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and SEM/EDS, were C-S-H and hydrotalcite-like phases. While CaO accelerated the formation of C-S-H 
in the early age, MgO induced more amount of hydrotalcite-like phases, which notably enhanced the 
strength of slag pastes with high MgO content after 28 days and longer. Calcite, portlandite and 
residual MgO were also observed, depending on the MgO/CaO ratio and the hydration time. This work 
indicated that the replacement of MgO by CaO can make the application of reactive MgO in slag 
activation more economical. 
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ABSTRACT: Since alkali-activated slag using conventional activators suffers from economical 

and technical problems, other alternative activators should be explored. This paper reports the 

results of an investigation into the activation of ground granulated blastfurnace slag by using 10% 

(by weight) reactive MgO, CaO and their mixtures with various ratios. The mechanical and 

hydration properties of pastes were examined up to 90 days. It was found that the strength of slag 

pastes activated with MgO-CaO mixtures decreased with the increasing ratio of MgO to CaO in 

the early age while a much steeper strength gain was observed in pastes with MgO/CaO higher 

than 19/1 after 28 days and longer. The addition of small amount of CaO in MgO can greatly 

accelerate the hydration of slag in the early age by increasing the pH of pore solution. However, 

pastes showed small difference in strength development at each period when MgO/CaO was less 

than 1. The main hydration products, analysed by XRD, TGA and SEM/EDS, were C-S-H and 

hydrotalcite-like phases. While CaO accelerated the formation of C-S-H in the early age, MgO 

induced more amount of hydrotalcite-like phases, which notably enhanced the strength of slag 

pastes with high MgO content after 28 days and longer. Calcite, portlandite and residual MgO 

were also observed, depending on the MgO/CaO ratio and the hydration time. This work indicated 
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that the replacement of MgO by CaO can make the application of reactive MgO in slag activation 

more economical. 

Keywords: Alkali-activated slag; Reactive MgO; CaO; Hydration  
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1. Introduction 

Climate change, attributed by large to greenhouse gas emissions, has been a major threat to 

human society. Among the most energy-intensive industries, the cement industry contributes ~5-8% 

of global man-made CO2 emissions [1], mainly because of the direct calcination of limestone and 

the consumption of fossil fuels. The search for more sustainable binders has led to the 

development of alkali-activated cements (AACs), which utilise a large portion of supplementary 

cementitious materials (SCMs), such as blastfurnace slag, fly ash, metakaolin and silica fume [2,3]. 

The most widely used activators in AAC are sodium silicate, sodium hydroxide, sodium carbonate 

or a mixture of sodium-potassium hydroxide with sodium silicate-potassium silicate [1,4]. 

However, most of these activators do not exist naturally and they are obtained from energy 

intensive manufacturing processes, which expands the energy consumption associated with AAC. 

A comparison of the carbon dioxide equivalent (CO2-e) emissions between alkali-activated fly ash 

and ordinary PC indicated that only ~9% reduction was obtained by using the former instead of 

~26-80% (as previously claimed [5,6]) when considering the energy consumption associated with 

the manufacturing process of activators [7]. Other issues should also be carefully considered when 

using these conventional activators, including the fast setting time, the high drying shrinkage, the 

highly corrosive nature of alkali solutions, the viscosity of alkali solution and the heat released by 

the dissolution of the alkali compounds, especially alkali hydroxide, during preparation of the 

solutions [1,8–10]. In order to tackle the above mentioned technical and environmental challenges 

associated with the conventional alkali activators used in AAC, alternative sustainable and cost 

effective activators should be explored.  
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Regarding to ground granulated blastfurnace slag (GGBS), calcium hydroxide [Ca(OH)2] and 

calcium oxide (CaO) have been reported to be potential activators because they are easily obtained 

and are much less expensive than sodium hydroxide or sodium silicate [9,11]. Slag concrete 

activated with Ca(OH)2, with different auxiliary activators (Na2SO4 and Na2CO3), performed 

enhanced workability, delayed setting time and a similar increasing rate of compressive strength to 

PC concrete [12]. The comparison between the effect of CaO and Ca(OH)2 in activating slag 

revealed that the use of CaO demonstrated a superior potential for the activation of GGBS and 

produced a higher mechanical strength than Ca(OH)2 [11]. 

More recently, studies have indicated that reactive magnesia (MgO) could also serve as an 

effective activator for GGBS, showing its advantages in mechanical performances and the 

controllable setting time (which depends on the reactivity of MgO) [13–18]. The results by Yi et 

al. [17] showed that the reactive MgO activated GGBS achieved higher 28-day compressive 

strength than that of the corresponding Ca(OH)2-GGBS system due to the larger content of the 

voluminous hydrotalcite-like phases having formed during the hydration. A later study proved that 

although reactive MgO-GGBS blends showed a lower slag hydration degree, they had better pore 

filling effect which resulted in higher 90-day strengths than the corresponding Ca(OH)2-GGBS 

blends [18]. However, the early age strength of reactive MgO-GGBS blends was also found to be 

too low when the MgO content was <10-15wt% [18]. Although enhanced early strengths were 

observed by using MgO of higher reactivity [16], the cost becomes a concern. The current global 

production of MgO is ~20 million tonnes per year (~80% of which is produced in China, mainly 

from magnesite mines and the rest is produced from brines and seawater) [18] and the price of 

MgO with potential in slag activation varies from US$180 per ton to US$350 per ton in China 
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[19], which is lower than, for instance, NaOH (~US$500 per ton in China). Nevertheless, the cost 

of MgO usage needs further reduction. The study on the effect of different MgOs on the activation 

efficiency of GGBS by Jin et al. [16] showed that the reactive MgO containing the highest content 

of internal CaO produced higher UCS values, which was attributed to their higher pH of the pore 

solution and higher slag hydration degrees compared to those relatively purer MgOs. In this 

context, the mixture of MgO-CaO is worthy of investigating as a economically and technically 

feasible activator for GGBS because CaO is cheap (~US$70 per ton in China) . As a natural 

mixture of MgO-CaO, calcined dolomite has already been reported to be an effective activator to 

slag [20]. 

In the present study, seven MgO-CaO mixtures were used to activate slag in order to explore 

the influence of MgO/CaO ratio on the mechanical and hydration properties of slag pastes. The 

strength and the hydration degree of slag were examined by the unconfined compressive strength 

(UCS), pH of pore water and a selective dissolution method. The hydration products and the 

microstructural characteristics of MgO-CaO activated GGBS were thoroughly studied by 

thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscope 

(SEM) imaging combined with energy-dispersive X-ray (EDX) analysis. Meanwhile, the 

influence of water to binder ratio (0.35, 0.38) and curing conditions of the paste samples (water 

cured and humidity cured) were also presented. 

2. Materials and experimental procedures 

2.1. Materials 

The commercial materials used in this research included reactive MgO (grade 92/200 from 

Richard Baker Harrison, UK), CaO (from Tarmac and Buxton Lime and Cement, UK), and GGBS 
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(from Hanson, UK). The chemical compositions and physical properties for these materials are 

given in Table 1. The reactivity of the reactive MgO is ~100 s determined by the acetic acid test 

according to Shand [21] and is categorised as a medium reactive MgO [18].  

2.2. Sample preparation 

In the blends, the total amount of the activator (including MgO and/or CaO) was kept 

constant at 10% by weight. Seven mix formulations, as shown in Table 2, were prepared by 

changing the proportion of MgO and CaO, at water to binder ratios of 0.35 and 0.38. The 

nomenclature used for the samples was a combination referring to the contents of MgO and CaO 

in the mixes. For instance, M2.5C7.5 refers to the samples of 2.5% MgO and 7.5% CaO. Materials 

were fully mixed in dry form and then a pre-determined amount of water was added. After 

homogeneously mixed in a mixer, samples were casted into 40mm×40mm×40mm cubes covered 

with cling film and cured at 20
°
C. After 24h, samples were demoulded and cured under two 

different conditions: (1) immersed in deionised water and (2) sealed in plastic boxes at relative 

humidity of 99±1%. For both conditions, the curing temperature was kept constant at 20±1
°
C. 

2.3. Experimental procedures  

UCS measurements, using a constant load rate of 2400 N/sec, were undertaken in triplicate 

paste samples after curing for 7, 28 and 90 days. After the compression tests, the fractured paste 

samples were ground below 425 μm and then 10 g sample was weighted to mix with deionised 

water at a liquid to solid ratio of 1 ml/g in airtight containers according to [22]. The readings were 

taken in duplicate after 24 hours using a pH meter (Eutech 520) with an accuracy of ±0.01. 

Hydration of fractured paste samples were arrested by immersion in excess acetone for 3 days 

followed by vacuum dried for at least 3 days and oven dried for 1 day at 35°C. After drying, the 
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fractured pastes were gold coated for SEM/EDS analysis and also finely ground below 75 μm for 

XRD, TGA and selective dissolution tests. SEM/EDS were performed on JEOL 5800 and 

approximately 10 points on the gel were picked for the determination of elemental composition. 

Siemens D5000 X-ray diffractometer was used to collect XRD data with a scanning range 

between 5° and 55° 2θ. The scanning speed of 1 s/step and resolution of 0.05°/step were applied. 

Samples for TGA were heated from 40°C to 1000°C in air with the rate of heating at 10°C/min on 

a Perkin Elmer STA 6000 machine. The hydration degree of slag was determined by a selective 

dissolution method using salicyclic acid/methanol/acetone in duplicate according to Luke and 

Glasser [23]. This method is preferable to ethylene diamine tetraacetic acid 

(EDTA)/triethanolamine/NaOH technique due to the formation of hydrotalcite-like phase 

[11,15,24]. 

3. Results and discussions 

3.1. Strength development 

The strength development of the pastes with varying MgO/CaO ratios is shown in Fig.1 for 

the two different curing conditions and the specified w/c ratios. Generally, the strength of samples 

cured under the high humidity conditions was observed to be smaller than those of the water cured 

samples regardless of the curing age.  

After 7 days, water cured samples with 10% CaO content (M0C10) gained strength of 

~25MPa. The maximum strength was achieved when the MgO/CaO ratio was 1 (M5C5) and then 

it decreased significantly by the increase of the MgO content. It should be noted that the M10C0 

paste only gained ~8MPa strength after 7 days, but a small amount of CaO addition (M9.5C0.5) 

resulted in a remarkable strength increase (~16MPa). The strength development after 28 days was 
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similar to that at 7 days for pastes with ≤8.5% MgO while the strength for pastes with ≥9.5% 

MgO (M9.5C0.5 and M10C0) increased more sharply, achieving ~25MPa. Compared with that at 

7 days, the difference between M9.5C0.5 and M10C0 pastes was much smaller, especially for 

samples under high humidity curing, showing approximately the same strength. After 90 days, the 

strength of pastes M9.5C0.5 and M10C0 increased more notably to 41.8MPa and 42.6MPa, 

respectively, while the strength gained by other samples were relatively moderate. It was found 

that the strength for paste M10C0 was ~10% higher than that of M0C10 after 90 days, which is 

consistent with [18], who observed that reactive MgO outperformed lime in the long-term when 

activating GGBS. 

For the samples prepared with w/c of 0.38 (Fig.1b), the compressive strength was, on average, 

~27.4%, ~16.8% and ~17.4%, respectively, smaller than the pastes with w/c of 0.35 after each age, 

but with a similar trend to the pastes with w/c of 0.35. It was found that the water to binder ratio 

showed greater influence on the strengths in the early age.  

For both w/c ratios, it can be seen that a small CaO content (~0.5%) significantly increased 

the early strength of high MgO-containing samples while it did not have much of an effect on the 

long term strength (90 days) of the pastes (Fig.1). On the other hand, the strength of all the pastes 

which contained ≤5% MgO showed inconspicuous difference at different times. 

3.2. pH evolution  

Various research indicates that pH has a significant effect on the hydration process of 

activated slag systems and also the nature of the products generated [25–34]. Higher pH 

environments usually induce better slag activation and higher mechanical strength. In order to 
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effectively activate the hydration of slag, the pH should be ≥11.5 [30,31]. It was also reported that, 

on the other hand, pH values <12 would delay the activation process [35]. 

Fig.2 presents the pH variations of the pastes with w/c of 0.35. All pH values except for paste 

M10C0 at 7 days were observed to be ≥12. For paste M10C0, the relatively low pH, compared to 

other CaO containing pastes, resulted in a slow hydration process and hence much lower strength, 

especially at 7 days. By contrast, pastes containing CaO presented much higher pH between 12.0 

and 12.3 in the early age. At 28 days, pH of pastes containing CaO increased to ~12.5 due to the 

equilibrium of Ca(OH)2 in pore solution while that of paste M10C0 was still at a low level. At 90 

days, the pH of the pastes with ≥1.5% CaO content maintained pH of ~12.5 due to the sufficient 

presence of CaO providing sufficient OH
-
 after hydration and the equilibrium between the 

hydration products and the pore solution still existing. By contrast, those with less CaO decreased 

to ~12.3 which was induced by the consumption of Ca(OH)2 through the reaction with GGBS. The 

pH of paste M10C0 continued to increase at 90 days, indicating the latent hydration of MgO and 

the hysteretic releasing of OH
-
 into the pore water. It should be noted that, compared with paste 

M10C0, a small dosage of CaO in the blend (i.e. paste M9.5C0.5) was associated with greatly 

increased pH at 7 and 28 days. Therefore the hydration was significantly accelerated in such high 

MgO content pastes during these periods.  

3.3. Hydration kinetics 

3.3.1. Slag dissolution 

The percentage of anhydrous slag after different hydration periods allows the calculation of 

the fraction of slag reacted. Fig.3 presents the degrees of reacted slag of the water cured pastes 

with water to binder ratio of 0.35. An increase of MgO (and simultaneously a decrease of CaO) 
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content in the blends is observed to decrease the hydration degree (Fig.3) except for pastes 

M9.5C0.5 and M10C0 after 90 days, whose degree of hydration were observed to be boosted. 

Although the degree of reacted slag of pastes M10C0 and M9.5C0.5 were still lower than the other 

pastes, except for paste M8.5C1.5, they showed higher strengths than others which could be 

explained by the nature of the hydration products (as discussed later in Section 3.4). When the 

MgO/CaO ratio was ≤1, the samples showed only a moderate degree of hydration gain reaching 

values between 26.0% and 28.4% after 90 days, indicating that the hydration reaction was very 

fast during the early age but slowed down at later ages. The hydration process of paste M10C0 

was very slow during the first 7 days (at 9.3%), but revealed high values ~21.0% after 90 days. 

Obviously, the presence of a little CaO induced a higher degree of reacted slag of paste M9.5C0.5 

than M10C0 at each corresponding time. 

3.3.2. Chemically bound water content 

The chemically bound water content obtained by measuring the weight loss up to 650°C 

using TGA could be used as a measure of the hydration kinetics of blended cements [36–38]. To 

eliminate the influence of decomposition of calcite, weight loss up to 550°C was measured here 

although this may underestimate the amount of chemically bound water from slag hydration than 

was really happening since some portlandite may be consumed by carbonation during curing. The 

weight loss after 550°C was mainly attributed to the decomposition of calcite. Nevertheless, 

according to the weight losses given in Fig.4, the hydration gradually slowed down with the 

increasing content of MgO in the paste in the early age. After 28 days and longer, however, the 

water loss of different pastes showed smaller differences. For those with MgO content higher than 
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9.5%, sharp increases in weight loss were observed with hydration time and the bound water 

content were not necessarily smaller than others pastes after 28 days and longer. 

The development trend in bound water content were slightly different from that in the degree 

of reacted slag (Fig.3). For instance, although the degree of reacted slag of M10C0 after 90 days 

was smaller than M0C10, their bound water contents were very close. It was attributed to the 

higher amount of hydrotalcite-like phases (discussed below) increased the bound water content of 

high MgO content pastes as the hydrotalcite-like phases (Mg4Al2O7·10H2O) contains relatively 

more water than C-S-H [39]. 

3.4. Hydrates 

3.4.1. X-ray diffraction 

Fig.5 presents the X-ray diffraction patterns of pastes hydrated for 28 days in water. As the 

main hydration products of alkali-activated slag, C-S-H and hydrotalcite-like phases, can be 

clearly identified in all pastes agreeing with the literature [11,31,34,37,40]. Due to their 

semi-amorphous nature, the major peaks of C-S-H appeared with the background hump in the 2θ 

range of 25° to 35°. Hydrotalcite-like phases are common hydration products in alkali-activated 

GGBS when there is sufficient MgO content in the GGBS composition [41–44], hence it is not 

surprising to observe hydrotalcite-like phases in GGBS pastes activated by reactive MgO 

associated with CaO. 

In high CaO content pastes (i.e. M0C10 and M5C5), the strong peaks corresponding to 

portlandite are detected, which can be attributed to the excess CaO added. On the other hand, the 

peaks of portlandite were not detected in the microgram of M9.5C0.5 and M10C0 (samples with 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Page 12 
 

low content of CaO) due to its complete consumption in forming C-S-H and hydrotalcite-like 

phases after 28 days. The presence of calcite in M0C10 and M5C5 could have originated from the 

raw CaO and/or the carbonation of the formed portlandite. Unhydrated MgO phase observed 

around 43
°
2θ indicates the surplus supply of MgO for activating the slag in pastes M9.5C0.5 and 

M10C0. MgO present in cementitious system is predicted to precipitate initially as brucite [45]. 

However, brucite was not detected here, in agreement with the previous studies [17,18]. It may 

have converted to hydrotalcite-like phases although the formation of brucite was not confirmed 

when the XRD test performed.  

3.4.2. Thermogravimetric analysis (TGA) 

The TG/DTG curves of samples after 28 days hydration are given in Fig.6. At up to 300
°
C, 

the weight loss mainly corresponding to the thermal decomposition of C-S-H, according to 

[11,17,34,38,46], were observed in all pastes. The small shoulders around 80
°
C present the 

decomposition of ettringite [47,48], which originates from the sulphate content in the raw GGBS 

and CaO. However, this minor hydration product was not identified in the XRD result, probably 

due to its small content. The decomposition of the hydrotalcite-like phases induced a tiny shoulder 

at ~200
°
C and the weight loss between 330

°
C and 400

°
C, as reported by other researchers 

[38,48,49]. For pastes of high CaO content (i.e. M0C10 and M5C5), the dehydroxylation of 

portlandite can be observed at ~440
°
C. Beyond 600

°
C, considerable amount of –CO3

2-
 containing 

phases (mainly calcite) are observed, agreeing well with the XRD result.  

To quantitatively analyse the amounts of the two hydration products (i.e. C-S-H and 

portlandite) after different hydration time, the weight losses between 40
°
C to 300

°
C and 400

°
C and 

500
°
C can be calculated separately. Here define the weight loss of C-S-H in the former range as 
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Δm1 and that of portlandite between 400
°
C and 500

°
C as Δm2. Although the decomposition of 

other phases (ettringite, hydrotalcite-like phases) overlaps with C-S-H within this range, their 

influence is supposed to be small due to their relatively small amounts. In addition, the 

decomposition temperature of hydrotalcite-like phases overlaps with that of portlandite, therefore 

Δm2 was over estimated to some extent especially for pastes with high MgO content. The 

variations of Δm1 and Δm2 of samples over hydration time are summarised in Fig.7. Fig.7a 

reveals that the weight loss of C-S-H accounted for approximately 4.9% of the ignited weight in 

paste M0C10 and it gradually dropped to ~2.6% of that in paste M10C0 in the early age. It can be 

explained by the increased hydration rate which was in positive correlation with the content of 

CaO. Δm1 increased with the curing time due to the increased hydration degree as suggested by 

Fig.3 and the increments of paste M9.5C0.5 and M10C0 were relatively greater. After 28 days, the 

weight loss of these two pastes were close to, although still smaller, other samples (CaO wt.%≥

2.5%) but almost at the same level by 90 days. 

In general, Δm2 showed a negative relationship with MgO content and a positive relationship 

with time (Fig.7b). It is not surprising because the hydration of CaO produces portlandite therefore 

more CaO resulted in more portlandite. On the other hand, since no apparent characteristic peaks 

of portlandite were detected in XRD curves of M9.5C0.5 and M10C0 (Fig.5), Δm2 of these two 

samples after 28 days and 90 days can be attributed to the decomposition of hydrotalcite-like 

phases whose weight loss also appears around 400
°
C [17,34,38]. In this context, it can be 

concluded that more hydrotalcite-like phases formed in pastes with MgO content higher than 9.5% 

after 28 days and longer, therefore made significant contribution to the strength by its better pore 

filling effect. 
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3.4.3. Scanning electron microscopy 

Fig.8 shows the SEM images of microstructure of selected paste samples after 28 days 

hydration. Dense C-S-H gels can be observed in all samples. The formation of plates of 

portlandite in Fig.8a and apparent presence of platelet hydrotalcite-like phases in Fig.8b and c 

agree well with the analyses by XRD and TGA (Fig.5 and Fig.6).  

Fig.9b shows a much denser M9.5C0.5 microstructure of 90 days that that of 28 days (Fig.9a) 

in a different scale bar. It may be attributed to (i) more C-S-H formed after longer hydration 

according to Fig.7a and (ii) the significantly pore filling effect hydrotalcite-like phases, which are 

more voluminous than C-S-H. That more hydrotalcite-like phases formed in pastes in high MgO 

content was confirmed by TG analysis (see Section 3.4.2). 

3.4.4. Energy-dispersive X-ray microanalysis 

Combined with SEM, EDS analysis was conducted to determine the differences in the 

elemental composition of the hydrate phases. The Ca/Si and Mg/Al ratios calculated from 

chemical compositions of the anhydrous binders (see Table 1) are summarised in Table 3. These 

initial ratios varied due to the different dosages of added MgO and CaO. The average ratios 

obtained from EDS analysis are also given in Table 3.  

For alkali-activated slag, previous research suggested that the Ca/Si ratio of C-S-H gel ranges 

from 0.6 to 2.3, depending on the type of activator, the curing condition and the nature of the slag 

[30,34,42,43,50]. Table 3 shows that after 28 days, the Ca/Si ratio of the gel decreased from 1.59 

for M0C10 to 1.45 for M10C0, in agreement with the initial Ca/Si ratio, which decreased from 

1.46 to 1.16 when the CaO content decreased from 10% to 0%. Pastes with a higher pH (>11.5) 
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pore solution were reported to have a lower Ca/Si ratio due to the fact that the solubility of Si 

increased with pH while that of Ca decreased [30,31]; the slight increase of Ca/Si ratio with the 

increase of CaO content is attributed to the increased Ca
2+

 ion availability and hence higher uptake 

of Ca
2+

 ion in C-S-H gel.  

The Mg/Si versus Al/Si ratios are plotted in Fig.10 for all hydration periods together. The 

linear slope confirms the presence of hydrotalcite-like phases with Mg/Al ratio from 1.32 for paste 

M0C10 to 1.93 for paste M10C0, which are higher than the initial Mg/Al ratios given in Table 3. 

Increasing the MgO content resulted in a higher Mg/Al ratio of the hydration products due to the 

increased availability of Mg ions for reaction. In addition, the intercept bigger than 0.2 in the Al/Si 

axis suggests that the C-S-H gel contains significant proportions of aluminium, agreeing well with 

others [18,24]. 

4. Conclusions 

Ground granulated blastfurnace slag was activated using reactive MgO, CaO, and MgO-CaO 

mixtures and their mechanical and hydration properties were studied. Based on the experimental 

results, the following conclusions can be drawn: 

(1) The performance of slag pastes activated with MgO-CaO mixtures depended on the ratio 

of MgO to CaO. The strength of slag pastes decreased with the increasing ratio of MgO to CaO in 

the early age while a much steeper strength gain was observed in pastes with MgO to CaO ratio 

higher than 19/1 (i.e. M9.5C0.5 and M10C0) after 28 days and longer. Pastes showed small 

difference in strength development at each period when the ratio of MgO to CaO was less than 1. 

(2) The addition of CaO in MgO can increase the pH of the pore solution, and hence 

significantly accelerate the activation of slag in the early age. In this study, 0.5% CaO blended 
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with 9.5% MgO was found to notably increase the early strength of the paste.  

(3) The hydration degree of slag decreased with the increasing MgO/CaO ratio, but this 

trend was not applicable for pastes with MgO/CaO ratios higher than 19/1 after 90 days due to the 

delayed activation of the slag by MgO.  

(4) XRD and TGA results showed that the hydration products of activated slag using 

MgO-CaO mixtures were mainly C-S-H and hydrotalcie-like phases. Portlandite and calcite were 

also observed and their quantities depended on the MgO/CaO ratio. The amount of C-S-H was 

found to be in positive correlation to the content of CaO in slag in the early age while more 

hydrotalcite-like phases formed in high MgO content pastes after 28 days and longer. 

(5) By increasing the MgO/CaO ratio in the mixture, the average Ca/Si ratio of C-S-H gels 

after 28 days decreased from 1.59 to 1.45. The Mg/Al ratio for the hydrotalcite-like phases varied 

from 1.3 to 1.9, depending on the MgO/CaO ratio. 

(6) For MgO-CaO-GGBS system, higher compressive strengths of pastes can be achieved 

by lower w/c ratio and using water curing instead of humidity curing. 
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1. Table 1. Chemical compositions and physical properties of raw materials (from suppliers’ datasheets) 

2. Table 2. Mix compositions of the pastes 

3. Table 3. Atomic ratios obtained by theoretical calculation and EDS analyses  
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The list of captions for all figures: 

1. Fig.1 Compressive strength of the pastes at two different water/binder rations of (a) w/c=0.35 and (b) 

w/c=0.38. 

2. Fig.2 pH variation of water cured pastes with time, w/c=0.35. 

3. Fig.3 Variation of degree of reacted slag with MgO content, w/c=0.35. 

4. Fig.4 Weight loss between 40°C and 550°C determined by TGA (weight percentage relative to the 

ignited samples), w/c=0.35. 

5. Fig.5 XRD patterns of selected samples after 28 days. 

6. Fig.6 TG/DTG curves of samples after a hydration time of 28 days. 

7. Fig.7 Weight losses in two temperature ranges (a) Δm1 and (b) Δm2. 

8. Fig.8 Representative SEM images of hydrated samples after 28 days showing the typical hydration 

products: A: C-S-H, B: portlandite, C: hydrotalcite-like phases for three different pastes at 28 days: (a) 

M0C10, (b) M9.5C0.5 and (c) M10C0. 

9. Fig.9 SEM images of C0.5M9.5 after two different hydration periods. (a) 28 days, (b) 90 days. 

10. Fig.10 Atomic ratios Mg/Si vs. Al/Si of the samples after 28 days. 



Table 1. Chemical compositions and physical properties of raw materials (from suppliers’ datasheets) 

  GGBS MgO CaO 

Chemical composition 
   

SiO2 37.0  0.9 0.9 

Al2O3 13.0  0.22 0.13 

CaO 40.0  0.9 94.0  

MgO 8.0  >93.2 0.5 

K2O 0.6  - - 

Na2O 0.3  - - 

SO3 1.0  - 0.06 

Fe2O3 - 0.5 0.08 

CaCO3 - - 3.7 

    
Physical properties 

   
Specific surface area(m2/g) 0.49  9.00  - 

Bulk density (kg/m3) 1050 - 1020 

 

Table 1
Click here to download Table: Table 1.docx

http://ees.elsevier.com/conbuildmat/download.aspx?id=437437&guid=9d4ca6bb-fc27-40b2-9c06-c4893cfdeb84&scheme=1


Table 2. Mix compositions of the pastes 

Sample 
activator/

slag 

MgO/

CaO 

weight percentage(%) 
water/binder 

MgO CaO GGBS 

M0C10 

1/9 

0/10 0 10 90 0.35 & 0.38 

M2.5C7.5 1/3 2.5 7.5 90 0.35 

M5C5 1/1 5 5 90 0.35 & 0.38 

M7.5C2.5 3/1 7.5 2.5 90 0.35 

M8.5C1.5 17/3 8.5 1.5 90 0.35 & 0.38 

M9.5C0.5 19/1 9.5 0.5 90 0.35 & 0.38 

M10C0 10/0 10 0 90 0.35 & 0.38 

 

 

Table 2
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Table 3. Atomic ratios obtained by theoretical calculation and EDS analyses 

Sample Age (days) Ca/Si Mg/Al 

M0C10 initial 1.46  0.79  

 
28 1.59  - 

M5C5 initial 1.31  1.29  

 
28 1.56  - 

 
90 1.54  - 

M9.5C0.5 initial 1.17  1.75  

 
7 1.12  - 

 
28 1.57  - 

 
90 2.07  - 

M10C0 initial 1.16  1.80  

  28 1.45  - 
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