
Paper for submission to the Geological Society of London Special Publication  
“The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas” 
 

 1 

 1 

Magnetite-bubble aggregates at mixing interfaces in andesite magma 2 

bodies 3 

M. Edmonds1*, A. Brett1, R. A. Herd2, M. C. S. Humphreys3, A. Woods1 4 

1. Earth Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EQ 5 

2. School of Environmental Sciences, University of East Anglia, Norwich 6 

3. Earth Sciences Department, University of Durham 7 

* Corresponding author me201@cam.ac.uk 8 

 9 

ABSTRACT   10 

Magnetite is a particularly favourable site for heterogeneous bubble nucleation in magma and yet 11 

only very rarely is evidence for this preserved, owing to the myriad of processes that act to 12 

overprint such an association. The possibility of bubble-magnetite aggregates in magmas carries 13 

with it interesting implications for the fluid mechanics of magma bodies and for the magma mixing 14 

process responsible for the formation of andesites. We use image analysis and statistical methods to 15 

illustrate a spatial association between magnetite and bubbles in mafic enclaves. There is a large 16 

range in magnetite contents in the enclaves, up to 7.5%, which is related to the porosity of the 17 

enclaves, indicating a mechanism of enrichment of the mafic magma in magnetite. In the andesite 18 

there is no spatial association between bubbles and magnetite and the magnetite content of the 19 

andesite is small. We suggest a mechanism for enclave formation whereby in vapour-saturated 20 

magma, bubbles nucleate on magnetite. Upon intrusion into the base of an andesite magma body, 21 

these bubble-magnetite aggregates rise and “sweep up” other magnetites, resulting in the 22 

accumulation of aggregates at the magma interface. Instabilities lead to the flotation of enclaves, 23 

characterised by enrichment in magnetite and bubbles. 24 

 25 
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There is strong evidence that mafic magmas in arc settings are rich in water. Rare olivine-hosted 32 

melt inclusions from Mount Shasta, for example, record H2O contents of up to 10 wt% (Grove et 33 

al., 2003) and data suggest that mafic arc melt inclusions have an average of 4 wt% H2O (Plank et 34 

al., 2013). Aluminium in hornblende hygrometers applied to arc mafic magmas require melt H2O 35 

contents of 4-8 wt% (Ridolfi et al., 2010). The H2O contents of the cores of pyroxene phenocrysts 36 

in equilibrium with andesite from Soufrière Hills Volcano reflect melt H2O contents of up to 10 37 

wt% (Edmonds et al., 2014), derived from the fractionation of a mafic melt with 4-6 wt% H2O. 38 

Models of “hot zone” processes at the base of the arc crust invoke water-rich magmas being 39 

emplaced into the lower crust, their outgassing lowering the solidus of the ambient crust and 40 

allowing assimilation of amphibolite and previously emplaced intrusions, leading to the formation 41 

of evolved magmas (Annen et al., 2006). It is therefore likely that mafic magmas, during their 42 

ascent through the arc crust, are vapour-saturated for most of their passage, carrying with them a 43 

population of bubbles of a supercritical fluid containing substantial H2O. The dissolved and 44 

exsolved volatile budget of these mafic magmas is a dominant control on the mechanisms of 45 

magma mingling and/or mixing when these magmas underplate, or intrude evolved, long-lived 46 

crystal-rich magma bodies in arcs (Huppert et al., 1982, 1986; Bacon, 1986; Nakamura, 1995; 47 

Huber et al., 2010). Ultimately, the transfer of these volatiles to the overlying andesitic magmas, 48 

and subsequent outgassing prior to and during eruption, controls eruption style, the transport and 49 

segregation of metals, and the flux of volcanic gases into the atmosphere. Finding petrological 50 

records of exsolved vapour and the process by which mafic magmas interact with cooler evolved 51 

magma bodies is challenging (Wallace, 2001; Blundy and Cashman, 2008; Gardner, 2009). Original 52 

bubble populations tend to be overprinted in stored and erupted magmas by crystallisation, bubble 53 

growth and coalescence, and outgassing (Larsen et al., 2004; Gardner, 2007). If, however, bubbles 54 

nucleate preferentially on one particular mineral phase, then this spatial association might provide a 55 

means to understand the fluid mechanics of bubbles, and of bubble-mineral aggregates in mafic arc 56 

magmas. 57 

 58 

Mafic magmas are likely to fractionate amphibole and magnetite throughout the arc crust (Sisson 59 

and Grove, 1993; Grove et al., 1982).  It is likely, upon vapour saturation of the melt, that bubbles 60 

will nucleate on crystals that provide energetically favourable sites. During nucleation, the larger 61 

the liquid-mineral wetting angle (figure 1), the larger the reduction in surficial energy. In rhyolitic 62 

magmas, the liquid-mineral wetting angle for magnetite is 45-50º, compared with 5-25º for felsic 63 

silicates (Schafer and Foley, 2002; Gualda and Ghiorso, 2007). Nucleation on magnetite is therefore 64 

favoured over any other phase, in both theory and experiment. Extensive heterogeneous nucleation 65 
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of bubbles on magnetite has been observed during laboratory magma decompression experiments 66 

(Hurwitz and Navon, 1994; Mangan and Sisson, 2000, 2005; Gardner and Denis, 2004; Gardner, 67 

2007; Cluzel et al., 2008; Gardner and Ketcham, 2011). No such association between bubbles and 68 

other phases, such as quartz and feldspar, has been observed (Mangan and Sisson, 2000; Gualda and 69 

Ghiorso, 2007). It has been shown that the total Gibbs free energy of the bubble-liquid-crystal 70 

system is always lower in the case of bubble-crystal attachment over bubble-liquid configurations, 71 

meaning that heterogeneous nucleation is always preferred (Gonnerman and Gardner, 2013). 72 

Furthermore, as the wetting angle between bubble and mineral increases (figure 1), the efficiency 73 

of adhesion of bubbles to minerals is decreased (owing to the deformation force required to change 74 

the bubble shape from spherical) but the energy barrier to detachment of bubbles from crystals is 75 

greatly increased, so that once a bubble is attached, a larger force is required to detach it (Gualda 76 

and Ghiorso, 2007). The energy reduction caused by bubble-magnetite attachment is several orders 77 

of magnitude greater than that for bubble attachment to other minerals. Furthermore, it has been 78 

shown that, theoretically, magnetite grains of several hundred microns in size can be held attached 79 

to a bubble by surface forces (Gualda and Ghioso, 2007). 80 

 81 

An association between magnetites and a bubble has been recognised previously: a pre-eruptive 82 

aggregate of multiple magnetite crystals and a single bubble was observed in a pumice sample from 83 

the Bishop Tuff rhyolite (Gualda and Anderson, 2007).  This observation prompted suggestion that 84 

the formation of magnetite-bubble aggregates might be a mechanism of storing exsolved vapour in 85 

a magma reservoir, whereby the magnetite anchors the positively buoyant bubble (Gualda and 86 

Ghiorso, 2007). Finding evidence for such an association in erupted magmas is extremely 87 

challenging. Shear forces act to detach bubbles from crystals during eruption and during convection 88 

in the magma chamber. In addition, pre- and syn-eruptive processes of bubble growth, coalescence 89 

and outgassing will usually overprint the spatial link between the two phases, if such a link 90 

originally existed. Bearing in mind the ways in which overprinting of textures might occur, it would 91 

seem that the most likely magma types within which a spatial link between magnetite and bubbles 92 

might be preserved are those that quenched rapidly prior to eruption, such as mafic enclaves chilled 93 

against a cooler magma. In this scenario, enclaves may retain the characteristics of the original 94 

bubble and magnetite populations without significant modification. 95 

 96 

We studied samples erupted from Soufrière Hills Volcano, Montserrat in 2007. The eruption (1995-97 

2011; Wadge et al., 2014) was characterised by crystal-rich andesite (with a rhyolitic melt), with up 98 
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to ~ 10 vol% mafic enclaves (Murphy et al., 2000; Barclay et al., 2010; Plail et al., 2014). The 99 

andesite exhibits petrological evidence for recent heating, in the form of sieve-textured plagioclase, 100 

opaticized amphibole, reverse-zoned orthopyroxene, and resorbed quartz (Murphy et al., 2000; 101 

Humphreys et al., 2009a). Melt inclusions in plagioclase in the andesite contain up to 6.3 wt% H2O 102 

and a few hundred ppm CO2 (Humphreys et al., 2009b; Edmonds et al., 2014). Compositional 103 

zoning at the rims of titanomagnetite in contact with ilmenite suggests that at least the latest stage of 104 

heating might have taken place weeks-months before eruption (Devine et al., 2003). Geophysical 105 

observations of strain and ground deformation, as well as numerical modelling of magma flow, 106 

place constraints on the form of the plumbing system (Elsworth et al., 2008; Fooroozan et al., 2010; 107 

Hautmann et al., 2009). A coupled magma reservoir system exists at depth, with one magma storage 108 

area at around 12 km and one shallower, at around 5-7 km. The shallow chamber is connected to the 109 

surface via a dyke (Costa et al., 2013). Studies of volcanic gas emissions from Soufrière Hills 110 

Volcano have invoked largely unerupted mafic magma (perhaps the magma erupted in the form of 111 

enclaves) as the source of the sulphur gas emissions (Edmonds et al., 2001; 2010). Mafic enclaves 112 

have a diktytaxitic texture, indicative of rapid quenching against a cooler magma (Bacon 1986; 113 

Clynne, 1999; Martin et al., 2006) and a porosity of up to 40 vol% (Edmonds et al., 2014). Phase 114 

equilibria and amphibole compositions suggest water concentrations of up to 6-10 wt% (Edmonds 115 

et al., 2014). Mafic enclaves exhibit a range of textural and compositional types, ranging from 116 

basaltic enclaves with glassy margins to more crystalline enclaves of basaltic andesite composition 117 

(Plail et al., 2014). 118 

 119 

In this paper, we look for evidence that bubbles nucleate on magnetite in the magma reservoir 120 

beneath the Soufrière Hills Volcano. We use image analysis and statistical techniques on 121 

backscattered electron images to assess whether there is an association between magnetites and 122 

bubbles, or bubbles and other phases, in the erupted andesitic lavas and in mafic enclaves. We 123 

investigate the implications of such an association for understanding the behaviour of magnetite-124 

bubble aggregates and magma mingling and the fluid mechanics of the basaltic magma at the 125 

interface with the andesite. 126 

 127 

METHODOLOGY 128 

We use statistical analysis of the spatial distribution of grains in 2D back-scattered electron images 129 

to investigate whether there is any relationship between the positions of magnetite grains and 130 

bubbles in the samples. Methods are described in detail below. 131 
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 132 

Samples 133 

Samples for this study are andesitic blocks with porosity of up to 25 vol% in pyroclastic flow 134 

deposits (table 1). The lava blocks were sampled from the January 2007 Belham River pyroclastic 135 

flow deposit. The lava blocks have mafic enclaves up to 25 cm in dimension but more commonly < 136 

5 cm (Plail et al., 2014; figure 2), with a porosity of up to 25 vol%. The andesite blocks have been 137 

degassed to variable degrees and the porosity structure has been affected undoubtedly by bubble 138 

coalescence, outgassing and collapse (Klug and Cashman, 1996; Giachetti et al., 2010). The mafic 139 

enclaves, however, display glassy quenched rims and porosities up to 25 vol% (Edmonds et al., 140 

2014), raising the possibility that they preserve a greater proportion of their original porosity 141 

structure that existed prior to eruption. The sample names have a hierarchy that relate to individual 142 

hand specimens from blocks in the flow deposit, i.e. BR6_x where x is 1, 2 and 3 are three samples 143 

from the same hand specimen. Pumice samples were not used in this study as the exceedingly high 144 

vesicularity meant that crystals were too sparse and bubbles not separated sufficiently for 145 

meaningful statistical analysis.  146 

 147 

Scanning electron microscope images and image analysis 148 

The images were acquired using a JEOL JSM-820 Scanning Electron Microscope (SEM) operating 149 

at an accelerating voltage of 20kV (Earth Sciences, Cambridge). The software ImageJ was used to 150 

characterise the resulting images. Magnetite and vesicles were isolated by setting appropriate 151 

greyscale value thresholds, which were then quantified using the “Analyze Particles” function. For 152 

every particle, area (minimum, mean and maximum grey values), centroid, centre of mass, and 153 

perimeter length were recorded. Measurements were made with two minimum particle sizes (areas 154 

of 10 pixel units and 50 pixel units). The 10 px-thresholded analyses contained many more spurious 155 

results (e.g. of cracks or dust). As a consequence, the 50 px-thresholded analyses were used for the 156 

statistical analysis, which introduced a systematic failure to sample the smallest particles. However, 157 

the choice of this larger minimum size meant that most of the cracks and holes inside phenocrysts 158 

were avoided. There remains a small fraction of these voids in the interior of crystals (<<1% of total 159 

particles) that have been recorded as points in the populations, but these do not change the form of 160 

the statistical plots. Sampling bias was also introduced by the size of the thin sections: there is a 161 

potential bias away from the very largest vesicles, which exceed 0.5 cm in size. The backscatter 162 

images also vary in their magnification, resulting in a variable pixel size ranging from 0.14 microns 163 

to 2.25 microns (table 1), which may also affect results. The centroid positions of orthopyroxenes 164 
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was also recorded for sample MVO1560_1 to test the null hypothesis that bubbles are related 165 

equally well spatially to all phases. Representative backscatter images of the andesite and of the 166 

mafic enclaves, with the phases labelled, are shown in figure 3.  167 

 168 

Statistical analysis 169 

The aim of the statistical analysis is to evaluate whether two populations are spatially clustered i.e. 170 

whether their locations are dependent upon one another. In the petrological literature, there are 171 

many examples of studies aiming to assess clustering and the spatial characteristics of single 172 

populations of phases (e.g. Jerram et al., 1996; Jerram et al., 2003; Higgins and Chandrasekharam, 173 

2007); far fewer attempting to assess the spatial dependence of multiple populations of phases. The 174 

traditional statistic used to evaluate clustering is the aggregation index, , of Clark and Evans 175 

(1954) and later Kretz (1966), Boorman et al (2004), Higgins (2006) and Jerram et al. (1996, 2003). 176 

The R index is based on the nearest neighbour distances: 177 

 178 

            (1) 179 

 180 

where  is the mean of the distances separating points from their nearest neighbours, and  is the 181 

expected value of  for complete spatial randomness. By definition, R=1 for complete spatial 182 

randomness. If the points are clustered, the distance to nearest neighbours is shorter than that 183 

expected for complete spatial randomness and R<1. Conversely, if points are ordered (with points 184 

further away than expected for spatial randomness), R>1. The nearest neighbour distance 185 

distribution function of a point pattern is the cumulative distribution function G r( )  of the distance 186 

r from a typical random point to the nearest other point of the population, given by 187 

 188 

G r( ) =1− exp −λπr2( )          (2) 189 

 190 

where λ  is the intensity, or the number of points per unit area. The drawback of using the R index, 191 

and nearest neighbor statistics, however, is that it is “short-sighted” and cannot characterise particle 192 

spatial patterns further away than the nearest neighbor. It cannot distinguish, for example, between 193 

complete spatial randomness and the case with both clustering and ordering on different length 194 

scales, since R=1 in both cases (Rudge et al., 2008).  195 

R

R = rA
rE

rA rE

rA
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 196 

Instead of nearest neighbor analysis alone, we have chosen to use a range of statistical methods 197 

based on Ripley’s K Function, , calculated using Spatstat, a statistical package that uses R as a 198 

platform. The pair correlation function (or radial distribution function) is defined as 199 

 200 

          (3)
 201 

 202 

where   203 

 204 

K r( ) =
E # extra events within distance r of a randomly chosen event( )

λ
   (4) 205 

 206 

and where  is the number per unit area of particles.  The parameter , a transformation of 207 

, is defined as 208 

 209 

          (5)
 210 

 211 

For a completely random (uniform Poisson) point pattern, the theoretical value of the L-function is 212 

= , yielding a straight line with a positive slope on a plot of  against  (e.g. figure 4).  213 

 214 

The pair correlation function allows a more complex analysis of ordering and clustering on multiple 215 

length scales, instead of being confined to the nearest neighbour. The value determines how 216 

likely an inter-point distance of  is: is equal to 1 for complete spatial randomness. If >1 217 

then it is more frequent than complete spatial randomness; if <1 then it is less frequent than 218 

complete spatial randomness (e.g. figure 4). Edge effects are taken into account. These arise when 219 

incomplete grains near the edge, whose centroids fall within the bounding box, are not counted, 220 

leading to fewer grains near the edge, which biases all the statistics. Another source of error is that 221 

nothing is known about grains outside of the window under consideration: a grain may have a 222 

nearest neighbor just outside the window, for example, instead of the grains that are visible inside 223 

the window (Rudge et al., 2008). To correct for this latter effect, a buffer zone is introduced around 224 

K r( )

g r( )

g r( ) = 1
2πr

dK r( )
dr

λ L r( )

K r( )

L r( ) =
K r( )
π

L r( ) r L r( ) r

g r( )

r g r( ) g r( )

g r( )
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the edge of the observation window where nearest neighbour distances are not calculated, but the 225 

points are available as neighbours for the points in the inner region (Clark and Evans 1954). The 226 

buffer zone should be large enough so that the nearest neighbours of points in the inner region can 227 

always be found either in the inner region or in the buffer zone. Choosing the size of the buffer zone 228 

is critical: too large and valuable data is discarded; too small and edge effects remain (Rudge et al., 229 

2008).  230 

 231 

Synthetic point patterns 232 

Synthetic distributions were generated to provide validation data for our investigation (figures 4, 5) 233 

and are divided into two groups. Independent populations (figure 4) are two separate populations (A 234 

and B) superimposed upon one another, where the individual points of each (i and j) have no spatial 235 

link or dependence; the populations may be random (poisson), clustered (gaussian) or ordered.  236 

Random populations were generated using a random number generator, with specified average 237 

intensity (point density). Clustered populations were generated using a number of random seed 238 

positions and specified cluster densities (we use “strong” and “weak” cluster densities with effects 239 

similar to those observed in natural distributions) and cluster dimensions, with a Gaussian 240 

distribution around the seed point. Ordered distributions are generated using a self-avoiding 241 

algorithm, whereby the image space is populated sequentially by points using the maximum 242 

distance from all existing neighbouring points.  243 

 244 

For each synthetic point pattern, cumulative probability distributions to show nearest neighbour 245 

distances, Ripley’s L function, and the pair correlation function, were generated (figure 4). For 246 

random population pairs that are not spatially linked (figure 4a), nearest neighbour cumulative 247 

probability plots show no difference from the data generated from the random simulations (grey 248 

envelope). For the rest of the independent pattern nearest neighbour plots, in general the nearest 249 

neighbour distances are longer than predicted for the random pair pattern simulations (i.e. there is a 250 

marked absence of short nearest neighbour distances), with the exception of random-ordered 251 

(figure 4b) and ordered-ordered (figure 4e), which show an absence of the longer distances, 252 

consistent with the ordering of at least one of the particle populations.  In contrast, the plots of the 253 

cumulative Ripley’s L Function shows that, without exception, when the two point patterns are 254 

spatially independent, regardless of point pattern “type” there is no statistical difference between 255 

simulations on two random point patterns, and the data generated from the synthetic pattern. The 256 

pair correlation function, which is essentially the non-cumulative form of the Ripley’s L function, 257 
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shows essentially the same thing. The departures at small r reflect the nearest neighbour deviations 258 

from random behaviour. Importantly though, the medium and far-field are no different to the 259 

statistics generated from random simulations (the grey envelope), and this is true for all of the 260 

independent population point patterns in figure 4. The wave-like features at the larger distances 261 

have a wavelength proportional to cluster intensity, or ordering intensity. The only pattern showing 262 

a slightly stronger signal (a slight departure from random in Ripley’s L function, and a positive 263 

excursion from random in the pair correlation function) is the synthetic pattern showing two 264 

independent clustering patterns (weak and strong; figure 4i). This may be an artefact arising from 265 

the particular point pattern generated. In order to establish the source of these data it would be 266 

necessary to run multiple analyses on a number of different clustering patterns. For the purposes of 267 

this analysis, however, it can be seen the departures from random for these independent population 268 

synthetic patterns in the medium and far field are small and of no consequence. 269 

 270 

Linked, or dependent, populations are generated using common seed points (figure 5). For 271 

example, for a linked random-randomised two population synthetic pattern (figure 5i), population A 272 

is a random (poisson) distribution of points i, population B is defined as having individual points j 273 

(Bj) shifted from Ai, using random vectors from each point i, using a specified number of pixels as 274 

available sites around Ai. For a linked ordered-clustered two population synthetic pattern, a random 275 

subset of the ordered point pattern points i of population A is used as seeds for the clusters in point 276 

pattern B defined by points j. Each point pattern contains 1000 points.  277 

 278 

For each pair of dependent point patterns, statistical data for nearest neighbour, Ripley’s L function, 279 

and the pair correlation function (pcf) were generated (figure 5). The statistical data show quite 280 

striking differences to the independent patterns shown in figure 4. Paired clustered populations 281 

have nearest neighbour cumulative probability distributions strongly skewed to small distances 282 

(figure 5a-c). Ordered-clustered paired populations show the opposite: distributions skewed to large 283 

distances, with the smallest distances absent (figure 5d, e). However, there are very large positive 284 

deviations at very small r (<0.1), caused by the way that the second populations uses seeds derived 285 

from the first population. This strong positive deviation is observed in almost all of the dependent 286 

synthetic patterns and is also expected to occur in natural populations if they are strongly spatially 287 

linked. The ordered and random populations with the second population “randomised” around 288 

points of the first (figure 5e, f) show a larger fraction of smaller distances than the random case. For 289 

the Ripley’s L function plots, which consider particles further away than the nearest neighbour, 290 
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significant departures from random behaviour are only observed when the two populations exhibit 291 

paired clustering, i.e. when the two populations are clustering in the same place (figure 5a-c). The 292 

pair correlation function shows positive and broad departures from random behaviour. The random-293 

randomised results (a random first population, with the second population paired with it so that one 294 

particle of the second population is randomly distributed around each particle of the first; figure 5i) 295 

show an effect similar to the paired clustered populations above, albeit slightly weaker. There is a 296 

positive excursion from random in both nearest neighbour and Ripley’s L function, and a similarly 297 

shaped pair correlation function plot (figure 5i). When one population is ordered, the pair 298 

correlation function plots show a negative deviation from random behaviour at distances of <1, 299 

caused by the self-avoiding algorithm used to generate the ordered populations. This might arise in 300 

the natural population when there are other phenocrysts, for example, which act to separate the two 301 

populations in a systematic way, or when the two populations particle sizes have a finite minimum 302 

size. 303 

 304 

The effect of changing the order of the analysis was also investigated (figure 6), for the cases of the 305 

dependent synthetic populations clustered-randomised and random-clustered. In the first case 306 

(figure 6a), the first population is clustered; this might represent clustered magnetites, for example. 307 

The second population nucleates preferentially upon the first, resulting in two clustered populations. 308 

This might represent bubbles nucleating on clustered magnetites, with the result being that 309 

magnetites and bubbles are both clustered, with common seed points. The spatial statistics show 310 

strong clustering in nearest neighbour distances, Ripley’s L and the pair correlation function. In the 311 

second case, the first population is random and the second population nucleates preferentially upon 312 

the first. This represents the case where magnetites are distributed randomly and bubbles nucleate 313 

on them. The spatial statistics in this case are very different; clustering behaviour is only observed 314 

at small distances, with ordering at intermediate distances. These two cases might just as easily, of 315 

course, represent magnetites nucleating on clustered bubbles (figure 6a) and magnetites nucleating 316 

on randomly distributed bubbles (figure 6b). We regard this as slightly less likely than the case 317 

where magnetite is the first population. We can therefore discriminate, from the synthetic data, 318 

whether the first population is clustered or randomly distributed. 319 

 320 

The results of these simulations show, unequivocally, that two independent populations can be 321 

distinguished from the case where the two populations are linked spatially. Furthermore, the nature 322 

of the linkage can be established in some cases: where both populations are clustered with common 323 
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seed points, this results in a very characteristic set of spatial statistics, most categorically in Ripley’s 324 

L function. Comparison between the statistics generated from the natural data, with these results 325 

from the synthetic patterns, allows discrimination between these scenarios. 326 

 327 

RESULTS 328 

Magnetite and vesicle size and area distributions  329 

Representative backscatter images of the vesicular andesite lava, breadcrust bombs and mafic 330 

enclaves are shown in figure 3. The size distributions of bubbles and magnetite grains are shown in 331 

figure 7 as kernel density estimates (generated using the ksdensity normal kernel smoothing 332 

function in Matlab). The sample types (andesite or mafic enclave) are listed in table 1 and marked 333 

on figure 7. In general, the vesicles in the mafic enclaves have larger modal sizes and broader size 334 

distributions, ranging to larger vesicle sizes. However, the more crystalline mafic enclaves (e.g. 335 

BR11, MVO 1592 1) have narrower peaks in the vesicle size distribution at smaller sizes, more 336 

similar to the andesite (figure 7). There are no clear differences in terms of magnetite size 337 

distribution between mafic enclaves and andesite samples. Modal bubble sizes range from 20-40 338 

microns, with some mafic enclave samples showing significant positive skew in the distribution, 339 

with tails extending up to 200-250 microns (e.g. MVO 1587 2, MVO 1592 4). Magnetite grains 340 

have a modal size of typically 25-60 microns, with the largest grains occurring in mafic enclave 341 

sample MT19 1. The grain size distributions are positively skewed, with a larger than expected 342 

proportion of larger crystals in the size range 100-300 microns. In almost all cases, the magnetite 343 

and vesicle sizes are coupled, such that the distributions show similar magnitudes and shapes for a 344 

single sample.  345 

 346 

There is a large range in the area fraction of magnetite in the mafic enclave images, which reaches 347 

7.5 % (figure 8), which is in contrast to the andesite samples, which have magnetite area fractions 348 

up to c. 2 %. Vesicle area fractions range between 12 and 24 % in the mafic enclaves, and 2-23 % in 349 

the andesite samples. These values for vesicle area fraction are consistent with previous work for 350 

Soufrière Hills (Edmonds et al., 2014) and with work on bubble growth, outgassing and bubble 351 

collapse recorded in other similar dome-forming magmas (e.g. Stasiuk et al., 1996; Hammer et al., 352 

2000; Scheu et al., 2006). There is a weak negative correlation between vesicle area fraction and 353 

magnetite area fraction (figure 8), which may indicate a genetic link between the two phases. 354 

 355 
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Two population (bubble-magnetite) statistics  356 

Figures 9, 10 and 11 show the point patterns and the statistics generated from the natural data, 357 

which are shown as backscatter images at the far left of the figure. Representative andesite samples 358 

are shown in figure 9, which shows, without exception, that there is no significant departure from 359 

random behaviour in the nearest neighbour plots. The large negative deviations at small r (<20 360 

microns) are likely due to the finite size of the magnetites and vesicles (figure 7), which imposes 361 

ordering. All of the samples shown display a small positive deviation from random in the Ripley’s 362 

L and pair correlation functions at distances 20-200 microns (figure 9), consistent with dependent 363 

clustering or dependent random populations (figure 5). The andesite pair correlation function data 364 

are isolated and shown in red in figure 11, with the theoretical random distribution shown at 1, as 365 

well as a grey envelope to show the region in which the results of 100 random simulations plot.  366 

Overall the statistical data for the andesite plots showing little near field and only weak medium 367 

field spatial linkage between magnetites and vesicles in the images. 368 

 369 

Representative data for the images that show parts of mafic enclaves are shown in figure 10. These 370 

data are markedly different from the andesite data in figure 9. Nearest neighbour plots consistently 371 

show a mode at higher distances than for the random case, characteristic of clustered populations, 372 

but not conclusive in showing that the populations are paired. However, the Ripley’s L function 373 

plots for the enclaves show varying degrees of strong positive excursions from the random case, 374 

particularly for r<100 µm, indicating that both populations are clustered (from comparison with 375 

figure 5 and from the analysis shown in figure 6), and further, that they are spatially dependent 376 

upon one another, sharing common seed points. This paired, clustered relationship is also shown in 377 

the pair correlation function plots, which show a strong positive and broad shape. The comparison 378 

between the enclave and andesite pair correlation function with particle distance is shown in figure 379 

11.  The data for the mafic enclaves are significantly different to the andesite and furthermore, 380 

significantly different from the envelope defined by the results of 100 random simulations, which is 381 

not the case for the andesite data. The mafic enclave pair correlation function plots also show 382 

negative deviations from random behaviour at r< 30 microns, consistent with the bubble and 383 

magnetite sizes (figure 7), which imposes a minimum limit on particle separation and apparent 384 

ordering.  385 

 386 

To summarise, the statistical data for the mafic enclaves show that the first population of particles 387 

(magnetite) shows significant clustering, leading to linked clustered behaviour in the vesicle 388 
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distribution also. The andesite shows only a very weak spatial linkage between the two populations. 389 

The results of the pyroxene-bubble paired analysis are shown in figure 12. For this particular 390 

image, there is no spatial relationship between bubbles and orthopyroxene. 391 

 392 

DISCUSSION 393 

The results of this study show that magnetite and bubble sizes are coupled in all samples studied 394 

(figure 7). There is a large range in mafic enclave magnetite contents, which is related weakly to 395 

the vesicularity of the samples (figure 8). In the andesite samples, the area fraction of magnetite 396 

varies very little, up to 2%. We propose that the variation in vesicularity with magnetite content is 397 

linked with enclave bulk composition, as shown in previous studies (Edmonds et al., 2014; Plail et 398 

al., 2014). The enclaves may be classified into one of two types: A and B (Plail et al., 2014). Type 399 

A is more mafic in bulk composition (basaltic) and contains mainly hornblende and plagioclase as 400 

phenocryst phases. Vesicularity is high, the groundmass is glassy and the enclaves typically have 401 

quenched margins. The most vesicular enclaves in figure 8, with the lowest magnetite contents, are 402 

of this type. Type B enclaves range to basaltic andesite in bulk composition, and contain 403 

plagioclase, pyroxene and oxides as phenocryst phases. They have lower vesicularity and a 404 

crystalline groundmass, with no quenched margin; we propose that the lower vesicularity enclaves 405 

on figure 8 are of this type. Type B enclaves have almost certainly lost a substantial portion of their 406 

porosity through outgassing, as suggested by their higher degree of bubble coalescence and absence 407 

of quenched glassy margins (Edmonds et al., 2014; Plail et al., 2014). 408 

 409 

There is evidence of clustering in the mafic enclave samples, both within the single populations of 410 

magnetite and bubbles, and in the paired populations, which are spatially dependent upon one 411 

another. There is no evidence that bubbles are linked spatially with other crystal phases such as 412 

orthopyroxene (figure 12). In the andesite, however, there is no clear relationship and the 413 

populations are either independent or very weakly dependent. The individual populations are either 414 

random or slightly clustered, with varying degrees of ordering, likely imposed by the phenocryst 415 

phases present. The absence of a strong clustering between magnetites and bubbles in the andesite 416 

might be explained by overprinting of the association during magma ascent, degassing and 417 

rheological stiffening. We envisage that the shear forces generated during magma flow are likely to 418 

exceed the attachment forces between bubbles and magnetites, hence obliterating any association. 419 

The mafic enclaves are protected from such shear forces due to their coherence and their crystal 420 

frameworks, which makes them strong (Martin et al., 2006). Alternatively or in addition, the lower 421 
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magnetite content in the andesite might promote a greater proportion of bubble nucleation on other 422 

phases (Cluzel et al., 2008). We discuss the possible causes of the linked populations of bubbles and 423 

magnetite in the enclaves and the implications for the fluid mechanics of the system. 424 

 425 

The origin of magnetite-bubble aggregates in mafic arc magmas 426 

The clustering between magnetite and vesicles could be due to either magnetite nucleation on 427 

bubble walls, owing to short lengthscale changes in melt oxidation state and oxygen fugacity during 428 

degassing (Humphreys et al. in review; Moussallam et al. 2014), or to bubble nucleation on 429 

magnetite. Our results are consistent with both heterogeneous nucleation of bubbles on magnetite 430 

grains and a mechanism whereby bubbles “sweep up” magnetites during rise through melt. Of the 431 

crystal phases commonly present in arc settings, magnetite provides by far the most energetically 432 

favourable surface for heterogeneous nucleation of bubbles. Experiments show strong evidence for 433 

heterogeneous nucleation on all surfaces of magnetite, with no other minerals serving as nucleation 434 

sites during decompression (Gardner and Denis, 2004; Gardner, 2007; Cluzel et al. 2008; Gardner 435 

and Ketcham, 2011). Hurwitz and Navon (1994) developed a theoretical model of the relationship 436 

between liquid-mineral wetting angle and supersaturation, such that higher wetting angles favour 437 

heterogeneous over homogeneous nucleation. Gualda and Ghiorso (2007) show that in rhyolitic 438 

melts the attachment energy for magnetite-bubble aggregates is much greater than for silicate 439 

mineral-bubble aggregates. This is due to the significantly greater liquid-mineral wetting angles: 440 

45-50 degrees for magnetite, versus 5-25 degrees for felsic silicates (figure 1). The reduction in 441 

surface energy resulting from bubble-mineral attachment is at least one order of magnitude greater 442 

for magnetite than for any silicate mineral.  443 

 444 

Clustering between magnetite and bubbles may be explained by heterogeneous nucleation of 445 

bubbles on magnetite, but also by bubbles “sweeping up” magnetites (figure 13; Belien et al., 446 

2010). The latter mechanism involves rising bubbles coming into contact with magnetite grains: the 447 

reduction in surficial energy may be sufficient to stall the bubbles, with larger bubbles being split 448 

by the grains, which would influence their buoyancy. The range in total magnetite content would 449 

support this “sweeping up” mechanism, although this mechanism would intuitively lead to a 450 

positive correlation between vesicularity and magnetite content, which is not seen. It is likely, 451 

however, that these kinds of relationships would be very easily overprinted by outgassing of the 452 

magma during quenching and/or decompression. 453 
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 454 

Implications of magnetite-bubble aggregates for the fluid mechanics of the system 455 

The presence of bubble-magnetite aggregates has fundamental implications for the degassing 456 

process by promoting heterogeneous over homogeneous nucleation, further favouring equilibrium 457 

degassing, low bubble number densities and affecting processes of bubble growth and coalescence 458 

(e.g. Gardner, 2009). Regardless of how bubble-magnetite aggregates form, their existence might 459 

also give rise to a number of complex behaviours in the magma reservoir. For example, if the 460 

overall bulk density of the magnetite-bubble aggregate is higher than the surrounding rhyolitic melt, 461 

the aggregate will sink (if the yield stress is overcome). Increasing pressure will tend to compress 462 

the bubble further, accelerating the aggregate’s fall as a positive feedback mechanism. The system 463 

is possibly unstable in both directions so that some crystals may sink, and others may rise to the top 464 

of the chamber, depending on the pressure difference between top and base of chamber. If gas-465 

crystal pairs are neutrally buoyant at some level in the magma chamber and are moved downwards, 466 

the pressure increase will cause bubble shrinkage and hence the density goes up fractionally and the 467 

aggregate will sink. Conversely if the aggregate rises a little, it will allow bubble expansion and the 468 

pair then becomes buoyant and will continue upwards. Hence it would not be possible dynamically 469 

to have an intermediate layer of bubble-crystals unless the surrounding melt is stratified (i.e. the 470 

density of fluid above the crystal-bubble pairs is lower by a finite amount and the density of the 471 

fluid below is greater). The presence of bubble-magnetite aggregates should therefore lead to 472 

magnetite-rich layers both at the floor and the roof of the chamber. Abundant clots of magnetite + 473 

orthopyroxene + apatite + vesicles ± plag exist in the andesite (Humphreys et al., 2009), perhaps 474 

remobilised from crystal mushes at the floor and roof of the magma chamber. 475 

 476 

The large reduction in surficial energy available via formation of bubble-magnetite aggregates 477 

suggests that bubbles are extremely likely to attach to magnetite grains they interact with 478 

(“magnetite scavenging”). As bubbles rise they expand due to decompression, with further 479 

expansion due to bubble coalescence and continuing exsolution. The increase in rise speed due to 480 

increased buoyancy is counteracted by the greater likelihood of encountering more dense magnetite 481 

grains, which have the effect of slowing the aggregate down, and the greater difficulty of passing 482 

through the more crystal- and aggregate-rich magma. This mechanism might “trap” aggregates in 483 

regions of dense crystals (“mushes”) and hence be a mechanism to store exsolved vapour, in the 484 

manner illustrated by the recent experiments of Belien et al., (2010). 485 

 486 
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In order to explain the links between bubbles and magnetites in the mafic enclaves, we propose the 487 

following conceptual model (figure 13) to explain our observations. Intruding mafic melts (>1000 488 

°C; Humphreys et al., 2009a) are significantly hotter than resident andesite magma (~830 °C, 489 

Humphreys et al., 2009a). If the mafic magma was H2O-rich, with >6 wt% H2O (on the basis of 490 

Rhyolitemelts modelling to reproduce the crystal assemblage; Edmonds et al., 2014), the mafic 491 

magma may have become vapour-saturated at >300 MPa in the arc crust. At this pressure 492 

magnetite, amphibole and orthopyroxene are likely liquidus phases (e.g. Davidson et al., 2007). 493 

Much of the bubble population would have nucleated on magnetite crystals. Upon intrusion into the 494 

base of the long-lived andesite magma reservoir (figure 13), bubble-magnetite aggregates were able 495 

to rise relative to the surrounding melt, as a consequence of both the low bulk viscosity of the melt 496 

and bubble expansion. The bubble-magnetite aggregates “swept up” more magnetite grains during 497 

their ascent, and the aggregates accumulated at the interface between the two magmas. There was 498 

probably little pervasive leakage and mixing between the two magmas owing to the large contrast in 499 

viscosity (Huppert et al., 1984, 1986; Phillips and Woods, 2001; 2002; Ruprecht et al., 2008), 500 

although the mafic magma, being around 150° C hotter than the andesite magma, quench 501 

crystallised to form the diktytaxitic texture characteristic of the enclaves (Murphy et al., 2000; Plail 502 

et al., 2014). A fraction of the vesicularity in the enclaves, perhaps a large fraction, is a result of 503 

quench crystallisation and vesiculation at the interface. Enclaves formed at the interface due to 504 

gravitational instabilities of the type proposed by Thomas et al. (1993). The enclaves preserved their 505 

magnetite and bubble-rich composition, as well as a texture indicating rapid crystallisation and 506 

further vesiculation at the interface. The range in magnetite contents probably reflects local 507 

variability in the concentration of aggregates at the interface; or perhaps reflects mixing with the 508 

host andesite in a “hybrid zone” at the interface, as suggested by Plail et al., (2014) to explain the 509 

geochemistry of the enclaves. 510 

 511 

CONCLUSIONS 512 

• We have used image analysis and statistical methods to illustrate a spatial association 513 

between magnetite and bubbles in the interior of mafic enclaves erupted in andesite lava 514 

blocks at Soufrière Hills Volcano. There is a large range in magnetite contents in the mafic 515 

enclaves, up to 7.5 % by volume, which is related to the porosity of the enclaves, indicating 516 

a genetic link between the two phases and a mechanism whereby enrichment of the mafic 517 

magma in magnetite occurs. In the crystal-rich andesite there is no or only a very weak 518 

spatial association between bubbles and magnetite. The total magnetite content of the 519 

andesite is lower (0.2-1.2 vol%). 520 
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• This study is the first to illustrate a statistical association between magnetite and bubbles in 521 

a volcanic rock and confirms the theoretical predictions which state that magnetite is a 522 

particularly favourable site for heterogeneous bubble nucleation in magma.  523 

• The possibility of bubble-magnetite aggregates in magmas carries with it interesting 524 

implications for the fluid mechanics of magma chambers, involving the ability of magma 525 

bodies to “store” exsolved vapour, the formation of cumulates and crystal-rich mushes, and 526 

their remobilisation potential.  527 

• We suggest a mechanism for enclave formation whereby water-saturated mafic magma 528 

nucleates bubbles on magnetite, which is a liquidus phase deep in the arc crust. Upon 529 

intrusion into the base of an andesite magma body, bubble-magnetite aggregates rise and 530 

“sweep up” other magnetite grains, resulting in the accumulation of bubbles and magnetite 531 

crystals at the magma interface. Instabilities lead to the flotation of enclaves, which are 532 

characterised by enrichment in magnetite and bubbles.  533 
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FIGURE CAPTIONS 711 

 712 

Figure 1: Two possible configurations of bubble, liquid and crystal. On the left, the bubble is 713 

entirely within the liquid; on the right it is attached to the crystal. The schematic diagram of the 714 

melt-bubble-crystal junction indicates the balance of forces, with surficial energies (σ), the wetting 715 

angle Ψ and the bubble-mineral angle θ. Modified from Gualda and Ghiorso (2007). 716 

 717 

Figure 2: Photographs of lava blocks in the field. Lava blocks were emplaced by a pyroclastic flow 718 

on 7 January 2007 from Soufrière Hills Volcano in the Belham River Valley, Montserrat. The 719 

blocks are a few metres in dimension (a), made of porphyritic andesite, with small mafic enclaves 720 

(shown in (b)) of basaltic to basaltic andesite composition. Hammer in (a) 47 cm long. 721 

 722 

Figure 3: Representative backscattered electron images from the Scanning Electron Microscope: a-723 

c show mafic enclaves, d shows porous andesite, all labelled with sample number. Phases are 724 

labelled: mgt: magnetite; ves: vesicle; amph: amphibole; opx: orthopyroxene; plag: plagioclase; gl: 725 

glass. 726 

 727 

Figure 4: Synthetic point patterns to show two independent populations and their associated 728 

statistics. Left: point patterns to show the spatial arrangement of the two populations, each labelled 729 

with the characteristics of each population (random, clustered etc; described in text). Plots from left 730 

to right: cumulative probability distribution to show Nearest Neighbour Distances, in microns; a 731 

plot of Ripley’s L Function against distance, r, in microns; the Pair Correlation Function against 732 

distance, r, in microns. Also shown in each plot, as grey shading, are the results of 100 random 733 

(poisson) point pattern simulations. Plots generated using the Spatstat package in R. 734 

 735 

Figure 5: Synthetic point patterns to show two dependent populations and their associated statistics. 736 

Left: point patterns to show the spatial arrangement of the two populations, each labelled with the 737 

characteristics of each population (random, clustered etc; described in text). An explanation of how 738 

the second population is generated using seed positions from the first population is given in the text. 739 

Plots from left to right: cumulative probability distribution to show Nearest Neighbour Distances, in 740 

microns; a plot of Ripley’s L Function against distance, r, in microns; a plot to show the Pair 741 

Correlation Function against distance, r, in microns. Also shown in each plot, as grey shading, are 742 

the results of 100 random (poisson) point pattern simulations. Plots generated using the Spatstat 743 
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package in R. 744 

 745 

Figure 6: The effect of changing the order of the spatial analysis of the dependent populations in 746 

the case of clustered-randomised or random-clustered distributions: a) the first population is 747 

clustered and the second is linked spatially to the first, resulting in two clustered populations. The 748 

nearest neighbour, Ripley’s L and pair correlation functions (described in the text) shown strong 749 

clustering; b) the first population is randomly distributed and the second is linked spatially to the 750 

first population, resulting in the second population being weakly clustered. The nearest neighbour, 751 

Ripley’s L and pair correlation functions show clustering only on very small lengthscales and 752 

ordering at intermediate lengthscales. 753 

 754 

Figure 7: Bubble and magnetite size distributions for all of the samples studied. Curves are labelled 755 

with sample name (Table 1) and sample type (andesite or mafic enclave). In general bubble size 756 

distributions are shown in black, magnetite size distributions in red. 757 

 758 

Figure 8: Vesicle area fraction (%, y axis) plotted against vesicle-free magnetite area fraction (%, x 759 

axis). Andesite and mafic enclave samples are distinguished. 760 

 761 

Figure 9: Representative statistical data for populations of magnetite and bubbles for a) one mafic 762 

enclave sample and b) to e) andesite samples. Plots from left to right: point pattern of bubbles 763 

(white) and magnetite (black), alongside the backscattered images of the analysed areas; Nearest 764 

Neighbour distances (G(r); black solid line) as a cumulative probability distribution with distance, r 765 

in microns, showing distributions that lie inside the envelope (in grey) for 100 random simulations 766 

(red dashed line shows the results for a theoretical random distribution); Ripley’s L Function with 767 

distance r; the Pair Correlation Function with distance r. 768 

 769 

Figure 10: Representative statistical data for populations of magnetite and bubbles for mafic 770 

enclave samples. Plots from left to right: point pattern of bubbles (white) and magnetite (black), 771 

alongside the backscattered images of the analysed areas; Nearest Neighbour distances (G(r); black 772 

solid line) as a cumulative probability distribution with distance, r in microns, showing distributions 773 

that lie inside the envelope (in grey) for 100 random simulations (red dashed line shows the results 774 

for a theoretical random distribution); Ripley’s L Function with distance r; the Pair Correlation 775 

Function with distance r. 776 
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 777 

Figure 11: Plot to show the pair correlation function (pcf) as a function of distance r (in microns) 778 

for all of the point patterns studied here, separated into their types: andesite (red) and mafic enclave 779 

(black). The horizontal black line shows the pcf for a theoretical random distribution, and the grey 780 

envelope, the result of 100 random simulations. 781 

 782 

Figure 12: Statistical plots to show the relationship between the locations of pyroxenes and the 783 

locations of bubbles in sample MVO1560_1. The plots show that there is no statistical departure 784 

from random behaviour, showing no linked spatial patterns. Plots as described in figures 9 and 10. 785 

 786 

Figure 13: Cartoon to illustrate the processes to explain the spatial association of magnetite and 787 

vesicles, and to show the effects of such an association on the fluid mechanics of magma mingling. 788 

Water-saturated basaltic magma underplates an andesite magma body. Bubbles nucleate on 789 

magnetite over other crystal phases (amphibole is likely also a liquidus phase). The low viscosity of 790 

the melt and the significant fraction of exsolved vapour allow bubbles to rise up to the interface 791 

between the two magmas, sweeping up magnetite grains in the process. Bubbles and magnetite 792 

aggregates accumulate at the interface between the two magmas. Instabilities at the interface allow 793 

mafic enclaves to form and become incorporated into the andesite body. The enclaves are enriched 794 

in both magnetite and bubbles relative to the bulk mafic magma at depth. 795 

  796 
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 818 

Table 1: Sample names, types (andesite or mafic enclave) and brief description. See text for 819 

descriptions of andesite and mafic enclave petrography. Types A and B after Plail et al. (2014). 820 

 821 

 822 

Sample name Description of sample Size of pixel (microns) 
in analysed BSE image 

BR6a1 Mafic enclave; glassy groundmass and quenched 
margins; 1 closest to rim, 3 closest to core (Type A) 

2.15 BR6a 2 
BR6a 3 1.46 
BR10 1 Mafic enclave; crystalline groundmass, no quenched 

margins (Type B) 2.22 BR10 2 
BR11 1 Mafic enclave; partially crystalline groundmass, 

quenched margins (Type A) 
2.22 

BR11 2 1.11 
BR 12 1 Mafic enclave; glassy groundmass and quenched 

margins (Type A) 1.11 BR 12 2 
BR 12 3 

MT19 1 Mafic enclave; glassy groundmass and quenched 
margins (Type A) 0.24 

MT19 2 Andesite 
MT19 3 Andesite 0.12 MT19 4 Andesite 

MVO 1560 1 Andesite 0.24 
MVO 1560 2 Andesite 0.12 
MVO 1560 3 Andesite 

0.24 
MVO 1560 4 Mafic enclave; crystalline groundmass, no quenched 

margins (Type B) 

MVO 1587 1 Mafic enclave; crystalline groundmass, no quenched 
margins (Type B) 

MVO 1587 2 Andesite 

MVO 1592 1 Mafic enclave; crystalline groundmass, no quenched 
margins (Type B) 0.12 

MVO 1592 2 Andesite 
MVO 1592 3 Andesite 

0.24 MVO 1592 4 Mafic enclave; crystalline groundmass, no quenched 
margins (Type B) 
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