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Abstract

Comparisons of residues between sub-types of influenza virus is increasingly used to assess the zoonotic potential of a
circulating strain and for comparative studies across subtypes. An analysis of N-terminal cleavage sites for thirteen subtypes
of influenza A hemagglutinin (HA) sequences, has previously been described by Nobusawa and colleagues. We have
expanded this analysis for the eighteen known subtypes of influenza. Due to differences in the length of HA, we have
included strains from multiple clades of H1 and H5, as well as strains of H5 and H7 subtypes with both high and low
pathogenicity. Analysis of known structures of influenza A HA enables us to define amino acids which are structurally and
functionally equivalent across all HA subtypes using a numbering system based on the mature HA sequence. We provide a
list of equivalences for amino acids which are known to affect the phenotype of the virus.
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Introduction

Increasingly, amino acid changes in HA, resulting from either
natural evolution or experimental design, are compared to amino
acids within another subtype. A common example are those
mutations that have been shown to confer binding to human
glycans. In strains from the H3 subtype, these are GIn226Leu and
Gly228Ser whereas in strains from the H5 subtype these mutations
are positions 222 and 224. Although simple ’‘rules-of-thumb’ can
be derived, such as the subtracting four from the H3 numbering to
get the position in H5 viruses, this is not always straightforward, as
typified by the recent focus on H7 viruses. The HA of H7 strains
contain many amino acid insertions and deletions (indels) relative
to viruses from the other subtypes. For amino acids close to the
receptor binding site, such as the aforementioned mutations, the
H7 numbering differs from H3 numbering by nine residues
(GIn217 and Gly219). However, two other mutations of concern,
His103Tyr and Thr315Ile, which were recently shown to facilitate
the aerosol transmission of avian A/H5N1 viruses between
mammals [1-2], lie in the N and C termini of HAI, respectively.
Due to the indels in these regions, the equivalent amino acids in
H7 strains differ by three (GIn100) and six (Thr309) amino acids,
respectively. As shown for H7, the conversion of residue
numbering between subtypes varies depending on the region of
HA being compared. Yet another complication arises due to
genetic changes within a subtype which, although uncommon, do
occur. Over one-fifth of the avian H5NT strains in the Middle East
sequenced to date have a deletion between amino acids positions
128 and 130 (mature HA H5N1 numbering). This deletion was
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also found in human seasonal H1 strains after 1995 but was not
present in early H1 strains or any of the Hlpdm strains currently
circulating [3]. Similarly, a clade of H7 strains circulating in North
America and Canada since 1996 has been shown to have eight
amino acids deleted, located surprisingly close to the receptor
binding site [4]. Conversion rules thus also depend upon the
lineage of the subtypes that are being compared.

Nobusawa and colleagues previously predicted the N-terminal
sequence for thirteen subtypes of HA based on the likely signal
peptide cleavage site of the N-terminal signal peptide [5], thus
providing a numbering scheme based on the mature sequence of
HA. Although widely cited, not all publications use this
numbering. For example, only two (3M6S and 3ZTN) out of the
thirteen currently available crystal structures of HA of the vaccine
strain of Hlpdm (A/California/04/2009) start with the mature
HA sequence (Asp-Thr-Leu-Cys-Ile). Alternative structures in-
clude six (3AL4, 4JTV and 4JUO) or ten (3LZG, 3UBE, 3UBN,
3UBQ and 4F3Z) additional N-terminal amino acids. This
variation in N-terminal numbering, in addition to subtype specific
differences caused by indels, can increase confusion in interpreting
amino acid equivalences. To avoid inaccuracies, it is important to
have a scheme to define and compare numbering between
subtypes.

Here we report an updated prediction of the proteolytic
cleavage sites for all subtypes. We analyse known structures of
HA to enable us to define amino acids which are structurally and
functionally equivalent across the eighteen currently known
subtypes of influenza A. Combining both of these results, we are
able to compile a list of equivalences for amino acids which are
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known to affect the phenotype of the virus for all known HA
subtypes.

Materials and Methods

Representative sequences of HA for each subtype were
downloaded from the Influenza Research Database (IRD).
Potential N-terminal cleavage sites were predicted using the
signalP [6-7] web-server. The amino acid sequence N-terminal to
the predicted cleavage site was removed from each sequence. If a
crystal structure was available, these were aligned based on their
structural similarity using Pymol [8]. We then aligned the
remaining sequences to the sequences of the other subtypes using
FUGUE [9]. In general, amino acids in protein secondary
structures (o-helices, B-strands) which are inaccessible to solvent
or involved in interactions with other amino acids, are more
conserved than those in loop regions or those exposed to solvent.
Thus, amino acid insertions or deletions are more likely to occur
solvent exposed regions or in regions without well-defined
secondary structures. FUGUE uses knowledge of these differences
in evolutionary constraints, in addition to sequence conservation,
to aid its sequence alignment. This structure-based sequence
alignment was subsequently manually adjusted based on inspec-
tion of the structures to accurately reflect structural similarity of
loop regions.

Results

We have re-analysed the predicted N-terminal signal peptide
cleavage sites of subtypes H1 to H13 and have extended this
analysis to include subtypes H14 to H18. Table 1 shows the signal
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Table 1. Predicted signal peptide cleavage sites for all HA subtypes.
N-terminal sequence of
Subtype Representative strain Signal Peptide mature protein
H1 A/United Kingdom/1/1933 MKARLLVLLCALAATDA DTICIGYHANNS
H2 A/Singapore/1/1957 MAIIYLILLFTAVRG DQICIGYHANNS
H3 A/Aichi/2/1968 MKTIALSYIFCLPLG QDLPGNDNSTATLCLGHHAVPN
H4 A/swine/Ontario/01911-2/1999 MLSIAILFLLIAEGSS QNYTGNPVICLGHHAVSN
H5 A/Vietnam/1203/2004 MEKIVLLFAIVSLVKS DQICIGYHANNS
H6 A/chicken/Taiwan/0705/1999 MIAIIVIATLAAAGKS DKICIGYHANNS
H7 A/Netherlands/219/2003 MNTQILVFALVASIPTNA DKICLGHHAVSN
H8 A/turkey/Ontario/6118/1968 MEKFIAIAMLLASTNA YDRICIGYQSNNS
H9 A/swine/Hong Kong/9/1998 MEAASLITILLVVTASNA DKICIGYQSTNS
H10 A/mallard/bavaria/3/2006 MYKIVVIIALLGAVKG LDKICLGHHAVAN
H11 A/duck/England/1/1956 MEKTLLFAAIFLCVKA DEICIGYLSNNS
H12 A/duck/Alberta/60/1976 MEKFIILSTVLAASFA YDKICIGYQTNNS
H13 A/gull/Maryland/704/1977 MALNVIATLTLISVCVHA DRICVGYLSTNS
H14 A/mallard/Astrakhan/263/1982 MIALILVALALSHTAYS QITNGTTGNPIICLGHHAVEN
H15 A/duck/Australia/341/1983 MNTQIIVILVLGLSMVRS DKICLGHHAVAN
H16 A/black-headed-gull/Turkmenistan/13/1976 MMIKVLYFLIVLGRYSKA DKICIGYLSNNS
H17 Allittle-yellow-shouldered bat/Guatemala/060/2010 MELIILLILLNPYTFVLG DRICIGYQANQN
H18 A/flat-faced bat/Peru/033/2010 MITILILVLPIVVG DQICIGYHSNNS
The N-terminal signal peptide cleavage site of HA was predicted using the signalP [7] for all HA subtypes. Most subtypes are cleaved close to a highly conserved aspartic
acid. Three subtypes lacking this aspartic acid are cleaved at a glutamine resulting in a longer HA sequence.
doi:10.1371/journal.pone.0112302.t001

peptide and N-terminal amino acid sequence of the mature
protein based on the cleavage sites predicted using signalP [7-8],
for each of the HA subtypes. More than half of all subtypes are
predicted to be cleaved at an aspartic acid which is three amino
acids N-terminal to a completely conserved cysteine. In agreement
with Nobusawa, three subtypes are predicted to be cleaved at the
amino acid preceding this aspartic acid at either a leucine (H10) or
a tyrosine (H8 and H12). Three subtypes, H3, H5 and H14, lack
the aspartic acid and are predicted to be cleaved at a glutamine,
resulting in a longer mature N-terminal region. The signal peptide
contains a stretch of about 10 hydrophobic amino acids that have
a tendency to form a single alpha-helix, albeit with little sequence
conservation between subtypes. In total, between 16 and 19 amino
acids are removed from the N-terminal sequence to facilitate the
movement of the virus through the ER membrane.

To define amino acids which are structurally equivalent across
subtypes, we compared the available protein structures of all
subtypes of HA to produce a sequence alignment based on the
structural similarity of HA. For those subtypes without an HA
structure (H4, H6, H8, H10-H18), we aligned their sequences to
those of the other subtypes using an algorithm which considers
structural features in addition to sequence conservation (see
Material & Methods) [9]. The structure-based sequence alignment
of HA1 is shown in figure 1. The subtypes have been ordered
according to their phylogenetic grouping [10] and coloured
according to sequence conservation [11]. We have highlighted
those regions of HA which show significant differences in structure
between strains of different subtypes. These are typically loops
between secondary structures and are regions which contain
insertions and deletions. Amino acids in these regions should only
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Figure 1. Sequence alignment of HA for known sub-types. Alignment of mature HA sequence for all known HA sub-types. Additional strains
have been included for sub-types which show variation in the length of HA. Sequences are ordered according to their phylogenetic classification as
group 1 (magenta bar) or group 2 (orange bar) HA. The protein secondary structure elements, a-helices and B-strands, are highlighted with red bars
and cyan arrows, respectively. A blue box highlights regions which have high structural variation across all subtypes. Amino acids within these
regions should not be defined as equivalent between all sub-types. Each amino acid is coloured according to clustalx2 rules [11]. Briefly, glycine and
proline are coloured orange and yellow, respectively. Conserved positively charged residues and negatively charged residues are coloured red and
magenta, respectively. Conserved cysteines are coloured pink while conserved serine or threonine residues are in green. The remaining amino acids,
if conserved are coloured blue. The sequences representative of each subtype are as follows: H1(A/United Kingdom/1/1933); H1pdm(A/California/04/
2009); H2(A/Singapore/1/1957); H3(A/Aichi/2/1968); H4(A/swine/Ontario/01911/2/1999); H5(A/Vietnam/1203/2004); H5c221(A/chicken/Egypt/0915-
NLQP/2009); H6(A/chicken/Taiwan/0705/1999); H7(A/Netherlands/219/2003); H8(A/turkey/Ontario/6118/1968); H9(A/swine/HongKong/9/1998);
H10(A/mallard/bavaria/3/2006); H11(A/duck/England/1/1956); H12(A/duck/Alberta/60/1976); H13(A/gull/Maryland/704/1977); H14(A/mallard/Astra-
khan/263/1982); H15(A/duck/Australia/341/1983); H16(A/black-headed-gull/Turkmenistan/13/1976); H17(A/little-yellow-shouldered-bat/Guatemala/

060/2010); H18(A/flat-facedbat/Peru/033/2010).
doi:10.1371/journal.pone.0112302.g001

be considered to be equivalent when comparing closely related
subtypes.

As previously described, some subtypes show clade specific
differences in the length of the amino acid sequence of HA. We
have therefore distinguished in our analysis H1 strains post-1995
and strains from clade 2.2.1 of H5. Additionally, the insertion of
many positively charged amino acids in the C-terminal of HA1 in
some strains of H5 and H7 subtypes is well known to increase the
pathology of viral infection in poultry, leading to high rates of
fatality [12]. A consequence is that the numbering of positions C-
terminal to the cleavage site (position 326 for low pathogenic strains
of H5) will differ. For H5 and H7 subtypes, we therefore also include
both low-pathogenic (H5N1:A/mallard/Italy/3401/2005; H7:A/
Turkey/Italy/220158/2002) and high-pathogenic (H5N1:A/Viet
nam/1203/2004; H7N7:A/Netherlands/219/2003) strains. The
sequence alignment including all subtypes spanning both HA1 and
HAZ2 is available as File S1.

From these alignments, we can now derive residue numbering in
cach subtype, of every position of HA, relative to its mature
sequence. This list of equivalences for all residue positions and
across all subtypes are available as File S2 and at http://www.
antigenic-cartography.org/surveillance/evergreen/HAnumbering.
Positions which are most often compared across subtypes are those
which have been shown to be associated with changes in phenotype.
In 2012, the WHO Collaborating Center for Influenza Reference
and Research at the Centers for Disease Control and Prevention in
Atlanta compiled an inventory of amino acid mutations found in
H5N1 viruses http://www.cdc.gov/flu/avianflu/h5nl/inventory.
htm). The equivalent residue numbering for these mutations in HA
are listed in Table 2 for those subtypes which circulate in humans
(H1, H3) or from which zoonoses frequently occur (H5, H7, H9).

Discussion

The length of the HA segment of influenza A shows substantial
variation both between and within HA subtypes. This is caused by
both changes in the length of the N-terminal signal peptide
cleavage site and subtype specific amino acid insertions and
deletions within the HA. These differences often makes it difficult
to compare amino acid changes within HA of one subtype to those
seen in another subtype.

We have re-assessed the predicted N-terminal signal peptide
cleavage sites of all known subtypes (H1 to H18), confirming the
previous definitions of the thirteen subtypes of HA previously
reported by Nobusawa [5]. Using a structure-based approach we
have analysed the structural and functional conservation of each
position of HA across all subtypes. We have identified regions of
HA which are structurally conserved across subtypes, including
both low and highly pathogenic strains of H5 and H7 subtypes,
and strains of H1 and H5 which show clade specific differences in
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the length of HA. From this data we have defined equivalent
residue numbering for each subtype.

It is often stated that amino acid positions are ’equivalent’ but
rarely is this term defined explicitly. In structural biology, when
comparing structures of proteins with evolutionary divergent
sequences, such as HA from different subtypes, segments of the
structure can be described as being either structurally conserved
regions (SCRs) or structurally variable regions (SVRs). SCRs have
similar structural features, such as the shape of the peptide
backbone and the orientation of the sidechain atoms, and these
regions usually have high sequence conservation. Like many
proteins, the conserved regions within HA are those which are
critical for its function, such as the receptor-binding site, or those
that are required for the correct folding or stability of the protein
structure. Amino acids within these regions can be described as
equivalent in the sense that they will adopt nearly identical
conformations and form similar interactions with other amino
acids or bio-molecules. It is equally important to appreciate the
limitations of a sequence alignment. Most alignment algorithms
are parameterised to favour as few insertions and deletions as
possible and do not always reflect local structural similarity. It is
possible to have regions of sequences aligned which show little
structural similarity and thus should not be described as SCRs.
However, it needs to be noted that the SCR designation is not an
absolute. Whilst many SCRs can be conserved across highly
divergent sequences (between influenza A and influenza B viruses,
for example), it is possible to define SCRs which are only
conserved between closely related sequences, such as only between
group | sub-types of HA.

In contrast, SVRs are regions which have very little structural or
functional similarity between two related proteins. These regions
are usually in the solvent exposed turns of the protein structure.
These are also the regions where insertions and deletions of amino
acids frequently occur, since they can be accommodated without
major disruption of the fold or function of the protein. Amino
acids in these regions should not be described as equivalent and
comparisons between sub-types has little biological relevance.

Many studies attempt to compare, and sometimes replicate,
mutations seen in one subtype, such as H5, to those in another
subtype. Careful consideration of the level of structural and
functional conservation of that region (its equivalence), however, is
crucial. This is especially important when inferring analogous
mutations from subtypes belonging to a different phylogenetic
group. We feel that the use of this set of residue numbering and
analysis of structural conservation will facilitate cross-subtype
comparisons and reduce confusion in reporting amino acid
numbering.
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Supporting Information Legends

File S1 Structure based sequence alignment for HA. The
sequence alignment including all subtypes spanning both HA1 and
HAZ2. This alignment includes a strain of seasonal HINI strain
post-1995 (A/NewCaledonia/20/1999/HIN1) and strains of H5
(A/mallard/Italy/3401/2005/H5N1) and H7 (A/Turkey/Italy/
220158/2002/H7N3) with low pathogenicity.

(DOC)

File $2 Equivalent amino acid numbering for all known
HA subtypes. Residue numbering is based on the mature
sequence of HA across all subtypes. The amino acid at each
position for the representative strain of that subtype is also given.
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