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Abstract

We present a swift walk-through of our recent work that uses machine learning to fit
interatomic potentials based on quantum mechanical data. We describe our Gaussian
Approximation Potentials (GAP) framework, discuss a variety of descriptors, how to
train the model on total energies and derivatives and the simultaneous use of multiple
models of different complexity. We also show a small example using QUIP, the software
sandbox implementation of GAP that is available for non-commercial use.
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INTRODUCTION

Molecular scale simulation is a mature field with a wide range of electronic structure methods

that approximate the solution of the Schrödinger equation in a systematic fashion. For

larger scale computations empirical interatomic potentials are used, which are nowadays fit

to data generated by electronic structure models. Together these play a significant rôle in

understanding processes on the microscopic level, complementing experiment and theory.

Computer simulations are regularly used to interpret experimental results and to predict

properties of materials.

The power of atomistic simulations would be enormously enhanced if the interatomic

potentials used to simulate materials were not limited by their simple empirical functional

forms but accurately approached the Born-Oppenheimer potential energy surface, similarly

to the case of small molecules for which quantum chemists have been fitting accurate potential

energy surfaces for decades. The challenge in the materials field is that rather than fitting

the total energy of a fixed number of atoms, the task is to find a unique local functional that

describes the energy of a single atom or bond given its neighbour environment. This local

energy function must naturally allow for bond forming and bond breaking, i.e. the change

in the number and identity of the atoms comprising the neighbour environment.

A number of groups—many of them contributing to the present volume—have started

research programmes to address this problem using advances in the synthetic understanding

that recently emerged in statistics and machine learning.1–6 These fast-growing fields are

concerned with classification, regression and probability density estimation on large and

noisy data sets, and also with finding suitable variable transformations that allow increased

performance in these tasks. There are a number of closely related computational frameworks

that are widely used, including artificial neural networks, stochastic processes (e.g. Gaussian

processes) and regularised non-parametric optimisation. In this tutorial introduction we

focus on a particular exposition that allows a succinct presentation of the formalism and how

it can be brought to bear on the problem of fitting potential energy surfaces for materials

based on data computed by electronic structure methods. For detailed derivations of the

necessary fundamental results we refer the reader to the machine learning and statistics
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literature7,8.

neighbourhood Set of nearby atoms whose positions constitute the input to the local

energy function evaluated for a given atom.

descriptors Transformation of the positions of atoms in the neighbourhood, obeying

the desired symmetries of the energy function. Also called features.

kernel Similarity measure between two neighbourhoods, equivalent to the co-

variance of the corresponding two local energy values.

Table 1: Definition of central concepts used in fitting accurate potentials for materials.

METHODOLOGY

The hallmark of an interatomic potential is that the total energy, E, of a set of atoms is

written as a sum of range-separated terms,

E =
∑
α

∑
i∈α

εαi + long range contributions (1)

where εαi are local energy functionals with compact support within a radius rcut, and by

“long range contributions” we mean electrostatics including polarisability, van der Waals

interactions etc. This is an uncontrolled approximation, since there is nothing about the

Schrödinger equation that tells us a priori that its solutions can be written in this form:

the level of accuracy and its applicability in any particular situation has to be tested by

numerical experiments. The index α denotes the type of contribution: the arguments of a

local energy term may be any suitable descriptors, e.g. atom-pair distances, bond angles,

or indeed the complete atomic environment, and the index i counts the instances of these

terms in a particular configuration, e.g. all bonds for a pair term, all angles for a three-body

angle-dependent term, or all atoms for an atom-centered term. We can think of descriptors

as functions that transform the Cartesian coordinates of the atoms in the neighbourhood of

a given atom.

In this paper we will only discuss the local energy contribution, although it is clear that for

many materials in which atoms acquire significant partial charges or have easily polarisable
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electrons it must be complemented by electrostatic and dispersion interactions. These long

range terms can either remain completely empirical, but may also include parameters that

are fitted to data using approaches similar to what are used for the local term.

Gaussian Process Regression

We first consider the case of a single type of local energy functional. Using a set of arbitrary

basis functions {φh}Hh=1 that take as their arguments any descriptor di of the neighbour

environment of atom i, we write the atomic energy εi as

εi = ε(di,w) =
∑
h

whφh(di), (2)

where w is a vector of weights wh corresponding to the basis functions, to be determined

by the fit. If the prior probability distribution of the weights is chosen to be Gaussian with

zero mean, i.e. P (w) = Normal(w;0, σwI), the covariance of two atomic energies is

〈εiεj〉 =

〈∑
hh′

whwh′φh(di)φh′(dj)

〉
=
∑
hh′

〈whwh′〉φh(di)φh′(dj) = σ2
w

∑
h

φh(di)φh(dj) (3)

where we exploited that 〈whwh′〉 = δhh′σ
2
w. The inner product of the basis functions in the

last expression defines the kernel or covariance function

C(di,dj) ≡
∑
h

φh(di)φh(dj). (4)

Kernel functions in this application are to be understood as similarity measures between

two atomic neighbour environments. Every basis set induces a corresponding kernel, and as

seen below, only the kernel is required for regression, we never need to construct a basis set

in the space of descriptors explicitly. General requirements on kernel functions are in the

literature7,9.

Our goal is to predict the energy of an arbitrary atomic configuration, based upon a

data set of previous calculations. For any set of microscopic observations t—which could

be the local atomic energies or the total energies of all atoms in a set of configurations—

the covariance matrix is defined as C ≡ 〈tt>〉, and its elements can be computed using the

previously defined covariance function. The prior probability of observing t is also Gaussian,

P (t) = Normal(t;0,C) ∝ exp

(
−1

2
t>C−1t

)
. (5)
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The predicted value y of a new test configuration, given previous observations t, has the

probability distribution

P (y | t) =
P (t, y)

P (t)
(6)

which is also Gaussian. We take the mean of this distribution as the prediction, which can

be expressed7 as

ȳ = k>C−1t (7)

where k is the covariance vector of function values: k ≡ 〈y t〉. This shows the real power

of the Gaussian process approach: the original basis functions we started with and their

corresponding unknown weights are never required explicitly, the predictions only depend

on the kernel function C and the previous observations t.

It can be shown10 that a two-layer neural network with infinite number of hidden nodes

and hyperbolic tangent switching function is equivalent to a Gaussian process with

C(di,dj) ∝ V − |di − dj|2. (8)

Extra layers in neural networks with more than two layers can be regarded as performing

a nonlinear transformation on the input coordinates, before the output layers carry out the

regression task.

Yet another equivalent approach for fitting functions is kernel ridge regression, where the

unknown function is expanded as a linear combination of radial basis functions∗,

f(d) =
∑
i

αiC(d,di), (9)

and the weights α are optimised by minimising the cost function

L =
∑
i

(ti − f(di))
2 + λ||α||2. (10)

If we define the norm as

||α||2 = α>Cα, (11)

the predictions of kernel regression are also equivalent to those of the Gaussian process. The

kernel here has the dual role of defining both the basis functions and the norm of the weights

in the loss function.
∗We note that kernel ridge regression is not limited to radial basis functions, any positive definite kernel

may be used.9
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Total energies

Atomic energies are unavailable in quantum mechanical calculations, which only provide the

total energy and its derivatives. From these, we have to predict the local energies. It is

straightforward to modify equation (3) to express the covariance of the total energies of two

set of atoms, N and M,

〈ENEM〉 =

〈∑
i∈N

ε(di)
∑
j∈M

ε(dj)

〉
=

〈∑
i∈N

∑
j∈M

∑
hh′

whwh′φh(di)φh′(dj)

〉
=

∑
i∈N

∑
j∈M

∑
hh′

〈whwh′〉φh(di)φh′(dj) = σ2
w

∑
i∈N

∑
j∈M

∑
h

φh(di)φh(dj) = σ2
w

∑
i∈N

∑
j∈M

C(di,dj)

(12)

Derivatives

The total quantum mechanical energy of a configuration depends on the relative positions of

the atoms and, in case of condensed systems, also the lattice parameters. Denoting a general

coordinate by ξ, the partial derivative of the total energy is related to the force as

fkα = − ∂E

∂rkα
= −∂E

∂ξ
if ξ ≡ rkα (13)

or to the viral stress as

vαβ =
∂E

∂hαβ
=
∂E

∂ξ
if ξ ≡ hαβ (14)

where rkα is the α-th component of the Cartesian coordinates of atom k and hαβ is an

element of the deformation matrix H of the lattice vectors. Differentiating equation (12)

with respect to an arbitrary coordinate ξk of configuration N results in〈
∂EN
∂ξk

EM

〉
=
∂〈ENEM〉

∂ξk
= σ2

w

∑
i∈N

∑
j∈M

∇di
C(di,dj) ·

∂di
∂ξk

. (15)

If ξk is the x, y, or z component of the position of atom k, ∂di

∂ξk
becomes exactly zero if

the pair distance |ri − rk| is beyond the cutoff of the environment, so the first sum need

not be done over all atoms in the configuration. Similarly, the covariance of two derivative

quantities may be written as〈
∂EN
∂ξk

∂EM
∂χl

〉
=
∂2〈ENEM〉
∂ξk∂χl

= σ2
w

∑
i∈N

∑
j∈M

∂d>i
∂ξk

(∇di
C(di,dj)∇>dj

)
∂dj
∂χl

, (16)
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where the elements of the Jacobian are

(∇di
C(di,dj)∇>dj

)αβ =
∂2C(di,dj)

∂diα∂djβ
(17)

The local energy ε is still predicted by using equation (7), but the elements of y are total

energies or derivative quantities, and the elements of the covariance matrix C are therefore

computed by equations (12), (15) or (16). The elements of k are the covariance between the

local energy that we wish to predict and the data that we have available, 〈εE〉 or 〈ε ∂E/∂ξ〉

as appropriate.

Multiple models

Interactions in some atomistic systems might be partitioned using a many-body type ex-

pansion – indeed, many traditional interatomic potentials are based on a few low-order

contributions, such as two- and three-body energies11. We now describe how such models

can be fitted using Gaussian process regression. For example, truncating the local part of

equation (1) at three-body contributions, the total energy is approximated as

E =
∑

p∈ pairs

ε(2)p +
∑

t∈ triplets

ε
(3)
t (18)

where ε(2) and ε(3) are general two- and three-body energy functions, respectively, and pairs

and triplets in this context may refer to atoms as well as entire molecules. Two independent

Gaussian processes are used,

ε(2)(··) =
∑
h

w
(2)
h φ

(2)
h (··) (19)

ε(3)(∴) =
∑
h

w
(3)
h φ

(3)
h (∴), (20)

where ·· and ∴ denotes generic geometric descriptors of pairs and triplets (in case of molecules,

the descriptors need to describe the whole dimer and trimer configuration). The prior distri-

butions of the two weight vectors are independent Gaussians, so the covariance of the total

energy of two configurations N and M may be written as

〈ENEM〉 = σ2
w(2)

∑
p∈pairsN

∑
q∈pairsM

C(2)(p, q) + σ2
w(3)

∑
t∈tripletsN

∑
u∈tripletsM

C(3)(t, u), (21)
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where we applied the same kernel trick as above and exploited that 〈w(2)
h w

(3)
h′ 〉 = 0 for any

h and h′. As the two-body terms can, in principle, be included in the three-body terms,

splitting them appropriately might require setting the the variances of the two terms carefully.

For example, if 80% of the total interaction energy is expected to be due to pair interactions,

this information can be built into the prior by using the ratio σw(2) : σw(3) = 4 : 1.

Compact support

The local energy terms need to have compact support to be computationally efficient, and

this is typically achieved by using an explicit spatial cutoff function. In machine learning

models for materials, the cutoff may be built into descriptors12, so only neighbours within a

predefined radial distance of the central atom are considered. Alternatively, cutoffs may be

implemented in the kernels. Consider the pair energy model

ε(2)(··) = fcut(··)
∑
h

w
(2)
h φ

(2)
h (··) (22)

where fcut is defined such that it goes smoothly to zero as a function of the geometric

attributes of the pair (e.g. as the distance between them approaches a limit, in case of a

pair of atoms). The resulting covariance function is

〈ε(2)(p)ε(2)(q)〉 = σ2
w(2)C

(2)(p, q)fcut(p)fcut(q). (23)

In our implementation we use

fcut(r) =


1 for r ≤ rcut − d[

cos
(
π r−rcut+d

d

)
+ 1
]
/2 for rcut − d < r ≤ rcut

0 for r > rcut

(24)

as the cutoff function, where d is a parameter that determines the width of the cutoff region.

There is some freedom in choosing a numerical value for d, but two criteria has to be

considered: the covariance should change smoothly when two atoms become connected, and

minimising the spurious effect of the cutoff transition on the derivatives. We typically use

d = 1 Å, as this is regarded the length scale of atomic interactions.

8



Data noise

A configuration’s total quantum mechanical energy and its derivatives can be extrapolated to

exact numerical values, provided the various convergence parameters of the applied quantum

mechanical method are used appropriately. However, we should still regard these as noisy

observations when trying to fit a model, for the following reasons:

(i) the separation into a sum of local contributions is an approximation,

(ii) our model is additive over various contributions with unknown individual ratios,

(iii) our model employs a finite cutoff,

(iv) the quantum mechanical calculations may not be fully converged.†

Thus we modify our model in equation (1) to include a Gaussian noise νE, P (νE) =

Normal(νE; 0, σE)

E =
∑
α

∑
i

εαi + νE (25)

and similarly, derivative quantities are modelled as

∂E

∂ξk
=
∂
∑

α

∑
i ε
α
i

∂ξk
+ νξ (26)

where P (νξ) = Normal(νξ; 0, σξ). As a consequence, equation (12) is modified to give the

covariance of observed total energies

〈ENEM〉 = σ2
w

∑
i∈N

∑
j∈M

C(di,dj) + σ2
EδNM , (27)

and the covariance of observed derivatives becomes

∂2〈ENEM〉
∂ξk∂χl

= σ2
w

∑
i∈N

∑
j∈M

∂d>i
∂ξk

(∇di
C(di,dj)∇>dj

)
∂dj
∂χl

+ σ2
ξδNMδξkχl

(28)

†This could be an advantage, as we do not need fully converged quantum mechanical data.
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Sparsification

It is easy to see that computing covariance matrices and vectors can become quite expensive,

especially if derivative quantities are also included. This, combined with the assumption

that atomic neighbourhood environments are often repetitious, leads to the idea that sparse

Gaussian processes might be applied. Sparsity is a central concept in machine learning, and

sparse Gaussian processes are described in detail by, for example, Quiñonero-Candela and

Rasmussen,13 or Snelson and Ghahramani14. In our adaptation of sparsification, we use

representative atomic neighbourhood environments, or pairs and triplets etc. The model is

built using all observations in the dataset and it can be regarded as a projection onto a

subset of data points, the sparse representation.

Let us consider a set of configurations, each of which contains an arbitrary number of

atoms and the corresponding set of total energies, derivatives or both. The observables are

collected in the vector t. We select a set of environments, the sparse set S, and compute the

covariance matrices:

(CSS)ss′ = 〈εsεs′〉, where s, s′ ∈ S, (29)

(CST )st = 〈εsEt〉, (30)

where s ∈ S and t is an index of total energies in t, and

(CST )sτ = 〈εs
∂Et
∂ξk
〉, (31)

where s ∈ S and τ denotes derivative observables in t. The predicted value at an arbitrary

atomic neighbourhood environment d∗ can be calculated from

ε∗(d∗) = k>∗ (CSS + CSTΛ−1TTCTS)−1CSTΛ−1TT t, (32)

where (k∗)s = 〈ε∗εs〉, and ΛTT is a diagonal matrix, where each diagonal element is σ2
E or

σ2
ξ , depending on the type of observable. As configurations may contain different numbers

of atoms, we scale σ2
E accordingly. Note that the part multiplying k∗ from the right is

precomputed at the training stage, so only k∗ needs to be computed for each prediction,

and this scales linearly with the number of sparse points (and not with the total number

of original data points!). Derivatives of ε∗ are readily available analytically, using the ap-

propriate covariance functions. In practice, we found that the sparse covariance matrix CSS
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should be regularised by adding a small positive constant σjitter to the diagonal values. The

numerical value of the constant should be as small as possible, without compromising the

positive definiteness of CSS. Normally σjitter is 6-9 orders of magnitude less than the diagonal

elements.

Descriptors

The success of applying machine learning techniques to fit potential energy surfaces depends

to a large extent on representing the atomic environments appropriately. Transformations

of atomic positions to which the local energy is invariant, i.e. rotation and inversion of an

environment about its centre, and permutation of identical atoms should be explicitly built

in. We presented a detailed study on representing chemical environments elsewhere12 in

which we focussed on atom-centred neighbourhood environments. Here we describe a few

other types of descriptors.

Pairs and triplets

Pairs of atoms are simply described by the distance between them, but in case of triplets

the distances need to be symmetrised. If atoms j and k form a triplet with i as the central

atom, a possible descriptor can be the vector

[rik + rij, (rik − rij)2, rjk]. (33)

As we mentioned earlier, the covariance function must be augmented by a cutoff function.

We use fcut(rij) for the pair terms, and in case of triplets we use fcut(rij)fcut(rik).

Water dimers

It is clear that our approach to symmetrise distances in case of three-body descriptors will be

overly complicated if we attempt to apply it on more than a couple of atoms. For example,

the potential energy surface of water can be modelled very accurately using a many-body

expansion of interactions between water molecules.15,16 The two-body term in the expansion

necessitates a descriptor for the water-water dimer, for which we used the pairwise distances
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between the constituent atoms, 15 in total. However, this descriptor in this form is not

invariant to permuting atoms of the same element. If exchange of hydrogen atoms between

different molecules is not permitted, the following permutations P̂ that operate on the order

of atoms must be taken in account:

(i) swaps of water molecules in the dimer (2)

(ii) exchange of hydrogen atoms within each molecule (2× 2),

so 8 in total. Instead of modifying the descriptor, we enforced permutation symmetry at

the level of the kernel function. If we take an arbitrary kernel function, C(d,d′), that takes

vector arguments, we can generate a permutational invariant kernel as

C ′(d,d′) =
∑
P̂

C(d, P̂d′), (34)

which must be normalised9:

C ′′(d,d′) =
C ′(d,d′)√

C ′(d,d)
√
C ′(d′,d′)

. (35)

We used the squared exponential as our starting kernel in the case of water molecules.

SOAP

We note that our previously introduced12 kernel based on “Smooth Overlap of Atomic Posi-

tions” may be interpreted from the function-space view we used throughout this manuscript.

We represent the atomic neighbourhood of atom i by the neighbourhood density function

(for illustration, see Figure 1)

ρi(r) ≡
neigh.∑
j

exp

(
−|r− rij|2

2σ2
atom

)
, (36)

and εi, the atomic energy of atom i can then be regarded as a functional of ρi

εi = ε[ρi] =

∫
w(r)ρi(r)dr (37)

where the prior distribution of the weights is Gaussian, so

〈w(r)w(r′)〉 = δ(r− r′)σ2
w, (38)
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resulting in the covariance of two atomic energies

C(ρi, ρj) = 〈εiεj〉 =

〈∫
w(r)ρi(r)w(r′)ρj(r

′) dr dr′
〉

= σ2
w

∫
ρi(r)ρj(r) dr. (39)

It is useful to note here that if C is a valid kernel, then |C|p is also valid9. This covariance

function |C|p is not invariant to rotations, but we may convert it in a similar fashion to what

we did in the case of the water dimer:

C ′(ρi, ρj) =

∫
|C(ρi, R̂ρj)|pdR̂, (40)

which must then be normalised, so the final result is

C ′′(ρi, ρj) =
C ′(ρi, ρj)√

C ′(ρi, ρi)
√
C ′(ρj, ρj)

. (41)

In practice, we evaluate the SOAP kernel numerically by first expanding equation (36)

in a basis set

ρi(r) =
∑
nlm

c
(i)
nlmgn(r)Ylm(r̂), (42)

where c
(i)
nlm are the expansion coefficients corresponding to atom i, {gn(r)} is an arbitrary

set of orthonormal radial basis functions, and Ylm(r̂) are the spherical harmonics. We form

descriptors from the coefficients by computing the power spectrum elements

p
(i)
nn′l ≡

1√
2l + 1

∑
m

c
(i)
nlm(c

(i)
n′lm)∗, (43)

and the rotationally invariant covariance of atoms i and j is given by

C ′(ρi, ρj) =
∑
n,n′,l

p
(i)
nn′lp

(j)
nn′l, (44)

which we normalise according to equation (41). The normalisation step is equivalent to

normalising the vector elements p
(i)
nn′l, so C ′′ is, in fact, a dot-product kernel of vectors

p(i)/|p(i)| and p(j)/|p(j)|. Note that it is often useful to raise C ′′ to a power ζ > 1, in order

to sharpen the difference between atomic environments. To see the details of the above

results, we refer the reader to our earlier work.12,17.
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SOFTWARE

The ideas presented in the Methodology section are implemented in the QUIP package,

which can be downloaded from the git repository at https://github.com/libAtoms/QUIP.

Code related to GAP prediction can be obtained under an non-commercial licence from

http://www.libatoms.org/gap/gap_download.html. Users who wish to use the training

code should contact the corresponding author.

QUIP is a molecular simulation sandbox written in object-oriented FORTRAN95/2003,

with interfaces to python (compatible with ASE), and various other simulation packages,

such as LAMMPS, CP2K, CASTEP, and others. QUIP is essentially a collection of objects

and interfaces that contain and manipulate atomic configurations and interatomic potentials.

The GAP implementation provides over 20 different descriptors, which can be used with

two types of covariance functions, the squared exponential

C(di,dj) = δ2 exp

(
−1

2

∑
α

(
diα − djα

θα

)2
)

(45)

and the polynomial kernel

C(di,dj) = δ2(di · dj + σ2
0)ζ . (46)

To demonstrate the training, we provide a simple example, where we train GAP to re-

produce the well-known Stillinger-Weber (SW) potential11 for silicon. We used a database

of Sin silicon clusters, n = 7 . . . 13, sampled from a 2000 K molecular dynamics simulation.

We used 600 configurations in total, with total energies and forces calculated using the SW

potential. We used a combination of two- and three-body interactions, with a cutoff of 4.1 Å.

We used the command line

teach_sparse at_file=data_Si_SW.xyz descriptor_str={ \

distance_2b cutoff=4.1 n_sparseX=250 covariance_type=ard_se theta_fac=0.5: \

angle_3b cutoff=4.1 n_sparseX=500 covariance_type=ard_se theta_fac=0.5} \

default_sigma={0.001 0.05 0.01} sparse_jitter=1.0e-8 e0=0.0

Table 2 summarises the command line arguments used in this example. The command line

argument descriptor_str contains the parameters of the descriptor, which depend on the

type. We define the number of sparse points n_sparseX and the type of covariance func-
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at_file contains the database configurations, in concatenated XYZ files

descriptor_str parameters of descriptor(s)

default_sigma the assumed standard deviation of the errors, {σenergy σforce σviral}

sparse_jitter regularisation of the sparse covariance matrix, σjitter

e0 baseline of atomic energies

Table 2: Overview of the basic command line arguments of teach sparse.

tion. theta_fac is the simplest way to control the θα length-scale parameters in the squared

exponential covariance function: the range of the descriptor values in each dimension α is

scaled by the constant theta_fac. More descriptors can be concatenated, separated by

the : symbol, resulting in the fitting of a model that is the sum terms each based on one

descriptor.

It is possible to specify an existing QUIP potential as a baseline, so energies/forces/virials

are subtracted from the target values before fitting. These are added back automatically

when the potential is called. Naturally, the baseline can be another GAP, resulting in

hierarchical models with arbitrary level of recursion.

In the above example, it is possible to check whether the GAP model was able to recover

both terms of the target model, as they are available analytically. We emphasise that the

fitting uses total energies and forces only, so the machine learning algorithm has to infer the

separate two- and three-body terms from this convoluted data. To show the quality of the

fit, we plot the pair potential in Figure 2 and the angle term in Figure 3 for both the original

SW and the fitted model. The agreement is rather good in both cases, except at the edges

of the range where there was no input data.

The potential file generated by teach_sparse can be used to compute the total energies

and similar quantities of arbitrary configurations. For example

eval at_file=data_Si_SW.xyz param_file=gp.xml init_args={IP GAP} e f

will compute the total energies (“e”) of the configurations stored in data_Si_SW.xyz as well

as the atomic forces (“f”) using the fitted GAP model from the file gp.xml. Another use of

eval is to compute and print the descriptor vectors for any descriptor type implemented in
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QUIP. For example,

eval at_file=data_Si_SW.xyz descriptor_str={angle_3b cutoff=4.1}

prints all three-body descriptors, in this case the descriptors defined in equation (33).
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Figure 1: A two-dimensional illustration of the atomic neighbour density function used in

SOAP. The black circle represents the radial cutoff distance.
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Figure 2: The two-body term in the Stillinger-Weber potential for silicon. The dashed line

represents the analytical answer, the solid line shows the GAP fit. The histogram above

corresponds to the input data to the fit.
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Figure 3: The three-body term in the Stillinger-Weber potential for silicon. We fixed the

two neighbours at 2.5 Å and 2.8 Å and varied the bond angle and plotted the sum of all three

interactions between the three atoms. The dashed line represents the analytical answer, the

solid line shows the GAP fit. The histogram above represents the input data to the fit.
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