Supplementary Table 1. Correlation coefficients between different conservation measures. The Z-scores for each functional category in each organism are compared across the different measures of conservation described in the manuscript.

Supplementary Figure 1. Matrix of Z-scores for proportion of genes with orthologs and homologs of representative functional categories. (A) Molecular Function and (B) Biological Process. Red represents high relative proportion of genes with homologs or orthologs for the category in a particular genome and blue represents low relative proportion. Gray means no statistically significant difference compared to the background of the whole genome. White cells denote that there is no ortholog/homolog with the GO term in the other organism.

Supplementary Figure 2. Matrices of Z-scores for six conservation measures for all GO Molecular Function categories analysed. (A) Median CS for orthologs, (B) average CS for orthologs, (C) proportion of genes with orthologs, (D) median CS for homologs, (E) average CS for homolog and (F) proportion of genes with homologs. The colour code is as in Figure 4 and Supplementary Figure 1. This figure is based on HTML pages on the supplementary website (http://bg.upf.edu/evolvability). The link in the name of the GO category points to a page with details on the statistics of this category. In the statistics page, the link [Genes] points to a page with a coloured matrix of all genes in this category where the colour represents the rank CS of the gene in each genome. The link on the name of each gene will lead you to a page with the actual values of CS orthologs and CS homologs for that gene.

Supplementary Figure 3. Matrices of Z-scores for six conservation measures for all GO Biological process categories analysed. The legend for parts (A) to (F) are as for Supplementary Figure 2 above.

Supplementary Figure 4. Matrices of Z-scores for conservation measures using the KOG database. (A) Median CS for KOG orthologs for GO Molecular Function, (B) Median CS for KOG orthologs for GO Biological Process, (C) Median CS for universal KOG orthologs for GO Molecular Function, (D) Median CS for universal KOG orthologs for GO Biological Process and (E) Median CS for KOG orthologs for KOG functional annotation. The colour code is as in Figure 4 and Supplementary Figure 1. This figure HTML the supplementary is based on pages on website

(http://bg.upf.edu/evolvability). The link in the name of the KOG category points to a page with details on the statistics of this category.

Supplementary Figure 5. Divergence of orthologs of representative functional categories using three different divergence measures, CS orthologs, GERP and dN. (A) Molecular Function and (B) Biological Process. Colours towards red signify high relative conservation of the group of genes in a particular genome. Colours towards blue signify low relative conservation. Gray means no statistically significant difference in conservation level compared to the background of the rest of the genome. White cells denote that there is no gene with the GO term and with ortholog/homolog in the other organism. The coloured lines on the left of the names of the functional classes correspond to the colours of the categories represented in Figure 5.

Supplementary Figure 6. Correlation between dN and CS for orthologs of human genes in mouse (16040 genes) and rat (14726 genes). Data points are shown as diffused blue dots where intensity of blue colour reflects the density of data points in a particular region of the graph. Correlation co-efficient between dN and CS are shown at top left corner of respective graph.

Supplementary Figure 1

Z-score -10 10

proportion of genes with orthologs

invertebrates

Cint

proportion of genes with homologs

vertebrates

Ggal

Xtro

mammals

Cfam

Btau

Mdor

Rnor

Mm

structural constituent of ribosome

invertebrates vertebrates invertebrates bony fish mammals bony fish Agam Dmel Cele Scer Cfam Agam Dmel Drer Trub Tnig Rnor Btau Drer Trub Tnig đ Ggal Xtro ü Scer Scer

regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism

A

В

Biological Process

Supplementary figure 5

regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism

defense response response to pest, pathogen or para

Molecular Function

Biological Process

Supplementary figure 6

Evolvability and divergence rates in the evolution of Homo Sapiens Nuria Lopez-Bigas^{1*}, Subhajyoti De² & Sarah A. Teichmann²

¹ Research Unit on Biomedical Informatics, Universitat Pompeu Fabra, 88 Dr. Aiguader, Barcelona, Spain

² Structural Studies Division MRC Laboratory of Molecular Biology Hills Rd, Cambridge, UK

[°] Corresponding author

Abstract

Protein-coding regions in a genome evolve by sequence divergence and gene gain and loss, altering the gene content of the organism. However, it is not well understood how this has given rise to the enormous diversity of metazoa present today. In order to gain a global view of human and metazoan genomic evolution, we quantify the divergence of proteins by functional category at different evolutionary distances from human. This analysis reveals a dynamic picture of selective forces at short, medium and long evolutionary timescales, and shows that morphological changes in metazoa have been driven by variation in regulatory rather than enzymatic and structural genes. This framework for a grammar of metazoan evolution supports previously postulated theories of robustness and evolvability.

This page holds the supplementary information for Lopez-Bigas et al. manuscript:

- You can find all the supplementary Figures and Tables of the paper [Supplementary Figures & Tables]
- Browse the Gene Ontology Analyses Results [GO analyses] [example]
- Get the statistics for each GO term and each analysis (clicking to the GO term name) [example]
- Get a matrix of all genes in a particular GO category and their CS ranking [example]
- See the conservation score (CS) for orthologs and homologs for any gene. [example]
- Search by gene name, gene symbol, gene description or ensembl id:
 Search

BIOMEDICAL GENOMICS LAB

Supplementary Figures And Tables

- Supplementary Table and Figure legends.
- Supplementary Table 1. Correlation between the different measures used.
- · Supplementary Figure 1. Matrix of Z-scores for median CS of orthologs and homologs and for proportion of genes with homologs and orthologs for representative categories.
- Supplementary Figure 2 & 3. GO Molecular Function & Biological Process Analysis.
- Supplementary Figure 4. KOG Analysis.
 (A) median CS for KOG orthologs for GO Molecular Function
 (B) median CS for KOG orthologs for GO Biological Proces
 (C) median CS for universal KOG orthologs for GO Molecular Function
 (D) median CS for universal KOG orthologs for GO Biological Proces
 (E) median CS for KOG orthologs for KOG functional annotation
- Supplementary Figure 5. GERP and dN Analysis.
 Supplementary Figure 6. CS and dN correlation.

	Evolvability in H. sapiens			0
🖕 🔹 📄 👻 🙋 🔝 🏠 🎆 http://bg.imim.es:80	080/evolvability/analyses.jsp	• •	G • Google	Q 🕺
Getting Started Latest Headlines				
Evolvability in <i>Homo sapie</i>	ns		BIOMEDICAL GENOMICS	a sur
Abstract Supplementary Figures & Tables GO Analys	25 Descri	ption		Search
GO Analyses				
 Supplementary Figure 2. GO Molecular Function (A) median CS for orthologs (B) average CS for orthologs (C) proportion of genes with orthologs (D) median CS for homologs (E) average CS for homologs (F) proportion of genes with homologs Supplementary Figure 3. GO Biological Process (A) median CS for orthologs (B) average CS for orthologs (C) proportion of genes with orthologs (D) median CS for homologs (E) average CS for homologs (F) proportion of genes with homologs 	n Analysis. 5 Analysis.			
BIOMEDICAL GENOMICS LAB				

Description: ZScore

The Z score reveals how many units of the standard deviation a case is above or below the mean of the population. In this case it shows if the average or median CS of the genes in a particular GO category or the proportion of genes with homologs/orthologs differs significantly to the background population of genes.

Z scores are represented in a colour code where red represents high relative mean or median CS or high proportion of genes with homologs or orthologs for the category in a particular genome and blue represents low relative values. Gray means no statistically significant difference compared to the background of the whole genome. White cells denote that there is no ortholog/homolog with the GO term in the other organism.

Z score is defined as standardized distance between a statistics derived from a subset of elements from the population and a statistics bootstrapped from equally sized random samples taken from this population. It is expressed as:

$$Z_x = \frac{S - s_x}{\sigma_S}$$

where S is a statistics derived from a bootstrap, s_{r} is a statistics from a subset, and σ_{c} is a standard deviation from the bootstrap.

For continuous statistics σ is calculated as:

$$\sigma = \sqrt{\frac{\sum_{i=0}^{N} (X - x_i)^2}{N}}$$

where X is a mean of statistics derived from a bootstrap, x, is a statistics from ith bootstrapping iteration and N is a number of elements in the population;

and for binomial ones as follows:

$$\sigma = \sqrt{\frac{p \ (1-p)}{N}}$$

where p is a proportion in the population and N is a number of elements in the population.

000 Evolvability in H. sapiens \square Ľ 2 😢 🏠 The http://bg.imim.es:8080/evolvability/clazzProps.view?propertySetId 🔻 🕨 🕞 🕞 🛛 Google Q) Getting Started Latest Headlines Evolvability in Homo sapiens BIOMEDICAL GENOMICS | Description Search | Abstract | Supplementary Figures & Tables | GO Analyses Property Set: H.sapiens CS Orthologs Description Class: Catalytic_activity Description Genes | Zscore Description -10 10 non significant Table description Property х μ σ Ν Z p 0.8642 0.8586 0.002 21,875 2.791 0.0053 H.sapiens CS orthologs M.musculus 0.8494 0.8418 0.0022 21,875 3.3952 0.0007 H.sapiens CS orthologs R.norvegicus 0.8692 0.8546 0.0022 21,875 H.sapiens CS orthologs C.familiaris 6.5008 < 1E-15 H.sapiens CS orthologs B.taurus 0.8324 0.8232 0.0028 21,875 3.2169 0.0013 H.sapiens CS orthologs M.domestica 0.7717 0.7578 0.003 21,875 4.6318 3.63E-06 H.sapiens CS orthologs G.gallus 0.6993 0.6813 0.0036 21,875 4.964 6.91E-07 H.sapiens CS orthologs X.tropicalis 0.6215 0.5956 0.0036 21,875 7.1285 < 1E-15 H.sapiens CS orthologs D.rerio 0.5576 0.5272 0.0031 21,875 9.6644 < 1E-15 H.sapiens CS orthologs T.rubripes 0.5728 0.5334 0.0035 21,875 11.1476 < 1E-15 H.sapiens CS orthologs T.nigrovirdis 0.5069 0.4771 0.0037 21,875 8.0083 < 1E-15 H.sapiens CS orthologs C.intestinalis 0.3698 0.3289 0.0035 21,875 11.8176 < 1E-15 0.3571 0.3187 0.0035 21,875 10.9456 < 1E-15 H.sapiens CS orthologs D.melanogaster H.sapiens CS orthologs A.gambiae 0.3542 0.317 0.0036 21,875 10.1995 < 1E-15 H.sapiens CS orthologs C.elegans 0.315 0.2706 0.0038 21,875 11.5793 < 1E-15 H.sapiens CS orthologs S.cerevisiae 0.2412 0.2185 0.004 21,875 5.6728 1.41E-08

SIOMEDICAL GENOMICS LAB

Description: ZScore Table

Column	Description
х	statistics value (mean, median or proportion) derived from sample
μ	mean of statistics values (derived from bootstrap or calculated from proportion)*
σ	standard deviation (derived from bootstrap or calculated from proportion)*
N	number of elements in the sample
Ζ	Zscore value
p	<i>p</i> value
`color`	Z score's color code

*See: Z score description.

000		Evolvability in H. s	apiens		
🛶 🔹 📄 🗸 🥑 🛞 🕋 🌆 http://bg.im	im.es:8080/evolvability/clazzGenes.view?pro	pertySetId=7&clazzId=8324&sort=83&direction	=desc	🔻 🕨 🚺 🕻 Google	Q 3
Getting Started Latest Headlines					
Evolvability in <i>Homo s</i>	apiens				
Abstract Supplementary Figures & Tables G	O Analyses			Description	Search
Property Set: <i>H.sapiens</i> CS Orthole Class: Catalytic_activity Description Properties	DGS Description				
Conservation score rank Description	1.0				
Conservation Conservation Conservation score: score: score: orthologs: orthologs: orthologs: <i>M.musculus R.norvegicus C.familiaris</i>	Conservation Conservation Conservation score: score: score: orthologs: orthologs: orthologs: <i>B.taurus M.domestica G.gallus</i>	Conservation Conse	ervation Conservation Conservation Conservati core: score: score: score: hologs: orthologs: orthologs: orthologs rovviridis C.intestinalis D.melanogaster A.gambia	ion Conservation Conservation score: score: s: orthologs: orthologs: ne Celegans S.cerevisiae	Gene
				MAR(TUBE	2H5 12C
				UBE2 UBE2	L3 (G2
				PTP4 POLR RHO	A2 (2L G
				B3GA PPIH	in .
				UBE2 POLR VCP	E3 (2G
				ABCE	11 12H
				SPDY EIF4/ CDC4	A A1 42SE2
				PSL4 EIF4/	_HUMAN A2
				RABE PPP4	B
				PRPS	1 2D
				ILF2	
				ATAD)1 30
				TUBE	2B 82A
				UBE2 RAN	.G1
				UBE2	.D2
				SHEN	11
				UBE2 PTP4	B A1
				UBE2 POLR	R2 (21
				TUBB PPP2	4 CB
				RAB1 PSM0	.1A 26
				PSMC	.5
				CDC4 RUVE	i2 3L1
				MPPE	:D2 12B
				RHO PPP2	Q R1A
Done				RNF1	1

Description: Conservation Score Rank

All human genes with orthologs or homologs in the other genome are ranked according to their CS. The gene with the highest CS is shown in red and the one with the lowest CS in blue, with all others in intermediate colours according to their rank by CS. Thus, colours towards red mean high relative CS of the protein, green is medium relative CS and blue low relative CS. White cells denotes that this gene doesn't have an homolog or ortholog in that genome.

Description: Conservation Score Rank

Conservation score: orthologs: D.melanogaster

Conservation score: orthologs: A.gambiae

Conservation score: orthologs: C.elegans

BIOMEDICAL GENOMICS LAB

Conservation score: orthologs: S.cerevisiae

0.4475

0.374

0.4027

All human genes with orthologs or homologs in the other genome are ranked according to their CS. The gene with the highest CS is shown in red and the one with the lowest CS in blue, with all others in intermediate colours according to their rank by CS. Thus, colours towards red mean high relative CS of the protein, green is medium relative CS and blue low relative CS. White cells denotes that this gene doesn't have an homolog or ortholog in that genome.

Conservation score: homologs: D.melanogaster

Conservation score: homologs: A.gambiae

Conservation score: homologs: C.elegans

Conservation score: homologs: S.cerevisiae

0.4475

0.374

0.4027