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SO2 cameras are rapidly gaining popularity as a tool for monitoring SO2 emissions from volcanoes. Several
different SO2 camera systems have been developed with varying patterns of image acquisition in space, time
and wavelength. Despite this diversity, there are two steps common to the workflows of most of these systems;
aligning images of different wavelengths to calculate apparent absorbance and estimating plume transport
speeds, both of which can be achieved using motion estimation algorithms. Here we present two such
algorithms, a Dual Tree ComplexWavelet Transform-based algorithm and the Farnebäck Optical Flow algorithm.
We assess their accuracy using a synthetic dataset created using the numeric cloud-resolvingmodel ATHAM, and
then apply them to real world data from Villarrica volcano. Both algorithms are found to perform well and the
ATHAM simulations offer useful datasets for benchmarking and validating future algorithms.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

SO2 cameras are the latest addition to the family of UV spectroscopy
techniques used to measure sulphur dioxide (SO2) emissions. Since the
first volcanological demonstrations (Mori and Burton, 2006; Bluth et al.,
2007) they have been used in numerous studies of SO2 fluxes from
volcanoes (e.g. (Holland et al., 2011; Tamburello et al., 2011; Campion
et al., 2012; Smekens et al., 2013; La Spina et al., 2013)). Using SO2

cameras, estimates of SO2 flux at ~1 s temporal resolution are possible,
enabling studies of highly dynamic degassing events such as Strombolian
eruptions (Dalton et al., 2009; Mori and Burton, 2009; Tamburello et al.,
2012) and periodic fluctuations in passive degassing (Tamburello et al.,
2013; Pering et al., 2014).

SO2 cameras use bandpass filters to image at two narrowwavebands,
one within and one outside-of an absorption band of SO2 (typically
centred at 310 and 330 nm, respectively). The cameras operate on the
principle that the apparent absorbance between the two bands will
vary only as a function of atmospheric species that absorb unequally
across them (Mori and Burton, 2006). However, the calibration of appar-
ent absorbance to SO2 columnamount is non-trivial (Kantzas et al., 2010;
Kern et al., 2010, 2013; Lübcke et al., 2012).

Images at the two wavebands are either captured simultaneously,
necessitating two separate cameras, or sequentially, using a filter
wheel to change the recorded waveband for each image. The latter
. This is an open access article under
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method permits a single camera unit to be used, but at the expense of
having a short time delay between the two images. Since volcanic
plumes are seldom stationary in the atmosphere, this is clearly undesir-
able. Heterogeneities may have shifted by several pixels between
consecutive images, compromising the SO2 retrieval method described
above. The simultaneous capture of images at two wavebands is also
problematic, since the retrieval of SO2 column amounts requires single-
pixel correspondence between the two images. When SO2 cameras are
used “in thefield” they are often subjected to rapid temperature changes,
vibration and physical shocks. Alignment of optical components to the
degree of single-pixel correspondence is simply not practical. Relative
offset and rotation between the image planes of the two cameras will
lead to different fields of view and differing parallax effects. Although
parallax effects become negligible at large distances, it is not uncommon
for SO2 cameras to be used at close range to volcanic plumes. In addition,
the two lensesmay exhibit different distortion effects due to their differ-
ent filters, manufacturing defects and differences in focus and aperture
settings. Individually these effects may be small to negligible, but they
compound each other to produce an offset that results in “fringing”
around contrast boundaries in the apparent absorbance image, where
the misalignment results in high and low valued pixels being ratioed
with each other. This leads to spurious high and low values of SO2

column amount in the calibrated images, which might inhibit subjective
interpretation and introduce significant error in integrating over small
plumes to find total mass.

A further problem, also applicable to other gas flux measurement
techniques (e.g. (McGonigle et al., 2005b)), is that of estimating
plume transport speed. To calculate flux from SO2 camera images,
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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the SO2 column amounts must be integrated across a transect of
the plume and multiplied by the transport speed perpendicular to
the transect. Typically, the plume speed is found by cross-correlating
the integrated column amount values from two complete transects
of the plume at different distances from the vent (McGonigle et al.,
2005a; Mori and Burton, 2006; Williams-Jones et al., 2006). This
method assumes a uniform velocity field across the entire plume and
does not account for complex flow structures or vorticity. (Boichu
et al., 2010) discuss in more detail the compromises that must be
made between time- and motion-resolution when using the cross-
correlation method.

Estimating plume speed and accurate registration of images from
two separate cameras are essentially the sameproblem; that of calculat-
ing motion vectors whichmap pixels in one image to their correspond-
ing positions in another. This is a common computer-vision problem,
which is addressed by a large number of well-established motion esti-
mation algorithms of varying complexity and trade-offs (e.g. Geiger
et al., 2014). To date, use of these techniques in volcanology has mostly
been constrained to estimating lava motion from infrared images
(James et al., 2007; Oppenheimer et al., 2009; Lev et al., 2012; Peters
et al., 2014a), and their application to SO2 camera images has so far
been limited to the work (Kern et al., 2012) who demonstrated how
optical-flow methods may be used to estimate SO2 flux. We extend
this work here by assessing the performance of two different motion
estimation algorithms when applied to SO2 camera images, both for
flux estimation and for registering images from separate cameras. We
use both a Dual-Tree ComplexWavelet Transform (DT-ℂWT) algorithm
(Magarey and Kingsbury, 1998), and the Farnebäck optical-flow
algorithm (Farnebäck, 2003).

As already discussed, a major problemwith estimating plume trans-
port speeds is that of validation.With little possibility of accuratelymea-
suring plume speed by an alternative method, it is difficult to assess the
performance of the techniques being developed to estimate plume
speeds and to constrain the errors which they may introduce. In an
attempt to address this issue, we use the Active Tracer High-Resolution
Atmospheric Model (ATHAM) (Oberhuber et al., 1998; Herzog et al.,
2003) run in a two-dimensional configuration to create a set of synthetic
images of a volcanic plume from a passively degassing volcano.
Algorithms for estimating plume speed can be applied to the synthetic
images and the results compared to the “real” velocity field computed
by themodel, providing a simple method of assessing their performance
in the context of volcanic plume observations. We demonstrate the
technique with both the DT-ℂWT and Farnebäck motion estimation
algorithms.

It is not our intent to conduct an in-depth comparison of the many
different motion estimation algorithms available, and we acknowledge
thatmore suitable algorithmsmay exist for usewith SO2 camera images
than the two which we present here. Instead, we hope to demonstrate
the potential applications and benefits of motion estimation algorithms
in volcanic-plume imaging, and establish a framework for validating
and comparing them within this context.

Our specific aims are threefold: (i) to present two different motion
estimation algorithms which are suitable for use with images from
SO2 cameras and show how they perform on both real and synthetic
data, (ii) to introduce the ATHAM model as a tool for validating plume
transport speed estimation methods, (iii) to demonstrate how these
algorithms can be employed to provide accurate registration of images
from separate camera units.

2. Methodology

2.1. Motion estimation algorithms

The DT-ℂWT algorithm works by decomposing images using the
Dual-Tree Complex Wavelet Transform (Kingsbury, 2001). The phase
shift between the decomposed subimages of two frames is related to
Please cite this article as: Peters, N., et al., Use of motion estimation algori
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the motion of features between those frames. The algorithm employs
an iterative approach, using coarse features to create an initial motion
estimate and then refining this using progressively finer-scale features.
Full details of the algorithm are given by (Magarey and Kingsbury,
1998).

The DT-ℂWT algorithm has been used in previous volcanological
studies to estimate the surfacemotion of the lava lake at Erebus volcano
from time series of infrared images (Oppenheimer et al., 2009; Peters
et al., 2014b).Whilst this is clearly a very different scenario to that of es-
timating plume transport speeds from SO2 camera images, many of the
fundamental problems are the same; identifiable features are often dif-
fuse, transient, andmay change significantly between frames. The algo-
rithm copes well under these conditions, and is also robust against the
noise introduced by varying amounts of volcanic plume, which de-
grades the camera's view of the lake.

The Farnebäck algorithm works by expressing the local
neighbourhoods of each pixel in the images as polynomial expansions.
The translations between the polynomial expansions for each succes-
sive frame can then be calculated and, by enforcing a certain model of
motion (e.g. the affine motion model) the two-dimensional displace-
ment field can be estimated. The Farnebäck algorithm also employs an
iterative approach, with a starting estimate for motion being derived
from coarse features and then refined using progressively finer features.
The algorithm is described in detail by (Farnebäck, 2003).

In this investigation we used the same implementation of the
DT-ℂWT algorithm as (Oppenheimer et al., 2009; Peters et al., 2014a).
MatLab code for this was kindly provided by Prof. Nick Kingsbury at
the Engineering Department of the University of Cambridge. We used
the implementation of the Farnebäck algorithm provided by the open-
source computer-vision library OpenCV (Bradski, 2000).

Both of these implementations allow several parameters to be set by
the user to control the operation of the algorithm. A description of the
parameters along with the specific values used for this study is given
in Appendix A. Broadly speaking the parameters set both the averaging
level and the scale of features used by the algorithms. Selecting higher
averaging and larger features will usually result in a more robust (less
prone to noise, more tolerant of transient features) motion estimate,
but at the expense of a less detailed motion field.

2.2. Using ATHAM as a validation tool

We used the non-hydrostatic, fully compressible, multiphase, meso-
scale Active Tracer High-Resolution Atmospheric Model (ATHAM) to
simulate a synthetic SO2 plume from passive degassing of an idealised
volcano, loosely based on Villarrica volcano, Chile. Built within the
Large Eddy Simulation framework, ATHAM was originally designed
for simulating plinian eruption dynamics (Herzog et al., 1998, 2003;
Oberhuber et al., 1998). It has also been used for research into volcanic
gas scavenging, particle aggregation and interactionswithmicrophysics
(Textor et al., 2006a,b), and more recently, into the dynamics of large
co-ignimbrite (Herzog and Graf, 2010) and phreatomagmatic (Van
Eaton et al., 2012) eruption clouds.

ATHAM is based on a modular structure that facilitates the coupling
of specific processmodules to the dynamical core. The core solves, with-
in an Eulerian framework, the Navier–Stokes equations of momentum,
and the pressure, temperature and tracer transport equations for a
gas-particle mixture (Oberhuber et al., 1998). Active tracers, i.e. solid,
liquid or gaseous components that have their own heat capacities and
densities, influence the mixture's flow by changing its thermodynamic
and dynamic properties.Momentum and tracer equations are described
in flux form to guarantee conservation of momentum and mass; the
heat transport equation is in advective form.

Short- and longwave radiative transfer, as well as surface fluxes of
sensible and latent heat, have not been applied in ourmodel runs, to re-
duce complexity and computational expense. Resolved and unresolved
turbulent entrainment of ambient air into the plume modifies its
thms for improved flux measurements using SO2 cameras, J. Volcanol.
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buoyancy and disperses tracers and temperature anomalies. Subgrid-
scale (SGS) turbulence is treated as eddy diffusivity and parametrised
on the basis of a 1.5-order prognostic SGS anisotropic turbulent kinetic
energy (TKE) closure scheme, described by (Herzog et al., 2003). The
mixed-phase cloud microphysics included in the model correspond to
a simple prognostic bulk Kessler-type approach, predicting cloud drop-
lets, rain, ice crystals and graupel as specific concentrations (Herzog
et al., 1998). The current model configuration does not include aerosol
microphysics and nucleation, cloud nuclei activation, or ash aggrega-
tion. The configuration of ATHAM used in this study is described in
detail in Appendix B.

Themodel outputwas used to create a set of synthetic calibrated SO2

camera images, where pixel values represent column amounts of SO2 in
kg m−2. The motion estimation algorithms were then applied to these
images, and their performance evaluated by comparing the calculated
SO2 flux across a particular line of pixels to its real value (calculated
using themotionfield from themodel output). Thefluxeswere calculated
by integrating the product of the SO2 column amounts across a transect of
the image with the components of the velocity perpendicular to that
transect.

Prior to applying themotion estimation algorithms, background and
foreground regions (i.e. clear sky and the ground) were masked with
Gaussian-distributed white noise, with a mean value approximating
that of the pixels within the plume. This was found to greatly improve
the performance of both algorithms, preventing spurious motion
vectors from being computed in regions of very little texture and at
high contrast boundaries.
2.3. Villarrica dataset

A ~20min sequence of SO2 camera images recorded at Villarrica vol-
cano, Chile, on 8 February 2012wasused to test both algorithms' perfor-
mance on “real” data. The images were captured using an Apogee Alta
U47-SO2 camera with an E2V CCD47-10, 1024 × 1024 pixel CCD and
fitted with a 50 mm lens, giving a single pixel “footprint” of 1.04 m2

(distance to the plume was approximately 4 km). The camera used a
filter-wheel to alternate between recording images with and without
SO2 absorbance. The images were calibrated into SO2 column amounts
using a co-located UV spectrometer, following the methodology of
Lübcke et al. (2012). Images were recorded every 4 s.

As in the case of the ATHAM data, random noise was used to mask
background and foreground regions prior to motion estimation. It
should be noted however, that as some background regions of the
image reach SO2 amounts greater than the background threshold,
anomalous motion vectors may be produced (see for example Video 5
and Video 6 in the supplementary materials). This does not have a
significant effect on the flux calculations since the amount of SO2 asso-
ciated with these motion vectors is very small.
Fig. 1. Cartoonof thedistortion used to create a test image for the image registration technique. (
left corner).
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2.4. Image registration

As already discussed, there are numerous factors that can contribute
to geometric distortion between the images at different wavebands in a
two-camera system, and correcting for this is important in order to pre-
vent “fringing” in the calibrated images. To demonstrate how motion
estimation algorithms may be used to ensure an accurate mapping
between pixels from different cameras (i.e. between the images with
and without SO2 absorbance), we used a single SO2 camera image of
Villarrica and applied a known distortion to it using OpenCV's
cvWarpImage function (described in detail by (Bradski and Kaehler,
2008)). As shown in Fig. 1, the distortion was made up of a perspective
shift (the expected effect if the optical planes of the two cameras are not
co-planar), and a rotation of 0.5° clockwise about the top left corner of
the image. The twomotion tracking algorithmswere then used to calcu-
late the shift vectors that mapped features in the distorted image to
their respective positions in the original image.

In order to distribute errors in the shift estimates across thewhole of
the corrected image, we used the shift vectors to calculate a single
corrective transform which we then applied to the whole image. In
this case we assumed a projective distortion, and were therefore able
to calculate the optimal (least-squares error) correction using OpenCV's
cvFindHomography function (described in detail by (Bradski and
Kaehler, 2008)). However, more complex corrections (e.g. including
lens distortion) could be calculated in a similarmanner using the corre-
spondences found by the motion tracking algorithms.

To avoid errors caused by edge effects, we only included shifts from
within a set region of interest (ROI) when calculating the corrective
transformation. The ROI was selected so as to exclude the edges of the
image, the crater region (which has very high intensity contrasts) and
the clear sky regions (which have almost no intensity contrast) since
motion estimates in these regions are often inaccurate. This selection
procedure could potentially be automated by thresholding the image
based on texture i.e. excluding regions where variation in pixel value
is very small.
3. Results

Fig. 2 shows the results of applying the motion estimation algo-
rithms to the synthetic images produced using ATHAM. Animations
showing the velocity fields produced for the full time series of images
using the DT-ℂWT (Video 1) and the Farnebäck (Video 2) algorithms
are provided in the supplementary material to the online version of
this article. The SO2 fluxes through a horizontal line of pixels 170 m
above the crater, calculated using the velocities from ATHAM and the
two motion estimation algorithms, are plotted against time. As shown
in Fig. 3, the agreement of the estimatedfluxeswith thefluxes computed
from ATHAM is striking and provides a strong argument for the use of
A) The original (square) image, (B) perspective shift, (C) rotation (0.5° clockwise about top
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Fig. 2. Summary of results from the “closed-top” ATHAM simulation. SO2 fluxes calculated using the velocity fields fromATHAM, the DT-ℂWT algorithm, and the Farnebäck algorithm are
plotted against time. Snapshots of the velocity fields (corresponding to the time denoted by the vertical grey line) superimposed over the SO2 amounts are also shown. The line of pixels
over which the fluxes were calculated is highlighted in white.
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these algorithms in computing plume transport speeds. Both the DT-
ℂWT and Farnebäck methods show a good correlation across the full
range of flux values, with R2 values of 0.95 and 0.97 respectively.

It should be noted that the anomalous motion vectors that are
occasionally apparent in Video 1 are due to edge effects. Close to the
boundaries of an image, strong features that exist in one frame may
Fig. 3. Scatter plots showing the relationship between the SO2 fluxes computed using velocity es
the “closed-top” ATHAMmodel. A linear regression line and the associated R2 value are also sh
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have disappeared in the next (because they have moved out of
the field of view). This causes anomalous motion estimates. This is a
common problem with motion estimation algorithms and is not a
draw-back of the DT-ℂWT algorithm in particular.

The model used to produce the images for Fig. 2 had a closed top
(rigid lid) boundary (as described in Section 2.2), acting essentially in
timates from the Farnebäck (left) and DT-ℂWT (right) algorithms and the real fluxes from
own.

thms for improved flux measurements using SO2 cameras, J. Volcanol.
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a similar way as a very strong temperature inversion layer. When the
buoyant plume reached the top boundary of the domain, it was forced
to spread laterally and large down-welling regions quickly led to a neg-
ative flux across the integration line (as can be seen beyond 08:04:31 in
Fig. 2). To overcome this issue, an additional 49 vertical grid-points
were added, extending the vertical model domain to a total elevation
of more than 6 kmon a stretched grid. In addition, we increased vertical
wind shear by applying a linear multiplier function to the wind profile,
varying between 1 and 1.5 over the lower 1.5 km vertical extent of the
model domain. Furthermore, we applied ± 20% random white noise
onto the initial horizontally homogeneous wind field, and initialised
the SGS TKEwith isotropic turbulence on the order of 1m 2 s−2, to pro-
mote resolved turbulent effects. However, the increased randomisation
of the initial conditions did not produce a visibly distinguishable
effect in terms of increasing turbulent diffusion, and the resulting
streamer-like structural features are characteristic of a 2D model
setup. A preliminary analysis of turbulent power spectra as a function
of time (not shown) is inconclusive with respect to the influence of
this heterogeneous initialization, but the initially high energy at the
higher wavenumbers (smaller scales) quickly dissipates over time,
and the spectra gradually adopt shapesmore alike those with a laminar
horizontal flow initialization. Thismay suggest that the small-scale flow
heterogeneities quickly get smoothed out, and that an upscale transport
of turbulent kinetic energy cannot be simply induced with grid-point-
scale white noise. The formulation of the model's lateral boundary
conditions, however, may also have played a role in the reduction of
the high wavenumber noise over time.

The motion of the plume produced by this setup was predominantly
horizontal (and often grounded in the vicinity of the crater), necessitating
a vertical integration line. The results from this simulation are shown in
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plotted against time. Snapshots of the velocity fields (corresponding to the time denoted by the
over which the fluxes were calculated is highlighted in white.
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Fig. 4. Note however, that the extended vertical extent of the model
domain has been cropped from the plotted data such that the plotted
extentmatches that of Fig. 2. Once again, the effectiveness of themotion
estimation algorithms is clearly demonstrated (Fig. 5). As shown in the
animated sequences (Video 3 and Video 4 — see supplementary mate-
rials), the periods in which the motion estimation algorithms signifi-
cantly underestimate the SO2 flux (e.g. 08:06) correspond to periods
when large portions of the plume are grounded at the integration line
and lack any significant structure.

Using the same images as for Figs. 2 and 4, we made flux estimates
using the conventional cross-correlation technique often used in SO2

camera imaging (McGonigle et al., 2005a; Mori and Burton, 2006;
Williams-Jones et al., 2006). The transects for the cross-correlation
were taken from 20 m (10 grid points) either side of the integration
lines used in Figs. 2 and 4. Short time series of the resulting fluxes are
shown in Figs. 6 and 7. Fig. 6 shows a period when the cross-
correlation method performs well, and Fig. 7 shows a period when it
does not. Fluxes calculated using velocity estimates from the Farnebäck
algorithm are also shown for comparison. It can be seen that although
the cross-correlation method produces reasonable flux estimates when
the plume consists of discrete puffs (Fig. 6), when the plume is less
structured it can produce errors of up to 300% (Fig. 7). The Farnebäck
algorithm performs consistently better than the cross-correlation
method, and appears to be less sensitive to plume conditions.

As already discussed, it is not possible to quantitatively assess the
performance of motion estimation algorithms on real SO2 camera im-
ages. However, some insight can be gained through a visual inspection
of the motion vectors produced by the algorithms. Fig. 8 shows a
snapshot of the motion vectors calculated by both the DT-ℂWT and
Farnebäck algorithmswhen applied to a sequence of SO2 camera images
T Farneback
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the velocity fields from ATHAM, the DT-ℂWT algorithm, and the Farnebäck algorithm are
vertical grey line) superimposed over the SO2 amounts are also shown. The line of pixels
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Fig. 5. Scatter plots showing the relationship between the SO2 fluxes computed using velocity estimates from the Farnebäck (left) and DT-ℂWT (right) algorithms and the real fluxes from
the “open-top” ATHAMmodel. A linear regression line and the associated R2 value are also shown.
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of Villarrica (see Section 2.3). Animations of the motion estimates
from the full sequence of images for the DT-ℂWT (Video 5) and the
Farnebäck (Video 6) algorithms are provided in the supplementary
material to the online version of this article. Both algorithms produce
a similar distribution of velocity vectors over the plume region. In
general the DT-ℂWT technique produces a smoother velocity field.
However, this is likely due to our choice of algorithm parameters rather
than a fundamental difference between the algorithms themselves (for
example a slightly higher level of averaging). Both algorithms produce a
mean plume velocity of around 3.5 m s −1, which seems plausible for
Villarrica. Closer inspection of the estimated motion shows, as demon-
strated by Fig. 9, that the magnitudes and directions of the velocity
vectors from both algorithms match the motion of easily observable
features.

Fig. 10B shows a comparison of SO2 fluxes calculated for the
Villarrica data set using the DT-ℂWT algorithm, the Farnebäck algo-
rithm and the cross-correlation technique. The transect lines used are
shown in Fig. 10A. The fluxes computed using the DT-ℂWT and
Farnebäck algorithms are comparable, and the differences between
them are of the same order as when they were applied to the ATHAM
data (Figs. 2 and 4). The discrepancy with the cross-correlation method
is striking, with cross-correlation consistently giving flux estimates
Fig. 6. Short time series comparing SO2 fluxes calculated from synthetic images from the “close
gorithm. The true fluxes (calculated using the ATHAMvelocity field) are also shown. This time p
technique.
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1.5–2 times higher than the DT-ℂWT and Farnebäck algorithms. Whilst
it is not possible to confirm definitively that the cross-correlation
method is over-estimating, the DT-ℂWT and Farnebäck fluxes are
more in line with previous SO2 fluxes recorded at Villarrica (Mather
et al., 2004a,b; Witter et al., 2004; Shinohara and Witter, 2005;
Sawyer et al., 2011). Furthermore, since the cross-correlation method
was shown to over-estimate the fluxes for the ATHAM data (Figs. 6
and 7) it seems reasonable to assume that it also over-estimates for
real data.

The results of using the DT-ℂWT and Farnebäck algorithms to calcu-
late the corrective transform for a distorted image (as described in
Section 2.4) are shown in Fig. 11. To assess the performance of the
registration we have plotted the percentage error of each pixel value in
the corrected image with respect to its value in the original image, i.e.
the error associated with the pixel at coordinates (i, j), Ei,j, is given by:

Ei; j ¼
Oi; j−Ci; j

�
�
�

�
�
�

Oi; j
� 100 ð1Þ

whereOi,j is the pixel value in the original image, and Ci,j is its value in the
corrected image.
d-top” ATHAM simulation using a simple cross-correlation method and the Farnebäck al-
eriodwas chosen deliberately as an example of good performance of the cross-correlation
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Fig. 7. Short time series comparing SO2 fluxes calculated from synthetic images from the “open-top” ATHAM simulation using a simple cross-correlation method and the Farnebäck algo-
rithm. The true fluxes (calculated using the ATHAM velocity field) are also shown. This time period was chosen deliberately as an example of poor performance of the cross-correlation
technique.
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The correction to the imagewas applied using OpenCV's cvWarpImage
function (Bradski and Kaehler, 2008) (as was the original distortion). It
should be noted that distortion and subsequent correction, even when
the transformation is known exactly, leads to errors of 30–40% in the
out-of-plume region of the corrected image (where the pixel values are
close to zero). This is due to the interpolation required when performing
the transformations. The striped pattern observed in the error plots is
caused by a small-amplitude periodic fluctuation in the intensities of
pixels in the original image, and are not an artefact of the registration
technique. We are unclear on the exact origin of this phenomenon
but suggest that it may be caused by an instrumental effect due to the
particular hardware configuration of the camera. As can be seen in the
Fig. 8. An SO2 camera image of Villarrica captured on 8 February 2012 using a 310 nm bandpa
Farnebäck algorithm (right image). The images have not been calibrated, and the colour scale i
vectors produced by each method are also plotted. Motion vectors from the outside 10 pixels o
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figure, both algorithms produce similar results, with resultant errors
being within the interpolation error of the cvWarpImage function. In
the plume region, the errors in the corrected images are b 3% for both
algorithms.

4. Discussion

In general both algorithms performed similarly, with equal resultant
errors when used for image registration, and comparable correlations
with real flux values when applied to our synthetic data (Figs. 3 and
5). As previously mentioned, a wide range of motion estimation algo-
rithms exist (e.g. (Geiger et al., 2014)) and it is not our intent to promote
ss filter, with motion vectors estimated using the DT-ℂWT algorithm (left image) and the
s arbitrary. Normalised histograms showing the distribution of magnitudes of the velocity
f the image have been excluded from the histograms, as have the zero velocity vectors.
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A B

C D

Fig. 9. (A, B) Two successive SO2 camera images (using a 310 nm bandpass filter) of Villarrica with a ~4 s delay between them, the region displayed in C and D is denoted by the white
rectangles. The images have not been calibrated, and the colour scale is arbitrary. (C, D) Motion vectors mapping pixels in A to their corresponding positions in B; computed using the
DT-ℂWTalgorithm(C) and the Farnebäck algorithm(D). Notable features in the plume from imageA (blue) and B (red) have been enhanced using Sobel edgedetection and are displayed.
Correctmotion vectors are expected to point from features shown in blue to the corresponding feature in red. (For interpretation of the references to colour in thisfigure legend, the reader
is referred to the web version of this article.)
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Fig. 10. (A) Calibrated SO2 camera image of Villarrica. The transects used for the cross-correlation are shown in white. The lower of these was used as the integration line for three flux
estimates. (B) Time series of SO2 fluxes from Villarrica on 8 February 2012 calculated using plume speeds from the cross-correlation method, the DT-ℂWT algorithm and the Farnebäck
algorithm.
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Fig. 11. Results of using the DT-ℂWT and Farnebäck algorithms to estimate a projective distortion to an image. Top left: the original, undistorted image with the region of interest (ROI)
over which motion vectors were estimated highlighted. Top right: percentage pixel errors in the ROI of the distorted image. Lower left: percentage pixel errors in the ROI of the image
corrected using the DT-ℂWT algorithm. Lower right: percentage pixel errors in the ROI of the image corrected using the Farnebäck algorithm.
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the DT-ℂWT or Farnebäck algorithms in particular as being superior for
use with SO2 camera images. That said, the results produced by both
when applied to the Villarrica and ATHAM datasets were encouraging,
and suggest that, even if not optimal, either algorithm would be a rea-
sonable choice for this application. For real-timeprocessing applications
however, the Farnebäck algorithm is more suitable than the DT-ℂWT
algorithm as it is ~6 times faster. Using a PC with a 2.8 GHz Intel Core
i5 processor the Farnebäck algorithm required 1.1 s to compute the
motion vectors between a pair of 1024 × 1024 pixel images, whereas
the DT-ℂWT algorithm took 6.1 s. The computation time for both algo-
rithms scales linearly with the number of pixels in the images, meaning
that large performance increases can be achieved by reducing the size of
the images prior to motion estimation. Recent releases of the OpenCV
library (Bradski, 2000) include an implementation of the Farnebäck
algorithmwhich utilises the large-scale parallelism of modern graphics
cards to increase the speed of the algorithm. In tests using a NVIDIA
GeForce GTX 680 M graphics card, we found this to reduce the compu-
tation time to 90 ms for a pair of 1024 × 1024 pixel images.

More specialised optical-flowalgorithmsexist, which are specifically
designed for tracking fluid flows (e.g. (Nogawa et al., 1997; Corpetti
et al., 2002)). As such, they incorporate constraints from fluid mechan-
ics, such as continuity, to prevent un-physical flow estimations.
The findings of (Corpetti et al., 2002) show that inclusion of these
constraints can lead to improved accuracy of the motion estimates
produced for fluid flows. Such algorithms may be more suitable for
estimating the plume transport speed than the DT-ℂWT or Farnebäck
algorithms. However, successful application of the continuity constraint
Please cite this article as: Peters, N., et al., Use of motion estimation algori
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relies on accurate knowledge of the SO2 amounts in each pixel. Whilst
this is the case for the synthetic images produced by ATHAM, the
calibration of real images is subject to unquantifiable error values and
it is not clear how these errors might propagate into the motion
estimate. In the future it may be possible to combine the motion
estimates and the apparent absorbance data into a single coherent
plume model which could then be inverted for SO2 flux taking into
account continuity constraints and therefore minimising the errors
from both the motion and the calibration. However, this is beyond
the scope of this investigation.

Synthetic plume images, such as those created using ATHAM, are
clearly a useful validation tool for SO2 flux calculation techniques as
they enable quantitative error calculations to be made. In addition to
validation, they also facilitate analysis and tuning of motion estimation
algorithms which is not otherwise possible. For example, the choice of
input parameters for an algorithm could be optimised by systematically
varying its input parameters, applying it to a synthetic image sequence,
and minimising the mean-squared error with respect to the known ve-
locities (e.g. using Levenberg–Marquardt optimisation (Levenberg,
1944; Marquardt, 1963)). However, it is worth keeping in mind that a
choice of parameters that can perfectly reproduce the velocity field of
the synthetic images will not necessarily work well when applied to
real data. This is of course dependent on how representative the
modelled data are of real plumes.

The sensitivity of the two algorithms to their input parameters large-
ly depends on the images being analysed. For images containing a lot of
structure in the plume that does not move significantly between frames
thms for improved flux measurements using SO2 cameras, J. Volcanol.

http://dx.doi.org/10.1016/j.jvolgeores.2014.08.031


Appendix A.1. DT-ℂWT algorithm

Table A.1
Parameters used with DT-ℂWT algorithm for both image registration and plume speed
estimation.

Parameter Value for flux estimation Value for registration

w [−π/2.15, − 3π/2.15] [−π/2.15, − 3π/2.15]
nit 6 6
levelsel [[6, 4], [6, 3], [5, 3], [5, 3]] [[4, 4], [4, 3], [4, 3], [4, 3], [4, 2]]
sizeqfilt [4, 2, 2, 1] [48, 32, 32, 16]
avlevel 3 4

w — Expected phase rotation per sample of the high and low band filters used in the
DT-ℂWT decomposition.
nit—Number of iterations of the algorithm. A higher valuemay lead to amore refinedmo-
tion estimate, but at the expense of increased computation time.
levelsel — Defines the coarsest and finest ℂ WT levels to be used during each iteration. In
general it is best to use only the coarse levels for the early iterations, and then gradually
expand the range to progressively finer levels. This parameter effectively selects the
“size” of the features that are being tracked. Use of larger features often gives estimates
that are less prone to noise, but also results in a less detailed velocity field.
sizeqfilt—Defines the size of the smoothingfilter used at each iteration. A largerfilter gives
a smoother velocity field, but also causes loss of detail.
avlevel— Defines theℂWT level which has the same resolution as the velocity estimates.
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(i.e. high frame-rate), both algorithms could be described as having a
“linear” response to their input parameters (i.e. a small change in pa-
rameters will result in a small change in estimated motion). However,
for images recorded at a lower frame-rate or that only have large scale
structure in the plume, a high level of averagingmust be used or the al-
gorithmswill fail to produce a physical result. Although both algorithms
can be used successfully on low frame-rate data, the large amount of
averaging required results in a very coarse motion estimate, and, in
such situations the advantages over the cross-correlation technique
may not be so significant.

The configuration and setup of the model used in this study was
limited by computing time, and it is likely that with more resources its
capabilities could be exploited to a greater extent. In particular, our sim-
ulations fail to reproduce the very rapid dilution of the plume that is
seen in the Villarrica images. This may be due in part to the fact that
the model is run only in two-dimensions, greatly reducing the scope
for entrainment of the surrounding atmosphere into the plume. A
three-dimensional setup using ATHAM, whilst possible, would be ex-
tremely computationally expensive. It would, however, facilitate very
useful studies into the effects of treating a real volcanic plume as a
two-dimensional object when calculating transport speeds. It is impor-
tant to remember that each pixel in a SO2 camera image represents an
integrated amount of SO2 in the plume along the optical path of that
pixel. Hence, estimating motion vectors from such an image can only
ever yield a coarse approximation to the true plume velocity. Three-
dimensional plume model data would allow the errors introduced by
estimating transport speeds from a two-dimensional projection of the
plume to be constrained.

Although both algorithms were able to accurately compute the
transformation required to correct our distorted image, in reality the
problem is more complex. The image pairs to be registered from SO2

camera systems employing two camera units are captured at different
wavebands and features visible in one image may not be present in
the other. This will likely degrade the performance of the algorithms
and may compromise their ability to compute the motion vectors
altogether. The extent of this problem will depend on the composition
of the specific plume being imaged, and could be alleviated by careful
selection of regions of the images over which to perform the motion
estimation. An alternative approach would be to periodically capture a
set of images at the same waveband from both cameras and use these
to compute the registration parameters required.

It is theoretically possible to use the motion estimation techniques
to correct for more complex image distortions than the projective
transformation which we demonstrated (e.g. radial lens distortions).
However, allowing more degrees of freedom when calculating the cor-
rective transformation will lead to a less robust result, which is more
susceptible to errors in the motion estimates. Since the lens distortion
should be relatively constant, we believe that this correction would be
better calculated prior to field deployment of the camera, perhaps
using the well-established “chess board” technique (described in detail
by (Bradski and Kaehler, 2008)).

5. Conclusions

We have presented two different motion estimation algorithms, a
DT-ℂWT based algorithm and the Farnebäck algorithm, and showed
how they can be applied to SO2 camera images to improve the calcula-
tion of SO2 flux. The ATHAMmodel was used to create a set of synthetic
SO2 camera images for which the SO2 amounts and velocity field were
known, and these were used to validate the estimates produced by
the two algorithms.

Motion estimation algorithms are clearly a useful tool when applied
to fluxmeasurements using SO2 cameras. It has been found in this study
that they can provide a means to accurately register images from two
separate camera units, in addition to providing more robust estimates
of plume velocity for use in flux calculations than the currently-used
Please cite this article as: Peters, N., et al., Use of motion estimation algori
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cross-correlation method. The two algorithms presented here were
similar in performance and would both be suitable for SO2 camera
applications, however, the Farnebäck algorithm is considerably faster,
making it a better choice for real-time processing. A more thorough
comparison of different algorithms is needed to determine the optimal
algorithm for SO2 camera applications.

Using plume models, such as ATHAM, to produce test datasets for
motion estimation algorithms provides a simple way to evaluate and
compare their performance. Further research is required to ensure
that the data produced are an accurate representation of real volcanic
plumes, and extension of themodel setup into three-dimensions prom-
ises to provide valuable insights into the errors associated with flux
measurements.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jvolgeores.2014.08.031.
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Appendix A. Algorithm parameters

The following sections describe the input parameters for the two
motion estimation algorithms, and list the values that were assigned
to them for this investigation. We refer to the parameters by the same
names as are used in the source-code and documentation for the specif-
ic implementations that we used (see Section 2.1). Optional parameters
that have not been defined below were left set to their default values.
Different values were used for the image registration (Fig. 11) and the
plume speed estimations (Figs. 2, 4 and 8). Both sets of values are listed
in the tables below.
thms for improved flux measurements using SO2 cameras, J. Volcanol.
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Appendix A.2. Farnebäck algorithm

Table A.2
Parameters used with Farnebäck algorithm for both image registration and plume speed
estimation.

Parameter Value for flux estimation Value for registration

pyr_scale 0.5 0.5
levels 4 3
winsize 20 15
iterations 5 10
poly_n 7 5
poly_sigma 1.5 1.2
flags OPTFLOW_FARNEBACK_

GAUSSIAN
OPTFLOW_FARNEBACK_
GAUSSIAN

pyr_scale— Scale factor for each pyramid level compared to the previous.
levels — Number of pyramid levels to create. A higher number results in coarser features
being used for the initial motion estimate.
winsize— Defines the size of the averaging filter used. A larger filter gives a smoother ve-
locity field, but also causes loss of detail.
iterations — Defines the number of iterations of the algorithm at each pyramid level. A
higher value may lead to a more refined motion estimate, but at the expense of increased
computation time.
poly_n — Size of the neighbourhood used in the polynomial expansion for each pixel. A
higher value results in more robust, but less detailed motion estimates.
poly_sigma — The standard deviation of the Gaussian smoothing filter used during the
polynomial expansion.
flags — Optional parameters. We used the OPTFLOW_FARNEBACK_GAUSSIAN option so
that the algorithm uses a Gaussian filter rather than a simple “box” filter. This gives
more robust motion estimates at the expense of increased computation time.
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Appendix B. ATHAM configuration

For our validation exercise, we used the same volcano model config-
uration as previous volcanological studies using ATHAM (Herzog et al.,
1998, 2003; Oberhuber et al., 1998). The volcanic topography was
parametrised as a simple Gaussian-shaped mountain with a height of
2850 m and a width parameter chosen such that the height-to-base
ratio (500/2000) captured within our model domain roughly matched
that of the Villarrica edifice. The crater was also chosen to be Gaussian-
shaped (inverted), with a depth of 100 m, a width parameter of 50 m,
and a flat bottom. Emissions from Villarrica typically emanate from
large (5–20 m) vents in the cooled-crust covering the ~40 m-diameter
lava lake that occupies the base of its crater (Witter et al., 2004;
Shinohara and Witter, 2005). To emulate heat and volcanic gas fluxes
from the lake, we applied a vertical velocity forcing over the cross-
section of a lake, assumed to have a 50 m diameter. The baseline “exit”
velocity was prescribed at 1ms−1, ramped up over 30 s, thenmodulated
in time by a sine function of the same amplitude and a period of 2 min,
mimicking periodicity in lake activity. Additionally, we superimposed
random heterogeneity at each of the lake's 25 grid-points of ±50% of
the “exit” velocity. The potential temperature of the erupting gas-
particle mixture above the lake was set to 1000 K, and specific gas and
aerosol concentrations were aligned with the values measured by
Sawyer et al. (2011). From the tabled mass ratios of emitted gas species
(Sawyer et al., 2011), we set the specific concentrations of the two
gaseous tracers included in our model runs, magmatic H2O and SO2, to
782 and 79 g kg−1, respectively. From the ratio of the measured mass
fluxes of SO2 (3.7 kg s−1) to aerosol (1 kg s−1),we inferred a total aerosol
active tracer specific concentration of 21 g kg−1. The remainder was
assumed to be dry air from unresolved near-surface turbulent entrain-
ment. All particulate aerosol was assigned to a single size binwith a radi-
us of 0.5 μm and in equal amounts of 7 g kg−1 to 3 size bins with radii of
0.1, 0.5 and 5 μm in a second simulation as described in Section 3. All
aerosol was given a specific heat capacity of 1200 J kg−1K−1 and a den-
sity of 2000 kg m−3. Note that the actual values chosen to characterise
volcanic degassing are not overly important, as the primary objective
of the modelling exercise is to provide validation for motion estimation
algorithms, rather than to constrain accurate plume dynamics and
Please cite this article as: Peters, N., et al., Use of motion estimation algori
Geotherm. Res. (2014), http://dx.doi.org/10.1016/j.jvolgeores.2014.08.031
composition of a specific volcano. The turbulent length scale, and the
horizontal and vertical TKE components over the lake were set to 2 m
and 2 m2s2, respectively.

To account for wind-driven advection, without incurring excessive
computational expense, we opted for a two-dimensional Cartesian
grid, acknowledging that this approach precludes three-dimensional
turbulent entrainment and therefore limits effective plume dispersion.
An equal and homogeneous grid-spacing of 2 m in both the horizontal
and vertical dimensions was used, roughly matching the 1 m2 pixel
size of our Villarrica dataset (Section 2.3). We used 1010 × 751 grid-
points to cover a domain 2018 m wide and 1500 m high, starting at an
altitude of 2350 m. A no-slip condition was applied at the ground-
level lower boundary, characterised by a roughness length of 10 cm;
the lateral boundaries were open. The top boundary was treated as a
rigid lid. Open boundaries defy mass conservation within the domain,
requiring us to limit our simulations to 15min. Theminimum andmax-
imum time steps were 0.01 and 1 s, respectively, and the variable time
step is governed by a Courant–Friederichs–Lewy criterion (Courant
et al., 1967) limited to 0.8 for advection. Complete model data-fields
were output every minute, and the full velocity, density of the mixture
and SO2 specific concentration fields were output roughly every second.
Typical runtime on two computational cores was approximately one
week.

Atmospheric initial conditions are specified in the model via a stan-
dard single vertical sounding profile of temperature, relative humidity
and horizontal winds. These characterise atmospheric stability and
determine potential advective transport. We used a sounding from
Puerto Montt (station SCTE/85799, 41.43° S 73.10° W; ~250 km south
of Villarrica) collected on 8 February 2012, at 12:00 UTC (−4 h time
zone), which sets the simulation start to 08:00:00 LT (local time).
Since the crater extends out of the atmospheric boundary layer and
into the free troposphere, we estimate that the use of an early morning
profile is inconsequential to the evolution of the plume. Only the west–
east (u) component of the horizontal wind was retained. This was
aligned with the model's orientation, and scaled down to 20% of the
measured values, in order to avoid excessively fast advection of the
plume (and of turbulence) out of our small model domain, and strong
up- and down-slope flow.
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