥ 1. This is therefore subsumed by the

previous requirement that the function be strictly increasing, since this implies the

stronger constraint that α > 1.

68 4.5. FORMAL MODEL

• All the work is done by the deadline. I refer to this as the “Completion Constraint”.

Formally, ∫ T

0

R(t)I(t) dt = W (4.4)

The cost function and the strategy together determine the total energy of the computation.

4.5.1 Assumptions and justification

The power model describes a system with the following characteristics: when turned on,

the system requires zero or more units of “static power” and some additional “dynamic

power” which increases monotonically with performance; when turned off, it requires no

power. The assumption that the power function is strictly increasing (∂P/∂r > 0) is

fundamental and it is hard to imagine any system in which running faster would reduce

the power requirement; certainly such situations are esoteric enough that I do not con-

sider it necessary to optimise for them in the general case. The assumption of convexity

(∂P 2/∂2r ≥ 0) is more disputable; in concrete terms, I assume that each additional cycle

requested from the processor (per unit time) requires more energy (per unit time) than

the last. Nevertheless, the assumption is likely to hold, since systems generally scale super-

linearly with utilisation [Barroso and Hölzle, 2007], and it is widely adopted [Lehoczky

et al., 1989, Okuma et al., 1999, Gutnik and Chandrakasan, 1997, Lorch and Smith, 2001].

Generally this chapter assumes a polynomial model of dynamic power [Cho and Melhem,

2008]. With suitable parameters, this model is a reasonable approximation to most real

hardware and crucially, it is sufficiently simple that it permits the derivation of strong

theoretical results. Additionally, the convexity constraint follows from the monotonicity

constraint, rendering the former assumption less debatable.

I consider only two contributors to the total system power: a dynamic term varying with

utilisation (measured in cycles per unit time), and a constant term. The dynamic term

models the power of the CPU, and potentially any further components which scale in line

with the CPU; these may include, for example, main memory or the network interface

card. The constant term encompasses the power of the remaining components, and the

static power of the CPU itself. The dynamic behaviour which is not proportional to CPU

utilisation, such as the power consumed by the network card in peak-traffic periods, is

assumed to be small compared to the dynamic range of the CPU.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 69

I assume an idealised CPU, in the following sense: the voltage and clock frequency can

be changed instantaneously and at no energy cost, and can take on any value from zero

to the maximum frequency supported by the CPU. In practice, ignoring switching energy

makes little difference to the choice of frequencies, although of course it underestimates

the exact energy totals [Swaminathan and Chakrabarty, 2001]. As for the energy penalty,

energy cost changes are relatively infrequent and, by a result demonstrated explicitly be-

low, computation speed changes are similarly infrequent, so it is reasonable to discard

these for a computation of the assumed length. Clearly the assumption that frequency

can be changed instantaneously does not hold, since in practice there is some overhead

associated with adjusting the clock frequency; however, simulation has shown that the

energy differential for more involved models is only about 7% [Hong et al., 1998]. The

assumption that voltage and clock frequency may be varied continuously within the finite

bounds is essentially true for some processors. On the other hand, for processors which

support only a finite number of pre-determined frequencies, the optimal solution is sim-

ply to round to the nearest available frequency [Ishihara and Yasuura, 1998]. Empirical

evidence suggests that the loss of flexibility in such cases has a small impact on overall

efficiency [Lee and Sakurai, 2000].

I assume that the workload is known in advance. In reality the workload may be difficult to

provide and is of course undecidable in general. In cases where exact workload predictions

cannot be made, it may be possible to find an upper bound. The resultant schedule is

likely to be over-eager and thus somewhat energy-suboptimal, but still no worse than the

näıve approach. However, in cases where the upper bound is loose, a dynamic run-time

approach would probably perform better. Requiring this input is not as unreasonable

as it might once have been: there is now a large body of work on proving termination

for programs as large as 100 000 lines of code, despite the impossibility of the general

case [Cook et al., 2006]. The problem of calculating execution time bounds has also been

extensively studied, with considerable practical success [Bedin França et al., 2011, Souyris

et al., 2005, Heckmann and Ferdinand, 2004]. If no upper bound can be determined, it is

impossible for any schedule to guarantee a hard deadline and so this case is not considered.

On the other hand, there are some situations in which it is reasonable to expect an exact

workload. For example, in decoding an encrypted or compressed stream, it is possible to

determine at encode-time exactly what must be done to decode the resultant stream, and

70 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

this information could then be embedded into the stream itself. Predictable workloads

have already been shown to have power-efficiency benefits in the realm of digital signal

processing [Chandrakasan et al., 1996]. In any case it is clear that an algorithm for this

problem requires an upper bound on the workload, and that for offline algorithms a tighter

bound will produce a superior schedule.

I further assume that the number of instructions executed is independent of the rate at

which they are executed. In practice this is not completely accurate, due to complicating

effects such as caching, pipelining, bus speed mismatches and so on [Seth et al., 2003].

However, empirical evidence suggests that, for a reasonable cache size, the effect is very

small: typically less than 2% [Melhem et al., 2004, p. 4]. Therefore a task is simply

considered to take a certain number of instructions to resolve, and every instruction

requires a fixed amount of time. Therefore the worst-case execution time (WCET) is

simply the workload divided by the speed of the processor, in cycles per unit time.

4.6 Solutions for specific cost models

In this section, I propose some forms of cost model that I believe are likely to correspond

to realistic cases. As ever, a trade-off exists between the strength of assumptions and the

viability of analytic solutions. This section provides exact analytic solutions, and therefore

I have endeavoured to make the models as general as possible within that constraint;

variables are introduced wherever possible to provide flexibility.

4.6.1 Constant cost

The simplest cost function is U(t) = u for some constant u. This is the degenerate case

in which minimising energy and energy cost are identical objectives. This result has been

derived in previous work, under the name “energy-efficient frequency”, so I verify that it

is recreated within my framework [Zhu et al., 2004, p. 3].

Since the cost function is constant, I assume without loss of generality that the system is

powered on for one contiguous block of time. Consequently, any strategy can be reduced

to one in which the system begins powered off, remains off for some period of time S

(the “slack time”), is then powered on, and remains on for the remaining T − S time.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 71

(This also minimises the number of state changes, which helps preserve the assumption

that these are not significant contributors to execution time and energy.) The slack time,

which embodies the discovery that it may be economical to do nothing for a certain length

of time in a large computation, is named in homage to Gottbrath’s introduction of another

form of slack time [Gottbrath et al., 1999]. In that formulation, the computational power

of new hardware increases so rapidly that a long-running computation may finish earlier

if we delay its start until better hardware becomes available. That result, of course, is

predicated upon Moore’s Law, whereas here I only make the less startling assumption

that static power is a non-trivial component of total power. Nevertheless, the ideas enjoy

numerous similarities.

Due to the convexity of the power function (the assumption that α > 1), a strategy

in which computation occurs at a constant rate for the entire work phase is at least as

good as any other. This can be seen intuitively by the following argument: consider any

strategy which deviated from a constant rate; now reduce the work rate at its highest point

and increase it at its lowest point by the same amount, such that the total number of

instructions executed is the same. Now the reduction in power at the high point is clearly

greater than the increase in power at the low point, since the power function is convex

with respect to work rate. Therefore the overall energy is reduced. Consequently, only a

strategy which has no such “high points” can be optimal, which is exactly the constant

functions. A more precise argument can be given; here, I formalise the argument sketched

by Gutnik and generalise it to the continuous case [Gutnik and Chandrakasan, 1997].

This argument applies to any convex power function, including of course the dynamic

polynomial model I generally assume. Consider Jensen’s Inequality [Gradshteyn et al.,

1980, pp. 1132–1133], which states the following.

Theorem 4.6.1. (Jensen’s Inequality) Consider an interval [a, b]. Let p be any function

on the interval such that p(x) ≥ 0 and p 6≡ 0; let f be any function and define constants

α and β, chosen such that ∀x ∈ [α, β].α ≤ f(x) ≤ β; let φ be any convex function. Then5

φ

(∫ b
a
f(x)p(x)dx∫ b
a
p(x)dx

)
≤
∫ b
a
φ(f(x))p(x)dx∫ b
a
p(x)dx

(4.5)

5There are multiple formulations of Jensen’s Inequality, with measure theory’s presentation being

perhaps the most convenient; however, to avoid the dependency on the fairly specialised notation of that

field, I give the inequality in the slightly more cumbersome form used for real analysis and then eliminate

the unnecessary terms directly.

72 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

Given Equation 4.5, the result follows quite straightforwardly.

Proof. Set a = 0, b = 1, p(x) = 1 in Jensen’s Inequality, and substitute x 7→ t, f 7→ R

and φ 7→ P . By assumption, P is convex, as required; furthermore, since it is convex

everywhere that it is defined (which is to say, [0, T]), we can take α = 0 and β = ∞,

which certainly bound any R(t) we might see. Then Jensen’s Inequality reduces to the

following compact form:

P

(∫ 1

0

R(t)dt

)
≤
∫ 1

0

P (R(t))dt (4.6)

Assume without loss of generality that the window of computation is 0 ≤ t ≤ 1. Then one

can recognise the term inside the left-hand brackets as the workload, W , in Equation 4.4.

Likewise the right-hand side is the total energy consumed, E. Hence we have the concise

result that E ≥ P (W). Now consider a constant rate of work, which by the Completion

Constraint requires that R(t) = W . In this case,

E =

∫ 1

0

P (W)dt = P (W) (4.7)

This is the lower bound of the inequality above. Hence, as required, the lower bound for

E is achieved when R is a constant function.

Note that we have not proved the converse and therefore do not exclude the possibility

that an alternative strategy might be equally efficient, but it cannot be superior. In fact,

this result is not specific to power; any resource which is a convex function of utilisation

is minimised by constant consumption, and similar results have been established in other

work [Melhem et al., 2002, p. 133].

Given the assumption of a contiguous slack time and a constant rate of computation

during the non-slack time, the formal strategy (I, R) must take the following form:

I(t) =

 0 if t ≤ S

1 if t > S
(4.8)

and R(t) = r for some constant r. By the Completion Constraint,∫ T

0

R(t)I(t) dt = r(T − S) = W (4.9)

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 73

so r = W/(T − S), and the total cost C is

C =

∫ T

0

P (t)U(t) dt (4.10)

= u(T − S)

(
σ +

(
W

T − S

)α)
(4.11)

To find the optimal slack time, set ∂C/∂S = 0, so

σ +

(
W

T − S

)α
= (T − S)(αWα(T − S)−α−1) (4.12)

which has the unique solution

S = T −W α

√
α− 1

σ
(4.13)

As expected, the solution is independent of u, which is just a scaling factor of the cost. It

may transpire that this value of S is outside the valid range, in other words that S < 0,

in which case simply take S = 0. Clearly it cannot be that S > T .

Substituting this optimal S gives the optimal rate of calculation:

ropt = α

√
σ

α− 1
(4.14)

This agrees with the established result for energy-efficient frequencies.

The minimal cost can also be given explicitly:

Copt =
ασWu

α− 1
α

√
α− 1

σ
(4.15)

Next, I determine how much this optimal solution stands to gain over the näıve solution:

that is, computing at maximum speed until the work is complete. To answer this, define

Rmax to be the maximum work rate of the processor; this is both the speed at which

the näıve strategy will compute (until the task is complete), and an upper bound on the

admissible values of R from any alternative strategy. Clearly the näıve strategy incurs

cost Cmax, where

Cmax = (σ +Rα
max)

Wu

Rmax

(4.16)

Let λ be the fraction of the cost required by the näıve strategy that could be saved by

the optimised strategy, so that

λ =
Cmax − Copt

Cmax
= 1− ασRmax

(α− 1)(σ +Rα
max)

α

√
α− 1

σ
(4.17)

74 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
α = 2
α = 2.5
α = 3

Static fraction

E
ne

rg
y

sa
vi

ng

Figure 4.1: Potential cost saving λ, as a percentage, against static fraction µ, for some

realistic α values.

Of course, the exact value of the cost saving depends on the values of the other variables

in the power model and so forth, but usefully, this definition is independent of W , u

and T . This reduces the dimensionality of the space over which one most compare the

two strategies. One dimension that must be considered is the ratio of static to dynamic

power, so define µ to be the fraction of total power consumed by static power at peak

performance:

µ =
σ

σ +Rα
max

(4.18)

This can then be substituted into Equation 4.17 to give

λ = 1− α α
√

1− µ
(

µ

α− 1

)1−1/α

(4.19)

and this eliminates Rmax so that λ remains dependent on only two variables. Therefore

one can reasonably sketch out the behaviour for some likely parameter values.

Note that this definition is only correct if the optimised strategy respects the maximum

rate of computation, in other words ∀t.R(t) ≤ Rmax. This implies that we must have

W/(T − S) ≤ Rmax, which reduces to the simple constraint that µ ≤ 1 − 1/α. For

µ > 1− 1/α, the optimised strategy converges to the näıve strategy, so λ = 0.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 75

Figure 4.1 shows the aforementioned sketch of λ for varying values of µ, with some plau-

sible values of α. Several interesting conclusions can be drawn from this sketch that are

not immediately obvious from Equation 4.19. First and most obviously, the optimised

solution is always able to save some energy; and, when µ is small and the dynamic energy

dominates, the optimised strategy is able to achieve much higher savings. Whether these

solutions are actually possible also depends on the value of T , which is not considered here;

the specific case µ = 0 would favour computing infinitely slowly and so is not shown. The

sensitivity to α is less obvious from Equation 4.19, but clear from the figure; for example,

when the maximum dynamic power is fixed at twice the static power (µ = 1/3), λ is 6%,

14% and 21% for α = 2, 2.5, and 3 respectively, which is a significant discrepancy. The

effect is predictable, since the steeper the power curve the more wasteful maximum-speed

computation becomes; however, the magnitude of it is perhaps surprising. Furthermore,

for larger α values, the static fraction has to be considerably larger before optimisation

becomes useless; µ = 46%, 56% and 62% respectively. This suggests that the optimisation

is markedly more useful when deployed in systems with α values towards the higher end

of typical estimates; again this is qualitatively obvious but the magnitude of the effect is

somewhat unexpected.

4.6.2 General discrete variable cost

Consider now a more general case, where U varies in any number of discrete regular time

steps; in other words, for some integer m:

U(t) =


u0 if 0 ≤ t < T/m
...

um−1 if (m− 1)T/m ≤ t < T

(4.20)

where u0, . . . , um−1 are positive real constants. Assume that ui ≤ ui+1; this assumption

can be made without loss of generality since one can always sort the time steps into cost

order.

Since the cost is increasing, any optimal strategy must involve working from the start for

some period of time and then switching off for the rest of the time. (In the general case,

this corresponds to working in only the cheapest time slots.) This strategy is parametrised

by the length of this working period, which is assumed to be some multiple of s; in other

76 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

words, computation spans a whole number of time steps. This method can be extended

to remove this assumption but this simpler case illustrates the technique more clearly;

alternatively one can slice the steps into small substeps to provide an arbitrarily good

approximation.

Under these conclusions, “Strategy n” can be defined as (In, Rn) with

In(t) =

 1 if t ≤ Tn/m

0 if t > Tn/m
(4.21)

and

Rn(t) =



r0 if 0 ≤ t < T/m
...

...

rn−1 if T (n− 1)/m ≤ t < Tn/m

0 otherwise

(4.22)

for constants r0, . . . , rn−1, and 0 < n ≤ m. The Completion Constraint requires that

n−1∑
i=0

riT

m
= W (4.23)

or, extracting r0, that

r0 =
Wm

T
−

n−1∑
i=1

ri (4.24)

The total energy cost is

Cn =
T

m

n−1∑
i=0

(σ + rαi)ui (4.25)

So to minimise Cn (for fixed n), the following system of equations must be solved:

∂Cn
∂r0

= · · · = ∂Cn
∂rn−1

= 0 (4.26)

The variables r1, . . . , rn can be considered mutually independent, with r0 constrained by

Equation (4.24); therefore

∂ri
∂rj

=


1 if i = j

0 if 0 6= i 6= j 6= 0

−1 otherwise

(4.27)

So, for any j 6= 0,
∂Cn
∂rj

=
T

m
(αrα−1j uj − αrα−10 u0) = 0 (4.28)

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 77

which is solved by rj = r0ζj where

ζj = α−1

√
u0
uj

(4.29)

This gives each rj in terms of r0, so to complete the solution, return to the Completion

Constraint, which is now
n−1∑
i=0

Tri
m

=
Tr0
m

n−1∑
i=0

ζi = W (4.30)

and so, by normalisation,

r0[opt] =
Wm

T
∑n−1

i=0 ζi
(4.31)

and the solution is complete. This describes the strategy for a given n; the minimal cost

is therefore

Cn[opt] =
T

m

(
(r0[opt] α−1

√
u0)

α

n−1∑
i=0

1−α
√
ui + σ

n−1∑
i=0

ui

)
(4.32)

The optimal value of n can be found efficiently by any univariate maximisation technique.

However, for larger values of m, a more direct mechanism might well be desirable; in

Section 4.6.4, I demonstrate that for specific cost functions, more efficient computational

techniques for finding n can be applied.

4.6.3 Real-world example

To illustrate the advantages of cost optimisation, this section describes a plausible problem

case and shows the savings that cost optimisation can achieve. I consider the following

situation:

• The system has one week to complete some computational task, starting at midnight

on Monday.

• The workload is 48 hours’ work at the maximum rate.

• Electricity costs are based on the standard plan offered by power provider E.ON

Energy6 in the author’s postcode as of November 2011. Therefore off-peak electricity

is available from 11.30pm to 7.30am at 6.1845p per kilowatt-hour (kWh); on-peak

electricity is available at all other times, priced 16.905p per kWh.

6http://www.eonenergy.com

78 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

Race to stop
Cost-agnostic
Cost-aware

Static fraction

C
os

t (
£)

Figure 4.2: Cost incurred to perform a long-running computation, for various ratios of

static to dynamic power.

• When computing at the maximum rate, the system requires 450 W of power. This is

divided between the static and dynamic components according to the static fraction

parameter.

• The machine follows the dynamic polynomial power model, with α = 2.5.

Note that the value of Rmax follows from the static power, maximum dynamic power, and

value of α, so is not given explicitly.

Figure 4.2 shows the cost of completing this computation for varying values of the static

fraction. The simple race-to-stop strategy, which simply runs at maximum speed until

completion, always consumes 450 W and is therefore independent of the static fraction;

it requires 21.6 kWh at a cost of £2.88. The figure also shows the behaviour of the cost-

agnostic algorithm, which optimises for energy but not energy cost, and the full algorithm

which minimises energy cost. (In both cases, the Rmax limit is imposed, so the comparison

is a fair one.) At low static powers, the two algorithms behave similarly because they both

compute throughout the week, although the cost-aware algorithm is still slightly more

efficient since it moves more cycles into off-peak pricing periods. As the static component

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 79

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Race to stop
Cost-agnostic
Cost-aware

Static fraction

En
er

gy
 (k

W
h)

Figure 4.3: Energy required to perform a long-running computation, for various ratios of

static to dynamic power.

increases, the cost-agnostic schedule runs early time segments at Rmax and then turns the

system off, converging on the race-to-stop schedule. When the static power accounts for

more than about 60% of the total, all three schedulers level off, although the cost-aware

model continues to make better use of off-peak energy, converging to £1.34.

Figure 4.3 shows the raw energy usage for the three schedulers. As expected, the cost-

aware scheduler consumes more total energy than the cost-agnostic scheduler; the superior

price is achieved by performing more total work but shifting it to off-peak times. This

might seem undesirable but, since the grid has almost no storage capacity and produces

a reasonably constant output of electricity throughout the day, this would actually be a

net win for both the provider and the consumer; this is, after all, exactly the behaviour

that the off-peak period is designed to incentivise. Both figures display a “phase change”

in cost-aware behaviour at around 16% static power; this is the first point at which it

becomes cost-efficient to perform any computation at on-peak prices.

Of course this example includes many arbitrary constants, but clearly demonstrates that

there are significant cost savings to be made in a practical case; for a realistic system

with static power of perhaps 40%, cost-aware optimisation is 56% cheaper than the näıve

80 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

race to stop, and 52% cheaper than even an energy-optimal schedule. While some of this

margin would undoubtedly be lost in the translation to all the complexities and overheads

of a real system, I believe it is large enough that a significant reduction in the real cost

would be achievable.

4.6.4 Exponential cost

In the long term, one might expect the cost of energy to behave exponentially, either

increasing or decreasing depending on one’s optimism about the progress of technology.

In this section I specifically consider the case where cost increases exponentially at each

time step, in order to preserve the assumption that ui ≤ ui+1; the solution can easily be

adapted for the case of exponential decrease. Assuming arbitrary units of cost, define

ui = eT i/m = zi (4.33)

where z = eT/m. Hence ζi = ki where k = 1−α
√
z. Then, substituting into Equation 4.31

gives a simple geometric sum so

r0 =
Wm(1− k)

T (1− kn)
(4.34)

Likewise Equation 4.32 collapses into a compact form:

Cn =
T

m

(
1− zn

1− z
σ +

(
Wm

T

)α(
1− k
1− kn

)α−1)
(4.35)

Expanding terms dependent on n, this can be written in explicit and particularly concise

form:

Cn = A(1− zn) +B(1− kn)1−α (4.36)

where the constants are independent of n, viz.

A =
Tσ

m(1− z)
(4.37)

and

B = Wα

(
m(1− k)

T

)α−1
(4.38)

This equation makes it highly efficient to compute the optimal n for even large m by any

standard optimisation technique.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 81

4.6.5 Generalised time intervals

A simple approach to optimising for the fully general continuous cost function would

be to replace it with an approximate discretised version of the same function. In this

case, the obligation to separate time into fixed quanta of length T/m might be overly

restrictive, and it would be preferable to sample the function more finely in regions with

larger derivative. Therefore I also present the solution for arbitrary-length time segments.

Define 0 = t0 < t1 < . . . < tm = T , and then take

U(t) =


u0 if t0 ≤ t < t1
...

um−1 if tm−1 ≤ t < tm

(4.39)

The completion constraint is
n−1∑
i=0

ri(ti+1 − ti) = W (4.40)

and the cost

Cn =
n−1∑
i=0

(σ + rαi)(ti+1 − ti)ui (4.41)

so

∂ri
∂rj

=


1 if i = j = 0

−(ti+1 − ti)/t1 if i = 0, j 6= 0

0 if i 6= 0

(4.42)

and, by the earlier method, we have ri = r0ζi since the interval terms cancel. Normalising

completes the solution, giving

r0 = W

(
n−1∑
i=0

(ti+1 − ti)ζi

)−1
(4.43)

The minimum cost is, therefore

Cn = σ
n−1∑
i=0

ui(ti+1 − ti) + (r0 α−1
√
u0)

α

n−1∑
i=0

(ti+1 − ti) 1−α
√
ui (4.44)

It can be readily verified that these solutions coincide with the fixed case when ti = Ti/m.

To demonstrate the utility of this adaptive quantisation, consider the continuous cost

function

U(t) = k + (1− k) sin

(
πt

2

)
(4.45)

82 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Continuous function
Regular quantisation
Fitted quantisation

t

0.
01

 +
 0

.9
9

si
n(

π
t/2

)

Figure 4.4: A continuous cost function and two different methods of discretising it into

ten steps.

where k is a small constant to prevent zero-cost energy at t = 0 (I take k = 0.01). Take

T = 1, so that U(t) is monotonically increasing over the relevant range, 0 ≤ t ≤ 1. Rather

than solve for this function directly, let us take a discrete approximation. I discretise

in two different ways to demonstrate the contrast. One method, regular quantisation,

simply divides the function into n regular steps of width 1/s. The other method, fitted

quantisation, divides the function into s variable-width steps such that the value of U(t)

increases by the same amount over each; in this case, the ith step runs from

2

π
arcsin

(
i

s

)
≤ t <

2

π
arcsin

(
i+ 1

s

)
(4.46)

Figure 4.4 compares the two methods of quantisation against the continuous function for

s = 10; note how the fitted quantisation uses smaller steps in the steeper part of the sine

curve. In both methods the effective value of U is sampled at the midpoint of the interval,

so the continuous curve intersects each step of the discrete functions at the midpoint of

each step. Note that, although the fitted quantisation is intuitively a better fit, there is no

reason to believe that it is the optimal approximation for our purposes; this is intended

only as a demonstration of the advantages of variable width quantisation for this purpose.

To demonstrate this advantage, I optimise for the two quantisations and measure the cost

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 83

0 0.05 0.1 0.15 0.2 0.25 0.3

Regular quantisation
Fitted quantisation
Optimal solution

Time

R
at

e
of

 c
om

pu
ta

tio
n

Figure 4.5: Schedules for two different quantised approximations to the same continuous

cost function. Arbitrary units of rate.

incurred, assuming the cost function of Equation 4.45.

For further illustration, Figure 4.5 shows the proposed schedules for both quantisations

in the case where s = 25, with α = 2.5. The figure also shows the optimal solution. (This

was in fact computed numerically by taking s = 10 000.) The system is assumed to be

powered down wherever the rate is zero, and in particular the rate is zero for the unshown

portion of the graph (t > 0.3). Note that the adaptive solution computes for ten steps to

the regular solution’s seven, but still finishes earlier since the steps are smaller. During

the active period, it is not immediately obvious that the fitted quantisation is a better

approximation to the optimal solution, but the total costs bear it out: regular quantisation

produces a solution 6.3% more expensive than the optimal, while the fitted quantisation

incurs only a 3.6% cost overhead.

Finally, Figure 4.6 shows the overhead of the two approaches, compared to the optimal

solution, over a range of s values and for α = 2, 2.5, and 3. Evidently the fitted quantisa-

tions are measurably better in every case, excepting a few small anomalies for the coarsest

quantisations (which illustrates the point that this quantisation is not necessarily opti-

mal for this purpose). For s values of 100 or more, the overhead becomes negligible; for

84 4.6. SOLUTIONS FOR SPECIFIC COST MODELS

1 10 100
0%

20%

40%

60%

80%

100%
α = 2, regular
α = 2, fitted
α = 2.5, regular
α = 2.5, fitted
α = 3, regular
α = 3, fitted

s

C
os

t o
ve

rh
ea

d
ve

rs
us

 o
pt

im
al

 s
ol

ut
io

n

Figure 4.6: Comparison of cost overheads incurred by regular and fitted quantisations for

several values of α. Horizontal axis is on a logarithmic scale.

s ≥ 180 both methods are less than 1% inefficient. This demonstrates that, as an offline

optimisation technique, there is no great benefit to the added complexity of the adaptive

method, justifying the decision to present the simpler case explicitly. Nevertheless, this

also demonstrates that flexible quantisation is justified if the overhead of computing the

schedule must be kept low; for example, as illustrated in later chapters, it might sometimes

be desirable to recompute a schedule online in the light of new information.

4.6.6 Summary of cost model-specific solutions

In this section, I have presented precise algebraic solutions to the fixed cost model and to

any model described by a series of discrete steps, and demonstrated that the latter can

be an effective approximation to more complex continuous functions. I have also shown

that the algebra can be pushed further in particularly amenable cases, such as ui = zi,

to make the parameter search more efficient. However, while it can be approximated, the

more general problem of an arbitrary continuous cost function remains unsolved. This I

address in the next section.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 85

4.7 General methods

In this section I present some techniques for optimising for continuous cost functions in

the general case. While it is not possible to complete the solution in the general case, the

methods developed here can be applied to particular continous cases and thereby simplify

the process of finding a solution. I also describe a method for finding solutions subject to

an additional constraint: constant spending.

4.7.1 Monotonic cost functions

It is not possible to provide a complete analytical solution for an arbitrary cost function,

but in this section I develop some techniques that may be useful in minimising cost

for general monotonic cost functions. By analogy with the earlier assumption that ui ≤

ui+1, assume that U is a monotonically increasing continuous function. A monotonically

decreasing function V can be converted into the appropriate form by taking U(t) =

T − V (t), effectively reversing the arrow of time; since the algorithm is entirely offline,

there is no issue with causality. For cost functions that are not monotonic, one can apply

the approximation technique of Section 4.6.5, or more powerful mathematics are required,

as discussed in Section 4.8.

By the earlier argument, the following indicator is as good as any other for suitable S:

I(t) =

 0 if t ≤ S

1 if t > S
(4.47)

so that the Completion Constraint becomes simply∫ T

S

R(t) dt = W (4.48)

Now the power function P is parametric in S; the longer the CPU idles at the beginning,

the faster it must run once it starts. For convenience, define f(S, t) = U(t)PS(t), so one

can simply state

C =

∫ T

S

f(S, t) dt (4.49)

To find the optimal S, set ∂C/∂S = 0 as usual. Under the reasonable assumption that f

86 4.7. GENERAL METHODS

is continuous over [S, T], one may differentiate under the integral to give

∂C

∂S
=

∂

∂S

∫ T

S

f(S, t) dt

=

∫ T

S

∂

∂S
f(S, t) dt− f(S, S)

= 0

using the standard result [Gradshteyn et al., 1980, p. 23].

Rearranging, and expanding f , gives

PS(S)U(S) =

∫ T

S

U(t)
∂PS
∂S

dt (4.50)

since U is independent of S.

Since only the dynamic power depends on the slack time, this can be further rewritten in

terms of R:

[σ +Rα(S)]U(S) = α

∫ T

S

U(t)Rα−1(t)
∂R

∂S
dt (4.51)

The latter seems more readily soluble, since the Completion Constraint also involves R.

This gives an approach to finding R for any general U , if one can solve the integral in

Equation 4.51.

To illustrate the technique, let us briefly return to the case of the constant cost function,

U(t) = u. As in Section 4.6.1, this implies R(t) = W/(T − S), and consequently the

derivative
∂R

∂S
=

W

(T − S)2
(4.52)

One can now apply Equation 4.51, to give(
σ +

(
W

T − S

)α)
u = α

∫ T

S

u

(
W

T − S

)α−1
W

(T − S)2
dt (4.53)

Despite its apparent inelegance, this equation quickly cancels down to give

σ +

(
W

T − S

)α
= α

(
W

T − S

)α
(4.54)

and a simple rearrangement produces the now-familiar form of Equation 4.13, complet-

ing the solution. Even in this simplest of examples, it is apparent that the volume of

algebra and risk of error can be reduced by applying the general method embodied in

Equation 4.51.

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 87

4.7.2 Constant spending

A particular class of solution arises if the cost per unit time is required to be constant

over the non-slack region of computation. Here let P be any power function, so that

P (r) is the power consumption of computing at rate r. As before, P must be strictly

monotonically increasing and hence invertible; let P−1 denote this inverse. Let V be the

rate of spending, so that ∀t.U(t)P (t) = V with V independent of t. To find V , apply the

Completion Constraint: ∫ T

S

P−1
(

V

U(t)

)
dt = W (4.55)

Solving this integral for the relevant U gives an equation for V in terms of S. The total

cost is then

C =

∫ T

S

P (t)U(t) dt = (T − S)V (4.56)

and so
∂C

∂S
= (T − S)

∂V

∂S
− V (4.57)

So setting ∂C/∂S = 0, the optimal slack time can be derived by the neat equation

V = (T − S)
∂V

∂S
(4.58)

Solving this may be hard in practice, depending on the tractability of Equation 4.55. Of

course numeric approximations are possible, although in the general case the energy cost

of the computation might exceed the energy saved by prudent scheduling.

As an example, assume that P (r) = σ+ rα as before, so that P−1(p) = α
√
p− σ. First set

U(t) = u in order to check that the simple case of Section 4.6.1 is recovered. The solution

to Equation 4.55 is then

V = u

((
W

T − S

)α
+ σ

)
(4.59)

Hence,
∂V

∂S
= αuWα(T − S)α−1 (4.60)

And, substituting these into Equation 4.58 leads quickly to the solution

S = T −W α

√
α− 1

σ
(4.61)

which of course is Equation 4.13.

88 4.8. CONCLUSION

However, to illustrate the difficulties of this method, consider instead the case of expo-

nential cost, so that U(t) = et. The solution to the integral in Equation 4.55 is then very

difficult to obtain; an analytic algebra package7 gives

−(α) 2F1

(
− 1

α
,− 1

α
; 1− 1

α
;
σet

V

)
α

√
V e−t − σ
1− σet/V

= W (4.62)

where 2F1 is Gauss’s hypergeometric function. This is about as far as one can proceed

with this method; evidently, numerical approximation is necessary to solve the integrals

for even quite elementary cost functions.

4.8 Conclusion

In this chapter, I have argued that minimising energy cost rather than energy itself is a

realistic approach for long-running computations, and that it would be quite reasonable

for real-world application. In fact, paradoxically, using more energy may be not only

more cost-efficient but actually more energy-efficient, due to the structure of the electricity

supply system. If such optimisations became a reality, and computing continues to increase

its share of total energy usage, then one would expect to see power providers offering a

more finely-grained incentive scheme; the framework I have described is capable of refining

its schedules for exactly this scenario. The result would be an overall improvement in

the efficiency of the world’s power generation infrastructure, in terms of both cost and

energy, and would therefore form some small part of the solution to the global problems of

power provisioning as world population accelerates towards its peak of perhaps ten billion

people [Lutz et al., 2001]. Of course there are significant caveats to the efficacy of this

solution, but since all expectations are that computing will become only more widespread

and diverse, it is clearly a goal worth pursuing.

Having established the legitimacy of the problem, I have also presented a framework in

which such problems can be described, and argued for its fidelity as an approximation to

the myriad complexities of real systems. As far as possible the results in this chapter apply

to almost any plausible power function, since it is hard to imagine any hardware for which

this would not be monotonically increasing and convex with respect to processor speed.

However, I have also provided more detailed results for one particular class of power

7Wolfram’s Online Integrator, http://integrals.wolfram.com

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 89

function, the dynamic polynomial model, which is believed to be widely applicable in

practice. Although these results are necessarily somewhat specific, I believe the techniques

used are of broader applicability for other power functions, and it seems likely that similar

techniques could produce analogous results for other characterisations of power. Perhaps

most importantly, I have demonstrated concretely that these techniques would have a non-

negligible impact on the execution strategy used by real workloads, and on the energy

cost incurred by those strategies. The margins obtainable in theory are large enough that,

although some fraction would inevitably be lost in the translation to the complications

of reality, the remainder would still be enough to justify the outlay in technical and

conceptual complexity.

In general, of course, the greater the dynamic range of power supported by the hardware,

the greater the opportunities for optimisation; for machines in which static power domi-

nates, the näıve race-to-stop approach cannot be beaten for energy efficiency. Indeed, it

seems that future hardware trends are in this direction; certainly for larger devices, it

is expected that future chip design will focus on larger numbers of simpler computing

elements, which individually may not support much power scaling. However, cost opti-

misation introduces a new front in this struggle between performance and efficiency; as

amply demonstrated by Section 4.6.3, there are considerable savings to be made even

when there is no margin for energy reduction.

The approach of this chapter is not without its limitations. Section 4.7.2 illustrates that

relatively simple formulations can quickly lead to algebraically intractable problems, if one

requires precise solutions; although, given the dependence on the notoriously recalcitrant

subject of integrals, this should not be particularly surprising. On the other hand, for

more challenging cost functions, such as the fully continuous non-monotonic case, a more

powerful technique might be needed; in this case, it seems that the calculus of variations

is perhaps the right tool. Given the difficulty of even the elementary problems presented

above, I have not attempted these cases. Furthermore it is not clear that they would be

of much practical utility.

One foreseeable objection to the work of this chapter is that the static, offline analysis of

energy costs has an implicit assumption of determinism in the cost model. The real energy

market is a complex stochastic system. A simple defence would be that price changes are

generally long-term, and are quite predictable at these timescales. However, an important

90 4.8. CONCLUSION

and widely predicted development in future power provisioning could weaken this defence

substantially: the proliferation of renewable energy. Renewable energy, like traditional

fossil fuel or nuclear power generation, provides little storage capacity and therefore tends

to be over-provisioned in times of low utilisation. (Although, in some cases, the drop in

supply conveniently mirrors the drop in demand, such as the low production of solar energy

at night.) However, many renewable sources also have the radically different characteristic

that their production varies over time in a way that cannot be controlled and can barely

be predicted; for example, a wind turbine can produce any amount of power from zero to

its maximum output, with variations in time, local geography, season and so on, and only

broad trends in this value can be identified [Renewable Energy Research Laboratory,

2009]. This would create significant problems for an offline approach if the goal is a

power billing infrastructure that more accurately captures the true cost of production.

If consumer cost tracked production cost then it too would vary over time according to

unpredictable environmental factors, even when aggregated across whole wind farms, solar

farms and suchlike. However, there are several considerations that mitigate this problem.

First, current power producers are eager to maintain the simplicity of relatively constant

power availability, and research is underway into how this might be done as the fraction of

power provided by renewables increases [Cavallo, 1995]. Likely candidates include large-

scale energy storage using compressed air, efficient long-distance transmission and load

balancing to increase the scale of aggregation, and backup from more traditional sources

to smooth out demand spikes. Second, computing presents an unusual use-case for the

power grid since it barely matters where the computation actually takes place. Rather

than moving power to the task, it would be far simpler to move the task to where the

cheapest power is. As discussed in Chapter 3, multi-nationals can perform this sort of

allocation in siting new data centres; but, in the future, far more rapid relocations of

individual tasks might be profitable, and much of the software infrastructure to achieve

this already exists [Clark et al., 2005, Zamfir et al., 2007]. If a more dynamic energy

market does come to pass by one means or another, it would most likely be better suited

to a dynamic power scheduler, but there is considerable pressure to maintain the present

straightforwardness for other reasons, and redistribution of computing could actually form

part of the smoothing that makes this possible.

In summary, then, this chapter has demonstrated that generalisation to energy cost is

CHAPTER 4. COST OPTIMISATION FOR POWER-AWARE COMPUTING 91

economically useful in a broader context, analytically tractable in many cases, and can

produce markedly better solutions than are possible with simpler methods.

92 4.8. CONCLUSION

Chapter 5

Energy-efficient real-time streaming

5.1 Introduction

This chapter investigates another aspect of the energy efficiency problem: energy-efficient

streaming. Streaming is itself a multifaceted concept, and the term has related but subtly

different meanings in various fields. In this chapter, I define a streaming computation by

the following characteristics:

• The computation happens continuously, and need not necessarily terminate.

• New data and computational requests may arrive during the computation; unlike

the traditional Turing model, the input is not a static set provided on entry to the

program.

• The computation produces intermediate results for particular subproblems. In the

non-terminating case, this is of course the only method by which the computation

can produce results; again, this differs from the Turing model in which the compu-

tation is essentially useless if it does not terminate.

• Suitable measures of efficiency are subproblem throughput, latency, or some com-

bination of the two. This contrasts with the traditional efficiency metric of whole-

program execution time, which is not useful for non-terminating programs.

Figure 5.1 presents the comparison with Turing computation diagrammatically. The tra-

ditional model comprises three discrete parts: input, computation, and output. Streaming,

93

94 5.1. INTRODUCTION

input

output

computation

input

output

input

output

input

output

computation

Streaming computation

Traditional Turing computation

Figure 5.1: Comparison of the traditional Turing model and streaming computation.

on the other hand, is a more continuous model, processing a stream (infinite in this case)

of new inputs and returning intermediate outputs. This should not be understood to

imply that streaming is fundamentally “outside” the Turing model—certainly the same

constraints of computability apply, and the Church-Turing thesis is not threatened—but

rather that streaming presents an alternative perspective that is more appropriate for

certain computational needs.

This is a broad definition of streaming, and encompasses several other concepts that are

sometimes called “streaming”, all of which are now common parts of the computing land-

scape. For example, streaming audio and video over a network or from permanent storage

is now a common task for desktops and portable devices; this can be seen as consuming a

series of encoded frames and producing the decoded media stream for the appropriate de-

vice driver, with latency and throughput requirement imposed by the sampling frequency

and bit-rate of the media object. Examples may be finite (a movie) or essentially infinite

(online radio). In another sense of the term, streaming is fundamental to modern computer

graphics, where it occurs as a refinement of the Single-Instruction Multiple-Data (SIMD)

paradigm. Generating modern 3D graphics is essentially a stream of matrix operations,

implemented as a series of identical “kernel” functions applied across different geometrical

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 95

data; at regular intervals, this stream produces a complete display’s worth of graphical

output, which is then presented to the user. This has acquired particular practical signifi-

cance in the last few years with the ubiquity of GPUs able to perform SIMD calculations

in a highly parallel manner; at the time of writing, commodity GPUs may provide 1024

cores and performance rated at almost 2.5 teraflops.1 More recently, as the devices have

become more sophisticated, the industry has seen the ascent of general-purpose processing

on the GPU (GPGPU) [Wu and Liu, 2008]. GPGPU is intended to leverage the SIMD

architecture for a wider class of computational problems, such as simulations of fluid dy-

namics [Müller et al., 2003]. Now GPGPU has spawned its own languages, which have

acquired significant diversity and sophistication in themselves [Hwu et al., 2009, Stone

et al., 2010]. In fact, streaming-centric programming languages have a long history of their

own, in the form of dataflow programming, which is the ultimate origin of modern GPU

streaming [Wadge and Ashcroft, 1985, Smolka, 1995]. Evidently, stream processing in var-

ious forms is now a standard requirement of many devices, whether portable or otherwise

energy-constrained, and the latter category now includes almost any device anywhere.

In many streaming computations, each unit of work has an associated deadline. For ex-

ample, each frame of a video stream must be decoded in time for its appearance on the

screen, so deadlines are defined by the frame rate of the video. In an energy-sensitive

context, such as a mobile device, this computation would ideally be performed so as to

minimise the energy per unit of computation while still meeting the deadlines. Existing

work typically studies this problem as a dynamic feedback loop, in which the system

monitors its own throughput and power consumption and scales performance up or down

according to energy and throughput goals, as described in Chapter 3. Certainly this is

the approach widely adopted in real systems. Although successful, this approach has two

limitations. Firstly, the system must track suitable performance metrics and make real-

time decisions, which incurs some energy and performance overhead. Secondly, and more

seriously, these systems operate on a “best effort” basis influenced by a complex series

of interactions with the environment and the dataset, so it is difficult to provide any

hard mathematical guarantees about their performance. This is particularly problematic

in a hard real-time context, in which deadlines must not be missed. In this chapter I

1For example, the Nvidia GeForce GTX 590, http://www.geforce.com/Hardware/GPUs/

geforce-gtx-590/specifications

96 5.1. INTRODUCTION

10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

Time (seconds)

En
er

gy
 (j

ou
le

s)

Figure 5.2: Example set of operating points.

address these issues by giving an approach that has well-defined mathematical properties,

guarantees to find an energy-optimal schedule within the given constraints and, being

essentially static, incurs no runtime overhead. Throughout the development of this ap-

proach, I illustrate the importance of understanding the broader context of modern mobile

and streaming computation.

5.1.1 Definition of an operating point

The basic unit of work in a streaming task will be referred to here as a frame. Many factors

influence the speed of computation, and consequent energy per frame (EPF), for a given

frame and given workload, from hardware to algorithm design to implementation (see

Section 5.3). For the purposes of this chapter, it is enough to observe that this diversity

in time and energy exists and can be controlled by some means or another. To abstract

away the details of how this variety is provided, I introduce the concept of an operating

point.

Definition: An operating point describes the following information for a given task and

a given platform on which that task is being streamed:

1. A description of a configuration of the hardware and software environment in which

a frame might be processed. This might include the state of each hardware com-

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 97

ponent (active, hibernating, depowered and so forth), referred to in Section 3.2 as

the performance state; any global decisions about the program that will process the

frame, such as what that program is and what its general parameters might be; and

any other global indicators for the system, such as whether it is receiving mains or

battery power. This part is considered opaque: the operating point is not expected

to provide a description of this environment in a structured way; it should be seen

only as a token that some such configuration exists.

2. A characterisation, in some fashion, of the energy and time required to process

a frame in that configuration. This part is transparent; the operating point must

provide some means to query what these values are, in whatever manner they are

described.

The nature of the energy and time characterisation depends on the purpose for which the

operating point is intended. At its simplest, an operating point can be regarded as a point

in energy–time space; Figure 5.2 shows an example set. The “time” component represents

the worst-case execution time for a frame, measured in wall clock time; the “energy”

component represents the average-case energy. The use of the worst case for time on the

one hand but average case for energy on the other is motivated by distinct purposes for

which these two values will be used: specifically, the need to bound the execution time

but optimise the energy. This illustrates the connection between the intended usage and

the description given. Note that one cannot say anything specific about the way in which

frames can be produced at those energy–time values, but only that there is in fact some

suitable configuration.

5.1.2 Assumptions regarding operating points

I make the following assumptions about the use of operating points:

• The operating point can only be changed between frames, not within them. This is

necessary because no assumptions are made about the source of variability in the

operating points or the application being run. For example, it is not possible in the

general case to change the number of threads of execution in the middle of a frame

without restarting the frame or incurring some other substantial penalty. Of course

98 5.1. INTRODUCTION

other parameters might be variable within a given frame, such as clock frequency,

but this is lost in the abstraction.

• Frames are homogeneous; the execution time of all frames is bounded by the same

worst-case value or, in the probabilistic case, is drawn from the same distribution.

Any problem can be converted into this form by aggregating probabilities or worst-

cases, at the cost of losing some information.

• Transitions between operating points incur no energy or time penalties. Even if non-

zero, switching energy has little impact on the optimal choice of voltage [Swami-

nathan and Chakrabarty, 2001]. I assume that this result holds for other operating

point parameters.

• The set of operating points is finite. In particular, CPU voltage and frequency, if it

is variable at all, can only be sampled at finitely many values. For processors that

support only a fixed number of frequencies and voltages, this is unproblematic; in

practice many processors only support frequencies of the form f, f/2, f/3, . . . where

f is the maximum frequency. For processors that do support essentially arbitrary

values, the energy penalty for restricting consideration to a finite subset is negligible,

even for an ideal processor [Lee and Sakurai, 2000].

• If buffering of frame results is required at all, the energy overhead it incurs is negligi-

ble. As discussed below, this assumption can in fact be weakened without substantial

impact on the arguments presented below. However, for the purpose of simplication,

buffering will generally be neglected.

In later sections, I extend the manifestation of the “operating point” concept to include

more information, but the core energy–time characterisation is maintained. The assump-

tions regarding buffering and transition costs could be lifted at the expense of increased

analytical complexity, but this is not addressed here.

The assumption of frame homogeneity has the important consequence that there is no

particular reason to favour processing a later frame before an earlier one; in other words,

one can assume without loss of generality that frames are processed in the order in which

they arrive. This also alleviates any concerns about data dependencies between frames,

since no attempt to reorder them is made.

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 99

E
ne
rg
y

TimeDeadline

A
B

C

Figure 5.3: An example set of operating points and a per-frame deadline shown in energy–

time space.

5.2 Problem statement

The objective of the work in this chapter is simple: to minimise the energy requirement of

streaming; in particular, to make the best possible use of the available operating points in

order to minimise the EPF. Let OP be the set of operating points for a particular task.

The näıve approach to energy optimisation can then proceed straightforwardly: produce

the set OP? ⊆ OP of points with time component low enough to guarantee the required

throughput; then select from OP? the point with the lowest energy component. (Other

constraints, such as instantaneous power limitations, must be addressed by filtering the

operating points in advance.) Figure 5.3 shows a set of operating points in arbitrary units.

The grey points are discarded since they are too slow for the deadline shown. Of the

remaining points, B has the lowest energy, and therefore the system will process frames

at this operating point. However, this chapter explores a more flexible refinement that

may make better use of the available operating points. By interleaving frames of different

speeds such that the overall throughput still meets or exceeds requirements, it may be

possible to reduce the overall EPF for the average frame. Operating points that are slower

than the required deadline may be used provided they are interleaved with other, faster

operating points. Essentially, the operating points may be dithered to produce a better

overall result. Figure 5.3 illustrates that points A and C are sufficiently fast that their

average time would be to the left of the deadline, and their average energy is lower than the

energy of B. Therefore, by processing frames at operating points A and C alternately, the

100 5.2. PROBLEM STATEMENT

throughput requirement can be respected even though C /∈ OP?, and the average energy

per frame can be reduced. My hypothesis is that opportunities for such optimisation occur

quite widely in practice.

This is not without its complications. For example, if frames must be held until their

deadline, they may require buffering, and the extra power for storage must be taken into

account; as above, this overhead is generally discarded here. In other cases, it may be

that there is no cost to producing some frames ahead of schedule provided the overall

throughput requirement is maintained. There is the additional concern that frames may

not arrive in time to be processed; respecting this constraint is trivial in the single-point

case but may become more involved in the generalisation to multiple operating points.

Fortunately, one can always arrange the period so that the slowest operating points occur

first. On the other hand, if this limitation is not present (for example, if all the frames

are available from the beginning), this decrease in energy may also produce a decrease

in start-up latency, since the fastest points can be placed at the start of the period. For

example, in Figure 5.3, the first frame could be processed at point A, and would thus be

available earlier than under the näıve solution using point B.

I now state the problem precisely, using the concept of operating points. Consider process-

ing an infinite stream of frames, each at a specified operating point. In the parlance of real-

time systems, this represents an infinite number of jobs from a single periodic task [Liu,

2000]. I wish to give a finite static description of the assigned operating points, so I consider

the mapping of frames to operating points to be periodic; in other words, the algorithm

will produce a list of operating points P1, . . . , PL such that frames 1, L+ 1, 2L+ 1, . . . are

executed at P1, frames 2, L + 2, 2L + 2, . . . are executed at P2 and so on. The aim is to

find P1, . . . , PL ∈ OP (not necessarily distinct) such that the average time required to

complete each frame is below some threshold and, subject to this constraint, the objective

is to minimise the average energy required per frame. The optimal sequence may require

several frames to be computed at the same operating point, and some available points may

be unused, requiring too much time or energy. Since the only concern at this optimisation

phase is the average time and energy over the period, the ordering of the operating points

is not important; a later stage can permute the order according to other constraints, as

discussed above. Therefore only the number of uses of each point is relevant.

It might seem surprising in view of the developments of Chapter 4 that the focus of

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 101

optimisation here is raw energy, rather than energy cost. However, in a mobile context,

the two concerns are essentially equivalent. When a battery is the only source of energy, the

energy “cost” is fixed with respect to time. This is the degenerate case of the generalised

problem, which coincides exactly with the original cost-agnostic solution. The monetary

cost of the energy required to charge the battery of a mobile device is negligible compared

to, say, the cost of the device itself. Perhaps the cost model might be applicable in some

situations; for example, perhaps energy is more valuable when the remaining charge of

the battery is low, and indeed modern devices often include a more conservative power

mode for this eventuality. However, this is not considered here.

To state the problem precisely: let OP be the set of m points defined by

OP = {(t1, E1), . . . , (tm, Em)} (5.1)

with ti and Ei the time and energy of point i as previously described. Assume without

loss of generality that t1 ≤ . . . ≤ tm. For each i ∈ {1, . . . ,m}, let ni ∈ {0, 1, . . .} be the

number of frames executed at operating point i in each period, so that L =
∑m

i=1 ni is

the length of the period. Let T be the maximum permissible average time per frame, so

that 1/T is the minimum throughput over the period.

Let ΨT be the average time per frame, so

ΨT =
1

L

m∑
i=1

niti (5.2)

and ΨE the average energy per frame, so

ΨE =
1

L

m∑
i=1

niEi (5.3)

Now the problem can be stated as:

Given OP and T , find n1, . . . , nm such that ΨE is minimised and ΨT ≤ T .

102 5.3. RELATED WORK

5.3 Related work

The concept of a hard real-time system is assumed to be broadly familiar, and therefore

many of the technical details are omitted as tangential to the main argument. This chapter

generally adopts the terminology of Krishna and Shin’s Real-Time Systems [Krishna and

Shin, 1997]; each term is defined inline as it is introduced here.

The idea of operating point dithering is a generalised form of voltage dithering. In voltage

dithering, an arbitrary operating voltage is approximated on a processor with a finite num-

ber of available voltages by altering the voltage dynamically in a regular pattern. This can

accurately approximate arbitrary voltage scaling with as few as four fixed rails [Gutnik

and Chandrakasan, 1997]. Voltage dithering alone has been shown to reduce energy con-

sumption by up to 44% for certain applications [Putic et al., 2009]. My approach extends

this by allowing other sources of power and performance variability to be exploited.

As indicated above, there are many factors which influence the speed and power of compu-

tation. The basic dichotomy, as discussed at length in Chapter 4, is that faster computation

typically requires more dynamic power but, since the duration of computation is reduced,

expends less energy on static power. If voltage–frequency is the only variable considered,

dynamic power is approximately quadratic or cubic with respect to speed [Cho and Mel-

hem, 2008]. However, dynamic power is influenced by many other factors such as cache

sizes, depth of pipelining and instruction-level parallelism. Many modern architectures

support alteration of some of these parameters dynamically, through technologies like

dynamic voltage scaling, and one can thereby construct energy-efficient schedules [Govil

et al., 1995]. Other factors are also significant. Memory usage and access patterns can

make a substantial difference; for real-time media streaming, focusing on this alone has

been seen to reduce power by a factor of 3.6 for only a 5% performance sacrifice for modern

decoders such as MPEG-2 [Kulkarni et al., 1999]. For workloads that can be processed in

parallel, increasing the number of processors used may actually increase energy efficiency

by better amortising the static power [Li and Mart́ınez, 2005]. At the software level, differ-

ent algorithms for the same problem may have make different time-space trade-offs, which

has consequences for energy consumption in terms of execution time and energy expended

in the memory hierarchy. Within a given algorithm, different implementations may also

have radically different power characteristics, depending on which functional units within

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 103

the processor are used, which co-processing units are involved, or other external factors

such as memory access patterns. Furthermore, compilation techniques exist that trade ex-

ecutable size for execution time, or make more targeted trade-offs with energy efficiency,

as discussed in Section 2.5. Additional work in this area considers artificially extending

the ranges reported by live variable analysis (LVA), producing a negative impact on effi-

ciency of register allocation, but allowing slower (and more energy efficient) registers to be

used [Menon et al., 2003]. Clearly these software choices can be deferred until execution

itself if the implementer is willing to provide the relevant alternatives, such as multiple

implementations for a given problem. One can even imagine a dynamic despatch model

in which more or less energy-hungry code paths could be selected at runtime, although it

appears that no compiler supports this natively at present.

A great deal of existing work addresses the problems of measuring and simulating the

energy–time values needed for the simplest manifestation of an operating point [Monchiero

et al., 2006, Brooks et al., 2000, Muralimanohar et al., 2007]. There are also powerful

techniques for inferring large numbers of such values without direct simulation [Lee and

Brooks, 2006, Engin and McKee, 2006]. Consequently, the means to generate accurate

values for significant quantities of realistic operating points already exists. This chapter

explores ways in which this data can be put to good use.

Previous work has investigated best-effort systems for energy efficiency, which trade power

for performance according to specified power and throughput goals. These typically focus

on extracting trends from previous behaviour and extrapolating to future workloads [Govil

et al., 1995, Hong et al., 1999, Leung et al., 1999, Dubach et al., 2010]. This work shows

that significant gains are possible, and its ideas have been successfully deployed in prac-

tice. In some cases these systems can guarantee a hard deadline while still reducing en-

ergy by over 90% under realistic assumptions, although unlike the framework of this

chapter they usually do not support general-purpose workloads [Lee and Sakurai, 2000].

Qu and Potkonjak describe an algorithm that learns the relationship between power and

performance at run-time and scales accordingly [Qu and Potkonjak, 2000]. Their ap-

proach considers this space to be continuous, and is shown empirically to make significant

energy savings, although again its results cannot be described precisely. Swaminathan

and Chakrabarty describe a scheduling algorithm that guarantees hard deadlines and

minimises energy, and give an approximation algorithm fast enough to execute in real

104 5.3. RELATED WORK

time [Swaminathan and Chakrabarty, 2001]. However, their approach allows for only a

single processor with a choice of two frequencies and no other dynamic parameters. Gruian

explores a probabilistic description of execution times that does not require the assump-

tion of worst-case performance [Gruian, 2001]. This approach is similar to mine although

no bounds are proven and again the variability in performance is attributed exclusively

to DVFS. Energy savings of 40–80% for tasks are observed for some benchmarks with

uniformly distributed execution times.

As mentioned above, it is assumed that frames are processed in order. Frame reordering

can be a powerful technique if there is some variation between frames and some simple

means of differentiating them [Gruian and Kuchcinski, 2003]. For example, the MPEG

video standard defines three types of frame (I, B and P), each of which requires a different

technique to decode. By processing frames with more predictable execution times first,

more flexibility is created for scheduling of the more variable frames later. However these

techniques are not directly comparable to those demonstrated here.

More formal work includes Qiu and Pedram’s modelling of power scheduling, which they

consider as a continuous-time Markov decision process [Qiu and Pedram, 1999]. This

approach models devices with multiple power states and considers transition costs, so it is

suitable for practical use. Due to its firm mathematical footing, this approach consistently

outperforms heuristic approaches in energy efficiency and latency. Its primary limitation

is that solving the relevant Markov equations is rather computationally intensive and

therefore difficult to undertake in real time without specialised hardware support. Other

work has studied energy efficiency with provable properties by placing tight constraints

on the permitted workloads. For example, it may be necessary for the producer of the

stream to insert markers denoting the amount of work that the consumer will need to

undertake to process each frame [Chandrakasan et al., 1996]. This may be plausible in,

for example, an MPEG encoder or other compression frameworks. MPEG decoding in

particular has been extensively studied; for example, Choi et al. exploit domain-specific

nuances to produce energy savings of 80–90% [Choi et al., 2002]. In this case, assuming the

worst-case decoding time is wasteful because the inter-frame variability is high, so they

describe heuristics to improve decode-time prediction. They also exploit the distinction

between types of frame in the stream, which have very different decoding properties. The

techniques in this chapter are, in their current formulation, unable to take advantage of

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 105

such domain-specific features.

5.4 Algorithm description

Allowing arbitrary interleaving of operating points results in exponential growth of the

search space with respect to the number of available operating points. However, the sim-

ilarity of the problem to existing linear programming examples suggests that an efficient

dynamic programming algorithm can be found; in particular, there are strong echoes of

the integer knapsack problem [Garey and Johnson, 1979]. Indeed there is an analogous

algorithm for this problem, although there are significant subtleties.

The algorithm proceeds as follows. Assume the deadline T and all frame execution times

ti to be integers. (This assumption can be satisfied by suitable selection of measurement

unit.) Define et,L, for each t ∈ {0, . . . , T} and L ∈ {1, . . .}, to be the minimal total energy

across the period, with total time no greater than t, using exactly L frames. A recursive

definition follows. First, there is no combination of L frames with total time less than t1L,

so if t < t1L then let et,L =∞. Otherwise,

et,L = min

(
et−1,L , min

ti≤t
(Ei + et−ti,L−1)

)
(5.4)

In words, the minimal energy with time limit t and L frames is either:

• the minimal energy with time t− 1 and L frames, or

• the energy of one frame plus the minimal energy with the remaining time and L−1

frames.

The minimal EPF for a given L is then eLT,L/L. So the overall minimal EPF is

min
L≥1

(eLT,L
L

)
(5.5)

There is no obvious way to compute an upper bound on L; no matter how great the

value of L, it may be that some longer, more complex interleaving would produce further

savings. In practice such a bound is usually imposed by the need to buffer results in

a queue of finite size, or by some latency requirement from the consumer, so one can

106 5.4. ALGORITHM DESCRIPTION

Algorithm 1: Dynamic programming algorithm to find minimal energy which meets

the throughput requirement.

Input: Operating points OP = {(t1, E1), . . . , (tm, Em)} with each ti ∈ N and

Ei ∈ R+, per-frame time limit T ∈ N and maximum period N ∈ N.

Output: The minimal EPF for OP within the given constraints.

1 εopt :=∞;

2 p := [∞, . . . ,∞]; /* NT elements */

3 for L = 1, . . . , N do

4 r := [∞, . . . ,∞]; /* NT elements */

5 foreach t ∈ {t1L, . . . , NT} do

6 r[t] := r[t− 1];

7 for i = 1, . . . ,m do

8 if ti ≤ t then

9 r[t] := min(r[t], Ei + p[t− ti]);

10 εopt := min(εopt, r[LT]/L);

11 p := r;

12 return εopt;

reasonably require a parameter N , the upper limit on L, to be provided as an input to

the algorithm; in other words, apply the additional constraint that

m∑
i=1

ni ≤ N (5.6)

If the stream is in fact finite thenN could be set to its total length, although this is unlikely

to be practical. In cases where there is no apparent limit, the algorithm may be retried with

larger values of N until a satisfactory solution is reached. Section 5.5 analyses whether

this artificial limit has any noticeable effect on the quality of the solutions produced.

Furthermore, if one did wish to impose a penalty for long-period solutions, this could be

embedded into Equation 5.5; for example, by choosing a suitable constant c, one could

instead compute

min
L≥1

(eLT,L
L

+ cL
)

(5.7)

This might be used to represent the energy overhead of buffering, allowing the earlier

assumption of zero-overhead buffering to be discarded. It also imposes a natural upper

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 107

bound on L, since the search could be terminated once cL alone is larger than the best

solution found. The algorithms in this chapter could readily be modified to admit this

more general case, but for clarity these modifications will not be given explicitly.

This definition is exploited by the dynamic programming solution in Algorithm 1, which

iterates L from 1 to N , finding the optimal EPF in each case. The array r holds et,L for

all values of t and the current value of L, while p holds equivalent values for the previous

value of L, as required by Equation 5.5.

The time and space characteristics of the algorithm are straightforward to obtain. The

time complexity is obviously O(mN2T) from the structure of the nested loops. As with

the integer knapsack problem, this is linear time with respect to m and pseudo-polynomial

time with respect to N and T . The algorithm is pseudo-polynomial because, while it is

polynomial with respect to N , the size of N in the input is O(lgN), given the compact

natural representation of integers, and likewise for T . Therefore, more precisely, one should

say that the algorithm requires O(2t4nm) time where n and t are the number of bits in

N and T respectively, but for practical purposes this is rather misleading. The space

complexity is similarly simple to determine. The arrays r and p are initialised to size

NT , and all elements may be non-zero, precluding a sparse representation. The remaining

variables are of constant size, so the space requirement is simply O(NT). This is analogous

to the best exact result for the knapsack problem [Toth, 1980].

5.4.1 Dominated points

Given the numerous sources of variation that may generate operating points—such as

hardware settings, implementation settings, and battery characteristics—it is reasonable

to expect that m is quite large in practical cases. Therefore it is worth investigating some

general-purpose optimisations to this algorithm.

One valuable observation is that many of the points in a typical OP can never form part of

an optimal solution. These points can be eliminated cheaply before the main algorithm is

applied, thereby shrinking the effective value of m, and significant execution-time savings

may result.

To illustrate this idea, I describe one particular form of eliminable point, analogous to

“dominated points” in the integer knapsack problem [Zhu and Broughan, 1997]. I follow

108 5.4. ALGORITHM DESCRIPTION

undominated
dominated

Time

En
er
gy

Figure 5.4: Example set of operating points, showing dominated and undominated points,

arbitrary units.

Algorithm 2: Algorithm to find undominated operating points.

Input: Operating points OP = {(t1, E1), . . . , (tm, Em)} with t1 ≤ . . . ≤ tm.

Output: The subset of undominated points in OP .

1 r := {};

2 lowest := ∞;

3 for i = 1, . . . ,m do

4 if Ei ≤ lowest then

5 lowest := Ei;

6 r := r ∪ {(ti, Ei)};

7 return r;

that convention and call these points dominated. The redundancy of dominated points

can be seen by a simple “cut and paste” argument: assume point i requires more time

and more energy than point j. Then any solution that used point i would be faster and

require less energy if all uses of i were replaced by j. Therefore i cannot be part of the

optimal solution, so i is dominated and can be eliminated. Figure 5.4 shows an example

set of points divided in this way.

Undominated points can be identified in a single pass of OP taking O(m) time and O(1)

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 109

space; see Algorithm 2. In fact, this problem is well known to economists as it is analogous

to finding the Pareto frontier [Gibbons, 1992, p. 88]. In algorithmics this is known as the

skyline problem or the 2-dimensional vector maximum problem, and the correctness and

efficiency of Algorithm 2 is well-established [Kung et al., 1975]. This algorithm moves

forwards through the list of points, which (by earlier assumption) are sorted by their

time component, excluding any point requiring more energy than the lowest-energy point

occurring before it. Analysing the time and space complexity of this algorithm is simple,

but one might ask how many points it is likely to eliminate in a typical case. This question

appears not have been answered before; the solution can be estimated by considering

the action of the algorithm from an alternative perspective. One can imagine that the

algorithm finds the lowest energy values amongst those with time value less than a given

maximum, for successively increasing values of that maximum. As the maximum time

is increased and new energy lows are found, each of the lows can be seen as a “record-

breaker”. The expected number of record breakers in m attempts is known to grow with

the harmonic sum Hm [Havil, 2003, p. 125], given by

Hm =
m∑
i=1

1

i
(5.8)

and, surprisingly, this result is independent of the underlying distribution. This sum di-

verges extremely slowly as m goes to infinity, and can be approximated asymptotically

using the result that

lim
m→∞

Hm = γ + lnm (5.9)

where γ ≈ 0.57721 . . . is the Euler-Mascheroni constant [Havil, 2003, pp. 69–73]. So on

average the running time of the search is improved from O(TN2m) to O(TN2 lnm).

However, this result is subject to the assumptions that the operating point energies are

independent and identically-distributed; in reality neither of these assumptions is com-

pletely respected, but as an approximation this is promising. Section 5.5.4 evaluates this

assumption against real data.

Several other notions of dominance have been described for the integer knapsack problem,

each allowing certain points or combinations of points to be eliminated from considera-

tion; for example, collective dominance, threshold dominance, multiple dominance, and

modular dominance [Poirriez et al., 2009]. It is possible that they too have analogues in

the operating point problem. However these are complex properties, and identifying and

110 5.4. ALGORITHM DESCRIPTION

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m

1
- 1

/ζ
(m

+1
)

Figure 5.5: Probability that integer time values generated uniformly at random have a

common factor, as a function of m, the number of values.

exploiting them in a concrete algorithm is rather involved; therefore this avenue is not

explored further in this chapter.

5.4.2 Downscaling

Two useful transformations can further reduce the effective values of the parameters.

First, all time values can be divided through by their greatest common denominator,

gcd({T, t1, . . . , tm}). This is equivalent to selecting the largest possible unit of time that

can represent all time values exactly. Assuming momentarily that the values are indepen-

dent and uniformly random, the probability that these m+ 1 values have a GCD greater

than 1, and therefore this optimisation actually reduces the time values, is given by the

following equation [Nymann, 1972].

Pr(GCD({X1, . . . , Xm}) > 1) = 1− 1

ζ(m+ 1)
(5.10)

where each Xi is a suitable discrete random variable and ζ is the Riemann zeta func-

tion [Apostol, 2010]. Unfortunately this tends rapidly to zero; see Figure 5.5. However,

the GCD can be computed in O(m ln t1) time in the worst case (assuming t1 to be the

smallest value involved), even using the simple Euclidean algorithm [Knuth, 1997]. This

is so inexpensive that my implementation performs it anyway, and for non-uniform values

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 111

this may well be productive.

Secondly, consider subtracting some constant k from all ti’s. Then

m∑
i=1

ni(ti − k) =

(
m∑
i=1

niti

)
− kL (5.11)

and consequently the constraint on ΨT can be rewritten as

1

L

m∑
i=1

ni(ti − k) ≤ T − k (5.12)

for any k. Therefore one is also free to subtract any constant from all time values. A

natural candidate is k = t1 since this is the smallest time value that appears.

Therefore, one can add or subtract any constant to the time values, and multiply or divide

(subject to maintaining the integer constraint) by another constant. In other words, these

two results in conjunction permit a linear transformation of the given times, which, by

reducing the effective value of T , can be exploited to save both time and space.

5.5 Evaluation

This section measures the performance of the schedules produced by the algorithm, and

the amount of work required to produce them. It also evaluates the success of the heuristics

described above.

5.5.1 Diminishing returns

First, let us investigate whether the artificial limit on L has a significant effect on the

quality of the solutions produced. Let ΨE[ν] be the energy of the best solution found

with N = ν. Let M = miniEi be the smallest energy value of any point in OP , so the

theoretical limit for any solution would be ΨE = M , and of course in most cases this is

unattainable. Therefore, define the following quality metric:

qν =
ΨE[∞] −M
ΨE[ν] −M

(5.13)

By subtracting M from the achieved energy values, I consider only the fraction of avail-

able headroom that the solutions exploit, so this allows a measure of the success of the

112 5.5. EVALUATION

0 10 20 30 40
0.4

0.6

0.8

1

Average
Bad
Worst

ν

N
or

m
al

ise
d

so
lu

tio
n

qu
al

ity

Figure 5.6: qν for increasing values of ν, averaged over one hundred random examples.

Note that the vertical axis starts at 0.4.

algorithm somewhat independent from the limitations of the operating points provided.

Alternatively, one could see this as shifting the base line of the comparison from zero

energy (clearly impossible) to the minimum energy that could be achieved in the absence

of a deadline (maybe still impossible, but more reasonable). Note also that this expression

is undefined if ΨE[ν] = M ; since this occurs only when the theoretical limit is achieved,

take qν = 1 in this case.

The algorithm was tested with one hundred sets of random operating points. These points

were generated randomly in several ways. Fifty sets were generated by jittering BSOM

data (see Section 5.5.2); in other words, applying a small random offset to each point.

A further fifty were generated ab initio, with a normal or uniform distribution providing

each parameter value. The points were filtered to remove negative time and energy values,

and then further filtered to remove dominated points. Each set contained exactly thirty

points after filtering.

Figure 5.6 shows the behaviour of the quality metric for increasing values of ν. The

“average” curve shows the mean values of qν over these random sets. Evidently, the optimal

solution is usually found by ν = 20 and there is little penalty even for values as small

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 113

20 30 40 50 60 70 80
1000

1200

1400

1600

1800

2000

2200

2400

Time (ms)

En
er

gy
 (m

J)

Figure 5.7: Energy–time diagram for real BSOM operating points.

as ν = 10. The “bad” curve shows the mean minus one standard deviation, representing

the quality of somewhat more difficult examples. These typically require larger limits

to achieve good solutions but even then ν = 20 is almost indistinguishable from the

optimal solution. Finally the “worst” curve shows the lowest values of qν observed over

all OP sets for each value of N . Evidently even the most difficult cases yield an almost

perfect solution for ν = 40. One can reasonably conclude that this artificial limit does not

significantly reduce the quality of the solutions found, and the N2 factor in the algorithm’s

time complexity can be kept under control.

5.5.2 Simulation

So far I have made a theoretical argument for my hypothesis that operating-point dither-

ing can make measurable savings, and in this section I proceed to test the hypothesis

against real data. This experiment was conducted on the energy and time values mea-

sured for execution of the data mining application BSOM [Li and Mart́ınez, 2005]. For this

application, energy–time values were readily available for a range of operating points, with

various voltage and frequency levels and up to sixteen processors. In total this made for

71 operating points, shown in Figure 5.7. BSOM is not intended as a streaming algorithm,

114 5.5. EVALUATION

20 25 30 35 40 45 50 55 60 65 70
0%

1%

2%

3%

4%
Static
Greedy

T (ms)

En
er

gy
 re

du
ct

io
n

Figure 5.8: Comparison of the per-frame energy reduction achieved by my static algorithm

and a dynamic greedy algorithm.

so successive runs of the algorithm can be interpreted as separate frames, guaranteeing

the independence axiom.

For comparison, I also simulated the performance of a greedy dynamic algorithm. This

algorithm selects the lowest-energy point among those which will complete before the

next deadline. This choice is repeated after each iteration, so slack time accumulated

from earlier fast frames can be used to choose slower but potentially more efficient points

in later iterations. The simulation was run for 10 000 iterations and the average energy per

frame recorded. This greedy dynamic algorithm is not a full reflection of a real dynamic

algorithm, because part of the value of a dynamic algorithm comes from its ability to

respond to tasks completed in less than their worst-case execution time; my current model

assumes that tasks always take the full time, so the greedy algorithm is somewhat neutered

in this respect. (This limitation is lifted in Section 5.6.) Both algorithms are compared

with the näıve static algorithm, which simply selects the lowest-energy point that meets

the timing constraint at the beginning and persists with it, as described in Section 5.2.

Figure 5.8 shows the performance of the two algorithms normalised by the näıve solution.

I sweep the entire valid range of T values for the data in Figure 5.7 to avoid accidental

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 115

20 25 30 35 40 45 50 55 60 65 70
0%

20%

40%

60%

80%

100%

Static
Greedy

T (ms)

N
or

m
al

ise
d

en
er

gy
 re

du
ct

io
n

Figure 5.9: Comparison of the per-frame energy reduction achieved, as a fraction of the

available maximum.

cherry-picking. The static algorithm uses N = 40 and, as shown above, this will find

an almost-perfect solution in almost every case, providing a tight lower bound for the

algorithm’s performance. The behaviour with respect to T is quite volatile as different

operating points become viable. However, the overall trend is clear: my algorithm out-

performs the greedy algorithm across the board, although the margin is quite variable,

reaching 2% and averaging around 0.3%. In some cases the two algorithms produce indis-

tinguishable results. It might appear disappointing that the peak energy saving is barely

4% and my approach is only marginally better than a greedy real-time algorithm. How-

ever, there are two counterpoints to consider. First, the behaviour of my static solutions

is better-defined than that of the real-time algorithm, which is not predictable without

simulation and can vary chaotically with small changes in T (as seen in the region around

T = 56 ms); therefore my solutions are in some sense preferable even if the energy saving

is no greater. Also, the baseline comparison is somewhat unfair to both algorithms be-

cause I have not normalised for M1; in other words, it may be that greater savings than

these few percent are simply impossible with the operating points available. This normal-

isation is applied in Figure 5.9. Evidently, the margin between the two algorithms grows

116 5.5. EVALUATION

Optimisations Time (ms)

None 5520

+ Dominated-point removal 1390

+ Downscaling 758

Table 5.1: Average solution time.

considerably; on average, my approach exploits over 10% more of the available headroom,

with the differential reaching 56% in some cases. So while in real terms the savings may

only amount to an increase in battery life of 4% or less, this is largely a limitation of

the dynamic range permitted by the hardware and not the algorithm. To put it another

way, it is possible to get considerably closer to the optimal deadline-free energy, but in

absolute terms there is not, in this example, much room for improvement.

5.5.3 Heuristic improvements

Sections 5.4.1 and 5.4.2 proposed two heuristics that, while not affecting the result re-

turned, might improve the practical performance of the algorithm. Table 5.1 shows the

effect of these optimisations on the time taken for the algorithm to run on the BSOM

data, averaged over T = 30, 31, . . . , 50. The timings are taken from a rudimentary im-

plementation on a commodity desktop machine.2 Evidently both forms of optimisation

prove productive; the overall speedup is over 86%. With all optimisations, the average

time is less than a second, which is clearly tolerable for offline usage. Micro-optimised

implementations could undoubtedly push this considerably lower.

5.5.4 Evaluation of domination

Table 5.2 shows the number of points in the real example alongside the estimated counts

given in Section 5.4.1. Evidently the approximation Hn ≈ γ+ lnn is already quite precise

for n = 71, but these are nevertheless significant underestimates for the true number

remaining after the removal of dominated points. This presumably reflects the fact that

2The machine in question is a 2.40 GHz four-core Intel Core 2 Quad with 6 GB RAM running Ubuntu

10.04 (“Lucid Lynx”). The algorithm is implemented in single-threaded Java, although the Java Virtual

Machine itself may take advantage of additional cores internally.

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 117

Point type Number of points

All points 71

Undominated points only 13

Hn 4.85 . . .

γ + lnn 4.84 . . .

Table 5.2: Point counts for BSOM data, and comparison to heuristic estimates.

the values are not, in reality, generated independently from an underlying probability

distribution, but rather bear an approximate correlation: slower points will, in general,

tend to require less energy. However as an asymptotic approximation the discrepancy is

tolerable.

5.6 Probabilistic generalisation

So far I have assumed the time values to be worst-case limits, and that therefore the

timing constraint can be guaranteed. In many situations, this is inadequate. For some

classes of streaming computation, the worst-case frame is significantly slower than the

average case, and therefore this would be a highly inefficient solution to the problem. In

other situations, there may be no finite worst case for particular frames, so no approach

to scheduling can guarantee a deadline, and these problems would simply be insoluble in

the framework presented thus far.

These problems can be handled by generalising the problem and extending the values

contained within the operating point. In particular, a probabilistic approach can provide

a much richer description that encompasses the sort of problems described above.

5.6.1 Probabilistic model

Here I attempt to give the simplest possible probabilistic model, in order to generalise

the earlier deterministic model with as few extra assumptions as possible.

First, since it must now be possible for deadlines to be missed (in order to support frames of

unbounded size), this requires a more general metric for “quality of service” than a simple

guarantee to meet all deadlines. This section adopts the parameter p which is simply a

118 5.6. PROBABILISTIC GENERALISATION

limit on the probability that any given frame misses its deadline. More complex models

could certainly be given; for example, modelling the amount by which the deadline is

missed, how many deadlines can be missed in any given period of time, and so on; however,

even the simplest probabilistic model provides numerous challenges. I do not relinquish

the requirement that all frames must eventually be completed, so this analysis does not

consider when or how frames might be dropped. The operating point is also extended

probabilistically, as the worst-case time is replaced with a probability distribution over

possible execution times; I do not require that there be any maximum value to this pdf.

In pursuit of simplicity, I assume that a given operating point requires the same power

throughout its execution; therefore, the operating point no longer provides an energy value

but a power constant, denoting the instantaneous power of computing at that point. In

other words, the energy consumed is assumed to be proportional to time spent, with the

constant of proportionality being the power value.

The formal representations of average frame and energy must also be redefined. To this

end, let Ti be the random variable denoting the execution time of the ith frame in the

period, and let Pi be the power constant of this frame. The time per frame is a random

variable defined by the following linear combination:

ΨT =
m∑
i=1

1

L
Ti (5.14)

and likewise the energy per frame is

ΨE =
m∑
i=1

Pi
L
Ti (5.15)

As before, let ni denote the number of frames in each period executed at operating point

i. Finally, the formal probabilistic problem statement can be given.

Given OP , T and p, find n1, . . . , nm such that E(ΨE) is minimised and the following

timing constraint is met:

Pr(ΨT > T) ≤ p (5.16)

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 119

5.6.2 Suitability for practical soft real-time problems

Since deadlines may now be missed, this model can capture so-called soft real-time prob-

lems, in addition to the earlier hard real-time problems. In soft real-time, the system is not

required to absolutely guarantee each deadline. In fact many real-time problems must be

prepared to miss frame deadlines no matter their internal schedule, due to external effects;

consider, for example, streaming video over a network with congestion and packet loss, in

which the input may not even arrive before the deadline [Kumar and Srivastava, 2001].

This section considers how accurately the description given here can actually capture a

practical soft real-time problem such as MP3 decoding.

MP3 frames require a variable amount of work to decode, and this can be described

by a probability distribution, which fits the model neatly, although the distribution is

not a convenient parametric one. Deadlines occur at regular intervals, governed by the

frequency of the sampling (typically 44.1kHz), although frames themselves are not of a

fixed size and may contain a variable number of samples. The model of deadline misses

given here is, however, less well-suited to audio decoding. If a frame is not decoded in

time, a streaming decoder will typically drop the frame completely, since the impact

is usually not audible. (Note that the MP3 standard actually requires decoders to be

bitstream compliant, meaning that they must produce the same decoding as the reference

implementation, so for MP3 processing and transcoding this will not occur; but this is

not typically observed by real-time decoders with direct output to the human listener.)

There is a further problem: a simple overall probability is probably not adequate to

describe the sort of performance that the decoder must provide. For a human listener,

there is clearly a marked difference between a decoder that drops every tenth frame

of a song and a decoder that drops the last tenth of the song! In other words, proximity

matters; a flat probability is too simple to describe the psychoacoustic properties that MP3

is designed to exploit. However, this is somewhat ameliorated by the periodic nature of

the schedules generated here; as described in Section 5.2, operating points can rearranged

within each period, so could be permuted post hoc to minimise the audible impact of the

variability, if this were felt to be a problem at all.

Despite these limitations, the simple model described can provide a reasonable overall

approximation to the real problem. Similar arguments can be made for other common

120 5.6. PROBABILISTIC GENERALISATION

examples such as video decoding or graphics processing.

5.6.3 Assumption of normality

For the purpose of this section, I make the strong assumption that the distribution of

the frame execution times is normal. Of course, this is unlikely to be true in many real

examples. However, there are two important points in defence of the normal distribution.

The first is that it greatly simplifies the algebra shown, while the techniques themselves

could equally be applied to any distribution, parametric or non-parametric (at the cost of

increased complexity of logic and implementation). The particularly convenient property

of the normal distribution is that the sum of two normal distributions is itself normal; to

be precise, given independent random variables X and Y with X ∼ Normal(µX , σ
2
X) and

Y ∼ Normal(µY , σ
2
Y), the distribution of their sum is simply

X + Y ∼ Normal(µX + µY , σ
2
X + σ2

Y) (5.17)

The second point in favour of the normal distribution is more profound. In practice, one

might wish to avoid changing operating point after every frame; for example, perhaps the

assumption that the operating point transition latencies and energy penalties are effec-

tively zero is too strong. One way to address this problem within the current framework is

to aggregate several frames into one large “meta-frame”, and schedule each of these meta-

frames as if they were single frames. Then, by the Central Limit Theorem, the execution

time and energy of the meta-frames is normally distributed no matter the distribution

of the underlying frames [Lampert, 1966, pp. 66–67]. Of course this is contingent on ag-

gregating a reasonably large number of frames into each meta-frame. To be precise, let

µ and σ2 be the mean and variance of the frame time distribution; these values must be

finite. Let X1, . . . , XL be random variables denoting the execution time of each frame in

the L-frame period, so they are all mutually independent by earlier assumption. Then, by

the Central Limit Theorem,

1√
L

(
1

L

L∑
i=1

Xi − µ

)
d→ Normal(0, σ2) (5.18)

for sufficiently large L, where
d→ denotes convergence in distribution. Therefore the ran-

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 121

dom variable denoting the meta-frame execution time is

L∑
i=1

Xi
d→ Normal(Lµ,L3σ2) (5.19)

and an analogous expression can be given for energy. In fact, under the Lyapunov formula-

tion of the Central Limit Theorem, an analogous convergence holds even if the frames are

not drawn from the same distribution and have distinct means and variances [Lampert,

1966, p. 69]. This would be the case in, for example, the MPEG scheduler described in

Section 5.3. However, this result is subject to certain additional conditions and therefore

is not explored further here.

5.6.4 Probabilistic manifestation

This section now proceeds under the assumption of normality. The operating point may

then be reified as follows: an operating point is a tuple (µi, σi, Pi), where a frame at that

operating point requires execution time with the distribution Normal(µi, σ
2
i) and energy

proportional to its execution time, with the constant of proportionality Pi.

Therefore, the probabilistic operating point set is OP = {(µ1, σ1, P1), . . . , (µm, σm, Pm)}.

If the jth point in the period is executed at operating point i, one can simply state that

Tj ∼ Normal(µi, σ
2
i) (5.20)

There are two further standard properties of expectation and variance that are of relevance

here [Whittle, 2000, p. 15]. For any constant a,

E(aX) = aE(X) (5.21)

and [Whittle, 2000, p. 22]

Var(aX) = a2Var(X) (5.22)

The equations of Section 5.6.1 may now be concretised as follows. The average time per

frame is

ΨT ∼ Normal

(
1

L

m∑
i=1

niµi,
1

L2

m∑
i=1

niσ
2
i

)
(5.23)

The energy per frame is simply the time scaled by the relevant Pi, so the average energy

per frame is

ΨE ∼ Normal

(
1

L

m∑
i=1

niPiµi,
1

L2

m∑
i=1

niP
2
i σ

2
i

)
(5.24)

122 5.6. PROBABILISTIC GENERALISATION

Algorithm 3: Brute-force algorithm to find frequencies which minimise expected

energy and meet the probabilistic timing constraint.

Input: Operating points OP = {(µ1, σ1, E1), . . . , (µm, σm, Em)}, frame time limit

T , miss tolerance p and maximum period N .

Output: The minimal energy per frame which satisfies the time limit subject to

the given miss tolerance.

1 function minEnergyProb(i, λ, τmean, τvar, ε)

2 if λ > 0 and (Tλ− τmean)/
√
τvar > Φ−1(1− p) and ε/λ < εopt then

3 εopt := ε/λ;

4 if i ≤ m then

5 foreach ni ∈ {0, . . . , N − λ} do

6 λ′ := λ+ ni;

7 τ ′mean := τmean + niµi;

8 τ ′var := τvar + niσ
2
i ;

9 ε′ := ε+ niµiPi;

10 minEnergyProb(i+ 1,λ′, τ ′mean, τ ′var, ε
′);

11 εopt :=∞;

12 minEnergyProb(1, 0, 0, 0, 0);

13 return εopt;

5.6.5 Probabilistic algorithm

One might naturally look to extend Algorithm 1 to handle the probabilistic case. However,

the interplay of mean and standard deviation is less amenable to a dynamic programming

solution; it appears hard to decide locally whether a point with lower variance and higher

mean is globally preferable to one with higher variance and lower mean. Without discount-

ing the possibility of a dynamic solution, I turn to a simple exhaustive search, presented in

Algorithm 3: a basic depth-first search on frame counts. The arguments to the recursion

are:

• i, the index of the next frame to be considered. I assume frames are indexed from 1

to m.

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 123

• λ, the total number of frames accumulated so far, in other words

λ =
i−1∑
j=1

nj (5.25)

The constraint of Equation 5.6 is enforced by the loop limits of line 5.

• τmean and τvar, the partial sums for the mean and variance of the time distribution so

far, analogous to Equation 5.25. Therefore, at the bottom of the recursion, τmean/λ

and τvar/λ are the mean and variance respectively of ΨT .

• ε, the sum of the expected energies so far. Hence ε/λ is the partial sum for the

expectation of ΨE.

The recursion then explores all possible assignments of ni values, subject to Equation 5.6.

Line 11 initialises the mutable global variable εopt, which holds the lowest average energy

seen so far and ultimately the solution to the problem; the values of ni required to produce

εopt are readily available from the recursion so these can also be returned by a practical

implementation. Finally, line 12 invokes the base case of the recursion with the obvious

values and line 13 returns the algorithm’s output.

One non-trivial component of the algorithm presented is the condition

(Tλ− τmean)/
√
τvar > Φ−1(1− p) (5.26)

on line 2. This is an alternative formulation of Equation 5.16, where Φ is the standard

normal cumulative distribution function (cdf).

Proof. Let Z be a random variable with standard normal distribution. The probabilistic

time constraint is

Pr(ΨT > T) ≤ p

so, reversing the signs,

Pr(ΨT < T) ≥ 1− p

and substituting the parametrised normal for a standard normal gives

Pr

(
Z <

T − τmean/λ√
τvar/λ

)
≥ 1− p

124 5.6. PROBABILISTIC GENERALISATION

Then multiply the inner expression through by λ and introduce Φ to give

Φ

(
Tλ− τmean√

τvar

)
≥ 1− p

Finally, using the monotonicity of Φ, this can be inverted to give Equation 5.26 as required.

The advantage of this formulation is that Φ−1(1 − p), which is relatively expensive to

calculate, is independent of any recursive variables, so can be computed and stored during

initialisation.

One can also apply some simple branch-and-bound heuristics to the search but for the

sake of simplicity these are not shown.

5.6.6 Generalised domination

The dominated point heuristic from Section 5.4.1 can be transferred to the probabilistic

case, although because the problem is more complex the optimisation is weaker. In order

for the earlier cut-and-paste argument to apply, it is necessary to show that a point Y can

be replaced in any context with another point X with the resulting schedule being at least

as likely to make any deadline, and using less (or equal) energy on average. Let X and Y

be the probabilistic operating points (µX , σX , PX) and (µX , σX , PX) respectively. Then let

TX and TY be the time distributions for X and Y respectively, so that TX ∼ N(µX , σ
2
X)

and TY ∼ N(µY , σ
2
Y). Then a sufficient condition for X to dominate Y is for the following

equations to hold:

µX ≤ µY (5.27)

and

σX ≤ σY (5.28)

and

µXPX ≤ µY PY (5.29)

Proof. By Equation 5.27, for any t,

t− µX ≥ t− µY (5.30)

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 125

Dividing through by σX (since σX > 0) and using Equation 5.28, gives

t− µX
σX

≥ t− µY
σX

≥ t− µY
σY

(5.31)

Now take the left and right side of this inequality and substitute the expressions into the

cdf for a standard normal Z, using the monotonicity of Φ, to give

Φ

(
t− µX
σX

)
≥ Φ

(
t− µY
σY

)
(5.32)

Expanding the definition of Φ gives

Pr

(
Z <

t− µX
σX

)
≥ Pr

(
Z <

t− µY
σY

)
(5.33)

and so, rearranging,

Pr(ZσX + µX < t) ≥ Pr(ZσY + µY < t) (5.34)

Now (ZσX + µX) is an identical distribution to TX and likewise for TY , so

Pr(TX < t) ≥ Pr(TY < t) (5.35)

and this establishes the condition for maintaining the deadline probability.

The reduction in expected energy follows directly from Equation 5.29. Let EX and EY be

random variables denoting the energy of executing a frame at point X and Y respectively;

then

E(EX) = µXPx ≤ µY Py = E(EY) (5.36)

Hence X is at least as likely to make any deadline, and has lower or equal expected energy

consumption.

Detection of dominated points is now the 3-dimensional vector maximum problem, over

the 3-tuples (µX , σX , µXPx), and this can be solved in O(n lg n) time [Kung et al., 1975].

For simplicity, my implementation uses the näıve quadratic-time algorithm, an exhaustive

comparison of every pair of points for domination, since this phase of the algorithm

requires so little time compared to the exhaustive search; Amdahl’s Law clearly mitigates

against much optimisation in this area [Amdahl, 1967].

126 5.6. PROBABILISTIC GENERALISATION

5.6.7 Probabilistic evaluation

Once again I measure the performance of the dithering algorithm against a näıve static

algorithm and a greedy dynamic algorithm. The principles of the compared algorithms

are analogous to those in Section 5.5; both select the lowest-energy point from those

with Pr(time > T) < p. For the greedy algorithm, I again simulate 10 000 iterations

and allow slack time to accumulate, so that the deadline may extend or contract with

successive iterations. One complication is that, if the algorithm takes too many risks or

encounters a run of unexpectedly long frames, there may be no operating points fast

enough to meet the next deadline, leaving the algorithm to select from an empty set.

Since the normal distribution has infinite support, no schedule can ever eliminate this

possibility completely. I consider this the “panic case”, and respond by selecting the point

with minimal Pr(time > T) regardless of its energy demands.

There is one important complication to consider, which can be described as follows. After

a series of fast frames, the dynamic algorithm may accumulate enough slack to move to

a slower operating point, so in effect the value of T may vary from iteration to iteration.

However, the effective value of p does not vary; even if the algorithm meets a large number

of deadlines in a row, the next frame selected must have a probability of missing the

deadline less than p, even though overall the algorithm could be much less cautious.

Consequently, the dynamic algorithm chooses conservatively at each iteration, and the

largest admissible value of Pr(time > T) amongst the available operating points may

still be markedly smaller than p, leading to substantial inefficiency. Experimentally, the

algorithm can be seen to miss deadlines at frequencies between 0.5p and 0.01p; in other

words, the algorithm was missing the deadline between 1% and 50% of the maximum

permissible frequency, and therefore presumably working rather harder than necessary.

By contrast, the static algorithm can routinely achieve 0.98p. In an attempt to combat

this, I consider an alteration which allows more risks to be taken if past performance has

been more than adequate (and vice versa). Let I be the total number of iterations so far,

and let D be the number of deadline misses. Then replace the selection constraint with

the requirement that
Pr(time > T) +D

I + 1
≤ p (5.37)

In other words, the expected number of errors after this iteration, including all previous

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 127

T 2T 3T 4T0

Time

1 2 3 4A
Fixed-risk

frame selection

1 2 3 4BNet-risk
frame selection

Figure 5.10: Diagram showing the variable deadline encountered by the dynamic frame

scheduling algorithm.

errors, must not exceed the threshold fraction. Figure 5.10 illustrates the contrast with a

low deadline threshold such as p = 0.8. The darker boxes 1, 2, and 3 show the execution

times of past frames, each of which has met its deadline. The two algorithms differ in

their selection of a suitable operating point for the fourth frame. The fixed-risk approach

(top) requires an average time like that of box 4A, since the fourth frame must meet

its deadline with at least 80% probability. However, the net-risk approach (bottom) can

tolerate a longer average time like that of box 4B. This frame may then meet its individual

deadline with less than 80% probability, but since the previous three frames already met

their deadlines, the algorithm still respects the overall 80% success rate. If 4B has a lower

expected energy, as it typically will, this is the superior choice; if not, the algorithm is

still free to select 4A.

In practice, this refinement was found to be largely unsuccessful. It seems that the algo-

rithm constantly pushes the threshold of maximum risk, and thereby triggers the panic

case far more often. The energy penalty for panicking usually exceeds the gains from ex-

ploiting the extra risk by a considerable margin. Nevertheless, to give my algorithm the

most stringent test, both versions of the greedy algorithm were run for every case, and

the canonical value taken to be the lower energy of the two.

To provide suitable test data, I again made use of the BSOM data to provide the µi

and implied Pi values, as shown in Figure 5.7. Unfortunately the published data did not

include any way to estimate σ2
i values. Since it is not possible to know the sort of σi values

that might be seen in practice, I instead provide several result sets with ersatz standard

128 5.6. PROBABILISTIC GENERALISATION

22 32 42 52 62 72
-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

Static
Greedy

T (ms)

En
er

gy
 re

du
ct

io
n

Figure 5.11: Comparison of the energy reduction achieved by my static algorithm and a

dynamic greedy algorithm for normally distributed execution times.

deviations generated in different ways:

• In result set A, all σi values are set to the same constant value.

• In result set B, each σi is given as a fixed fraction of the relevant µi.

• In result set C, each σi is given a value selected uniformly at random from a chosen

range.

These result sets are intended to span a reasonable range of possibilities for the actual

characteristics of σi, which are unknown.

As an example, set each σi to a nominal value of 1, and take p = 0.1. Figure 5.11 shows

the comparison behaviour of the two algorithms for a range of T values. Some of these

percentages are now negative, indicating that the näıve approach actually does better in

some cases than the dynamic one. The average distance between the greedy and static

approaches is now 1.4%, with the static approach reaching 4.7% improvement in some

cases.

Table 5.3 shows results for other values of p and various methods of generating σi. I

define Astatic and Adynamic to be the percentage energy reduction of the static and dynamic

algorithms respectively compared to the näıve algorithm. These numbers tend to be small

because there is a certain minimum energy that no schedule can go below, determined by

mini(µiPi), and the amount of optimisation headroom between this value and the näıve

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 129

Set p σi Astatic Adynamic Bstatic Bdynamic DiffA DiffB

A

0.001 1.0 2.0% 0.7% 45.6% 6.8% 1.3% 38.8%

0.01 1.0 1.8% 0.4% 43.8% 4.7% 1.4% 39.2%

0.1 1.0 1.6% 0.1% 41.4% 1.3% 1.4% 40.2%

0.001 0.1 1.2% -0.3% 37.7% -3.3% 1.5% 41.0%

0.01 0.1 1.1% -0.4% 37.6% -3.5% 1.5% 41.1%

0.1 0.1 1.1% -0.4% 37.5% -3.7% 1.5% 41.2%

B

0.001 µi/10 4.0% 4.0% 59.9% 54.4% 0.1% 5.5%

0.01 µi/10 3.4% 3.2% 55.8% 48.1% 0.2% 7.6%

0.1 µi/10 1.2% 0.9% 38.6% 27.7% 0.3% 10.9%

0.001 µi/100 1.4% 1.1% 40.1% 29.5% 0.3% 10.5%

0.01 µi/100 1.3% 1.0% 38.8% 28.0% 0.3% 10.8%

0.1 µi/100 1.2% 0.9% 38.6% 27.7% 0.3% 10.9%

C

0.001 U(0.1, 1) 1.8% -14.5% 42.1% -562.1% 16.3% 604.2%

0.01 U(0.1, 1) 1.5% -9.4% 41.2% -338.8% 10.9% 380.0%

0.1 U(0.1, 1) 1.3% -0.8% 39.9% -35.4% 2.2% 75.3%

Table 5.3: Power reductions measured for the BSOM benchmark. For meaning of column

headings, see text.

algorithm’s energy value may be small. Therefore I also define Bstatic and Bdynamic by

subtracting out this minimum value from the ratio, normalising for the dynamic range of

the available operating points; in other words,

Bstatic =
näıve energy - static algorithm energy

näıve energy −mini(µiPi)
(5.38)

and Bdynamic likewise. All quantities can be negative if the näıve algorithm performs

better. The columns DiffA and DiffB show the average distance between the performance

of the two algorithms, unnormalised and normalised respectively, over the full range of

T . I experiment with a range of σi values; some constant, some scaled according to the

mean time, and some generated uniformly at random over the specified range. Evidently

the dynamic algorithm performs markedly better for all choices of parameter, although

the margin of average differential varies over two orders of magnitude.

130 5.7. CONCLUSION

Time

E
ne

rg
y

Simple operating point

Probabilistic operating point

Figure 5.12: Two different forms of operating point energy–time description, represented

graphically.

5.6.8 Probabilistic summary

As shown in Table 5.3, my static algorithm can outperform the example dynamic al-

gorithm in the presence of runtime volatility; this is largely attributable to the better

handling of risk that can be achieved by taking a long-term view. The static algorithm

typically finds a solution with an error rate only fractionally below the allowable maxi-

mum, while the dynamic algorithm tends to oscillate with the short-term fluctuations of

statistical chance.

Interestingly, there is a significant disparity in the variety of normalised differentials (the

DiffB column) between result sets; in set A, the differential is around 40% irrespective

of p and σi; for set B, both p and σi affect the norm but by a factor of less than two;

for set C, the results vary by a factor of more than eight. This suggests that it is more

important to characterise the general manner in which σi is related to the other variables

of the operating point than to discover the exact values. This presents a direction for

future work.

5.7 Conclusion

The first major contribution of this chapter is the introduction of the operating point, a

concept that abstracts away the complex web of interactions between hardware, software,

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 131

and computational energy, and replaces it with a clean interface to the relevant data for

a stream scheduler. A concrete operating point can take different forms depending on

the demands placed upon it; this chapter has explored two particular cases. The first

is perhaps the simplest possible manifestation: an expected energy consumption and a

worst-case execution time. The second is, analogously, probably the simplest possible

characterisation for the probabilistic case: the parameters of a normal distribution over

execution time, and a power constant. Both cases can be seen as describing certain points

in the energy–time diagram; Figure 5.12 generalises Figure 5.3 to illustrate the point.

The first case is simply a point in energy–time space, and states only that the actual

time will occur somewhere to the left of the dashed line; it says little about what the

energy might be, except that it has a given mean. In the particular reification chosen

for the probabilistic case, an operating point describes a line through energy–time space,

passing through the origin, and with the gradient implied by the power constant; any

given execution occurs somewhere on this line, with probability determined by the mean

and standard deviation of the underlying normal. These are just two of the many forms

that an operating point could take on.

Another key concept in this chapter is that operating points may be dithered to produce

more favourable energy outcomes than any individual operating point can offer. Just as the

operating point generalises configuration variables such as the operating voltage, operating

point dithering generalises and subsumes techniques such as voltage dithering. In both the

deterministic and probabilistic cases, the empirical evidence of this chapter suggests that

this approach does actually provide such energy reductions on real data; furthermore, it

shows that a static algorithm can often get much closer to the ideal deadline-free case

than a dynamic approach with the same information, and with less chaotic behaviour

with respect to the deadline.

In terms of the algorithmic mechanism for calculating these dithered operating point

schedules, there are some important differences between the two forms of operating point

considered here. The deterministic case is shown to have a deep connection to the famed

“integer knapsack problem”, one of Karp’s canonical examples of NP-completeness [Karp,

1972]. This leads naturally to an efficient dynamic programming solution, and suggests

several heuristics that might be translated to the problem at hand; this translation was

actually performed for single-point domination. The introduction of N , an artificial limit

132 5.7. CONCLUSION

on the length of the period in the frame cycle, presents a technical blemish, but the results

here show that it is not a significant problem in practice. Aside from this minor defect,

the problem can solved cleanly and efficiently. The probabilistic case, even in the greatly

simplified presentation given here, proves much more difficult to solve, and I have not

been able to devise a better method than basic branch-and-bound exhaustive search. Fur-

thermore, the heuristic mechanisms for the deterministic case allow examples with large

numbers of operating points to be solved; this is important for realistic examples, which

may have many axes along which operating points can be generated. In the probabilistic

case, this is simply impossible with the implementation presented, since the exponential

time requirement of the algorithm is overwhelming even in an offline context. A key chal-

lenge for future work will be developing algorithms to handle these problems, perhaps in

the direction of bounded-error polynomial-time approximation. It would also be partic-

ularly desirable to handle general (even non-parametric) probability distributions, since

the requirement for normally-distributed execution times is, despite its advantages, rather

limiting.

This chapter opened with a definition of streaming computation that I believe embraces

most of the current informal uses of the term, and continued by developing methods to

improve energy efficiency for computations within this definition. This chapter therefore

sits in opposition to the previous: streaming is, perhaps, the opposite facet of the energy

problem to the long-running computations considered in Chapter 4. The contrasts are

many. Stream computations are generally at fine granularity, as each unit of work is

typically small, while the computation as a whole may be infinite; the previous chapter,

by contrast, focused on large, long-running tasks and finite computation. Furthermore,

as formulated here, streaming computation may include a probabilistic element, since

new tasks arrive in real time and the size of the workload they require is governed by a

probability distribution. The previous chapter, on the other hand, focused exclusively on

the deterministic case: workloads with a fixed size known from the beginning. The two

forms of computation are also encountered at different stages of the same service; compare,

for example, Google’s PageRank computation (essentially a huge, long-running matrix

multiplication) with the fast Web-driven search queries that are executed against the

PageRank data in a streaming fashion [Page et al., 1999]. The two chapters consequently

provide a neat bracketing of the energy efficiency spectrum, again illustrating the value

CHAPTER 5. ENERGY-EFFICIENT REAL-TIME STREAMING 133

of considering the “energy problem” in the broadest possible context.

134 5.7. CONCLUSION

Chapter 6

Conclusions

Our understanding of the totality of the energy problem is still in its infancy. This thesis

has taken an overview of the practical situation and, on the other hand, produced concrete

contributions in specific cases by largely mathematical means. In this final chapter, I

synthesise the work of individual chapters into a single concluding argument, and show

how the thesis leads naturally to certain areas of future work.

6.1 Concluding argument

This thesis has argued that energy efficiency is a diverse problem and that it is necessary

to understand the whole picture in order to make progress in specific areas, especially if

we seek a unified “theory of energy”. In this section I draw together the arguments of

previous chapters to show how, taken together, they demonstrate the central thesis.

Chapter 3, in presenting arguments for and routes towards energy-aware computing,

demonstrated the pressing nature of energy awareness in modern computing, and identi-

fied the swelling consumption of energy by servers as particularly problematic. Provision

of adequate power resources to a modern data centre was shown to be a significant lo-

gistical challenge, as was the compounding cost of cooling and other site infrastructure.

This established that practical energy-efficiency measures must be taken. This view from

industry then motivates the work of Chapter 4, which developed digital voltage–frequency

scaling (DVFS) techniques for long-running computations as might be undertaken in a

data centre. Following the observation that server management is primarily motivated

135

136 6.1. CONCLUDING ARGUMENT

by economic and not ecological concerns, I proposed the novel idea of energy cost opti-

misation as a generalisation of traditional energy optimisation, and described a suitable

mathematical framework. I further showed that the structure of the electrical grid—in

particular, its lack of storage capacity—leads to the surprising result that using more

total energy may be “greener” as well as more financially sound, and that the energy

cost model can capture this important consideration. I established that the earlier cost-

agnostic results, such as the DVFS “energy-efficient frequency”, arise as special cases in

this framework. I also derived formal results for particular cost functions, and developed

some general techniques for solving other classes of cost function analytically. Further, this

chapter measured the efficiency gains of these analytic solutions against simpler heuristic

approaches for some realistic parameter sets; this is important because past work, while

demonstrating its mathematical utility, has often stopped short of providing precise num-

bers by which to compare it to existing approaches. However, the chapter also recognised

the limitations of analytic solutions, and described situations in which only a numerical

method is reasonable. Overall I determined that this approach has the potential to be

deployed successfully in practice.

To return to an earlier point in the argument, Chapter 3 also characterised the sort of

constraints that a practical energy efficiency methodology must respect, with regards to

performance and responsiveness, and outlined the current mechanisms by which these

may be executed (such as ACPI). In particular, it described the tickless kernel project,

which exemplifies the central thesis: a broad understanding of the problem (kernel non-

quiescence) driving concrete, specific improvements (new kernel APIs and an array of

kernel- and user-space improvements). The end-user sees a substantial improvement in

battery life for only a fractional drop in performance. I concluded that opportunities

for improvements of this form will become more commonplace as the subtlety of the

underlying hardware characteristics increases, and often can only be seen by consideration

of the full system stack.

To illustrate the generality of the central argument, Chapter 5 concerned a complemen-

tary area of the energy efficiency problem: streaming, particularly on a mobile device.

The contrast was illustrated by comparing the continuous, infinite-streaming model of

computation used in this chapter with the traditional discrete-workload problem of the

previous. Motivated by the wider view of mobile platforms as hugely diverse in terms

CHAPTER 6. CONCLUSIONS 137

of hardware, operating system, network capabilities and so forth, I then defined and de-

fended the concept of an operating point, an abstraction of hardware configuration and

performance that allows energy-efficient schedules to be derived without becoming tan-

gled in the details of implementation. I argued that more efficient solutions to streaming

problems can be found by a generalisation of voltage dithering to the level of operat-

ing points. The chapter then framed the problem formally and presented algorithms to

solve it, efficiently in the deterministic case and more exhaustively in the stochastic case.

Analogies with the integer knapsack problem allowed further heuristics to be discovered,

increasing the applicability of the algorithm to large sets of operating points as might be

seen on a modern mobile phone or tablet. Again, empirical data showed the gains that can

be made with these methods compared to the greedy reactive methods that are typically

used in practice, and demonstrated that the novel methods are sufficiently superior that

they could be applicable in practice.

To summarise, this thesis has established the following:

• Energy awareness in computing is important for reasons of economy, ecology, and

logistics.

• Energy cost is superior to raw energy as a metric of optimisation.

• The operating point is a valuable abstraction of execution details, shifting the focus

to higher-level energy optimisation algorithms.

• Formal methods can produce substantial, measurable savings compared to simpler

heuristic methods.

6.2 Future directions

My central thesis, presented in Section 1.1, suggests the broad direction that future work

on this problem might take: we should continue to develop our understanding of individual

areas of the energy problem while looking for opportunities for unification in pursuit of a

complete theory of energy.

There are two strands of future work that would arise naturally from this thesis. The

first is to pursue the grand vision of the unified theory of energy suggested in Chapter 1,

138 6.2. FUTURE DIRECTIONS

and the second is to explore the more specific lines of future work from the individual

chapters.

6.2.1 Future work on the theory of energy-efficient computing

On the surface this goal seems rather abstract, and it is not clear how to approach it; as

Taleb says, “in the real world one has to guess the problem more than the solution”.1 A

more concrete question is to ask whether it would be possible to develop an operating

system and software stack that could scale proportionally, in both performance and power

terms, from the most heavyweight computing devices to the simplest devices capable

of general purpose computing; spaces currently occupied, at least in mass production,

by high-end data centre machines and mobile phones respectively. Turing-completeness

assures us that the programs from one end of this scale can in principle be run on the other,

but offers no guarantee that this scaling would be proportional to the energy cost incurred.

(One might even ask whether such a system could scale to non-general purpose devices,

such as wristwatches, but in the absence of Turing completeness the question becomes

more limited.) Perhaps Linux is the closest approximation to such an OS that currently

exists, but clearly the forms of Linux run on high-end server machines are materially

different to mobile-targeted distributions such as Google Android and Kubuntu Mobile.

In the software stack the discrepancy is even greater; one could not expect to run a

MySQL database server from a phone in an energy-efficient way, nor Angry Birds on a

high-end server. The sort of behaviours that are energy-efficient or energy-inefficient are

too different between the platforms; for example, polling on a mobile device prevents the

CPU entering an idle state (as seen in the discussion of the tickless kernel) and therefore

is a substantial battery drain, while on a busy server it incurs little more overhead than a

context switch. The examples of database servers and video games might seem frivolous,

but between them lie many plausible ideas which are currently rendered unworkable by

the impossibility of scaling the software to the hardware; for example, perhaps it would

be desirable to run a temporary web server from a mobile phone, and to make use of

the highly refined existing web server software rather than building a customised low-

power implementation for the platform. This is not currently possible because existing

programming abstractions, while providing suitable interfaces to other hardware features

1From Nassim Nicholas Taleb, Fooled by Randomness, p. x, Random House Publishing, 2005.

CHAPTER 6. CONCLUSIONS 139

such as available memory or multi-processing capability, do not provide any equivalent for

energy-awareness, but rather abstract it away altogether. Energy consumption is invisible

to the programmer but all too visible to the end-user.

I do not believe it would be possible to unify all scales of all devices simultaneously; the

problem is simply too vast. A more promising direction is already seen in the merging of

operating systems for similar classes of hardware: for example, Windows NT 6.0 as the

underlying architecture for the workstation-targeted Windows Vista and server-targeted

Windows Server 2008. Likewise, Google’s Android and Apple’s iOS target both mobile

phones and tablets simultaneously. It appears the boundary between mobile and mains-

powered devices is currently the hardest to cross, and perhaps new challenges will emerge

as new points in the device space come into existence (as occurred, for example, with

Apple’s creation of the tablet market almost overnight). At the software level, application

programmers will perhaps need greater access to the power characteristics of the underly-

ing machine, and even a suitable description of these characteristics is not yet established.

Perhaps intelligent runtime and compile-time systems may also have a part to play. It is

not yet known how this might be done, and clearly this is a key challenge for the future.

6.2.2 Future work on cost-efficient computing

Chapter 4 describes a model of the relationship between power and performance, and

develops methods to optimise energy cost under this model. Most obviously, future work

could look at deploying these techniques in practice; perhaps a multi-user system could be

developed in which each user has a budget and can specify the deadline and workload they

require for each task in order to meet this budget. Cluster computing frequently provides

an interface to relevant constraints (such as time and space), but present implementations

do not generally consider energy to be a relevant resource.

Inevitably, both power and cost models could be further generalised. Of particular prac-

tical relevance would be the exploitation of parallelism, since this opens new avenues for

energy efficiency without sacrificing performance [Cho and Melhem, 2008]. The approach

given here might be extended to include this, especially with support for fine-grained

power control for individual cores. One could also look at extending some of the inter-

machine coordination work described in Section 2.4.2 to support cost models. Support

140 6.2. FUTURE DIRECTIONS

for soft deadlines, with some penalty for overshooting, might also be of practical benefit.

A reasonably efficient online algorithm for a more general case has been proposed, and

could be extend to embrace the variable cost approach [Yao et al., 1995]. Algebraic so-

lutions become increasingly unlikely with each extra layer of complexity but, if current

predictions for the future of computer architecture are to be believed, would be highly

beneficial.

6.2.3 Future work on energy-efficient streaming

Chapter 5 developed techniques for selecting operating points to process streams in an

energy-efficient way. This was tested on simulated operating point data, so a natural next

step would be to deploy these techniques on a real mobile device and measure the resulting

energy values. In addition to its obvious primary purpose of testing the theoretical work

in a practical context, this experiment would also serve to suggest directions in which

the model could be improved. For example, perhaps the constant power assumption that

the execution energy scales linearly with the execution time—in other words, that power

is independent of the input data and execution pathway taken—is too restrictive. These

questions can only be answered by empirical data.

The work of Chapter 5 progressed by successively weakening its assumptions. First, I

discarded the assumption that all frames must be processed at a single operating point,

which leads to the concept of operating point dithering. Then I removed the restriction of

describing frame execution only by its worst-case, and allowed a fuller description in terms

of probability distributions. A natural question is then to ask what further restrictions

might be removed. In fact there are many. In particular the inputs to the algorithm are

rather demanding, requiring a detailed understanding of the workload and operating point

characteristics. Decreasing these demands would be a valuable direction for future work;

some detailed suggestions on future work in this area are presented in Appendix A.

Appendix A

Future work: online learning in hard

real-time

A.1 Introduction

This appendix describes what I believe to be an interesting direction for future work,

and some of the key challenges involved in this area. It assumes a degree of familiarity

with various topics outside the scope of this thesis, since there is not space here to intro-

duce them all from first principles; rather than consulting specific citations, the reader is

referred to the general background in Section A.6.

The progression of this thesis, especially in Chapter 5, has been to throw off successive

layers of assumption; first assuming that tasks require their worst-case execution time,

then relaxing this to include execution times with a normal distribution, then making a

brief exploration of more general distributions. This could certainly be pushed further.

A relevant research question might be: what could be achieved if one made no a priori

assumptions about the workload or the machine on which it is executed?

A.2 Motivation

The future of hardware manufacturing is surely towards greater inter-device variation. In

a processor with, say, one thousand cores, the machine may well boot up to discover that

a few cores have perished for some reason, and it is perfectly reasonable to expect that

141

142 A.2. MOTIVATION

such a machine could continue to function with only a proportional drop in performance.

Performance degradation may continue to occur over the lifetime of the machine. If only

a few cores are damaged, it is probably uneconomical to replace the processor completely.

On the other hand, for some specialised situations, such as deep space missions or medical

nanorobotics, it may be impossible for any outside agent to repair the system, and the

system should simply attempt to function (at a reduced level) for as long as possible.

Therefore it would be highly desirable for such a system to have the ability to discover

its own capabilities, in terms of power and performance, in an online and on-going way.

One can certainly imagine a new mobile phone learning about the particular point in the

power-performance spectrum into which it has been “born”, given the natural variation

between components. To push the idea further, perhaps there is a connection with the

field of autonomous robotics ; in particular, the area of self-discovery, in which a robot

may for example be asked to discover, without direct programmer intervention, that it

has hands, and that hands are useful in the world.

Hard real-time, in which the system must absolutely guarantee to complete each task

before its specified deadline, is not often associated with energy efficiency. It is usually

assumed that if a system’s deadlines are worthy of being designated hard then we are

willing to expend any amount of power to meet them. However, there are several reasons

that this is not necessarily true. Firstly, energy is never free and, on a sufficient scale, even

mains electricity has a non-negligible impact on the total cost of ownership. Secondly, such

systems may be forced onto battery power at some point, either as a matter of course or

in the case of mains power failure, and battery power is a valuable and finite commodity.

Thirdly, we would like such systems to proliferate as widely as possible, and constraints

based on energy might well be limiting in this respect. And fourthly, many soft real-

time systems could provide strong Quality of Service guarantees if they were internally

constrained as hard real-time; consider, for example, a portable video player guaranteed

never to skip a frame while still providing reasonable battery life. Therefore we consider

it worthwhile to explore ways in which hard real-time streaming might be made more

energy efficient.

There are several key problems here: we do not necessarily know a great deal about

the workload in advance, especially for increasingly general-purpose computing devices

such as mobile phones; modern devices often provide numerous hardware variables that

APPENDIX A. FUTURE WORK: ONLINE LEARNING IN HARD REAL-TIME 143

can be adjusted to trade performance for power efficiency, such as voltage scaling, clock

gating, cache disabling and so on, and the benefit or otherwise of these trade-offs cannot

necessarily be predicted statically; and at the software level, there may be various methods

for handling each frame, perhaps with varying levels of hardware support (for example, use

of a co-processor). These factors taken together demonstrate that is generally impossible

to give offline predictions for the power and performance of every configuration. Therefore,

we would prefer to use some kind of online machine learning in order to deduce these values

and scale the performance of the system appropriately, such that energy usage is reduced

while still guaranteeing all deadlines.

Of course, online learning in a hard real-time context is difficult because we are constrained

in our ability to explore the state-space. I propose handling this by online learning in the

accumulated slack time. What this really means is described below.

A.3 Problem outline

In this section, I outline a particularly simple formulation of the problem. Certainly there

are many directions in which this could be generalised, but this presentation crystallises

the basic idea. Assume, as in Chapter 5, that the task is to process a stream of discrete

frames. Each frame requires a finite amount of work, although the stream may contain an

infinite number of frames.

From the hardware side, assume a set of “operating points” OP , as described in Sec-

tion 5.1.1. Each frame must be executed at a given operating point; in other words, one

cannot process half of a frame at one point and the second half at another. This restriction

alleviates concerns about which inter-operating point transitions are permitted and how

they might be effected. However, a frame can, at any time, be restarted and processed at

a new operating point, which has the embedded assumption that processing is side-effect

free until completion.

Each frame must be completed by its associated deadline, and these deadlines occur with

a fixed period T , so that frame i must be processed before time iT . As in Chapter 5, data

dependencies may exist between the workloads, and they must therefore be completed

in the order presented. One particular operating point op∗ ∈ OP is, by definition, fast

144 A.4. PROPOSED METHODOLOGY

enough to compute any frame in less than time T ; such a point must be known if a hard

real-time guarantee is to be made. Informally, one might say something like

P(execution time at op∗ > T) = 0 (A.1)

although this probability is yet to be defined precisely.

The aim, as ever, is to process the frames such that every deadline is met and overall

energy is minimised.

A.4 Proposed methodology

The guarantee of A.1 is, of course, driven by the worst-case execution time (WCET) of a

frame. Real execution times will tend to be faster, and thereby the system will accumulate

slack time with each successive frame. Therefore, the system should execute frames at op∗

until there is sufficient slack before the next deadline; the meaning of “sufficient” is yet

to be determined, but for the sake of argument, let us say there is 3T time until the

next deadline. At this point, the system moves to another point op1 ∈ OP—presumably

offering lower power and reduced performance—and attempts to process the next frame.

If the frame is completed in less than 2T time, the system learns something about the

energy and performance characteristic of op1, and moves on to the next frame, making a

new decision about which operating point to select. On the other hand, if the frame has

not completed once time 2T has elapsed, the system must abandon the computation at

op1 and restart the frame at op∗, thereby maintaining the hard real-time guarantee. The

process is repeated each time adequate slack is accumulated, with the system constantly

improving its knowledge of the characteristics of the operating points. Ultimately it is

able to make highly efficient decisions about whether operating points can be usefully

employed.

A.5 Challenges

This is by no means the first suggestion to use slack reclamation and online learning to

drive energy efficiency. However, there is novelty in the work in terms of its application

APPENDIX A. FUTURE WORK: ONLINE LEARNING IN HARD REAL-TIME 145

to hard real-time and in the high-dimensional learning implied by the use of operating

points (as opposed to simple processor DVFS as has usually been deployed in the past).

This simple methodology conceals a host of challenges. On the surface, this problem

recalls the canonical multi-armed bandit problem: given a selection of levers that produce

rewards according to some unknown distribution, how should we select which levers to

pull to maximise the long-term payoff? This is usually formulated as an explore-exploit

dilemma and is widely studied as such. Several good approaches for this problem are

known. However, there are some important differences in this situation:

• Neither of the measured quantities (time and energy) are rewards as such; rather it

is desirable to know about them in order to gain some more abstract reward (energy

efficiency).

• Relatedly, no single point is ever adjudged the “best”. Even if one did have complete

knowledge of the distributions, the ideal point varies depending on the amount of

available slack time. Perhaps assuming this knowledge would be one way to approach

a simplified formulation of the problem.

• Observations may be right-censored : in the case where the explorative operating

point is aborted, the system learns only that the time and energy required for a

given frame was at least some value. To make use of this information requires more

complex learning techniques. Perhaps a relevant technique could be found in survival

analysis, a technique from medical statistics that is used to analyse data in which

subjects may disappear or drop out of a study midway through. The Kaplan-Meier

estimator, for example, allows non-parametric learning of probability distributions

with right-censored data.

• The result of one lever affects our ability to explore other levers; there is feedback

between the success of exploitation and the ability to explore.

Therefore, the traditional explore-exploit dilemma is inadequate to fully capture this

problem, and new work is needed. I suspect it would be very challenging to develop

a “zero-regret” strategy for this situation, which is the typical goal in explore-exploit

dilemmas.

146 A.6. RELATED WORK

Note that I have not restricted consideration to finite OP sets. If one considers continu-

ously variable operating voltages, OP naturally becomes an infinite set, and this further

increases the complexity of the learning required. I leave it to future work to decide

whether this added complexity is justified by the benefits to model fidelity.

Additionally, I have so far presented OP as an unstructured set. In reality, there is typically

at least some additional information that may aid learning. For example, one could quite

readily construct some sort of partial order of power-performance over the set; it would

generally be safe to assume that, say, disabling a cache would reduce (or at least maintain)

the system power and increase (or at least maintain) the system latency. A suitable Hasse

diagram could be provided as input to the learning algorithm. How exactly this might be

done is left to future work.

A.6 Related work

The interested reader is encouraged to review the following articles and books, and other

work by these authors.

• Multi-armed bandit problem

– Multi-armed bandit algorithms and empirical evaluation, J. Vermorel and M.

Mohri.

– Competing in the dark: an efficient algorithm for bandit linear optimization, J.

Abernethy, E. Hazan and A. Rakhlin.

• Explore-exploit dilemmas

– Explore/exploit strategies in autonomy, S. W. Wilson.

– An autonomous explore/exploit strategy, A. McMahon, D. Scott, and W. Browne.

• Statistical techniques

– Survival Models and Data Analysis, R. Elandt-Johnson and N. Johnson.

– Nonparametric estimation from incomplete observations, E. L. Kaplan and P.

Meier.

APPENDIX A. FUTURE WORK: ONLINE LEARNING IN HARD REAL-TIME 147

• Robotic self-discovery and self-organisation

– What can I control? A framework for robot self-discovery, A. Edsinger and C.

C. Kemp.

– Taming the beast: guided self-organization of behavior in autonomous robots,

G. Martius and J. M. Hermann.

148 A.6. RELATED WORK

Bibliography

Charles J. Alpert, Zhuo Li, Michael D. Moffitt, Gi-Joon Nam, Jarrod A. Roy, and Gustavo

Tellez. What makes a design difficult to route. In Proceedings of the 19th International

Symposium on Physical Design (ISPD ’10), pages 7–12, New York, NY, USA, 2010.

ACM. ISBN 978-1-60558-920-6. doi: 10.1145/1735023.1735028.

Gene M. Amdahl. Validity of the single processor approach to achieving large scale

computing capabilities. In Proceedings of the Spring Joint Computer Conference

(AFIPS ’67, Spring), pages 483–485, New York, NY, USA, April 1967. ACM. doi:

10.1145/1465482.1465560.

Tom M. Apostol. NIST Handbook of Mathematical Functions, chapter 25. Cambridge

University Press, 2010.

Naveen Arulselvan and Randall Berry. Efficient power allocations in wireless ARQ pro-

tocols. In Proceedings of the 5th International Symposium on Wireless Personal Mul-

timedia Communications (WPMC ’02), volume 3, pages 976–980, October 2002. doi:

10.1109/WPMC.2002.1088323.

Ana Azevedo, Ilya Issenin, Radu Cornea, Rajesh Gupta, Nikil Dutt, Alex Veidenbaum,

and Alex Nicolau. Profile-based dynamic voltage scheduling using program checkpoints.

In Proceedings of Design Automation and Test in Europe, DATE ’02, pages 168–176,

March 2002.

Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Dynamic speed scaling to manage energy

and temperature. In Proceedings of the 45th Annual IEEE Symposium on Foundations

of Computer Science, pages 520–529, October 2004. doi: 10.1109/FOCS.2004.24.

Jeffrey A. Barnett. Dynamic task-level voltage scheduling optimizations. IEEE Transac-

149

150 BIBLIOGRAPHY

tions on Computers, 54(5):508–520, May 2005. ISSN 0018-9340. doi: 10.1109/TC.2005.

77.

Luiz Andre Barroso and Urs Hölzle. The case for energy-proportional computing. Com-

puter, 40:33–37, 2007. ISSN 0018-9162. doi: 10.1109/MC.2007.443.

Ricardo Bedin França, Denis Favre-Felix, Xavier Leroy, Marc Pantel, and Jean Souyris.

Towards formally verified optimizing compilation in flight control software. In Philipp

Lucas, Lothar Thiele, Benoit Triquet, Theo Ungerer, and Reinhard Wilhelm, editors,

Predictability and Performance in Embedded Systems (PPES 2011), volume 18 of Ope-

nAccess Series in Informatics (OASIcs), pages 59–68, Grenoble, France, March 2011.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi: 10.4230/OASIcs.PPES.2011.

59. URL http://hal.inria.fr/inria-00551370/en/.

Luca Benini, Alessandro Bogliolo, Giuseppe A. Paleologo, and Giovanni De Micheli. Policy

optimization for dynamic power management. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 18:813–833, 1998.

Charles H. Bennett. Logical reversibility of computation. IBM Journal of Research and

Development, 17(6):525–532, 1973.

Charles H. Bennett and Rolf Landauer. The fundamental physical limits of computation.

Scientific American, 253(1):48–56, 1985.

Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near Shannon limit error-

correcting coding and decoding: turbo-codes. In Proceedings of the IEEE International

Conference on Communications 1993 (ICC ’93), volume 2, pages 1064–1070, May 1993.

doi: 10.1109/ICC.1993.397441.

Shekhar Borkar. Thousand core chips: a technology perspective. In Proceedings of the

44th annual Design Automation Conference (DAC ’07), pages 746–749, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-627-1. doi: 10.1145/1278480.1278667.

Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, 2004. ISBN 9780521833783. URL http://www.stanford.edu/~boyd/cvxbook/

bv_cvxbook.pdf.

BIBLIOGRAPHY 151

Mark G. Brockington. A taxonomy of parallel game-tree search algorithms. Journal of

the International Computer Chess Association, 19(3):162–174, September 1996.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In Proceedings of the 27th Annual

International Symposium on Computer Architecture, pages 83–94. ACM, June 2000.

David J. Brown and Charles Reams. Toward energy-efficient computing. ACM Queue, 8

(2):30–43, 2010. doi: 10.1145/1716383.1730791.

Thomas D. Burd and Robert W. Brodersen. Energy efficient CMOS microprocessor

design. In Proceedings of the Hawaii International Conference on System Sciences

(HICSS ’95), pages 288–297, 1995.

Alfred J. Cavallo. High-capacity factor wind energy systems. Journal of Solar Energy

Engineering, 117(2):137–143, 1995. doi: 10.1115/1.2870843. URL http://link.aip.

org/link/?SLE/117/137/1.

Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low power CMOS

digital design. IEEE Journal of Solid State Circuits, 27:473–484, 1995.

Anantha P. Chandrakasan, Vadim Gutnik, and Thucydides Xanthopoulos. Data driven

signal processing: an approach for energy efficient computing. In Proceedings of the

International Symposium on Low Power Electronics and Design (ISLPED ’96), pages

347–352, Piscataway, NJ, USA, 1996. IEEE Press. ISBN 0-7803-3571-6.

Jian-Jia Chen and Chin-Fu Kuo. Energy-efficient scheduling for real-time systems on

dynamic voltage scaling (DVS) platforms. In Proceedings of the 13th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA

’07), pages 28–38, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-

2975-5. doi: 10.1109/RTCSA.2007.37.

Sangyeun Cho and Rami G. Melhem. Corollaries to Amdahl’s Law for energy. IEEE

Computer Architecture Letters, 7:25–28, 2008.

Kihwan Choi, Karthik Dantu, Wei-Chung Cheng, and Massoud Pedram. Frame-based

dynamic voltage and frequency scaling for a MPEG decoder. In Proceedings of the

152 BIBLIOGRAPHY

2002 IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’02),

pages 732–737, New York, NY, USA, 2002. ACM. ISBN 0-7803-7607-2. doi: 10.1145/

774572.774680.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian

Limpach, Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In

Proceedings of the 2nd Symposium on Networked Systems Design & Implementation

(NSDI ’05), volume 2, pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.

URL http://dl.acm.org/citation.cfm?id=1251203.1251223.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond safety. In

Thomas Ball and Robert Jones, editors, Computer Aided Verification, volume 4144 of

Lecture Notes in Computer Science, pages 415–418. Springer Berlin / Heidelberg, 2006.

ISBN 978-3-540-37406-0. doi: 10.1007/11817963/37.

Puyan Dadvar and Kevin Skadron. Potential thermal security risks. In Semiconductor

Thermal Measurement and Management Symposium, 2005 IEEE Twenty First Annual

IEEE, pages 229–234, March 2005. doi: 10.1109/STHERM.2005.1412184.

Shamik Das, Anantha Chandrakasan, and Rafael Reif. Three-dimensional integrated

circuits: performance, design methodology, and CAD tools. In Proceedings of the IEEE

Computer Society Annual Symposium on VLSI (ISVLSI ’03), pages 13–18, February

2003. doi: 10.1109/ISVLSI.2003.1183348.

Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest Bassous, and Andre R.

LeBlanc. Design of ion-implanted MOSFET’s with very small physical dimensions.

IEEE Journal of Solid-State Circuits, 9(5):256–268, October 1974. ISSN 0018-9200.

doi: 10.1109/JSSC.1974.1050511.

Lewie Donckers, Paul J. M. Havinga, and Lodewijk Theodoor Smit. Energy efficient TCP.

In 2nd Asian International Mobile Computing Conference (AMOC ’02), pages 18–28.

ACM Sigmobile, 2002. URL http://doc.utwente.nl/38357/.

Ronald G. Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester, and Trevor

Mudge. Near-threshold computing: reclaiming Moore’s law through energy efficient

integrated circuits. Proceedings of the IEEE, 98(2):253–266, February 2010. ISSN

0018-9219. doi: 10.1109/JPROC.2009.2034764.

BIBLIOGRAPHY 153

Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, and Michael F. P. O’Boyle.

A predictive model for dynamic microarchitectural adaptivity control. In Proceedings

of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO ’10), pages 485–496, Washington, DC, USA, 2010. IEEE Computer Society.

ISBN 978-0-7695-4299-7. doi: 10.1109/MICRO.2010.14.

Ipek Engin and Sally A. McKee. Efficiently exploring architectural design spaces via pre-

dictive modeling. In Proceedings of the 12th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 195–206, 2006.

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a

warehouse-sized computer. In Proceedings of the 34th annual International Symposium

on Computer Architecture (ISCA ’07), pages 13–23, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-706-3. doi: 10.1145/1250662.1250665.

Alexandra Fedorova. Operating system scheduling for chip multithreaded processors. PhD

thesis, Harvard University, September 2006. URL http://www.eecs.harvard.edu/

~fedorova/thesis.pdf.

Alexandra Fedorova, Juan Carlos Saez, Daniel Shelepov, and Manuel Prieto. Maximizing

power efficiency with asymmetric multicore systems. ACM Queue, November 2009.

URL http://queue.acm.org/detail.cfm?id=1658422.

Richard P. Feynman. Simulating physics with computers. International Journal of The-

oretical Physics, 21:467–488, 1982.

Jason Flinn and Mahadev Satyanarayanan. PowerScope: a tool for profiling the energy

usage of mobile applications. In 2nd IEEE Workshop on Mobile Computing Systems

and Applications, 1999 (WMCSA ’99), pages 2–10, February 1999. doi: 10.1109/MCSA.

1999.749272.

Aviezri Fraenkel and David Lichtenstein. Computing a perfect strategy for n × n chess

requires time exponential in n. In Shimon Even and Oded Kariv, editors, Automata,

Languages and Programming, volume 115 of Lecture Notes in Computer Science, pages

278–293. Springer Berlin / Heidelberg, 1981. ISBN 978-3-540-10843-6. 10.1007/3-540-

10843-2 23.

154 BIBLIOGRAPHY

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, 1979.

Matthew Garrett. Powering down. ACM Queue, 5:16–21, November 2007. ISSN 1542-

7730. doi: 10.1145/1331287.1331293.

Robert Gibbons. A Primer in Game Theory. Financial Times/Prentice Hall, first edition,

June 1992. ISBN 978-0745011592.

Donald B. Gillies. Three new Mersenne primes and a statistical theory. Mathematics

of Computation, 18(85):93–97, 1964. ISSN 00255718. URL http://www.jstor.org/

stable/2003409.

Chris Gottbrath, Jeremy Bailin, Casey Meakin, Todd Thompson, and J. J. Charfman.

The effects of Moore’s law and slacking on large computations, 1999. URL http:

//arxiv.org/abs/astro-ph/9912202.

Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithms for dynamic

speed-setting of a low-power CPU. In Proceedings of the 1st International Conference

on Mobile Computing and Networking (MobiCom ’95), pages 13–25, New York, NY,

USA, 1995. ACM. ISBN 0-89791-814-2. doi: 10.1145/215530.215546.

Izrail Solomonovich Gradshteyn, Alan Jeffrey, and Iosif Moiseevich Ryzhik. Table of

integrals, series, and products; 4th corrected and revised ed. Academic Press, New

York, NY, 1980. Translated from the 4th Russian edition, Moscow, 1963.

Goetz Graefe. The five-minute rule twenty years later, and how flash memory changes

the rules. In Proceedings of the 3rd international workshop on Data Management on

New Hardware (DaMoN ’07), pages 6:1–6:9, New York, NY, USA, 2007. ACM. ISBN

978-1-59593-772-8. doi: 10.1145/1363189.1363198.

Jim Gray and Goetz Graefe. The five-minute rule ten years later, and other computer

storage rules of thumb. Record of the ACM Special Interest Group on Management

of Data (SIGMOD), 26:63–68, December 1997. ISSN 0163-5808. doi: 10.1145/271074.

271094.

Jim Gray and Franco Putzolu. The 5 minute rule for trading memory for disc accesses

and the 10 byte rule for trading memory for CPU time. Record of the ACM Special

BIBLIOGRAPHY 155

Interest Group on Management of Data (SIGMOD), 16:395–398, December 1987. ISSN

0163-5808. doi: 10.1145/38714.38755.

Flavius Gruian. Hard real-time scheduling for low-energy using stochastic data and DVS

processors. In Proceedings of the 2001 international symposium on Low power electron-

ics and design (ISLPED ’01), pages 46–51, New York, NY, USA, 2001. ACM. ISBN

1-58113-371-5. doi: 10.1145/383082.383092.

Flavius Gruian and Krzysztof Kuchcinski. Uncertainty-based scheduling: energy-efficient

ordering for tasks with variable execution time. In Proceedings of the 2003 International

Symposium on Low Power Electronics and Design (ISLPED ’03), pages 465–468, New

York, NY, USA, 2003. ACM. ISBN 1-58113-682-X. doi: 10.1145/871506.871621.

Vadim Gutnik and Anantha P. Chandrakasan. Embedded power supply for low-power

DSP. IEEE Transactions on Very Large Scale Integrated Systems, 5:425–435, Decem-

ber 1997. ISSN 1063-8210. doi: 10.1109/92.645069. URL http://portal.acm.org/

citation.cfm?id=271045.271075.

D.M. Harris, B. Keller, J. Karl, and S. Keller. A transregional model for near-

threshold circuits with application to minimum-energy operation. In 2010 Interna-

tional Conference on Microelectronics (ICM ’10), pages 64–67, December 2010. doi:

10.1109/ICM.2010.5696207.

Jahangir Hasan, Ankit Jalote, T. N. Vijaykumar, and Carla E. Brodley. Heat stroke:

power-density-based denial of service in SMT. In Proceedings of the International Sym-

posium on High Performance Computer Architecture (HPCA ’05), pages 166–177. IEEE

Computer Society, 2005.

Julian Havil. Gamma: Exploring Euler’s Constant. Princeton University Press, 2003.

ISBN 0-691-09983-9.

Reinhold Heckmann and Christian Ferdinand. Worst-case execution time prediction by

static program analysis. In 18th International Parallel and Distributed Processing Sym-

posium (IPDPS 2004), pages 26–30. IEEE Computer Society, 2004.

Inki Hong, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava. Synthesis techniques

for low-power hard real-time systems on variable voltage processors. In Proceedings of

156 BIBLIOGRAPHY

the IEEE Real-Time Systems Symposium (RTSS ’98), pages 178–187, Washington, DC,

USA, 1998. IEEE Computer Society. ISBN 0-8186-9212-X. URL http://portal.acm.

org/citation.cfm?id=827270.829022.

Inki Hong, Darko Kirovski, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava. Power

optimization of variable-voltage core-based systems. IEEE Transactions on Computer-

Aided Design, 18:1702–1714, 1999.

Tibor Horvath, Tarek Abdelzaher, Kevin Skadron, and Xue Liu. Dynamic voltage scaling

in multitier web servers with end-to-end delay control. In IEEE Transactions on Com-

puters, volume 56, pages 444–458. IEEE Computer Society, April 2007. doi: 10.1109/

TC.2007.1003. URL http://dl.acm.org/citation.cfm?id=1263121.1263166.

Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation of a

compiler algorithm for CPU energy reduction. In Proceedings of the ACM SIGPLAN

2003 conference on Programming Language Design and Implementation (PLDI ’03),

pages 38–48, New York, NY, USA, 2003. ACM. ISBN 1-58113-662-5. doi: 10.1145/

781131.781137.

Wen-Mei Hwu, Christopher Rodrigues, Shane Ryoo, and John Stratton. Compute Unified

Device Architecture application suitability. Computing in Science and Engineering, 11:

16–26, May 2009. ISSN 1521-9615. doi: 10.1109/MCSE.2009.48. URL http://dl.acm.

org/citation.cfm?id=1550395.1550469.

Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Algorithms for power savings. ACM

Transactions on Algorithms, 3, November 2007. ISSN 1549-6325. doi: 10.1145/1290672.

1290678.

Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynamically variable

voltage processors. In Proceedings of the 1998 International Symposium on Low Power

Electronics and Design (ISLPED ’98), pages 197–202, New York, NY, USA, 1998. ACM.

ISBN 1-58113-059-7. doi: 10.1145/280756.280894.

Shigeki Iwata and Takumi Kasai. The Othello game on an n × n board is PSPACE-

complete. Theoretical Computer Science, 123(2):329–340, 1994. ISSN 0304-3975.

doi: 10.1016/0304-3975(94)90131-7. URL http://www.sciencedirect.com/science/

article/pii/0304397594901317.

BIBLIOGRAPHY 157

Mohammad Reza Kakoee, Ashoka Sathanur, Antonio Pullini, Jos Huisken, and Luca

Benini. Automatic synthesis of near-threshold circuits with fine-grained performance

tunability. In Proceedings of the 16th ACM/IEEE International Symposium on Low

Power Electronics and Design (ISLPED ’10), pages 401–406, New York, NY, USA,

2010. ACM. ISBN 978-1-4503-0146-6. doi: 10.1145/1840845.1840934.

Richard M. Karp. Reducibility among combinatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum

Press, 1972.

Randy H. Katz. Tech titans building boom. IEEE Spectrum, February 2009. URL http:

//www.spectrum.ieee.org/green-tech/buildings/tech-titans-building-boom.

Wonyoung Kim, Meeta S. Gupta, Gu-yeon Wei, and David Brooks. System level analysis

of fast, per-core DVFS using on-chip switching regulators. In Proceedings of the 14th

International Symposium on High-Performance Computer Architecture (HPCA ’08),

2008.

Donald E. Knuth. The Art of Computer Programming, volume 2 (Seminumerical Al-

gorithms). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, third

edition, 1997. ISBN 0201896842. URL http://portal.acm.org/citation.cfm?id=

270146.

Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong. Assessing trends

in the electrical efficiency of computation over time. Oakland: Analytics Press, 2009.

Jonathan G. Koomey, Stephen Berard, Marla Sanchez, and Henry Wong. Implications of

historical trends in the electrical efficiency of computing. IEEE Annals of the History

of Computing, 33(3):46–54, March 2011. ISSN 1058-6180. doi: 10.1109/MAHC.2010.28.

C. M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997. ISBN

9780070570436.

Kelin J. Kuhn. Moore’s law past 32nm: Future challenges in device scaling. In 13th

International Workshop on Computational Electronics (IWCE ’09), pages 1–6, May

2009. doi: 10.1109/IWCE.2009.5091124.

158 BIBLIOGRAPHY

Chidamber Kulkarni, Dennis Moolenaar, Lode Nachtergaele, Francky Catthoor, and

Hugo J. de Man. System-level energy-delay exploration for multimedia applications

on embedded cores with hardware cache. Journal of VLSI Signal Processing Sys-

tems, 22:45–57, August 1999. ISSN 0922-5773. doi: 10.1023/A:1008121818984. URL

http://dl.acm.org/citation.cfm?id=331769.331779.

Pavan Kumar and Mani Srivastava. Power-aware multimedia systems using run-time

prediction. In Proceedings of the The 14th International Conference on VLSI Design

(VLSID ’01), pages 64–78, Washington, DC, USA, 2001. IEEE Computer Society. ISBN

0-7695-0831-6. URL http://portal.acm.org/citation.cfm?id=580549.835351.

Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and

Dean M. Tullsen. Single-ISA heterogeneous multi-core architectures: The potential for

processor power reduction. In Proceedings of the 36th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-36), pages 81–92, December 2003. doi: 10.

1109/MICRO.2003.1253185.

Hsiang-Tsung Kung, Fabrizio Luccio, and Franco P. Preparata. On finding the maxima

of a set of vectors. Journal of the ACM, 22:469–476, 1975.

John Lampert. Probability: A survey of the mathematical theory. Mathematics Monograph

Series. W. A. Benjamin Inc., first edition, 1966. ISBN 978-0471154075.

Rolf Landauer. Irreversibility and heat generation in the computing process. IBM Journal

of Research and Development, 5:183–191, 1961.

Benjamin C. Lee and David M. Brooks. Accurate and efficient regression modeling for

microarchitectural performance and power prediction. SIGOPS Oper. Syst. Rev., 40:

185–194, October 2006. ISSN 0163-5980. doi: 10.1145/1168917.1168881.

Dennis Lee. Energy management issues for computer systems, 2000. URL http://www.

cs.washington.edu/homes/dlee/frontpage/mypapers/generals.ps.gz.

Seongsoo Lee and Takayasu Sakurai. Run-time power control scheme using software

feedback loop for low-power real-time application. In Proceedings of the 2000 Asia and

South Pacific Design Automation Conference (ASP-DAC ’00), pages 381–386, New

York, NY, USA, 2000. ACM. ISBN 0-7803-5974-7. doi: 10.1145/368434.368693.

BIBLIOGRAPHY 159

John P. Lehoczky, Lui Sha, and Ye Ding. Rate-monotonic scheduling algorithm: Exact

characterization and average case behavior. In Proceedings of the 11th IEEE Real-time

Systems Symposium, pages 166–171, December 1989.

Ian M. Leslie, David McAuley, Richard Black, Timothy Roscoe, Paul Barham, David Ev-

ers, Robin Fairbairns, and Eoin Hyden. The design and implementation of an operat-

ing system to support distributed multimedia applications. IEEE Journal on Selected

Areas in Communications, 14(7):1280–1297, September 1996. ISSN 0733-8716. doi:

10.1109/49.536480.

Oliver Yuk-Hang Leung, Chung-Wai Yue, Chi-ying Tsui, and Roger S. Cheng. Reducing

power consumption of turbo code decoder using adaptive iteration with variable supply

voltage. In Proceedings of the 1999 International Symposium on Low Power Electronics

and Design (ISLPED ’99), pages 36–41, New York, NY, USA, 1999. ACM. ISBN 1-

58113-133-X. doi: 10.1145/313817.313836.

Adam Leventhal. Flash storage today. ACM Queue, July 2008. URL http://queue.

acm.org/detail.cfm?id=1413262.

Jian Li and José F. Mart́ınez. Power-performance considerations of parallel computing

on chip multiprocessors. ACM Transactions on Architecture and Code Optimization, 2:

397–422, 2005.

Zhuo Li, Charles J. Alpert, Shiyan Hu, Tuhin Muhmud, Stephen T. Quay, and Paul G.

Villarrubia. Fast interconnect synthesis with layer assignment. In Proceedings of the

2008 International Symposium on Physical Design (ISPD ’08), pages 71–77, New York,

NY, USA, 2008. ACM. ISBN 978-1-60558-048-7. doi: 10.1145/1353629.1353648.

David Lichtenstein and Michael Sipser. Go is polynomial-space hard. J. ACM, 27:393–401,

April 1980. ISSN 0004-5411. doi: 10.1145/322186.322201.

Jane W.-S. Liu. Real-time systems. Prentice Hall, 2000. ISBN 978-0-13-099651-0.

Jacob R. Lorch and Alan Jay Smith. Improving dynamic voltage scaling algorithms with

PACE. SIGMETRICS Perform. Eval. Rev., 29:50–61, June 2001. ISSN 0163-5999. doi:

10.1145/384268.378429.

160 BIBLIOGRAPHY

Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies into

the Linux operating system. In Proceedings of the FREENIX Track: 2001 USENIX

Annual Technical Conference, pages 29–42, Berkeley, CA, USA, 2001. USENIX Asso-

ciation. ISBN 1-880446-10-3. URL http://dl.acm.org/citation.cfm?id=647054.

715771.

Wolfgang Lutz, Warren Sanderson, and Sergei Scherbov. The end of world population

growth. Nature, 412, 2001. doi: 10.1038/35087589.

John Markoff and Saul Hansell. Hiding in plain sight, Google seeks more power. New York

Times, 2006. URL http://www.nytimes.com/2006/06/14/technology/14search.

html?pagewanted=all.

Mitsuru Matsui. How far can we go on the x64 processors? In Fast Software Encryption,

13th International Workshop, FSE 2006, pages 341–358. Springer-Verlag, 2006. URL

http://www.iacr.org/cryptodb/archive/2006/FSE/3246/3246.pdf.

Rami Melhem, Nevine AbouGhazaleh, Hakan Aydin, and Daniel Mossé. Power man-

agement points in power-aware real-time systems, pages 127–152. Kluwer Academic

Publishers, Norwell, MA, USA, 2002. ISBN 0-306-46786-0. URL http://portal.acm.

org/citation.cfm?id=783060.783068.

Rami Melhem, Daniel Mossé, and Elmootazbellah (Mootaz) Elnozahy. The interplay of

power management and fault recovery in real-time systems. IEEE Transactions on

Computers, 53(2):217–231, February 2004. ISSN 0018-9340. doi: 10.1109/TC.2004.

1261830.

Amitabh Menon, S. K. Nandy, and Mahesh Mehendale. Multivoltage scheduling with

voltage-partitioned variable storage. In Proceedings of the 2003 international symposium

on Low power electronics and design (ISLPED ’03), pages 298–301, New York, NY,

USA, 2003. ACM. ISBN 1-58113-682-X. doi: 10.1145/871506.871580.

Eytan Modiano. An adaptive algorithm for optimizing the packet size used in wireless

ARQ protocols. Wireless Networks, 5:279–286, 1999. ISSN 1022-0038. doi: 10.1023/A:

1019111430288.

BIBLIOGRAPHY 161

Jeffrey C. Mogul, Eduardo Argollo, Mehul Shah, and Paolo Faraboschi. Operating system

support for NVM + DRAM hybrid main memory. In Proceedings of the 13th Hot Topics

in Operating Systems (HotOS), 2009.

Matteo Monchiero, Ramon Canal, and Antonio González. Design space exploration for

multicore architectures: a power/performance/thermal view. In Proceedings of the 20th

annual International Conference on Supercomputing (ICS ’06), pages 177–186, New

York, NY, USA, 2006. ACM. ISBN 1-59593-282-8. doi: 10.1145/1183401.1183428.

Matthias Müller, David Charypar, and Markus Gross. Particle-based fluid simulation for

interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

Symposium on Computer animation (SCA ’03), pages 154–159, Aire-la-Ville, Switzer-

land, Switzerland, 2003. Eurographics Association. ISBN 1-58113-659-5. URL http:

//dl.acm.org/citation.cfm?id=846276.846298.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P. Jouppi. Cacti 6.0: A

tool to model large caches. Technical report, School of Computing, University of Utah,

2007.

James E. Nymann. On the probability that positive integers are relatively prime. Journal

of Number Theory, 4:469–473, 1972.

Takanori Okuma, Tohru Ishihara, and Hiroto Yasuura. Real-time task scheduling for

a variable voltage processor. In Proceedings of the 12th International Symposium on

System Synthesis (ISSS ’99), pages 24–29, Washington, DC, USA, 1999. IEEE Com-

puter Society. ISBN 0-7695-0356-X. URL http://portal.acm.org/citation.cfm?

id=857198.857958.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank

citation ranking: bringing order to the web. Technical Report 1999-66, Stanford InfoLab,

November 1999. URL http://ilpubs.stanford.edu:8090/422/. Previous number =

SIDL-WP-1999-0120.

Massoud Pedram and Qing Wu. Design considerations for battery-powered electronics.

In Proceedings of the 36th annual ACM/IEEE Design Automation Conference (DAC

’99), pages 861–866, New York, NY, USA, 1999. ACM. ISBN 1-58113-109-7. doi:

10.1145/309847.310089.

162 BIBLIOGRAPHY

Vincent Poirriez, Nicola Yanev, and Rumen Andonov. A hybrid algorithm for the un-

bounded knapsack problem. Discrete Optimization, 6:110–124, 2009. doi: 10.1016/j.

disopt.2008.09.004. URL http://hal.inria.fr/inria-00335065/en/. Hubert Curien

French-Bulgarian partnership RILA 2006 No 15071XF.

Mateja Putic, Liang Di, Benton H. Calhoun, and John Lach. Panoptic DVS: a fine-grained

dynamic voltage scaling framework for energy scalable CMOS design. In Proceedings

of the 2009 IEEE International Conference on Computer Design (ICCD ’09), pages

491–497, Piscataway, NJ, USA, 2009. IEEE Press. ISBN 978-1-4244-5029-9. URL

http://portal.acm.org/citation.cfm?id=1792354.1792447.

Qinru Qiu and Massoud Pedram. Dynamic power management based on continuous-

time Markov decision processes. In Proceedings of the 36th annual ACM/IEEE Design

Automation Conference (DAC ’99), pages 555–561, New York, NY, USA, 1999. ACM.

ISBN 1-58113-109-7. doi: 10.1145/309847.309997.

Gang Qu and Miodrag Potkonjak. Achieving utility arbitrarily close to the optimal with

limited energy. In Proceedings of the 2000 International Symposium on Low Power

Electronics and Design (ISLPED ’00), pages 125–130, New York, NY, USA, 2000.

ACM. ISBN 1-58113-190-9. doi: 10.1145/344166.344545.

Vijay T. Raisinghani and Sridhar Iyer. Cross-layer design optimizations in wireless pro-

tocol stacks. Computer Communications, 27:720–724, 2004.

Renewable Energy Research Laboratory. Wind power: capacity factor, intermittency, and

what happens when the wind doesn’t blow? Community Wind Power Fact Sheet, 2009.

Kurt W. Roth and Kurtis McKenney. Energy consumption by consumer electronics in

U.S. residences. Final Report to the Consumer Electronics Association, January 2007.

Kaushik Roy, Saibal Mukhopadhyay, and Hamid Mahmoodi-Meimand. Leakage current

mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits.

Proceedings of the IEEE, 91(2):305–327, February 2003. ISSN 0018-9219. doi: 10.1109/

JPROC.2002.808156.

Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third

edition, 1987. ISBN 0-07-054234-1.

BIBLIOGRAPHY 163

Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller,

Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):

1518–1522, 2007. doi: 10.1126/science.1144079. URL http://www.sciencemag.org/

content/317/5844/1518.abstract.

Semiconductor Industry Association. Annual report, 2005. URL http://www.

chiphistory.org/exhibits/ex_moores_law_SIAar/SIA_AR_2005.pdf.

Mingoo Seok, Scott Hanson, Yu-Shiang Lin, Zhiyoong Foo, Daeyeon Kim, Yoonmyung

Lee, Nurrachman Liu, Dennis Sylvester, and David Blaauw. The phoenix processor:

A 30pw platform for sensor applications. In 2008 IEEE Symposium on VLSI Circuits,

pages 188–189, June 2008. doi: 10.1109/VLSIC.2008.4586001.

Kiran Seth, Aravindh Anantaraman, Frank Mueller, and Eric Rotenberg. FAST:

frequency-aware static timing analysis. In IEEE Real-time Systems Symposium, pages

40–51, 2003.

Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Jeffery, Alexandra Fedorova, Nestor

Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar. HASS: A scheduler

for heterogeneous multicore systems. SIGOPS Oper. Syst. Rev., 43:66–75, April 2009.

ISSN 0163-5980. doi: 10.1145/1531793.1531804.

Suresh Siddha, Venkatesh Pallipadi, and Arjan Van De Ven. Getting maximum mileage

out of tickless. In Intel Open Source Technology Center, editor, Proceedings of the

Linux Symposium, June 2007. URL http://software.intel.com/sites/oss/pdfs/

maximum_tickless.pdf.

Gert Smolka. The Oz programming model. In Computer Science Today, Lecture Notes

in Computer Science, pages 324–343. Springer-Verlag, 1995.

Yusuke Soejima, Akihiro Kishimoto, and Osamu Watanabe. Evaluating root paralleliza-

tion in Go. IEEE Transactions on Computational Intelligence and AI in Games, 2(4):

278–287, December 2010. ISSN 1943-068X. doi: 10.1109/TCIAIG.2010.2096427.

Jean Souyris, Erwan Le Pavec, Guillaume Himbert, Victor Jégu, and Guillaume Borios.

Computing the worst case execution time of an avionics program by abstract inter-

164 BIBLIOGRAPHY

pretation. In Proceedings of the 5th International Workshop on Worst-Case Execution

Time (WCET) Analysis, pages 21–24, 2005.

Mircea R. Stan and Wayne P. Burleson. Bus-invert coding for low-power I/O. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 3(1):49–58, March 1995.

ISSN 1063-8210. doi: 10.1109/92.365453.

Mark Stemm and Randy H. Katz. Measuring and reducing energy consumption of network

interfaces in hand-held devices. Institute of Electronics, Information and Communica-

tion Engineers: Transactions on Communications, August 1997.

John E. Stone, David Gohara, and Guochun Shi. OpenCL: A parallel programming

standard for heterogeneous computing systems. Computing in Science Engineering, 12

(3):66–73, May–June 2010. ISSN 1521-9615. doi: 10.1109/MCSE.2010.69.

Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain. Low power architecture design

and compilation techniques for high-performance processors. In 1994 IEEE Compcon,

pages 489–498, March 1994a. ISBN 0-8186-5380-9.

Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain. Saving power in the control path of

embedded processors. IEEE Design & Test, 11:24–30, October 1994b. ISSN 0740-7475.

doi: 10.1109/54.329448. URL http://dl.acm.org/citation.cfm?id=622176.622570.

Vishu Swaminathan and Krishnendu Chakrabarty. Investigating the effect of voltage-

switching on low-energy task scheduling in hard real-time systems. In Proceedings of

the 2001 Asia and South Pacific Design Automation Conference (ASP-DAC ’01), pages

251–254, New York, NY, USA, 2001. ACM. ISBN 0-7803-6634-4. doi: 10.1145/370155.

370337.

Yuan Taur and Tak H. Ning. Fundamentals of modern VLSI devices, volume 1. Cambridge

University Press, 1998.

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation techniques for low energy:

an overview. In Digest of Technical Papers from IEEE Symposium on Low Power

Electronics, pages 38–39, October 1994.

BIBLIOGRAPHY 165

Paolo Toth. Dynamic programming algorithms for the zero-one knapsack problem.

Computing, 25:29–45, 1980. ISSN 0010-485X. URL http://dx.doi.org/10.1007/

BF02243880. 10.1007/BF02243880.

Vassilis Tsaoussidis, Hussein Badr, Xiaocheng Ge, and Kostas Pentikousis. En-

ergy/throughput tradeoffs of TCP error control strategies. In Proceedings of the Fifth

IEEE Symposium on Computers and Communications (ISCC ’00), pages 106–126,

Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0722-0. URL

http://dl.acm.org/citation.cfm?id=844383.845463.

U.S. Environmental Protection Agency. Report to Congress on server and data cen-

ter energy efficiency, 2010. URL http://www.energystar.gov/ia/partners/prod_

development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf.

Amin Vahdat, Alvin Lebeck, and Carla Schlatter Ellis. Every joule is precious: the case

for revisiting operating system design for energy efficiency. In Proceedings of the 9th

workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for

the operating system, EW 9, pages 31–36, New York, NY, USA, 2000. ACM. doi:

10.1145/566726.566735.

Vincent R. Von Kaenel, Peter Macken, and Marc G.R. Degrauwe. A voltage reduction

technique for battery-operated systems. IEEE Journal of Solid-State Circuits, 25(5):

1136–1140, October 1990. ISSN 0018-9200. doi: 10.1109/4.62134.

William W. Wadge and Edward A. Ashcroft. LUCID, the dataflow programming language.

Academic Press Professional, Inc., San Diego, CA, USA, 1985. ISBN 0-12-729650-6.

Yefu Wang, Xiaorui Wang, Ming Chen, and Xiaoyun Zhu. Power-efficient response time

guarantees for virtualized enterprise servers. In Real-Time Systems Symposium, pages

303–312, December 2008. doi: 10.1109/RTSS.2008.20.

Peter Whittle. Probability via expectation. Springer Texts in Statistics. Springer, 2000.

ISBN 9780387989556.

Enhua Wu and Youquan Liu. Emerging technology about GPGPU. In IEEE Asia Pacific

Conference on Circuits and Systems, pages 618–622, December 2008. doi: 10.1109/

APCCAS.2008.4746099.

166 BIBLIOGRAPHY

Ruibin Xu, Daniel Mossé, and Rami Melhem. Minimizing expected energy in real-time

embedded systems. In Proceedings of the 5th ACM International Conference on Em-

bedded Software (EMSOFT ’05), pages 251–254, 2005.

Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced CPU

energy. Proceedings of 36th Annual Symposium on Foundations of Computer Science,

pages 374–382, 1995.

Christian Zamfir, Colin Perkins, and Peter Dickman. Live migration of virtual block

devices. In EuroSyS 2007. Association of Computing Machinery, 2007. URL http:

//eprints.gla.ac.uk/43159/.

Wensheng Zhang, Mahmut Taylan Kandemir, Narayanan Vijaykrishnan, Mary Jane Irwin,

and Vivek K. De. Compiler support for reducing leakage energy consumption. In Design,

Automation and Test in Europe Conference and Exhibition, 2003, pages 1146–1147,

2003. doi: 10.1109/DATE.2003.1253774.

Yumin Zhang, Xiaobo (Sharon) Hu, and Danny Z. Chen. Efficient global register allocation

for minimizing energy consumption. SIGPLAN Not., 37:42–53, April 2002. ISSN 0362-

1340. doi: 10.1145/510857.510867.

Dakai Zhu. Reliability-aware dynamic energy management in dependable embedded real-

time systems. In Proceedings of the 12th IEEE Real-Time and Embedded Technology

and Applications Symposium, pages 397–407, 2006.

Dakai Zhu, Rami Melhem, Daniel Mossé, and Elmootazbellah (Mootaz) Elnozahy. Anal-

ysis of an energy efficient optimistic TMR scheme. In Proceedings of the 10th Inter-

national Conference on Parallel and Distributed Systems (ICPADS ’04), pages 559–

568, Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2152-5. doi:

10.1109/ICPADS.2004.20.

Nan Zhu and Kevin Broughan. On dominated terms in the general knapsack prob-

lem. Operations Research Letters, 21(1):31–37, 1997. ISSN 0167-6377. doi: 10.1016/

S0167-6377(97)00018-7. URL http://www.sciencedirect.com/science/article/

B6V8M-3SX27T9-5/2/b5088d374dfcc0f1e2061e12bbb5158b.

BIBLIOGRAPHY 167

Hubert Zimmermann. OSI reference model—the ISO model of architecture for open

systems interconnection. IEEE Transactions on Communications, 28(4):425–432, April

1980. ISSN 0090-6778. doi: 10.1109/TCOM.1980.1094702.

168 BIBLIOGRAPHY

Glossary

ACPI Advanced Configuration and Power Interface.

ARQ Automatic Repeat Request.

BSOM Batch Self-Organising Map, a data-mining benchmark.

CAGR combined annual growth rate.

cdf cumulative density function.

CMOS complementary metal–oxide–semiconductor, the standard technology for inte-

grated circuits.

CPU central processing unit.

crowdsourcing the combined effort of a distributed group of people to achieve a shared

goal.

DDR double data rate.

DES Data Encryption Standard, a once-popular encryption–decryption algorithm.

DIMM dual in-line memory module.

DVFS digital voltage–frequency scaling.

DVS digital voltage scaling.

EPA Environmental Protection Agency.

EPF energy per frame.

169

170 Glossary

FEC forward error correction.

GB gigabyte, 230 bytes.

Gb gigabit, 230 bits.

GIMPS Great Internet Mersenne Prime Search.

GPGPU general-purpose processing on the GPU.

GPU graphics processing unit.

HVAC heating, ventilation, and air-conditioning.

I/O input/output.

IP Internet Protocol.

ISA instruction set architecture.

LVA Live Variable Analysis.

Mersenne number an integer of the form 2n − 1 for some integer n.

MOSFET metal–oxide–semiconductor field-effect transistor.

MPEG Moving Picture Experts Group.

NTC near-threshold computing.

operating point a configuration of hardware and software, coupled with the execution

time and energy requirements of computing in that configuration. A full definition

is given in Section 5.1.1 (p. 96).

OS operating system.

OSI Open Systems Interconnection.

pdf probability density function.

Glossary 171

PSPACE a complexity class: the set of problems for which an algorithm exists that can

solve instances of that problem in an amount of space that grows polynomially with

respect to the size of the instance.

RAID Redundant Array of Independent Disks.

RPM revolutions per minute.

RWL routed wire-length.

SDRAM synchronous dynamic random-access memory.

SIMD single-instruction multiple-data.

SRAM static random-access memory.

superscalability the degree to which a processor makes use of instruction-level paral-

lelism.

support the subset of a function’s domain over which its value is non-zero.

TCP Transmission Control Protocol.

teraflops one trillion (1012) floating-point operations per second.

TPS transactions per second.

WCEC worst-case execution cycles.

WCET worst-case execution time.

