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compared to µ > 0 in global fits is calculated with Markov Chain Monte Carlo

methods and bridge sampling. The fits include state-of-the-art two-loop MSSM con-

tributions to the electroweak observables MW and sin2 θl
w, as well as the anomalous

magnetic moment of the muon (g − 2)µ, the relic density of dark matter and other

relevant indirect observables. µ < 0 is only marginally disfavoured in global fits and

should be considered in mSUGRA analyses. We estimate that the ratio of probabil-

ities is P (µ < 0)/P (µ > 0) = 0.07 − 0.16.
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1. Introduction

There has been increasing recent attention on global fits of various indirect data

to minimal supergravity (mSUGRA), also sometimes called the constrained min-

imal supersymmetric standard model (CMSSM) [1, 2, 3, 4, 5]. mSUGRA makes

phenomenological analysis of the minimal supersymmetric standard model (MSSM)

tractable via the low number of free parameters. In fact, the scalar masses m0, gaug-

ino masses M1/2 and trilinear coupling A0 are assumed to be universal at a gauge

unification scale MGUT ∼ 2 × 1016 GeV. If the MSSM is present in nature and if

the mSUGRA universality assumptions are approximately correct, chi-squared or

probability distributions for potential collider/dark matter observables can be de-

rived. Early fits [6, 1, 2, 3, 4] necessarily had fixed input parameters to reduce the

dimensionality of the input parameter space, making scans practicable. It is usually

assumed that neutralinos constitute the current cold dark matter content of the uni-

verse, since they are weakly interacting, electrically and colour neutral and stable.

The predicted value of dark matter relic density ΩDMh2 is a very strong constraint

on viable mSUGRA parameter space, effectively reducing its dimensionality by 1.

The accuracy of the inferred value of ΩDMh2 from WMAP data makes a global fit

to all of the relevant mSUGRA parameters potentially difficult because the system is
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rather under-constrained, possessing narrow, steep valleys of degenerate χ2 minima.

If the MSSM is confirmed in colliders, it will hopefully be possible to break such

degeneracies with collider observables. This does not help us at present, where we

want to provide a sort of ‘weather forecast’ for future colliders. It was indicated

in ref. [3] that the powerful Markov Chain Monte Carlo (MCMC) technique might

allow us to find the probability distribution of a fully global fit to indirect data.

Two of us went on [7] to demonstrate that MCMCs do indeed allow such a fit,

investigating collider observables. One of us examined the effect of a naturalness

prior [8]. Our results were confirmed and expanded in Ref. [9], also utilising the

MCMC method and including a one-loop MSSM calculation of the W-boson mass

MW and the weak leptonic mixing angle sin2 θl
w in the likelihood density. The purpose

of MCMC mSUGRA global fits is two-fold: as well as producing interesting and

useful physics results in themselves, we may profit from the experience of utilising

and developing the MCMC tools, which could prove very useful when analysing

future collider data.

It is our purpose in the present paper to extend the previous µ > 0 global fits

to µ < 0. Besides the observables studied in [7] we now also include MW and sin θl
w

in our analysis, as done in e.g. [4, 9]. Being highly sensitive to new physics these

very accurately measured quantities play a key role in the electroweak sector and are

therefore also of great interest when it comes to further constraining the mSUGRA

parameter space. It was shown in the literature and that the one-loop predictions for

the two observables alone do not bear enough accuracy to make reliable predictions.

In fact, the pure one-loop predictions can lead to results contradictory to the state-

of-the-art predictions [10] used in our analysis. These contain the known higher

order contributions from both the Standard Model and the MSSM. Extending our

analysis to negative values of µ it is crucial to further use a very accurate prediction

for (g − 2)µ. The dominant two-loop corrections [11] to this quantity are therefore

also taken into account in the present analysis. It is well known that the measured

anomalous value of the magnetic moment of the muon (g − 2)µ is roughly 2σ above

the Standard Model (SM) predicted value. This positive contribution is predicted

by some regions of mSUGRA parameter space, provided µ > 0. The “dark side” of

mSUGRA (i.e. µ < 0) provides a negative contribution, thereby being disfavoured by

the (g−2)µ measurement. In a global fit, one can trade likelihood penalties between

different observables and the conclusion that µ < 0 is disfavoured to roughly 2σ is

not at all obvious. We will calculate the extent to which the dark side is ruled out by

using MCMCs with “bridge sampling” [12]. We will encounter problems associated

with isolated likelihood density maxima in the dark side, potentially ruining MCMC

convergence. Fortunately, bridge sampling provides a solution to the convergence

issue and we are able to calculate the degree to which the dark side is disfavoured

with respect to µ > 0. As well as extending previous analyses to µ < 0, we have

made several technical improvements in the calculation of the likelihood compared
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with previous attempts in the literature.

If the lightest supersymmetric particle decays into Standard Model particles, as

is the case in R-parity violation for instance, its relic density will be essentially zero

today. In that case, one requires to obtain the WMAP fitted ΩDMh2 from some

other source than neutralinos (gravitinos or hidden sector matter for instance). In

order to investigate this case, we will also perform the fits for the case where all

relevant data except ΩDMh2 are included in the likelihood density. Such fits will

help us to understand the impact of ΩDMh2 in constraining the model, as well as

being relevant for the R-parity violating mSUGRA [13] in the limit of small R-parity

violating couplings.

We now go on to detail the various constraints used on the model in section 2.

The results of the dark side fitting procedure are compared and contrasted against the

better known µ > 0 ones in section 3, before the effect of dropping the dark-matter

constraint is examined in section 4. Closing remarks are presented in section 5. A

presentation of the fitting procedures is confined to the appendix: Markov Chain

Monte Carlos and bridge sampling are discussed in appendix A. Convergence prob-

lems and their resolution are discussed in appendix B.

2. Constraints

We vary 8 input parameters rele-
mSUGRA parameter range

A0 -4 TeV to 4 TeV

m0 60 GeV to 4 TeV

M1/2 60 GeV to 2 TeV

tan β 2 to 62

SM parameter constraint

1/αMS 127.918±0.018

αMS
s (MZ) 0.1176±0.002

mb(mb)
MS 4.24±0.11 GeV

mt 171.4±2.1

Table 1: Input parameters

vant to the model. The range of intrin-

sically mSUGRA parameters consid-

ered is shown in Table 1, where tanβ

is the ratio of the two MSSM Higgs

doublet vacuum expectation values. We

use Ref. [14] for the QED coupling con-

stant αMS, the strong coupling con-

stant αMS
s (MZ) and the running mass

of the bottom quark mb(mb)
MS, all in

the MS renormalisation scheme The

recent Tevatron top mass mt measure-

ment [15] is also employed. These SM

inputs are shown in Table 1. Experimental errors are so small on the mass of the

Z0 boson MZ and the muon decay constant Gµ that we fix them to their central

values of 91.1876 GeV and 1.16637× 10−5 GeV−2 respectively. The Standard Model

(SM) input parameters are allowed to vary within 4σ of their central values but a χ2

penalty

χ2
i =

(ci − pi(m))2

σ2
i

(2.1)
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is applied for observable i. ci denotes the central value of the experimental measure-

ment, pi(m) represents the value “predicted” at any stage of the MCMC sampling

given knowledge of the model m presumed to be “true” at that point. Finally σi is

the standard error of the measurement. Equivalently, expressing this in the language

of likelihoods, we are assuming that each of these measurements have Gaussian er-

rors,1 and that the likelihood distribution Li ≡ p(ci|m) for any one measurement

may be written in the following way:

Li ≡ p(ci|m) =
1

√

2πσ2
i

exp
[

−χ2
i /2

]

. (2.2)

The normalisation constant
√

2πσ2
i may be ignored in subsequent calculations as

the absolute value of Li will never be needed. It will only be necessary to know the

ratios of values of Li at neighbouring points in the MCMC chain, or between chains

in which the neglected constants are identical.

In order to calculate predictions for observables from the inputs in Table 1, we

use SOFTSUSY2.0.7 [16] to first calculate the MSSM spectrum. We apply the bounds

mχ0
1

37 mχ±

1
67.7 mg̃ 195 mτ̃1 76

ml̃R
88 mt̃1 86.4 mb̃1

91 mq̃R
250

mν̃e,µ 43.1

Table 2: Lower bounds applied to sparticle mass predictions (in GeV).

in Table 2 in order to take into account 95% limits coming from negative sparticle

searches [14]. Any point transgressing these bounds is given a zero likelihood density

(or, equivalently, an infinite χ2). Also, we set a zero likelihood for any inconsistent

point, e.g. one which does not break electroweak symmetry correctly, or a point that

contains tachyonic sparticles. For points that are not ruled out, we then link the

MSSM spectrum via the SUSY Les Houches Accord [17] to micrOMEGAs1.3.6 [18],

which then calculates ΩDMh2, the branching ratios BR(b → sγ) and BR(Bs →
µ+µ−) and (g − 2)µ.

The measured value of the anomalous magnetic moment (g − 2)µ is in conflict

with the SM predicted value by [14]

δaµ ≡ δ
(g − 2)µ

2
= (22 ± 10) × 10−10. (2.3)

This excess may be explained by a supersymmetric contribution, the sign of which

is identical to the sign of the superpotential µ parameter [19]. After obtaining the

1The experimental constraints on BR(Bs → µ+µ−) and the LEP constraints on the Higgs mass,

each described later, are not Gaussian constraints and must therefore be treated differently. Nothing

prevents us from continuing to parametrise their likelihood distributions in the same way, however,

but it should be realised that a consequence of this is that the “χ-squared penalty” (i.e. −2 logLi)

will not be parabolic, as Li is not a Gaussian distribution in these cases.
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one-loop MSSM value of (g − 2)µ from micrOMEGAs, we add the following dominant

2-loop corrections [11, 20]: the logarithmic piece of the 2-loop QED contribution,

two-loop stop-higgs and chargino-stop/sbottom contributions.

The Tevatron has recently been
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Figure 1: χ2 penalty on BR(Bs → µ+µ−) from

[21]

instrumental in bounding the branch-

ing ratio of the rare decay channel

Bs → µ+µ− [22]. Such bounds help

constrain the mSUGRA parameter space [23].

We apply a χ2 penalty on the value

predicted by micrOMEGAs1.3.6 de-

rived from CDF Tevatron Run II data [21].

The resulting penalty is shown in Fig. 1.

Recently, it has been claimed that

light sparticles are preferred by the

two weak observables sin2 θl
w and MW

[4, 24]. In Ref. [9], MW and sin2 θl
w

were used at one loop order to help

constrain mSUGRA in a global MCMC

fit. The preference for such light SUSY

was not particularly evident in the

global fits. We examine the mSUGRA

predictions for MW and sin2 θl
w(eff) in Figs. 2 and 3 for A0 = 0, tanβ = 10, µ > 0,

equal m0 and M1/2 and central experimental values for the other inputs. For the

“SOFTSUSY” lines, the default SOFTSUSY calculation is used. This contains the full

SOFTSUSY MSSM contributions to the leptonic mixing angle sin2 θl
w and MW . It

also contains the dominant 2-loop Standard Model contributions to MW . For the

lines marked “2-loop”, the SUSY Les Houches Accord is used to communicate with a

currently private code that calculates the W-boson mass MW [10], and the effective

leptonic mixing angle variable sin2 θl
w, calculated to two loops in the dominant MSSM

parameters. We use the most general MSSM result for the full one-loop contribu-

tions. Besides all known corrections due to SUSY particles, the full SM contributions

are also included in the predictions for MW and sin2 θl
w, leading to the currently most

accurate predictions within the MSSM. The “SM” lines show the SM limit, where

all corrections involving sparticles are dropped, i.e. the state-of-the-art SM results

[25, 26] with MHSM = Mh. They vary slightly with m0 = M1/2 because the varying

mSUGRA parameters produce different values of the Higgs boson mass mh. The

horizontal lines on the figures show the current 1σ experimental limits [27, 28]

MW = 80.392 ± 0.031 GeV, sin2 θl
w = 0.23153 ± 0.00020, (2.4)

where we have added experimental and theoretical errors in quadrature.
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Figure 2: Various approximations to

MW in mSUGRA

Figure 3: Various approximations to

sin2 θw in mSUGRA.

The theoretical errors in the predicted MW and sin2 θl
w are estimated to be 10

MeV and 12×10−5 respectively [1]. We use these uncertainties for the purposes of

comparison, although they have been slightly reduced recently by the addition of

additional two-loop corrections taken into account in the present analysis [10, 29].

We see from the SOFTSUSY line in the figure that the prediction of MW does not

have a strong preference for light SUSY, since the model is within the 1σ errors

up until m0 = M1/2 = 4 TeV. In actual fact, only very light SUSY masses are

disfavoured by the “SOFTSUSY” line, leading to predictions above the 1σ-range.

The situation is similar for the sin2 θl
w “SOFTSUSY” line, where again only very

light SUSY masses lead to predictions outside the 1σ-range. However, using the best

available predictions, corresponding to the “2-loop” lines, a preference for light m0 =

M1/2 can be seen in the prediction for MW . The SM curve which lies just below the

1σ-interval is approached from above in the decoupling limit, furthermore indicating

a slight preference of the MSSM over the SM. The preference for light SUSY is

not as striking for sin2 θl
w. Here most of the m0 = M1/2 values are doing equally

well, which is mainly due to the fact that the SM prediction for sin2 θl
w is already

well within the 1σ-range. With the behaviour of the “one-loop” curve and the best

available result being qualitatively different, it is desirable to use the more accurate

result for MW and sin2 θl
w when calculating the χ2 contributions of MW and sin2 θl

w

using Eq.2.1. Although Ref. [9] only used the one-loop predictions, the theoretical

errors were correspondingly enlarged in order to take the larger uncertainty from

higher order terms into account.

– 6 –



LEP2 constraints on the lightest CP-
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Figure 4: LEP2 higgs χ2 penalty paid

even higgs mass are included as a further

likelihood penalty following a parameteri-

sation of LEP2 data in the SM limit [30].

For the LEP2 constraints, the SM limit

is a good approximation for mSUGRA,

since sparticle mass limits imply that we

must be near the decoupling régime of

the MSSM [31]. We estimate that the

SOFTSUSY2.0.7 determination of mh has

a 2 GeV theoretical error in mSUGRA, al-

though it may be somewhat larger in the

general MSSM [32]. We therefore smear

the parameterised LEP2 Higgs likelihood

density LLEP2(mh) with a Gaussian dis-

tribution of width σh = 2 GeV:

Lh(mh) =

∫ mh+4σh

mh−4σh

dx
1√

2πσh

e
−(mh−x)2

2σ2
h LLEP2(x). (2.5)

The result of this procedure leads to the effective ∆χ2 = −2 lnLh penalty shown in

Fig. 4. The slight excess of candidate Higgs events over the background prediction

at LEP2 can be seen by a negative ∆χ2 penalty in the figure for mh ∼ 116 − 121

GeV.

The rare bottom quark branching ratio is BR(b → sγ) is constrained to be [33]

BR(b → sγ) = (3.55 ± 0.38) × 10−4, (2.6)

obtained by adding the experimental error with the estimated theory error [34] of

0.3×10−4 in quadrature. Very recent estimates [35, 36] of BR(b → sγ) are compatible

with Eq. 2.6 at the 1σ level, although the error has decreased. Our prediction of

BR(b → sγ) is substituted for pi in Eq. 2.1 in order to calculate χ2
BR(b→sγ).

We use the WMAP3 [37] power law Λ-CDM fitted value of

Ω ≡ ΩDMh2 = 0.104+0.0073
−0.0128 (2.7)

for the dark matter relic density of the universe. We initially assume that the neu-

tralinos are stable and that they constitute the whole of the dark matter relic density.

Eq. 2.1 is used to calculate χ2
Ω, with σΩ = 0.0073 for a prediction lower than the

central experimental value and 0.0128 otherwise.

Having described the calculation of the likelihood associated with each individual

measurement, we are now in a position to define the likelihood of the set of all

measurements or observables, taken together. We are required to calculate the joint
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(total) likelihood L of all the measurements given the truth, i.e. in the notation of

Eq 2.1 we want to know:

L = p(measurements|true model) (2.8)

= p(c1, c2, . . . |m) (2.9)

= p(c1|m) · p(c2|c1,m) · p(c3|c1, c2,m) · . . . (2.10)

= L1 · p(c2|c1,m) · p(c3|c1, c2,m) · . . . (2.11)

which is not in general equal to

L1 · L2 · L3 · . . . (2.12)

unless we can be confident that for each measurement

p(c3|c1, c2,m) ≈ p(c3|m) etc. (2.13)

Fortunately we can be confident that Eq 2.13 does hold in our situation, as we have

deliberately constructed m to be broad enough such that all fundamental parameters

which might reasonably be expected to correlate any two of the measurements are

included within it2. We are therefore at liberty to write:

L = L1 · L2 · L3 · . . . (2.14)

= e−
P

i χ2
i /2 (2.15)

for the total likelihood, and we can be confident that this product takes into account

the expected correlations between all the observables contained, due to the nature

of the space {m} of models considered.

3. Dark Side Fits

We now compare and contrast the dark side fits to those with µ > 0. In Figs. 5(a)

and 5(b), we show the posterior probabilities P marginalised3 to the m0−M1/2 plane

for both signs of µ. As with all 2-dimensional marginalised plots in this paper, we

bin the plane into 75×75 2-dimensional bins. The colour bar on the right hand side

of the figures shows the posterior probability P of each bin divided by the maximum

2If the design of m were not broad enough, then m would have to be extended. For example:

were it the case that the up quark mass mu was expected to significantly correlate two or more of

the observables, then for Eq 2.13 to continue to hold, mu would have to be added to m enlarging

its dimension by one.
3For readers unfamiliar with the term: marginalisation means “integrated over the unseen di-

mensions of parameter space” in this context.
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Figure 5: mSUGRA Fits for (a) µ < 0 (b) µ > 0 marginalised to the m0-M1/2 plane.

The posterior probability is indicated by the bar on the right hand side. The inner (outer)

contours show the 68% (95%) confidence region respectively.

posterior probability of any bin in the plot. In Fig. 5(a), the only 68% contour4 is

at the lowest values of m0: all other contours are 95% confidence region contours

due to the lowish likelihood densities. The brokenness of the contours is a result

of statistical fluctuations in the results. Although these are visible, there is clearly

reliable information their trajectories in the plot. The µ < 0 plot displays two isolated

local maxima, whereas the 95% confidence region of µ > 0 is continuously connected.

We discuss the relative normalisation of the two µ < 0 maxima in appendix B.

In the 95% confidence region of Fig. 5a closest to the origin, the relic density is

dominantly depleted by either stop co-annihilation [38, 39, 40] t̃χ0
1 → tg or stau

co-annihilation [41] τ̃1χ
0
1 → τγ. On the other hand, the 95% region at higher m0 −

M1/2 consists of resonant Higgs annihilation regions [42, 43, 44], where χ0
1χ

0
1 →

h, A0 → bb̄/τ+τ− and the focus point region where the LSP has a significant higgsino

component and χ0
1χ

0
1 → ZZ, WW, tt̄ [45, 46, 47]. There was no significant stop co-

annihilation [38, 39, 40] region for µ > 0.

We now include some other marginalisations on the other 2-dimensional parame-

ter planes for µ < 0 mSUGRA with a flat prior. They are displayed in Figs. 6(a)-(d).

Figs. 6(a) and 6(b) show that the probability density for the 2-chain co-annihilation

sample is not separated from the other sample in either the M1/2 − A0 plane or the

tan β-A0 plane (the almost disconnected region at the bottom of Fig. 6(a) consists of

4Note that the confidence regions in Figs. 5 (and those in later plots) should strictly be referred to

as “Bayesian credible intervals” (each region contains a fixed amount of the posterior probability) to

distinguish them from the related concept from Frequentist Statistics called a “confidence interval”.

Usage of the term “credible interval” is not common in High Energy Physics, however, and we will

stick to “confidence region”.
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Figure 6: Constraints from global fits with µ < 0 mSUGRA marginalised to 2-dimensional

parameter planes. We have assumed a flat prior. The posterior probability is indicated by

the bar on the right hand side. The inner (outer) contours show the boundary of a 68%

(95%) confidence region.

the light h0-pole region). There is only a modest separation in the M1/2-tanβ plane:

the 68% contours do not connect the two regions, whereas the 95% contours do.

Fig. 6(d) shows that the connection between the two samples in the m0− tanβ plane

is marginal. The m0 − A0 marginalisation was useful for investigating the physics

behind the two isolated probability maxima, and is displayed in appendix B.

The probability distributions of the masses of selected MSSM particles are shown

in Fig. 7 for both signs of µ in mSUGRA. The µ < 0 sample has not been normalised

to the correct relative normalisation compared to µ > 0 in the figure. The lightest

CP-even higgs, the gluino and the lightest neutralino all have mass distributions

that are remarkably similar for either sign of µ. However, in Fig. 7(c), we see that

the µ < 0 sample has a flat plateau for higher squark masses, whereas the µ > 0

sample tails off somewhat. High squark masses will result in smaller total SUSY

cross-sections at the LHC but the lighter gluino should still provide enough events

for discovery if mg̃ < 2 TeV [48, 49]. Sharp peaks at low gluino and neutralino
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Figure 7: Probability distributions in mass of (a) the lightest CP even higgs, (b) gluino,

(c) the left-handed squark and (d) the neutralino. Flat priors have been assumed.

masses are due to the h0-resonance annihilation region [7]. The broader peak of the

µ < 0 curve in Fig. 7(c) is due mostly to the co-annihilation sample. The significant

probability densities for large gluino and squark masses are rather alarming, as then

SUSY detection at the LHC would require a longer running time. Gauginos are

not so sensitive to the range of the prior in Table 1 but the sfermions are [9] and a

reduced range makes lighter sfermions more likely. Also, naturalness priors [8] have

a large impact, reducing the likely sparticle masses.

3.1 Further investigations of the fits

We examine the best-fit points from each sampling in Table 3. We see from the table

that, as expected, the µ > 0 sample has a better best-fit point and a correspondingly

lower χ2, mainly due to the much better fit to δaµ. In agreement with Refs. [4, 24],

the best-fit µ > 0 point is at light SUSY masses. The m0 and M1/2 parameters are

smaller for the µ > 0 case than for µ < 0, corresponding to lighter sparticles and
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µ < 0 µ > 0 µ < 0 µ > 0

m0/GeV 3610 156 δaµ/10−10 -0.4 14.2

M1/2/GeV 93 569 BR(b → sγ)/10−4 3.65 3.41

A0/GeV -56 270 BR(Bs → µ+µ−)/10−9 3.1 3.7

tanβ 6.0 24.1 sin2 θl
w(eff) 0.23153 0.23152

ΩDMh2 0.102 0.101 MW /GeV 80.382 80.368

mh/GeV 117.5 115.8 χ2 4.5 1.5

Table 3: Best-fit points from the MCMC samplings for each sign of µ. χ2 ≡ ∑

i χ
2
i and

the Standard Model inputs are close to their experimental central values in each case.

the larger contribution to the anomalous magnetic moment of the muon. If we take

the µ < 0 best-fit point and flip the sign of µ, we find that the point does not break

electroweak symmetry properly and is excluded. The µ > 0 best-fit point has a total

χ2 of 181 when the sign of µ is flipped, mostly due to an increase in the predicted

value of ΩDMh2 to 0.195.

The region of smaller m0, M1/2 is more probable for µ > 0 than for µ < 0: this

will lead to a relatively heavier µ < 0 spectrum. Our µ > 0 results are generally

similar to previous analyses which did not include MW and sin2 θl
w as constraints in

Ref. [7] and to those which included the one-loop SOFTSUSY prediction for MW , sin2 θl
w

with enlarged theoretical errors [9]. This seems in contradiction to the conclusions

of Ellis et al [4, 24], where it is claimed that the electroweak variables prefer light

SUSY. Indeed, Fig. 3 indicates that MW , sin2 θl
w do mildly prefer light SUSY but

our results show that this preference is washed out in the global fits. Our results

allow for heavier sparticles than Ellis et al, mainly because we have chosen to allow

more relevant parameters to vary: 8 compared to 2 in their paper (one dimension is

fixed by requiring the relic density prediction to be the central WMAP-constrained

value). Their fits are for different discrete values of fixed tanβ, but if it were allowed

to vary, we believe that the confidence regions there would be enlarged. In the

present paper, we also obtain additional smearing from allowing mt, αs, α and mb to

vary. Figs. 8(a) and 8(b) show the probability distributions for MW , sin2 θl
w coming

from the mSUGRA fits for both signs of µ, although the sign does not make much

difference. We see that the MW prediction coming from the fits is skewed towards

values lower than the central empirical value, corresponding to a preference for heavy

SUSY from the rest of the fits. Fig. 2 confirms that heavier SUSY tends to have

lighter values of MW . From Fig. 3, we see that heavy SUSY tends to be on the upper

1σ empirical limit of sin2 θl
w. Fig. 8(b) does show evidence for this skew, which is

rather mild.

The strongest constraint in the fits comes from the dark matter relic density. In

Fig. 9, we show the probability densities resulting from the fits for the dark matter

relic density. Each curve is normalised slightly differently to allow better viewing of
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Figure 8: Posterior probability distributions for weak observables in mSUGRA.
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bution

the results. We see that both the µ > 0 and the µ < 0 ΩDMh2 distributions follow

the empirical constraint closely, except for a slight excess just lower than the central

value.

Another important aspect influencing the fits is the integrated volume of the

probability density, which is automatically taken into account in a Bayesian analysis,

as was demonstrated and pointed out in Ref. [9]. The usual arguments based purely

on values of χ2 above the best-fit value are valid when the probability density function

is Gaussian in the interesting parameters (which is certainly not the case here, as

even a cursory glance at Fig. 5 allows). Thus even if, say, the stop co-annihilation
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region had a much lower χ2 than other regions of the fits,5 the fact that its volume

in 8-dimensional input parameter space is much smaller than the other regions will

automatically disfavour it since its integrated probability will be low.

The LEP2 higgs constraints shown in
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Figure 11: Probability distribution for

tan β in mSUGRA

Fig. 4, along with the current empirical

value of mt shown in Table 1 favours rather

heavy mSUGRA. Indeed, Fig. 10 shows

that mt is skewed to somewhat higher masses

than the empirical constraint, illustrating

this tension (again, we have altered the

normalisation of the curves slightly for clar-

ity). Inspection of the α(MZ)MS, αs(MZ)MS,

mb(mb) inputs show that they follow their

empirical probability distributions very closely.

There is a large volume of parameter space

for the A0 dark matter annihilation region

at high tan β > 10 particularly for µ > 0,

as shown in Fig. 11. High values of tan β

mean that light SUSY is disfavoured by

BR[b → sγ] and BR[Bs → µ+µ−] since the data disfavours SUSY contributions [23],

which are approximately proportional to tan2 β/M4
SUSY and tan6 β/M4

SUSY respec-

tively. The distributions of these two observables are shown in Fig. 12. As can be

seen from the figure, the sign of the SUSY contribution to each observable depends

upon the sign of µ. The maxima in each figure correspond to observables being close

to their SM limit. BR[b → sγ] prefers µ > 0 mildly, as µ < 0 tends to predict a

BR[b → sγ] larger than the central empirical value.

(g−2)µ is expected to be the observable that most strongly discriminates between

the two signs of µ. We plot its distribution in each case in Fig. 13(a). Since µ < 0

has the wrong sign of δaµ compared to experiment, the probability density bunches

around zero. Clearly heavy SUSY with a less negative SUSY contribution is favoured.

However, we see that the µ > 0 distribution also prefers smaller SUSY contributions

than the data in the global fits. This was initially unexpected, and will lead to

µ < 0 mSUGRA being less ruled out. In order to understand this behaviour better,

we re-weight the µ > 0 sample in various ways. δaµ is approximately proportional

to tan2 β/M4
SUSY and we need large tanβ and rather light SUSY in order to get a

sizable value in line with the central experimental value. As explained above, this is

somewhat in conflict with LEP2 Higgs constraints and BR(b → sγ). We re-weight

the µ > 0 chains, dividing by a number that removes the likelihood contribution

from the LEP2 Higgs constraint and the BR(b → sγ) measurement, i.e. LhLBR(b→sγ).

The probability distribution of δaµ resulting from this procedure is marked as the

“reduced” curve in Fig. 13(b). It extends to somewhat higher and more central values
5In reality, the stop co-annihilation region fits the data rather marginally.
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Figure 12: Probability distributions of (a) BR(b → sγ) and (b)BR(Bs → µ+µ−) in

mSUGRA.
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Figure 13: Probability distributions for δaµ in mSUGRA (a) for flat priors and both signs

of µ and (b) for µ > 0 and various different priors. The key is explained in the text.

of δaµ, showing that some of the skew in the δaµ distribution does come from the

LEP2 Higgs and BR(b → sγ) measurements. However, the effect is rather small and

the resulting distribution is rather far from the experimental distribution, indicating

a further effect. There could be a significant volume effect if regions of parameter

space that have central values of δaµ have a small volume. This would render our

results sensitive to the prior, since by changing the measure of the input parameters,

we can change the volume measure [8]. In order to investigate the effects of this, we

re-weight the µ > 0 chains by a factor 1/(m0M1/2). Such a re-weighting mimics the
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effect of using a logarithmic prior on m0 and M1/2 since

∫

P (m0, M1/2) d lnm0 d ln M1/2 =

∫

P (m0, M1/2)
d lnm0

dm0

d ln M1/2

dM1/2

dm0 dM1/2

=

∫
(

P (m0, M1/2)

m0M1/2

)

dm0 dM1/2. (3.1)

One might consider such a prior on technical naturalness grounds. The “log prior”

results are displayed in Fig. 13(b). They have a fatter tail out to higher values of

δaµ than the flat prior sample or the “reduced” sample. When we perform the re-

weighting in Eq. 3.1 as well as the one to remove BR(b → sγ) and LEP2 Higgs

constraints, we obtain the “log prior, reduced” curve in the figure. This shows a yet

fatter tail and is starting to approach the empirical probability distribution imposed

on the fits. Our results are obviously somewhat dependent upon the prior. This is

essentially because there is not enough precise data yet to constrain mSUGRA very

strongly. We must bear in mind this dependence upon the prior, and investigate

different priors when we estimate P−/P+ below.

The total normalisation of the µ > 0, µ < 0
prior flat small log

P−/P+ 0.16 0.12 0.07

Table 4: Ratios of integrated

probability for different signs of

µ.

samples is shown in Table 4 for various different pri-

ors. The “small” prior is a flat prior with a reduced

range compared to the one displayed in Table 1. We

filter the chains to only include points with m0 < 2

TeV and |A0| < 2 TeV. The table shows that µ < 0

is somewhat disfavoured for the smaller ranges and

more disfavoured still for the log prior. The result is somewhat sensitive to the

prior, indicating the need for more data. We therefore prefer to quote a range for

P−/P+ = 0.07 − 0.16 depending upon the prior. This range is a focal result of the

present paper.

4. Fits Without WMAP3

We now briefly examine the effect of removing the dark matter χ2 penalty from the

fits. We could in principle re-weight the chains in order to do this, but we find

that that leads to statistical fluctuations in the results that are too large. Initial

investigations revealed that the efficiency becomes much higher when we remove

the dark matter relic density contribution to the total χ2. We are able to increase

the widths of the proposal distribution to 197 GeV for m0, 100 GeV for M1/2, 400

GeV for A0, 8.5 for tan β and 1σ for the Standard Model inputs and still achieve

an efficiency of around 35%. This has the consequence that the chains explore the

parameter space much quicker than in the previous section, and so less MCMC steps

are needed. We run a further 9×200 000 MCMC steps for each sign of µ. This time,
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Figure 14: Constraints from global fits without the dark matter constraint with (a) µ > 0

and (b) µ < 0 mSUGRA marginalised to the m0-M1/2 plane. We have assumed a flat prior.

The posterior probability is indicated by the bar on the right hand side. The inner (outer)

contours show the boundary of a 68% (95%) confidence region.

both signs of µ have excellent convergence statistics, R̂ being different to 1 at the

per-mille level only in each case.

We see from Fig. 14 that removing the
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Figure 16: Ωh2 distributions without

imposing the dark matter constraint.

dark matter constraint yields a very different

picture for the mSUGRA probability distri-

butions in the m0-M1/2 plane. This confirms

our statement that many of the features seen

in the previous section are due precisely to

that constraint. The probability distribution

is now much flatter in the input parameter

space. The disallowed region at low m0 and

high M1/2 is due to the no-charged LSP con-

straint. The disallowed region at low m0 and

low M1/2 is due mostly to the combined ef-

fect of the (g − 2)µ, BR(b → sγ) and mh

constraints. The disallowed region is signifi-

cantly larger for µ < 0 than for µ > 0, due

to those three observables. Marginalisations in other mSUGRA input parameter

planes tell a similar story, more featureless than the fits including the dark matter

constraint. As mentioned in the introduction, Fig. 14 covers the case of R-parity

violating mSUGRA when the R-parity violating couplings are smaller than about

0.1. For larger R-parity violating couplings, one would have to include them in the
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Figure 15: Probability distributions in mass of (a) the lightest CP even higgs, (b) gluino,

(c) the left-handed squark and (d) the neutralino. Flat priors have been assumed.

renormalisation group equations to obtain accurate results.

The more featureless fits have predictable effects on the mass spectrum of the

MSSM, as shown in Fig. 15. We have fixed the ranges of the abscissas to be identical

to those in Fig. 7 in order to facilitate comparison. The lightest CP-even Higgs

probability distribution is broader and shifted to heavier values, due to the bigger

volume of parameter space allowed at higher m0 and M1/2 values. Gluino mass

distributions no longer tail off at higher masses: upper bounds would be mostly

determined by the cut-off placed m0 and M1/2. The gluino mass and neutralino

distributions are also much less peaked than the ones in Figs. 7b,d particularly for

µ < 0. The flatter distributions are, of course, an indication that the data aren’t

strongly constraining. Large volumes at large m0, M1/2 effectively move up the squark

masses, as Fig. 15c illustrates.

The probability distribution of ΩDMh2 is shown in Fig. 16 for each sign of µ, when

we drop the relic dark matter χ2 contribution. In the figure, we see that huge values

– 18 –



can result: in fact the mean value for the µ > 0 sample tails off at ΩDMh2 ∼ 128,

much larger than the WMAP3 value of 0.1.

This illustrates the fact that regions of param-
prior flat small log

P−/P+ 0.45 0.43 0.19

Table 5: Ratios of integrated

probability for different signs of

µ with no dark matter con-

straint.

eter space which fit the dark matter data in mSUGRA

need some special annihilation mechanism that is

not typical of the whole space. This and similar ar-

guments have led several authors to consider non-

universal models [50, 51], where the relic density

might be less fine-tuned. The distributions are highly

skewed, having tiny tails up to Ωh2 ∼ 1000. The relative normalisation of µ > 0 to

µ < 0 is calculated in the same manner as in the previous section for different priors,

and displayed in Table 5. µ < 0 is hardly disfavoured in R-parity violating mSUGRA

(where we can neglect the dark matter constraint), where P−/P+ = 0.19 − 0.45.

5. Conclusions

We have performed global fits to mSUGRA using indirect data and state-of-the-art

predictions of the observables. The MCMC technique was successfully employed

despite initial non-convergence of the µ < 0 chains. Bridge sampling was used to

normalise two isolated maxima that had not been traversed by any chain for µ < 0.

We found that µ < 0 is somewhat disfavoured in comparison to µ > 0 but not by huge

margins. The rest of the fit prefers rather heavy SUSY and so the SUSY contribution

to (g−2)µ is small whichever the sign of µ. µ < 0 is only disfavoured marginally, the

ratio of integrated probability densities being P−/P+ = 0.07 − 0.16 depending upon

the prior. We see from Fig. 16 that without the dark matter constraint, ΩDMh2 is

predicted up to values of around 128. This corresponds to a χ2
Ω of around 3×108,

much larger than is likely from the other observables such as MW or sin2 θl
w(eff). The

fits are therefore completely dominated by the dark matter relic density constraint

and volume effects. Expectations that the SUSY scale will be light because of a

preference from weak observables turn out not to be true in the global fits. If the

dark matter constraint is dropped, as would be the case for R-parity violation, µ < 0

is hardly disfavoured at all, P−/P+ = 0.19−0.45. µ < 0 is much less disfavoured than

many seem to assume. Many recent analyses only consider µ > 0 on the grounds

that µ < 0 is strongly disfavoured by (g− 2)µ. We have therefore demonstrated that

this is not the case when one considers the entirety of the data and that µ < 0 should

still be considered in mSUGRA analyses.

It could be argued that the flat measure used here in m0, M1/2, A0 and tan β

can be improved upon. For instance, tan β is really a derived quantity and is related

to more fundamental Higgs potential parameters, which could be considered more

natural to have a flat measure upon. There is also the issue of fine-tuning, recently

illuminated in Ref. [52]: we could disfavour regions of parameter space that are highly
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fine-tuned, for instance [8]. Changes such as these in the prior could potentially

change the results of the fits and we intend to investigate them in a future publication.

Clearly, more data is required to decrease the dependence of results on the prior.

The most helpful data is likely to be that from colliders. The MCMC fitting tech-

nique has been used in an ATLAS study examining how cross-section and kinematic

endpoint information constrains mSUGRA and non-universal models [53]. At this

moment, without data from colliders, we are forced to use indirect constraints for

the observables. However, in the future it will be desirable to predict ΩDMh2 given

some SUSY collider observables [54, 55]. If this is in contradiction with the observed

value from cosmology, it will point to a wrong cosmological assumption, which could

then be changed. In order to really confirm that dark matter particles have been

produced at colliders, one requires compatibility with direct dark matter detection

data. Of course one would like to drop the mSUGRA assumption and perform a

general SUSY analysis, but for this it is likely that additional data from a future

international linear collider would be required [54, 55]. In any case, the techniques

investigated in this paper should prove useful for the fits.
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about priors, D Stöckinger for the two-loop contributions to the anomalous magnetic

moment of the muon, A Pukhov for help with micrOMEGAs, J Ellis, K Olive, T Plehn,

L Roszkowski, J Smillie, G Weiglein and the Cambridge SUSY working group for

helpful comments and M Calleja for invaluable help with using CAMGRID.

A. Markov Chain Monte Carlos

Our Markov chain consists of a list of parameter points (x(t)) and associated like-

lihood densities (L(x(t))). Here, t labels the link number in the chain. Given

some point at the end of the Markov chain (x(t)), the Metropolis-Hastings algo-

rithm [56, 57, 58] requires one to randomly pick another potential point (x) (typi-

cally in the vicinity of x(t)) using a proposal distribution Q(x;x(t)). There is a large

amount of freedom in the choice of the proposal function Q, and this freedom is usu-

ally exploited to improve the efficiency of the sampling process. In order to ensure

that the choice of Q does not bias the final set of samples in some way, the form of

Q is taken into account when deciding whether to accept or reject the new point. If
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the ratio ρ defined by

ρ =
L(x)

L(x(t))

Q(x(t);x)

Q(x;x(t))
(A.1)

is greater than one, the new point x is appended to the chain. If ρ is instead less than

one, a decision must be made to determine whether to accept or reject the proposed

point x. The rule is that acceptance of x must occur with probability ρ. If accepted,

x is added to the end of the chain. If not accepted, the point x(t) is copied once more

onto the end of the chain. Whichever point makes it on to the end of the chain is

thereafter known as x(t+1).

As a result of following the above steps, the sampling density of points in the

chain becomes proportional to the density of the target distribution (such as the

posterior probability density, or the likelihood when the prior is uniform) as the

number of links goes to infinity, under the circumstances described in Ref. [58].

The Metropolis-Hastings MCMC algorithm is typically much more efficient than a

straightforward scan for the dimensionality of input parameter space D > 3; the

number of required steps scales roughly linearly with D rather than as a power law.

We take the proposal function Q to be a product of Gaussian distributions along

each dimension k = 1, 2, . . . , D centred on the location of the current point along

that dimension, i.e. x
(t)
k :

Q(x;x(t)) =

D
∏

k=1

1√
2πlk

e−(xk−x
(t)
k )2/2l2k , (A.2)

where lk denotes the width of the distribution along direction k. For the case where

we include the dark matter relic density in the calculation, we choose lm0 = 100 GeV,

lM1/2
= 50 GeV, lA0 = 400 GeV and ltan β = 3. For the Standard Model inputs, we

choose lk = 8σk/20. We discuss why these particular values were chosen in the next

section.

In order to start the chain we follow the following procedure, which finds a point

at random in parameter space that is not a terrible fit to the data. We pick some

y(0) at random in the mSUGRA parameter space using a flat distribution for its

probability density function (pdf). The Markov chain for y is evolved through 2000

steps. We then set x(0) = y(2000), continuing the Markov chain in x and discarding

the “burn-in” chain y. A reasonable-fit point is typically found long before 2000

iterations of the Markov chain. We must make sure that we perform enough iterations

after this point that the chain traverses the remaining viable parameter space. We

will provide a convergence test to this effect.

A.1 Efficiency

The efficiency of a chain can be defined as “the number of links whose coordinates

differ from those of their predecessor in the chain” divided by “the total number of
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points in the chain”. There will always be a tension between efficiency and conver-

gence6 in chains: if the lk are set to be too small, efficiency will increase but the

chain will take too long to achieve convergence whereas if they are too large, the

efficiency will be so small that the sampling will contain large statistical fluctua-

tions. In practice, the bulk of our posterior probability density is contained in a very

thin hyper-surface in the 8-dimensional input parameter space [7]. It is thin because

ΩDMh2 varies very rapidly over mSUGRA space compared to the high accuracy of

the empirical constraint. With the lk listed above, we found that efficiencies were at

the per-mille level, too small to achieve a statistically stable result in a reasonable

amount of CPU time. To achieve a significantly larger efficiency, we had to reduce lk
to such a level that we lost convergence because the chains had not traversed the vi-

able parameter space. In order to counter this, we expanded the errors on ΩDMh2 to

±0.02 while calculating the likelihood density in the chain. This artificially thickens

the “surface” containing the bulk of the posterior probability density, increasing the

efficiency to much more reasonable values of around 5–7%. In order to correct for this

artificial thickening and re-impose the required constraint of Eq. 2.7, it was therefore

necessary to re-weight each link of each chain at the end of the sampling. Each link is

re-weighted by the ratio of the proper likelihood density LP to the likelihood density

with inflated errors LI :

LP

LI
= exp

(

−(cΩ − pΩ)2

2σ2
Ω

)

÷ exp

(

−(cΩ − pΩ)2

2 × 0.022

)

(A.3)

in order to impose the correct penalty on the links. We ignore additional constants

that are independent of ΩDMh2 in this expression since the overall normalisation of

the likelihood density is here undetermined. The re-weighting procedure necessarily

degrades the statistical spread of the results, however we find that the increase in

efficiency more than compensates for this effect. Below, we re-weight different vari-

ables in order to investigate various features in the results, but the method remains

analogous to the one described here.

A.2 Bridge Sampling

One of the numbers we will require from our MCMC samples is the ratio of integrated

posterior probabilities of µ > 0 (P+) and µ < 0 (P−). This ratio will tell us the extent

to which µ < 0 is disfavoured over µ > 0. Assuming a flat prior in the variables

of the model, the posterior probability is equal to the integrated likelihood divided

by a factor which does not depend upon model hypotheses or parameters. Thus

P−/P+ =
∫

dxL−(x)/
∫

dxL+(x), where L+,−(x) is the likelihood density of µ > 0

(< 0) mSUGRA respectively at parameter point (x). One way to estimate this ratio

would be to include the sign of µ as a free parameter in the Metropolis-Hastings

6For a discussion of convergence, see appendix B.
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procedure, to be chosen randomly in a proposal point. This algorithm leads to large

inefficiencies because the µ > 0 and µ < 0 likelihood surfaces have a limited overlap,

meaning that too many proposals for an opposite sign of µ will be rejected. Also,

the procedure would likely provide large statistical fluctuations for the disfavoured

sample, which we expect to be the µ < 0 one. Even though it is disfavoured, we

should like to investigate its properties.

A simple way one might hope to evaluate the ratio P−/P+ is

P−

P+

=
1

E−

[

L+

L−

] ≈ 1

N

N
∑

t=1

L−(x
(t)
i )

L+(x
(t)
i )

, (A.4)

where E− denotes the expectation with respect to the µ < 0 likelihood distribution

[12]. N denotes the number of MCMC steps. Unfortunately, a simple importance

sampling estimate of this kind does not work if there are any valid points (L 6= 0)

for one sign of µ that are invalid (L = 0) for the opposite sign of µ. In our case

there are plenty of these dangerous pairings, as sparticle mass or tachyonic bounds

move around in parameter space depending upon the sign of µ. To get around this

problem, we use a solution known as bridge sampling [12] with a “geometric bridge”.

This allows us to generate a (biased) estimator r for the ratio P−/P+ as long as there

is some viable region of µ > 0 parameter space that is also viable for µ < 0. The

estimator for the ratio is constructed as follows:

P−

P+
=

E+

[√

L−

L+

]

E−

[√

L+

L−

] ≈ r ≡

∑N
t=1

√

L−(x
(t)
+ )

L+(x
(t)
+ )

∑N
t=1

√

L+(x
(t)
−

)

L−(x
(t)
−

)

, (A.5)

where (x)
(t)
+,− are the parameter points of the links in the µ > 0 or µ < 0 chains

respectively. Here, we have assumed an equal number of links in each chain. In

summary, to calculate r, we must run two chains, one for positive µ and one for

negative µ, and for every link, record the likelihood one would have obtained for

identical input parameters except for the opposite sign of µ.

B. Convergence and Normalisation

In order to evaluate the convergence of the MCMC chains, we always run 9

independent chains with different random starting points. By comparing the simi-

larity of the resulting sampling densities of input parameters in the chains, one can

construct [59] a measure of convergence R̂. R̂ is an upper bound on the reduction

in variance of parameters that would result from running the chains for an infinite

number of steps. The precise implementation is listed in Ref. [7]. Values close to 1

indicate convergence of the chains.
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Figure 18: The two types of negative µ samples: (a) the “µ < 0, 2 chains” samples (later

shown to be co-annihilation samples), and (b) the “µ < 0, 7 chains” samples (later shown to

be non co-annihilation samples, dominated by resonant Higgs annihilation regions). The

posterior probability is indicated by the bar on the right hand side. The inner (outer)

contours show the boundary of a 68% (95%) confidence region.

We run 9 chains of 500 000 points for

 1

 2

 3

 4

 5

 6

 7

 8

 50  100  150  200  250  300  350  400  450  500

R
h

at

step/1000

µ>0
µ<0

µ<0, 7 chains
µ<0, 2 chains

Figure 17: Convergence statistics for the

MCMCs.

µ > 0 mSUGRA and for the µ < 0 dark

side of mSUGRA. The µ > 0 curve in

Fig. 17 shows good convergence is achieved

by 500 000 MCMC steps. However, the

µ < 0 curve shows a problem: conver-

gence is never achieved. This is a seri-

ous difficulty as one could not draw any

quantitative statistical inferences from the

non-converged chains. Further inspection

of the µ < 0 results shows that two of the

µ < 0 chains are in a completely differ-

ent part of parameter space than the other

seven. This indicates isolated maxima of

likelihood density which the MCMC has

not been able to jump between in the fi-

nite number of MCMC steps attempted7. There is no balance between the two

isolated maxima in the sample. Isolating the two anomalous µ < 0 chains and cal-

culating R̂ between just them, we obtain the “µ < 0, 2 chains” curve, which closely

7A proposal distribution with longer tails, such as an n−dimensional Cauchy distribution, would

have more chance of making such a jump.
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approaches 1 by 500 000 MCMC steps. Thus within this isolated maximum, conver-

gence is achieved. The same can be said of the other “µ < 0, 7 chains” samples: they

also converge amongst themselves. Thus, the shapes of each isolated maximum are

well determined, but the relative normalisation of the two different types of negative

µ samples is not.

In order to illustrate the two max-
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 0.6

 0.8

 1

mχ1
0 (TeV)

m
st

o
p
 (

T
eV

)

P/P(max)

 0.2  0.4  0.6

 0

 0.5

 1

 1.5

 2

 2.5

Figure 19: Probability density in the light-

est stop-lightest neutralino mass plane for the

2-chain sample. The posterior probability is

indicated by the bar on the right hand side.

The inner (outer) contours show the bound-

ary of a 68% (95%) confidence region.

ima, we marginalise the two types of

negative µ samples onto the m0 − A0

plane in Figs. 18(a) and 18(b). The max-

ima are isolated in this plane (as well as

in some other 2-parameter planes). The

two regions are completely separated. Their

shape is primarily determined by regions

which efficiently deplete the relic den-

sity of neutralinos which, in mSUGRA,

is often higher than the WMAP3 con-

straint. We investigate the 2-chain sam-

ple in Fig. 19. In the figure, there are

two good-fit regions: where the stau co-

annihilates [41] (at moderate values of

A0, higher values of mt̃ in the figure)

with the LSP τ̃1χ
0
1 → τγ and where the

lightest stop co-annihilates (at A0 < −3

TeV) with the LSP t̃χ0
1 → tg in the

early universe, where mχ0
1
≈ mt̃1 , the lower strip in the figure. There was no

significant stop co-annihilation [38, 39, 40] region for µ > 0. On the other hand,

Fig. 18(b) dominantly consists of resonant Higgs annihilation regions [42, 43, 44],

where χ0
1χ

0
1 → h, A0 → bb̄/τ+τ− and the focus point region where the LSP has a

significant higgsino component and χ0
1χ

0
1 → ZZ, WW, tt̄ [45, 46, 47].

We need a method to determine the relative normalisation of the 2-chain co-

annihilation sample and the 7-chain resonant higgs annihilation sample. Equivalently

we need a method to determine the ratio of the posterior probability P̃ t̃
− of the 2-chain

co-annihilation sample and the posterior probability P̃
/̃t
− of the 7-chain resonant higgs

annihilation sample. We use P̃ to denote the fact that the posterior probabilities are

un-normalised. Fortunately, Eq. A.5 provides us with a solution: we first determine

the normalisation of the µ > 0 sample with respect to each separate µ < 0 sample,

i.e. P̃ t̃
−
/P+ and P̃

/̃t
−/P+. Since these quantities individually have good convergence

properties, their ratio is also well determined:

P̃
/̃t
−

P̃ t̃
−

=
P̃

/̃t
−

P+

÷ P̃ t̃
−

P+

= 0.097 ÷ 0.063 = 1.53. (B.1)
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Normalising the probabilities as aP̃ t̃
−
≡ P t̃

−
, bP̃

/̃t
− ≡ P

/̃t
−, we fix a and b by imposing

P t̃
−

+P
/̃t
− = 1 and Eq. B.1. The relative posterior probabilities ratios are re-calculated

whenever alternative priors are investigated. In section 3 where we present the total

µ < 0 sample results, we present posterior probability densities with the correct

normalisation, according to this prescription. The ratio of the probability of µ < 0

to µ > 0 is then determined simply by:

P−

P+
=

P t̃
−

P+
+

P
/̃t
−

P+
. (B.2)

It is worth noting that, had we been unlucky, we might have obtained only chains

like those in the 7-chain sample. In that case we would have carried on with the

analysis without realising about the different 2-chain sample, therefore any results

achieved would have been incomplete. An obvious question is: were there any other

local maxima that we have missed by not running enough chains? Unfortunately,

any fitting procedure is susceptible to this caveat and there is no satisfactory answer.

Finding a high but very narrow global maximum is an unsolved problem in any

number of dimensions.
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[11] S. Heinemeyer, D. Stöckinger and G. Weiglein, Electroweak and supersymmetric

two-loop corrections to (g-2)(mu), Nucl. Phys. B690 (2004) 103,

[arXiv:hep-ph/0405255]; S. Heinemeyer, D. Stöckinger and G. Weiglein, Two-loop
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