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Summary 
 

‘Anhydrobiosis’ or ‘life without water’ is a fascinating phenomenon that was first 

described by the eminent Dutch microscopist Antony van Leewenhoek in bdelloid 

rotifers in 1702. Despite being studied for over three hundred years, our 

understanding of its molecular basis remains largely elusive. Recently, two group 3 

LEA (late embryogenesis abundant) proteins, ArLEA1A and ArLEA1B, have been 

identified in the desiccation-induced gene set in the bdelloid species Adineta ricciae 

that are hypothesised to protect these animals by preventing protein aggregation and 

stabilising membranes respectively. In this dissertation, the functional characteristics 

of bdelloid LEA proteins have been further explored using computational and 

experimental tools. Analysis of their phylogeny and domain composition reveals that 

ArLEA1A and ArLEA1B are evolutionarily distinct from other related group 3 LEA 

proteins. Moreover, unlike some LEA proteins that are unstructured, bdelloid LEA 

proteins are predicted to form α-helices, with ArLEA1B having an additional 

propensity to polymerise into tropomyosin like filaments. These proteins are also 

predicted to localise in the ER (endoplasmic reticulum) and interact with cell 

signalling molecules. Intracellular localisation analysis of ArLEA1A and ArLEA1B 

using confocal microscopy confirms that these proteins translocate into the ER as 

predicted and their distribution within the entire secretory system and the cell 

exterior is regulated by their N- and C-terminal signals. Preliminary results suggest 

that over-expressing ArLEA1A fails to provide protection against protein aggregation 

within the mammalian ER. Lastly, both ArLEA1A and ArLEA1B are found to provide 

partial protection against desiccation induced damage of fluorescence properties of 

the red fluorescent protein mCherry. Overall, the results in this dissertation provide 

important mechanistic insights into the mode of action of bdelloid LEA proteins 

during anhydrobiosis. 
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Introduction 
 

Water is of paramount importance for cell survival and its loss causes death of most 

organisms. Damage of cells due to water loss has been attributed to protein 

aggregation and denaturation, generation of reactive oxygen species and breakdown 

of cellular membranes (Crowe and Clegg, 1978). Intriguingly, the capacity to survive 

in the absence of water is innate in a number of species including bdelloid rotifers. 

This phenomenon has been termed ‘anhydrobiosis’ or ‘life without water’ (Giard, 

1894; Tunnacliffe and Lapinski, 2003). Unlike the majority of anhydrobiotic 

organisms that apparently rely on non-reducing sugars like trehalose for protection of 

cells during dehydration (Clegg, 1965, 1967; Gaff, 1989; Quillet and Soulet, 1964; 

Westh and Ramlov, 1991), bdelloid rotifers lack these molecules (Caprioli et al., 

2004; Lapinski and Tunnacliffe, 2003; McGee, 2006). Recently two proteins, 

ArLEA1A and ArLEA1B, belonging to the LEA protein family, have been discovered in 

the desiccation-induced gene set in bdelloids (McGee, 2006; Pouchkina-Stantcheva 

et al., 2007). These proteins are believed to protect cells in the absence of water by 

preventing desiccation-induced aggregation of other proteins and stabilising 

phospholipid bilayers, respectively. Moreover, they are predicted to localise in the 

ER. These findings have resulted in a paradigm shift in our current understanding of 

the fundamental principles of anhydrobiosis, since sugars that were once considered 

important in this process are no longer deemed to be absolutely essential. 

So far, the functions of ArLEA1A and ArLEA1B have been characterised mainly 

by in vitro experiments and there is little evidence available regarding their functions 

in the cellular environment. Further, there are a number of fundamental questions 

related to the phylogeny, domain composition, three dimensional structure and 

protein-protein interaction motifs of these proteins that remain unanswered. It is also 

not known whether additional variants of these proteins might exist in the bdelloid 

genome. Lastly, it has not been elucidated whether these proteins can also prevent 

structural damage of other proteins caused by loss of water. 
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In view of these questions, it was decided to perform a comprehensive 

bioinformatics and experimental analysis of ArLEA1A and ArLEA1B. This research is 

expected to broaden our understanding of the nature and evolution of these proteins 

and increase our fundamental knowledge of their mode of action. Moreover, 

understanding their functions within the physiological context of the ER might enable 

the design of better therapeutic strategies aimed at countering ER stress-related 

disorders caused by protein misfolding and aggregation. 

 

Aims and objectives 

The primary aim of my dissertation is to investigate the functional characteristics of 

LEA proteins, ArLEA1A and ArLEA1B, found in the desiccation-tolerant bdelloid 

rotifer species Adineta ricciae. Specific objectives designed to achieve this aim are 

the following: 

• Bioinformatics analysis of ArLEA1A and ArLEA1B phylogenies, 

domains, structural properties, signalling motifs and protein-protein 

interaction sites. 

• Experimental validation of ArLEA1A and ArLEA1B localisation in the ER 

in living cells and functional verification of N-terminal and C-terminal 

signals in these proteins.  

• Assessment of the protective effects of ArLEA1A and ArLEA1B in the 

physiological context of the mammalian ER. 

• Assessment of the protective effects of ArLEA1A and ArLEA1B against 

desiccation-induced structural damage of the mCherry fluorophore.  

 

 

 

 



	
  

	
   3	
  	
  

Taking these objectives into consideration, this dissertation has been organised in the 

following manner: 

Chapter One: Literature review, consisting of background information on bdelloid 

rotifers, principles of anhydrobiosis and cryptobiosis, general properties and 

classification of LEA proteins and our current knowledge of ArLEA1A and ArLEA1B 

functions. 

Chapter Two: Materials and Methods describing the bioinformatics and experimental 

procedures in detail. 

Chapter Three: Bioinformatics analysis of ArLEA1A and ArLEA1B proteins: their 

phylogeny, domains, structural models, localisation sequences and protein-protein 

interaction sites.  

Chapter Four: Confocal microscopy of ArLEA1A and ArLEA1B in living cells and 

analysis of ER-Golgi trafficking mediated by ArLEA1A/ArLEA1B N-terminal and C-

terminal signal sequences. 

Chapter Five: Construction of a mammalian cell model with ER-Golgi localisation of 

aggregation-prone polyQ (polyglutamine) protein and subsequent analysis of the 

protective effects of ArLEA1A/ArLEA1B on polyQ induced cytotoxicity.  

Chapter Six: Study of desiccation induced damage of mCherry absorbance and 

fluorescence properties and analysis of protective effects of ArLEA1A and ArLEA1B. 

Chapter Seven: Conclusions and future work. 
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Chapter One: Literature Review 
 

1.1 Bdelloid rotifers: evolutionary enigmas 

To the naïve eye, bdelloid rotifers under the microscope seem like beautiful, ciliated 

organisms, swimming around in slow motion, curling up occasionally only to start 

swimming again. However, these animals are also one of the most extraordinarily 

robust animals on our planet, surviving a variety of stresses, including desiccation 

(Tunnacliffe and Lapinski, 2003), high doses of radiation (Gladyshev and Meselson, 

2008), starvation and lethal fungal parasitic attacks (Wilson and Sherman, 2010). 

Since the initial discovery of anhydrobiosis in bdelloids by Antony van Leeuwenhoek 

in 1702, biologists have endeavoured for centuries to understand the basis of their 

biostability.  
The species currently under study in our laboratory is Adineta ricciae, which 

belongs to the class Bdelloidea in the phylum Rotifera, alongside three additional 

classes: Seisonidea, Monogononta and Acanthocephala. A. ricciae was first isolated 

from the dry mud of Ryan’s billabong in Australia (Segers and Shiel, 2005). Bdelloids 

reproduce exclusively by ameiotic parthenogenesis (thelytoky) unlike other classes 

that reproduce either sexually (Seisonidea and Acanthocephala) or exhibit cyclical 

parthenogenesis with the asexual cycle (amictic females) dominating in their life 

cycle (Monogononta). In the latter group, sexual reproduction is triggered by specific 

environmental signals like high population density (Wallace, 2002).  

Bdelloid rotifers are perplexing from the evolutionary point of view since they 

have survived for >35 million years without sex (Ricci and Fontaneto, 2009). It is 

generally believed that sexual reproduction confers a greater adaptive advantage to 

species than asexual reproduction as it removes deleterious mutations and facilitates 

co-evolution with parasites and pathogens (West et al., 1999). However, under 

exceptional circumstances, organisms might devise means to shed parasites and 

pathogens and disperse to uninfected habitats (Ladle et al., 1993). It has been 

recently suggested that bdelloid rotifers have adapted similar means to counter 
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deadly fungal parasites through anhydrobiosis and wind dispersal as propagules to 

establish new infection-free populations. These findings might explain the prevalence 

of asexuality in these animals whereby they are no longer under any evolutionary 

pressure to counter co-evolving enemies through sex (Wilson and Sherman, 2010).  

Moreover, sequence analysis of an approximately 50kb region containing four 

hsp82 heat-shock genes in bdelloid species Philodina roseola suggests that bdelloids 

are degenerate tetraploids (Hur et al., 2009; Mark Welch et al., 2008). It is believed 

that this might have been an outcome of whole genome duplication, followed by 

segmental deletions. 

Another fascinating aspect to the evolutionary mechanisms operating within 

bdelloid rotifer species has been the acquisition of bacterial, plant and fungal genes 

through horizontal gene transfer (HGT) (Boschetti et al., 2011; Gladyshev et al., 

2008). Horizontal gene transfer involves the movement of genetic material from one 

organism to another through means other than vertical descent (from parent to 

offspring). Many of these genes have been incorporated in the sub-telomeric regions 

of the bdelloid genome and code for enzymes involved in carbohydrate, amino acid 

and peptide metabolism. It has been proposed that this gene transfer has been 

facilitated by membrane disruption and DNA fragmentation and repair occurring 

during anhydrobiosis (Gladyshev et al., 2008). Horizontal gene transfer has 

contributed immensely towards developing aerobic respiration, nitrogen fixation, 

photosynthesis and numerous other biosynthetic pathways in prokaryotes (Boucher et 

al., 2003). Recently it has been shown that bdelloid rotifers can accumulate foreign 

genes and express them in the desiccated state (Boschetti et al., 2011), by a 

presumably adaptive response to desiccation in these animals.  

 

1.2 Principles of anhydrobiosis 

Before I describe anhydrobiosis in rotifers, I would like to discuss the fundamental 

principles of this phenomenon in more general terms. Anhydrobiosis or ‘life without 

water’ (a term coined by Giard in 1894) is a form of ‘cryptobiosis’ (Keilin, 1959) 

which is defined as “the state of an organism when it shows no visible signs of life 



	
  

	
   6	
  	
  

and when its metabolic activity becomes hardly measurable or comes reversibly to a 

standstill”. Keilin distinguished this state from dormancy or latent life, which can be 

marked by some amount of metabolic activity. A variety of stresses including 

desiccation (anhydrobiosis), low temperature (cryobiosis), lack of oxygen 

(anoxybiosis) or combinations of these could result in a cryptobiotic state of an 

animal (Clegg, 2001).  

Currently, it is debatable whether metabolism ever comes to a reversible 

standstill during anhydrobiosis. Keilin and others have recognized the inherent 

difficulty in proving the absence of metabolism, as being ‘unmeasurable’ need not 

imply a lack of it (Clegg, 2001).  

Setting the boundaries between the metabolic and the ametabolic state is 

indeed not trivial. It is speculated that removal of all but 0.1 g g dry weight-1 of water 

should result in cessation of all metabolism in a living cell (Clegg, 1978, 1986, 2001; 

Potts, 1994). However, in order to prove this, one would have to measure the rate of 

all the enzymatic reactions and energy transformations in a cell, which is currently 

beyond the current technological limits of detection. With the advent of sensitive 

microfluidics platforms (Bousse and Parce, 1994; Douglas et al., 2009), it might one 

day become possible to monitor subtle metabolic changes during the onset and 

maintenance of anhydrobiosis in various organisms. For now, it is safe to stick by 

what Clegg said about the three states of biological organisation- ‘alive’, ‘dead’ or 

‘cryptobiotic’ (Clegg, 2001). 

Anhydrobiotic organisms demonstrate certain common biochemical and 

biophysical adaptations. A general feature seems to be the presence of ‘compatible 

solutes’ (Yancey et al., 1982) that show a striking similarity in their properties among 

different organisms. These osmolytes are believed to favor the structural and 

functional integrity of macromolecules in conditions of stress.   

For example, some anhydrobiotic organisms like plants (Gaff, 1989; Quillet 

and Soulet, 1964), brine shrimps (Clegg, 1965, 1967; Clegg and Evans, 1962) and 

tardigrades (Westh and Ramlov, 1991) trigger the production of non-reducing 

disaccharides like trehalose and sucrose during anhydrobiosis (Tunnacliffe and 
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Lapinski, 2003). In the early stages, when there is an increase in intracellular solute 

concentration, changes in pH and cellular viscosity, these sugars protect biopolymers 

by preventing structural changes according to the principle of preferential exclusion 

(Arakawa and Timasheff, 1982). During later stages of anhydrobiosis when water 

content is lowered to 0.3g g dry weight-1, it is hypothesised that these sugars become 

strongly associated with polar groups of proteins and phospholipids by hydrogen 

bonding and serve as ‘water replacement molecules’ (Clegg, 1974, 1986; Clegg et 

al., 1982; Crowe et al., 1992; Crowe and Madin, 1974). In the last phase of 

anhydrobiosis, these disaccharides contribute towards vitrification or glass formation 

that results in entrapment of all bio-molecules in a specific space and time (Burke, 

1986; Crowe et al., 1998; Sun and Leopold, 1997). These sugars also help prevent 

deleterious biochemical reactions in the dry state, like the Maillard and Fenton 

reactions (Loomis et al., 1979), as first proposed by Crowe (Crowe and Clegg, 1973). 

Besides sugars, desiccation tolerance has also been associated with the 

expression of a unique category of proteins called LEA (late embryogenesis abundant) 

proteins. First discovered late in embryogenesis of cotton seeds (Dure et al., 1981; 

Galau and Dure, 1981), an analogy has often been drawn between these proteins 

and chaperones induced during the heat shock response (Tunnacliffe and Wise, 

2007). A more thorough description of these proteins is provided in Sections 1.4, 1.5 

1.6 and 1.7.  

Lastly, one cannot rule out the importance of lipid assisted protein folding 

during desiccation (Bogdanov and Dowhan, 1999) as pointed out by Clegg (Clegg, 

2001). It is postulated that certain ‘lipo-chaperones’ might be involved in stabilising 

membranes during desiccation in concert with sugars like trehalose and sucrose 

(Clegg, 2001). 

In summary, cells might employ a variety of biochemical and biophysical 

strategies to preserve the structure and function of macromolecules during 

anhydrobiosis. We have only begun to understand a few principles involved in this 

fascinating phenomenon.  
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1.3 Anhydrobiosis in bdelloid rotifers 

Although Antony van Leeuwenhoek is credited with first discovering anhydrobiosis 

in rotifers in the 18th century, this phenomenon was properly investigated by an 

Italian clergyman Lazzaro Spallanzani in his work Opuscoli fisica animale et 

vegetabile (Tunnacliffe and Lapinski, 2003).  His description of anhydrobiosis also 

happens to be the most picturesque: ’When dried, the solids are contracted and 

distorted, the whole body of the animal is reduced to a hard shapeless atom of 

matter; pierced by a needle, it flies in pieces like a grain of salt’. Spallanzani further 

went on to show that rotifers can be stored in the dried state for longer than four 

years and acquire increased resistance to cold and heat (-12°C and 68°C 

respectively). In order to explain this phenomenon he postulated that all metabolism 

must stop in rotifers for them to withstand such extremes. 

Previous analysis of the gross morphological changes associated with 

anhydrobiosis in rotifers has revealed that their body contracts and acquires a ‘tun’ 

shape (Ricci et al., 2003).  A more detailed study of the dry state morphology of 

rotifers has been performed only very recently by Marotta et al. using confocal and 

electron microscopy (Marotta et al., 2010). This investigation provides important 

glimpses into the morphological changes occurring in rotifer cellular systems during 

anhydrobiosis for the first time (Fig. 1.1).  

As can be observed, in the relaxed hydrated specimen a clearly visible body 

cavity separates the internal organs from each other and from the body wall (Fig. 1.1 

b,c). However, in the hydrated contracted specimen the head and the foot are 

retracted into the trunk, which acquires a barrel shape; and epidermal folds are 

present at both extremities (Fig. 1.1e,f). The relative position of the internal organs is 

similar to that of the relaxed hydrated specimens and there is not much change in the 

body cavity, although organs appear slightly more condensed. Compared to the 

contracted hydrated specimens, in anhydrobiotic rotifers the body is flattened dorso-

ventrally, and assumes a characteristic dome-shaped morphology (Fig. 1.1h). Several 

epidermal folds are present at both ends (Fig. 1.1h,i). Moreover, the internal organs 

appear more compact, with a greatly reduced body cavity. The organs also appear 
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less resolved than the hydrated specimens, probably due to changes in the 

biochemical composition of cells.  

 

Figure 1.1: Anhydrobiosis in bdelloid rotifers. Scanning electron microscopy and confocal 
microscopy of hydrated relaxed (a–c), hydrated contracted (d–f) and anhydrobiotic (g–i) 
specimens of bdelloid rotifer species Macrotrachela quadricornifera. (a) Fully relaxed animal 
at SEM; (b) sagittal section through a relaxed rotifer; (c) parafrontal section through a relaxed 
specimen; (d) SEM image of a hydrated contracted specimen; (e) sagittal section of a 
hydrated contracted specimen; (f) parafrontal section through a hydrated contracted 
specimen; (g) anhydrobiotic specimen at SEM; (h) sagittal section through an anhydrobiotic 
specimen; (i) frontal section through an anhydrobiont specimen. Abbreviations: f, foot; h, 
head; s, stomach; t, trunk; tr, trochi. Taken from Marotta et al., 2010, with permission. 

 

Currently the molecular basis of biostability in belloid rotifers during 

anhydrobiosis is not very well understood. Unlike other anhydrobiotic organisms that 

produce non-reducing disaccharides like trehalose and sucrose (Lapinski and 

Tunnacliffe, 2003) during desiccation, rotifers are intriguingly deficient in these 

molecules. In order to explain this deficiency of sugars, Lapinski and Tunnacliffe 
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hypothesized that these organisms might rely on proteins for cellular protection. The 

LEA family of proteins, known to be associated with resistance against desiccation in 

numerous other organisms, were suggested as possible alternatives. The search for 

desiccation resistance genes in rotifers ultimately led to the identification of two LEA 

genes, Ar-lea-1A and Ar-lea-1B in the cDNA isolated from dehydrated rotifers 

(Pouchkina-Stantcheva et al., 2007). These genes translate into two proteins, 

ArLEA1A and ArLEA1B, respectively. Before I discuss the specific molecular functions 

of ArLEA1A and ArLEA1B, I would like to highlight the functional and structural 

characteristics of the broad family of LEA proteins, their sub-cellular localisation and 

classification into different groups.  

 

1.4 Functional diversity of LEA proteins 

LEA proteins are a large family of proteins that were initially found to be encoded by 

mRNAs enriched in the later stages of embryo development in cotton seeds by Dure 

et al. (Dure et al., 1981; Galau and Dure, 1981). Besides being associated with 

desiccation tolerance in plant seeds, these proteins have also been found in 

vegetative tissues of drought and cold stressed plants (Joh et al., 1995; Mundy and 

Chua, 1988) and during abcissic acid (ABA) treatment (Yamaguchi-Shinozaki and 

Shinozaki, 1993). Moreover, their expression has been found to be correlated with 

desiccation tolerance in a number of other organisms like the bacterium 

Deinococcus radiodurans (Battista et al., 2001), nematodes Aphelenchus avenae 

(Browne et al., 2002; Browne et al., 2004) and Caenorhabditis elegans (Gal et al., 

2004), larvae of insects Polypedilum vanderplanki (Kikawada et al., 2006) and 

bdelloid rotifer species A. ricciae (Pouchkina-Stantcheva et al., 2007). Additional 

evidence for the association of LEA proteins with desiccation tolerance is provided by 

knocking out or knocking down these genes. For example, knocking out LEA protein 

homologues in D. radiodurans impairs desiccation resistance in these bacteria 

(Battista et al., 2001). Similarly, RNAi silencing of Ce-lea-1 in C. elegans significantly 

reduces tolerance to drying (Gal et al., 2004). 
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The functions of these ubiquitous proteins are quite diverse and include lipid 

association (Pouchkina-Stantcheva et al., 2007; Tolleter et al., 2007), glass 

stabilisation during anhydrobiosis (Shimizu et al., 2010) and association with actin 

molecules (Abu-Abied et al., 2006). Some mitochondrial LEA proteins have been 

shown to protect the inner mitochondrial membrane and mitochondrial enzymes like 

fumarase and rhodanese (Grelet et al., 2005), thus potentially increasing organelle 

resistance to water stress.  

LEA proteins like AavLEA1 have also been demonstrated to prevent 

aggregation of desiccation-sensitive enzymes like citrate synthase (Goyal et al., 

2005b). Therefore, it is hypothesised that these proteins might act like ‘molecular 

shields’ by forming a physical barrier between aggregating proteins during 

desiccation (Goyal et al., 2005b). Alternatively, it is believed that they could form 

specific complexes with their client proteins and might act like ‘molecular 

chaperones’. However, recent results suggest that unlike molecular chaperones, LEA 

proteins cannot associate strongly with their client proteins (Chakrabortee et al., 

2012) and are incapable of protecting proteins in harsh conditions of stress like heat. 

A model has been proposed whereby LEA proteins might partially fold on the surface 

of misfolded proteins in a manner similar to chaperone proteins containing 

intrinsically disordered regions (Tompa and Csermely, 2004) allowing a degree of 

entropy transfer that might facilitate refolding of the client protein during desiccation.  

These proteins are also believed to function as ‘hydration buffers’, whereby 

they might bind water molecules in their hydration shells. Nuclear magnetic 

resonance (NMR) has demonstrated that several LEA proteins retain 20-50% more 

water molecules compared to normal globular proteins like BSA (Bokor et al., 2005). 

However, in dried plant seeds these proteins might only represent a small fraction of 

the total cytoplasmic proteins, therefore it is estimated that LEA specific binding 

would influence the water-loss kinetics of only 2-3% of cell water (Hand et al., 

2011). It is unclear whether retaining such a small amount of water might have any 

biological advantages during the process of desiccation and rehydration. It is possible 

that by tightly associating with water molecules, LEA proteins might be recruited to 
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cell structures that normally rely on the presence of a hydration shell to preserve their 

integrity during desiccation by direct hydrogen bonding.  

Other physiological functions of LEA proteins might involve sequestration of 

charged ions (Svensson et al., 2000; Wise and Tunnacliffe, 2004) as proposed by 

Dure (Dure, 1993) and scavenging of reactive oxygen species by citrus dehydrins 

(Hara et al., 2004). These properties might be essential in their role as possible 

antioxidants. 

 

1.5 Structural transitions in LEA proteins upon drying 

Several LEA proteins have been found to be unstructured in solution and have 

therefore been classified as ‘intrinsically disordered proteins’ or IDPs (Tompa and 

Kovacs, 2010; Uversky and Dunker, 2010). However, upon drying many acquire a 

more folded state. This was first demonstrated for AavLEA1 by Goyal et al. using 

Fourier-transform infrared spectroscopy (FTIR) (Goyal et al., 2003). AavLEA1 showed 

gain of structure during dehydration that was fully reversible upon rehydration. It is 

hypothesised that gain in secondary structure is mostly due to an increase in intra-

molecular hydrogen bonds between amino acids in the protein and a corresponding 

decrease in hydrogen bonding between the protein and water molecules (Li and He, 

2009).  These changes typically occur below 20% water content as revealed by 

RMSD (root-mean-square deviation) and MDTF (mean dihedral transition frequency) 

of all amino acids in the protein. Fig. 1.2 depicts the structural transitions observed in 

AavLEA1 in silico. This structural plasticity is believed to be essential for the function 

of AavLEA1, allowing it to fold on the surfaces of a wide range of proteins and 

macromolecular structures during desiccation. 

The gain in structure of some randomly coiled LEA protein chains is predicted 

to be not a completely random event (Gilles et al., 2007). These authors found that 

introducing two proline residues into the N-terminal helical domain of Group 1 LEA 

protein Em, compromised the protective ability of this protein during drying. It is 

hypothesised that the N-terminal domain might serve as a scaffold for mediating 
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specific intra- and inter-molecular interactions that might occur when the protein 

folds during drying.  

It has also been found that the rate of drying can have a significant effect on 

the propensity of formation of various structures in proteins. For example, slow 

drying of poly-L-lysine results in the formation of extensive β-sheet structure, but fast 

drying precluded the formation of β-sheet (Wolkers et al., 1998).  

 

 

Figure 1.2: Structural modeling of AavLEA1. Representative conformations of the 66-amino-
acid fragment of a LEA protein (AavLEA1) from the nematode Aphelenchus avenae are 
shown at different water contents. The smaller water molecules (gray and red) are depicted in 
the line style, and the larger LEA protein molecules are denoted using the solid ribbon style 
(α helix, red; β sheet, green; random coil, gray). Taken from Li et al., 2009, with permission. 

 

Structural modelling has revealed that some LEA proteins like LEAM fold into 

class A amphipathic helices (Fig. 1.3) typical of apolipoproteins that coat low density 

lipoprotein particles (Tolleter et al., 2007). LEAM also undergoes intrinsic chemical 

modifications such as deamidation and oxidation that might affect structural features 

of this protein. It is believed that LEAM interacts with both the interior and exterior 
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layers of membranes through its alternating hydrophilic and hydrophobic residues 

respectively. 

 

Figure 1.3: Structural modeling of LEAM. LEAM was modeled with the Swiss-PDB Viewer 
program using a helical template filamin (Protein Data Bank accession number 1GK7). 
Charged amino acids are indicated in red (basic: H, K, or R) or blue (acid: D or E), and other 
residues are indicated in yellow (polar or hydrophilic: N, Q, S, T, or Y) or gray (nonpolar or 
hydrophobic: A, G, I, L, M, V, or W). Two views of the protein are shown on the sides, and 
the center image shows a front view of the helix from amino acids 50 to 150, displaying only 
charged residues. Images were generated using PyMol. Taken from Tolleter et al., 2007, free 
access. 

 

Interestingly, LEA18 is a small seed-specific, basic and highly hydrophilic 

protein that has also been predicted to be an intrinsically disordered protein 

(Hundertmark et al., 2011). This protein has been shown to bind to negatively 

charged membranes. In this protein, the increase in secondary structure is 

contributed mainly by β-sheets. Contrary to the ‘classical’ function of LEA proteins as 

membrane stabilisers, LEA18 has a destabilizing effect on membranes, a property that 

is compatible with the hypothesis that this protein might be involved in vesicle 

transport or signalling during development.  

Hence, it can be observed that LEA proteins have evolved a diverse repertoire 

of functions and structures relevant to their role in protecting cells during water loss. 
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1.6 Sub-cellular localisation of LEA proteins and their role in organelle 

protection 

Localisation of LEA proteins to specific cellular targets might be an essential 

requirement for protecting various cellular compartments during desiccation. In 

plants, LEA proteins are found to localise in the cytoplasm, nucleus, mitochondrion, 

chloroplast, endoplasmic reticulum, vacuole, peroxisomes and plasma membrane 

(reviewed in Tunnacliffe and Wise, 2007). Some LEA proteins that are targeted to 

specific organelles like mitochondria contain a hydrophobic pre-sequence at the N-

terminal end, which might enable compartmentalisation to specific hydrophobic 

surfaces of various organelle membranes. For example, the group 3 LEA protein 

PsLEAm resides in the mitochondrial matrix of seeds and contains largely hydrophilic 

amino acids with the exception of the N-terminal hydrophobic mitochondrial 

targeting sequence (Grelet et al., 2005). 

 

1.7 Classifying LEA proteins 

Due to the plethora of LEA protein sequences studied over the years, there have been 

many attempts to classify them. The original classification of LEA proteins was 

performed by Dure et al. where these proteins (LEA D7, LEA D11 etc.) were sub-

divided into three groups according to their sequence similarity and amino acid 

composition (Dure et al., 1989). Battaglia et al. have extended the work by Dure 

(Dure et al., 1989) and others (Cuming, 1999) by creating seven different groups of 

LEA proteins (Battaglia et al., 2008). Groups 1, 2, 3, 4, 6, and 7 correspond to the 

hydrophilic LEA proteins, whereas hydrophobic LEA proteins have been placed in 

Group 5. These groups are described in brief below. 

Group 1 LEA proteins contain a characteristic 20-mer sequence (Baker et al., 

1995; Galau et al., 1992) and have a very large proportion of charged residues, 

which contributes to their high hydrophilicity, and a high content of glycine residues 

(approximately 18%). Structural analysis using circular dichroism indicates that these 

proteins exist mostly as random coils, with a small percentage of the protein 
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exhibiting a left-handed extended helical or poly-(L-Pro)-type (PII) conformation in 

the presence of detergents (Soulages et al., 2002). NMR also indicates that these 

proteins have an unstable structure and are quite flexible (Eom et al., 1996). 

Group 2 LEA proteins, also known as dehydrins were originally identified as the 

D-11 family in developing cotton embryos. These proteins typically contain a high 

proportion of charged and polar amino acids and a low fraction of hydrophobic 

residues (Garay-Arroyo et al., 2000). A unique feature of group 2 LEA proteins is a 

conserved, lysine-rich 15-residue motif, EKKGIMDKIKEKLPG, named the K-segment 

(Close et al., 1993; Close et al., 1989) that can be found in one to 11 copies within a 

polypeptide sequence. An additional motif also found in this group is the Y-segment, 

whose conserved consensus sequence is [V/T]D[E/Q]YGNP, is usually found in one 

to 35 tandem copies in the N terminus of the protein (Campbell and Close, 1997; 

Close, 1996; Close et al., 1993). Many group 2 proteins also contain a tract of serine 

residues, called the S-segment, which in some proteins can be phosphorylated (Plana 

et al., 1991; Vilardell et al., 1990). Less conserved motifs (Φ-segments), which are 

usually rich in polar amino acids are present in some proteins of this group 

(Campbell and Close, 1997). Proteins that only contain the K-segment are in the K-

subgroup, and those that include the S-segment followed by K-segment are in the SK-

subgroup. In addition, there are the YSK-, YK-, and KS-subgroups (Campbell and 

Close, 1997). Structural analysis of four group 2 LEA proteins, Dsp16 (YSK2) from 

resurrection plant (Lisse et al., 1996), 35-kD protein (Y2K) from cowpea (Ismail et al., 

1999), rGmDHN1 (Y2K) from soybean (Soulages et al., 2003) and ERD10 (SK3) from 

mouse-ear cress (Bokor et al., 2005), indicated that these proteins are in an 

unstructured conformation in aqueous solution. However, neither temperature, 

metal-ions, nor stabilizing salts could promote ordered structures in either the 

peptides or the full-length proteins (Mouillon et al., 2006). The K-segment motifs of 

group 2 LEA proteins are predicted to form amphipathic α-helical structures and are 

thought to protect membranes (Close, 1996). Although the majority of group 2 LEA 

proteins accumulate in the cytoplasm, some of them are also localised in the 

nucleus. In some cases nuclear localised group 2 proteins are shown to be dependent 

on phosphorylation of amino-acid residues (Plana et al., 1991). However, for other 

proteins, nuclear localisation seems to be independent of the phosphorylation state 
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of proteins (Riera et al., 2004). Some of these proteins are also found in the plasma 

membrane (Danyluk et al., 1998) and mitochondria (Borovskii et al., 2000).  

Group 3 LEA proteins consist of an 11-mer amino acid repeat motif that has the 

potential to form an amphipathic α-helix (Dure, 1993). The consensus sequence for 

the 11-mer proposed by Dure (Dure, 1993) is as follows: hydrophobic residues (F) in 

positions 1, 2, 5, and 9; negative or amide residues (E,D,Q) in positions 3, 7, and 11; 

positive residues (K) in positions 6 and 8; and a random assortment (X) in positions 4 

and 10 (FF[E/ Q]XFK[E/Q]KFX[E/D/Q]). The variability in the 11-mer motif led Dure 

to subclassify group 3 LEA proteins into two subgroups: 3A, represented by the cotton 

D-7 LEA protein; and 3B, represented by the cotton D-29 LEA protein (Dure, 2001). 

The similarity of some group 3 proteins with different plasma apolipoproteins 

suggests that some these might interact with membranes during dehydration (Tolleter 

et al., 2007). CD analysis and IR spectroscopy of various group 3 LEA proteins 

indicates that they are mostly devoid of secondary structure, being largely in a 

random coil conformation in solution. However, in the presence of sucrose, glycerol, 

ethylene glycol, or methanol, or after fast drying, they adopt an α-helical 

conformation (Dure, 2001; Goyal et al., 2003; Tolleter et al., 2007; Wolkers et al., 

2001). Moreover it has been found that these structural transitions are fully reversible 

(Goyal et al., 2003; Tolleter et al., 2007). More recently group 3 LEA proteins have 

been shown to contribute towards glass formation (Shimizu et al., 2010). 

Group 4 proteins consist of a conserved region in their N-terminal portion, 

which is about 70 to 80 residues long and is predicted to form amphipathic α-

helices, while the less conserved C-terminal portion is variable in size (Battaglia et 

al., 2008). A motif that has characterised the proteins in this group is motif 1, located 

at the N-terminal region with the following consensus sequence: AQEKAEKMTA 

[R/H]DPXKEMAHERK[E/K][A/E][K/R]. However, four additional motifs can be 

distinguished in many group 4 LEA proteins. The presence or absence of motif 4 or 5 

defines two subgroups within the family. The first subgroup (group 4A) consists of 

small proteins (80–124 residues long) with motifs 2 and/or 3 flanking motif 1. The 

other subgroup (group 4B) has longer representatives (108–180 residues) that, in 

addition to the three motifs in the N-terminal portion, may contain motifs 4 and/or 5 
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at the C-terminal region. D-113 protein from cotton, the first discovered of this group, 

belongs to group 4B (Battaglia et al., 2008). In silico analysis of group 4 LEA proteins 

predicts that the first 70 to 80 residues could adopt an α-helical structure, whereas 

the rest of the protein assumes a random coil conformation (Battaglia et al., 2008).  

Group 5 consists of hydrophobic proteins and is therefore quite heterogenous 

(Battaglia et al., 2008). These proteins are not soluble after boiling, suggesting that 

they adopt a globular conformation (Baker et al., 1988; Cuming, 1999; Galau et al., 

1993). Not much is known about these proteins except for the fact that their 

transcripts accumulate during the late stage of seed development and in response to 

stress conditions, such as drought, free radical damage, salinity and wounding (Kim 

et al., 2005; Kiyosue et al., 1992; Maitra and Cushman, 1994; Park et al., 2003; Stacy 

et al., 1999; Zegzouti et al., 1997). 

Group 6 proteins are characterised by their small size (approximately 7–14 kD) 

(Battaglia et al., 2008). Four motifs distinguish this group, two of which (motifs 1 and 

2) are highly conserved. The sequence LEDYK is present in motif 1 and the proline 

and threonine residues located in positions 6 and 7, are present in motif 2. In 

general, these proteins are highly hydrophilic, lack cysteine and tryptophan residues, 

and do not coagulate upon exposure to high temperature. In silico analyses predicts 

that group 6 LEA proteins are intrinsically unstructured (Garay-Arroyo et al., 2000). 

Group 7 consists of the ASR (Abcissic acid stress ripening 1) proteins. These are 

considered to be members of the hydrophilin family and are small, heat stable, and 

intrinsically unstructured (Frankel et al., 2006; Goldgur et al., 2007; Silhavy et al., 

1995). Transcripts for these genes accumulate during senescence, fruit ripening, 

and/or seed and pollen maturation. They also respond to environmental stress 

conditions, such as water deficit, salt, cold, and limited light, and ABA treatment. All 

known ASR proteins contain five motifs, among which three are highly conserved 

(motifs 1, 2, and 3). One of these motifs (motif 3) is located within the C-terminal 

region and contains a putative nuclear localisation signal (Silhavy et al., 1995; Wang 

et al., 2003; Wang et al., 2007a). Motifs 1,2 and 5 contain stretches of His residues 

and are predicted to possess zinc dependent DNA-binding activity (Goldgur et al., 

2007; Kalifa et al., 2004).  
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Another classification scheme has been devised by Bies-Etheve et al. where 10 

different LEA groups have been constructed on the basis of distinct motifs (Bies-

Etheve et al., 2008). However, a drawback of this scheme is the representation of the 

same motifs in different groups. For example, among the LEA proteins in Arabidopsis 

thaliana, motif 1 (AYDKA-AKD), present in Group 3, is also represented in Group 5 

members.  

Table 1.1 (taken from Battaglia et al. 2008, with permission) shows a 

comparison between nomenclature of different LEA protein groups from different 

classification schemes.  

 

Table 1.1 Correspondence between different nomenclatures given to LEA protein groups 

 

LEA protein groups have also been represented by Pfam domain families 

(Wise, 2002). Pfam domains have been mainly created by multiple sequence 

alignment and structural information of proteins wherever possible (Finn et al., 2010). 

There are obvious limitations to types of classifications that solely rely on multiple-

sequence alignment methodologies as LEA proteins have been mainly found to 

contain low complexity sequences which might be masked out by sequence 

comparison tools like BLAST (Wise and Tunnacliffe, 2004). 

To overcome problems posed by multiple-sequence alignment algorithms, a 

new computational tool called POPP (Protein or Oligonucleotide Probability Profile) 

has been developed (Wise and Tunnacliffe, 2004). This tool allows proteins to be 

compared based on similarities in their peptide compositions. Interestingly some of 
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the POPP predictions for LEA proteins provide the basis for testable hypotheses that 

may be verified experimentally. However, Battaglia et al. argue that although POPP 

analysis might emphasize the importance of compositional biases in LEA proteins, it 

might neglect information related to sequence motifs that might also be important in 

determining LEA protein structure and function (Battaglia et al., 2008).  

Given the complex nature of LEA protein sequences, it is obvious that 

although existing schemes of classification might provide some information related to 

sequence motifs and low-complexity regions, they are not adequate in revealing any 

information about the actual molecular function of these proteins and their 

expression trends. This could be partly attributed to the lack of substantial 

experimental data for expression and function of LEA proteins. Future bioinformatics 

analysis might take into account a more holistic approach towards classifying LEA 

proteins by incorporating expression and function information. 

 

1.8 Unique features of bdelloid LEA proteins ArLEA1A and ArLEA1B 

The discovery of LEA proteins ArLEA1A and ArLEA1B in the bdelloid A. ricciae has 

provided vital insights into the molecular basis of anhydrobiosis in these animals. 

These proteins are encoded by two genes, named Ar-lea-1A and Ar-lea-1B, 

respectively, and were first identified in the cDNA isolated from desiccating rotifers 

(Pouchkina-Stantcheva et al., 2007). These genes are believed to be former alleles as 

their aligned sequences show 13.5% synonymous site divergence (Ks) over the whole 

gene, a value which is too high to be observed between alleles in sexual animals, but 

in the range observed for former allele pairs (Birky, 2004; Butlin, 2002; Pouchkina-

Stantcheva et al., 2007; Mark Welch et al., 2004; Mark Welch and Meselson, 2000). 

Loss of genetic recombination and acquisition of mutations by genetic drift are 

believed to have resulted in divergence of these alleles when rotifers became 

asexual.  

Both proteins share homology with conserved 11-amino acid motifs 

characteristic of group 3 LEA proteins. ArLEA1A is 420 residues long with an 

estimated molecular mass of 44.5 kDa, whereas ArLEA1B consists of 376 residues 
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with an estimated molecular mass of 39.8 kDa. Comparison of ArLEA1A and 

ArLEA1B protein sequences has revealed that these proteins differ at only 13 amino 

acid positions. An extra stretch of 44 amino acids, consisting of repeat sequences, is 

found exclusively in ArLEA1A. These subtle differences in their sequences result in 

remarkably different biochemical properties of these proteins as described below. 

Analysis of secondary structure of ArLEA1A and ArLEA1B in hydrated and dry 

states by far-ultraviolet circular dichroism spectroscopy (Pouchkina-Stantcheva et al., 

2007) has shown that ArLEA1A is predominantly unstructured in solution and 

acquires an α-helical structure upon drying (although it is observed to possess a 

higher degree of structure compared to AavLEA1 in the hydrated state) while 

ArLEA1B is structured both in the hydrated and dry states (Fig. 1.4).  

 

Figure 1.4: Far-ultraviolet circular dichroism spectroscopy of ArLEA1A and ArLEA1B. Taken 
from Pouchkina-Stantcheva et al., 2007, with permission. 

 

Moreover, like other conventional group 3 LEA proteins, ArLEA1A is able to prevent 

desiccation sensitive enzymes from aggregating (Fig. 1.5a). In comparison with 

ArLEA1A, ArLEA1B not only promotes aggregation of desiccation sensitive enzymes, 

but is itself prone to aggregation both in solution and the dry state (Fig 1.5a). 

Additionally, unlike ArLEA1A, it demonstrates a strong tendency to interact with dry 

liposomes (Fig. 1.5b) (Pouchkina-Stantcheva et al., 2007). This feature is common to 

many other LEAs like LEAM (Tolleter et al., 2007) and dehydrins (LEA D-11) (Koag et 

al., 2003) that are hypothesised to stabilise cellular membranes when water becomes 

scarce. For example, LEAM has been found to be natively unfolded in solution, 
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acquiring an α-helical structure upon desiccation and is predicted to simultaneously 

integrate into both the outer and inner surfaces of membranes by ionic and 

hydrophobic interactions respectively (Tolleter et al., 2007). ArLEA1B is different 

from LEAM in being quite structured both in the hydrated and dry states and in 

having a tendency to increase the proportion of hydrogen bonding in P=O groups of 

dry liposomes. Thus, it is believed that ArLEA1B might interact with only the outer 

monolayers of lipids during drying. More recently, potential novel LEA sequences 

have been identified but their relationship to the existing known LEAs remains to be 

clarified (A. Tunnacliffe, personal communication). Thus, the origin of these 

functionally divergent genes in bdelloids provides a perfect example of how genetic 

variation precedes acquisition of novel functions during Darwinian evolution.  

 

1.9 Why is further characterisation of ArLEA1A and ArLEA1B proteins 

necessary? 

The characterisation of proteins often requires complete appreciation of the structural 

and functional complexity of their sequences. So far, much information related to the 

evolution, three-dimensional conformation and functional motifs of bdelloid LEA 

proteins has been lacking. The bioinformatics analysis in Chapter Three investigates 

the features of bdelloid LEA proteins in greater detail. 

Previously, the functions of ArLEA1A and ArLEA1B have been deduced by in 

vitro experiments alone and little is known regarding their mode of action within 

cells. In Chapter Four, intra-cellular localisation analysis of these proteins has been 

performed to confirm their distribution in the ER in living cells. Moreover, the 

functions of the N and C-terminal sequences of these proteins in regulating the intra-

cellular distribution and secretion of these proteins to the cell exterior have also been 

studied. The protective role of these proteins in the mammalian ER has been further 

analysed in Chapter Five. 
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(a)                                                                                           (b) 

            

Figure 1.5: Functions of ArLEA1A and ArLEA1B determined in vitro. (a) Bdelloid LEA 
protein anti-aggregation assay. Citrate synthase (CS), with or without LEA proteins or 
BSA, and the latter proteins alone where indicated, were subjected to two cycles of 
vacuum drying and rehydration. Light scattering by protein particulates was 
measured by apparent absorption at 340 nm in the spectrophotometer. Error bars 
show standard deviation (n = 3); ns, not significantly different (p > 0.05); significant 
values *p < 0.05 or **p < 0.001. (b) Bdelloid LEA protein membrane association. 
Infrared spectra of the asymmetric phosphate stretching region of POPC liposomes 
dried alone or in the presence of ArLEA1A, ArLEA1B, or AavLEA1. Spectra were 
recorded at 78°C (liquid-crystalline phase). The solid curve comprises both the 
measured (dots) and fitted absorbance curves. Normalised peaks were fitted into two 
bands with maxima at 1262 and 1242 cm–1 corresponding respectively to P=Oasfree 
(short dashes) and P=Oasbound (long dashes). Taken from Pouchkina-Stantcheva et al., 
2007, with permission.  

 

Lastly, the protective capacity of ArLEA1A and ArLEA1B in preventing 

structural damage of surrounding protein molecules has been assessed using mCherry 
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as a test protein. The fluorophore or the light emitting region of mCherry has been 

found to be dependent on the presence of neighboring water molecules (Shu et al., 

2006; Topol et al., 2011). Indeed, subjecting this protein to repeated cycles of drying 

results in a dramatic decrease in its fluorescence and absorbance properties possibly 

due to loss of its fluorophore structure. When dried in the presence of ArLEA1A or 

ArLEA1B, mCherry fluorescence properties are only partially protected. These results 

are discussed in detail in Chapter Six.   
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Chapter Two: Materials and Methods 
 

2.1 Bioinformatics 

The phylogenetic analysis of ArLEA1A and ArLEA1B protein sequences (NCBI 

Accession numbers ABU62811.1 and ABU62810.1) was carried out using 

Phylogeny.fr (www.phylogeny.fr/). The top 50 hits of these sequences were obtained 

using the BLAST EXPLORER program (Dereeper et al., 2010) and processed further in 

the ‘One-click’ work-flow mode in Phylogeny.fr after removing redundancy from the 

data-sets. A multiple sequence alignment (MSA) was constructed using the MUSCLE 

program (Edgar, 2004a, b). Subsequently, the aligned sequences were used to plot 

the phylograms depicting the phylogenetic distances between these sequences using 

PhyML (Guindon et al., 2010) and TreeDyn (Chevenet et al., 2006).  

For domain searches, protein sequences of ArLEA1A and ArLEA1B, along with 

lea-1B, lea-1B’ and lea-1C from Adineta vaga, the LEA-1 protein from Caenorhabditis 

elegans, PvLEA1 protein from Polypedilum vanderplanki, LEA protein from 

Arabidopsis thaliana, LEA-76 protein from Clostridium and AavLEA1 from 

Aphelenchus avenae (Accession numbers ADD91471.1, ADD91479.1, 

ADD91460.1, CCA65610.1, BAE92616.1, BAA11017.1, ZP_08128614.1 and 

AAL18843.1 respectively) were deposited in the Pfam server 

(http://pfam.sanger.ac.uk/). The search criterion was adjusted to include PfamB 

domains and the gathering threshold cut-off values. The Pfam domains, along with 

their HMM alignment positions, bit scores and E-values were compared between 

different sequences.  

For structural modelling of ArLEA1A and ArLEA1B proteins, sequences were 

deposited in http://zhanglab.ccmb.med.umich.edu/I-TASSER/. Five-top models 

predicted were analysed further. 

For identification of cellular localisation signals, ArLEA1A, ArLEA1B and 

AavLEA1 protein sequences were proceesed in SignalP 4.0 

(http://www.cbs.dtu.dk/services/SignalP/), and TargetP 
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(http://www.cbs.dtu.dk/sevices/TargetP/) servers. Signalling motifs and protein-protein 

interaction domains were predicted using Scansite at Massachusetts Institute of 

Technology (http://scansite.mit.edu/motifscan_seq.phtml).  

 

2.2 Recombinant DNA methods 

2.2.1 DNA purity and concentration 

DNA concentrations were measured in Nanovue. The 260:280 nm ratios were 

estimated to assess purity. 

2.2.2 PCR amplifications 

Ar-lea-1A and Ar-lea-1B were PCR amplified using NotI digested cDNA clones 

obtained from desiccated rotifers using Phusion high fidelity DNA Polymerase 

(Thermo Scientific). pET15b-AavLEA1 linearised with NdeI was used as a template for 

amplifying Aavlea1. KpnI and NheI sites were engineered at the 5’end and BamHI 

and FLAG tag were engineered at the 3’end of primers used for these amplifications. 

In brief, PCR reactions were carried out in the G-storm GS 482 thermal cycler in 50 

µl reaction volumes. Each reaction consisted of 35 µl water, 10 µl 5X Phusion HF 

buffer, 1 µl of 10 mM dNTPs, 1 µl of 10 µM of forward and reverse primers, 1 µl of 

linearised template (100 pg/µl), 1.5 µl DMSO and 0.5 µl (2 units/µl) of Phusion DNA 

polymerase. Cycling conditions were set as follows: 98°C for 30 s (template 

denaturation), followed by 5 cycles of 98°C for 10 s, 47°C for 30 s, 72°C for 1 min 

30 s, 25 cycles of 98°C for 10 s, 65°C for 30 s, 72°C for 1 min 30 s, and a final 

extension of 72°C for 10 min. ‘As’ were added at the 3’-ends of PCR products by 30 

minutes treatment with 1 µl Advantage Taq mix (50X, Clontech) at 72°C. After 

completion, reactions were stored at 4°C.  

mCherry amplification was carried out using linearised pmCherry (Clontech) 

as template and forward and reverse primers containing BamHI and EcoRI restriction 

sites respectively. Reaction volumes consisted of 23.4 µl water, 3.0 µl 10X buffer, 0.6 

µl 10 mM dNTPs, 0.7 µl of 10 µM forward and reverse primers, 1.0 µl of linearised 
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template (100 pg/µl) and 0.6 µl of Advantage Taq mix (50X, Clontech). Cycling 

conditions were set as follows: 95°C for 30 s, followed by 30 cycles of 95°C for 20 s, 

60°C for 1 min 30 s, 72°C for 1 min and final extension at 72°C for 15 min. PCR 

products were stored at 4°C.  

The first 22 amino-acids of the N-terminal signal sequence and the C-terminal 

ATEL, KDEL or the ochre stop codon sequences were fused with mCherry and EGFP 

by PCR amplification. Linearised pcDNA3.0-mCherry and pET-28a-EGFPHDQ74 

were used as templates. Reactions were performed in 20 µl final volume and 

consisted of 14.2 µl water, 4.0 µl 5X buffer, 0.4 µl 10 mM dNTPs, 0.4 µl of linearised 

template (100 pg/µl), 0.4 µl of 10 µM forward and reverse primers and 0.2 µl Phusion 

polymerase (0.4 units). For mCherry constructs, cycling conditions were set as: 98°C 

for 30 s (template denaturation), followed by 5 cycles of 98°C for 10 s, 55°C for 30 s, 

72°C for 1 min, 25 cycles of 98°C for 10 s, 65°C for 30 s, 72°C for 1 min, and a final 

extension of 72°C for 20 min. ‘As’ were added at the 3’-ends of PCR products by 30 

minutes treatment with 1 µl Advantage Taq mix (50X, Clontech) at 72°C.  For 

constructs with mutations at 5’ prime end, the PCR was repeated using a shorter 5’-

end primer at 98°C for 30 s, followed by 30 cycles of 98°C for 10 s, 53°C for 1 min, 

72°C for 1 min 30 s. Final extension was performed at 72°C for 10 min. ‘As’ were 

added at the 3’-ends of PCR products by 30 min treatment with 1µl Advantage Taq 

mix (50X, Clontech) at 72°C. After completion, reactions were stored at 4°C. For 

EGFP constructs PCR conditions were: 98°C for 30 s (template denaturation), 

followed by 5 cycles of 98°C for 10 s, 56°C for 30 s, 72°C for 30 s, 25 cycles of 98°C 

for 10 s, 70°C for 15 s, 72°C for 15 s, and a final extension of 72°C for 10 min. ‘As’ 

were added at the 3’-ends of PCR products by 30 minutes treatment with 1 µl 

Advantage Taq mix (50X, Clontech) at 72°C. After completion, reactions were stored 

at 4°C.  

The N-terminal signal sequence and the C-terminal ATEL sequence of bdelloid 

LEAs were fused with EGFPHDQ74 by PCR amplification. Linearised pET-28a-

EGFPHDQ74 was used as template. Reactions were performed in 20 µl final volume 

and consisted of 14.2 µl water, 4.0 µl 5X buffer, 0.4 µl 10 mM dNTPs, 0.4 µl of 

linearised template (100 pg/µl), 0.4 µl of 10 µM forward and reverse primers and 0.2 
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µl Phusion polymerase (0.4 units). Cycling conditions were set as follows: 98°C for 

30 s (template denaturation), followed by 5 cycles of 98°C for 10 s, 50°C for 20 s, 

72°C for 30 s, 25 cycles of 98°C for 10 s, 70°C for 10 s, 72°C for 15 s, and a final 

extension of 72°C for 10 min. ‘As’ were added at the 3’-ends of PCR products by a 

30 minutes treatment with 1 µl Advantage Taq mix (50X, Clontech) at 72°C. After 

completion, reactions were stored at 4°C.  

Sequences of primers used: 

Primer Name Primer Sequence 

ArLEA1AForward 5'-TCA GGT ACC GCT AGC GCC ACC ATG AAC AAA 
ATT CTA AT-3' 

ArLEA1AReverse 5'-TCG GAT CCG ACT TGT CAT CGT CGT CCT TGT 
AAT CTA ATT CAG TAG CTT GTC GTT TCT TTT TC-3' 

ArLEA1BForward 5'-TCA GGT ACC GCT AGC GCC ACC ATG AAC AAA 
ATT ATA TCA AT-3' 

ArLEA1BReverse 5'-GTC  GGA TCC GAC TTG TCA TCG TCG TCC TTG 
TAA TCT AAT TCA GTA GCT TG-3' 

NSmCherryForward 5'-TCG GAT CCG CCA CCA TGA ACA AAA TTC TAT 
CAA TTC TTT GTC TGA TAC TTT TCG TTT CTG CTT 
CAT TAG CTA AGC AGA AAA TGG TGA GCA AGG 
GCG A-3' 

NSmCherryATELReverse 5'-TCG AAT TCT TAT AAT TCA GTA GCC TTG TAC 
AGC TCG TCC ATG C-3' 

NSmCherryKDELReverse 5'-TCG AAT TCT TAG AGT TCA TCT TTC TTG TAC 
AGC TCG TCC ATG C-3' 

NSmCherrystopReverse 5'-TCG AAT TCT TAC TTG TAC AGC TCG TCC ATG 
CCG CC-3' 

NSEGFPForward 5'-TCG GAT CCG CCA CCA TGA ACA AAA TTC TAT 
CAA TTC TTT GTC TGA TAC TTT TCG TTT CTG CTT 
CAT TAG CTA AGC AGA AAA TGG TGA GCA AGG 
GCG A-3' 

NSEGFPATELReverse 5'-TCG AAT TCT TAT AAT TCA GTA GCG AGT CCG 
GAC TTG TAC AG-3' 

NSEGFPKDELReverse 5'-TCG AAT TCT TAG AGT TCA TCT TTG AGT CCG 
GAC TTG TAC AG-3' 
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mCherryForward 5'-TCG GAT CCG CCA CCA TGG TGA GCA AGG 
GCG AGG A-3' 

mCherryReverse 5'-TCG AAT TCT TAC TTG TAC AGC TCG TCC ATG 
CCG CC-3' 

AavLEA1Forward 
5'-TCC GGT ACC GCT AGC GCC ACC ATG TCC TCT 
CAG CAG AAC CA-3' 

AavLEA1Reverse 
5'-GTC  GGA TCC GAC TTG TCA TCG TCG TCC TTG 
TAA TCG TCG CGG CCC TTG AC-3' 

pET28-
EGFPHDQ74Reverse 

5'-CCG CAA GCG ACG GAG CTT TAT AAT TCA GTA 
GCC GAA TTC CCG GTG GTA TAC TGT T-3' 

 

2.2.3 Gel electrophoresis 

Electrophoresis was carried out to analyse the PCR products in 1X TAE buffer. Ultra 

pure agarose (GibcoBRL) was used to prepare 0.8% agarose gels in 1X Tris Acetate 

EDTA buffer (TAE): 40mM Tris HCl, 20mM acetic acid and 2mM EDTA, pH 8.1, 3 µl 

of 10mg/ml ethidium bromide was added to 50 ml melted agarose, cooled to around 

60°C. Agarose was poured into casting trays and combs were inserted to make wells. 

All bubbles were removed before leaving the agarose to set. Samples were mixed at a 

ratio of 5:1 with loading buffer. 0.5 mg of 1kb ladder (Fermentas) was loaded per 

lane. Gels were run at 80V-100V until the front dye traveled two thirds of the 

distance through the gel.  

2.2.4 TOPO cloning 

Ar-lea-1A, Ar-lea-1B, Aavlea1 and mCherry PCR products were cloned into pCR-2.1-

TOPO (Invitrogen) by TOPO-TA cloning. mCherry/EGFP/EGFPHDQ74 fusions were 

cloned into pcDNA3.3 TOPO vector (Invitrogen). In brief reactions consisted of 0.5 

µl salt solution (1.2M NaCl, 0.06MgCl2), 0.5 µl vector (10ng/µl), 1.0 µl water and 1.0 

µl PCR product. After incubating the reactions at room temperature for 5-10 min, 2.0 

µl of reaction was transformed into 25 µl DH10B competent E. coli cells (New 

England Biolabs). 
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2.2.5 Restriction enzyme digestion 

500 ng of pcDNA3.0 and pCR-2.1-TOPO vector containing Ar-lea-1A/Ar-lea-

1B/Aavlea1 inserts were digested with KpnI and BamHI restriction enzymes 

sequentially in a 20 µl final volume. The reactions were set as follows: 1 µl of 500 ng 

DNA, 2.0 µl of 10X NEB buffer 2, BSA 0.3 µl (100µg/ml), KpnI 1.0 µl (10 units/µl), 

12.7 µl water. After incubation for one hour at 37°C, 1 µl of BamHI (20 units/µl) and 

2.0 µl of 1M NaCl were added to the reaction which was further incubated for 1 h at 

37°C. 

2.2.6 LMP gel ligations 

After restriction enzyme digestion pcDNA3.0 and pCR-2.1-TOPO were loaded in 1% 

low-melting point agarose gel made in 1X TAE. After running the digested products 

for sufficient duration, the bands were cut out using long-wavelength UV illuminator. 

Slices were transferred to 1.5 ml eppendorf tubes and melted at 70°C. The DNA 

fragments were combined in 10 µl final volume (1-2 µl vector, plus 8-9 µl insert 

DNA). After adding 7.5 µl water, samples were mixed well and cooled to 37°C in a 

water bath. 2 µl of 10X NEB ligase buffer and 0.5 µl (400 units/µl) of T4 DNA ligase 

(NEB) were added and the reactions were incubated overnight at 16°C. For 

transformations, the ligations were melted at 70°C and immediately added to 45 µl 

competent cells, and incubated on ice for 30 min. mCherry and Aavlea1-FLAG-

mCherry were sub-cloned into pET-28a(+) from pCR-2.1-TOPO vector and 

pcDNA3.0 vector respectively using the same protocol as above.  

2.2.7 Transformation of E. coli 

2-3 µl of ligated pCR-2.1/pcDNA3.3 TOPO vectors and 6 µl of melted LMP ligation 

mixtures were added to 25 µl or 50 µl of DH10B competent E. coli respectively. After 

incubation of E. coli on ice for 30 min, cells were heat-shocked at 42°C for 30 s and 

returned to ice. E. coli transformed with ligated plasmid were recovered at 37°C for 1 

hour in 1 ml SOC. Subsequently cells were pelleted by spinning cultures at 1500 

RPM for 45 s. 200 µl of resuspended E. coli were plated on LB plates containing 100 
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µg/ml ampicillin and incubated overnight at 37°C in an incubator. Colonies observed 

the next day were screened by colony PCR. 

2.2.8 Colony PCR 

Single colonies were picked and resuspended in 10 µl distilled water. PCR reactions 

consisted of: 4.5 µl re-suspended E. coli, 5 µl 2X Thermofisher PCR master mix, 0.25 

µl of forward and reverse primers (10 µM). Cycling conditions were set as follows: 

95°C for 10 min (template denaturation), followed by 30 cycles of 95°C for 30 s, 

annealing temperature (variable) for 30 s, 72°C for variable time depending upon 

length of product (1000 bp/ 60 s) and a final extension of 72°C for 10 min. Products 

were stored at 4°C subsequently and analysed by agarose gel electrophoresis. 

Positive colonies were inoculated in 5 ml LB containing 100 µg/ml ampicillin at 

37°C overnight in a shaker.  

2.2.9 DNA extraction and sequencing 

Plasmid preps were made using DNA-miniprep kit (QIAGEN). Sequencing of inserts 

was carried out by the DNA sequencing facility at the Department of Biochemistry.  

 

2.3 Cell culture and transfections 

Mammalian COS-7 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM, 

Sigma) supplemented with 10% FBS (Sigma), 1% L-glutamine-penicillin-streptomycin 

solution (Sigma) in a humidified 5% CO2 atmosphere at 37°C. Transient transfection 

was performed using GeneJammer Transfection reagent (Agilent Technologies) 

according to manufacturer’s instructions. For colocalisation analysis, COS-7 cells 

were allowed to reach 70-80% confluence in 35mm MatTek glass bottom plates. 

0.75/1 μg of plasmid DNA was used for single/double transfections with 4.5/6.0 μl of 

GeneJammer transfection reagent, respectively. Cells were visualised by confocal 

microscopy after 24 h. For supernatant analysis, COS-7 cells were grown on 10 cm 

diameter dishes (Nunc), until they reached 70-80% confluence, then transfected with 

3 μg of DNA. 12 h post-transfection, medium was changed to DMEM (without FBS). 
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Supernatants were harvested after overnight incubation. To confirm expression of 

ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-mCherry by western blot, 1 µg each of 

pcDNA3.0-ArLEA1A-FLAG-mCherry, pcDNA3.0-ArLEA1B-FLAG-mCherry, 

pcDNA3.0-AavLEA1-FLAG-mCherry and pcDNA3.0-mCherry plasmids were 

transfected in COS-7 cells growing on 6-well plates (Nunc), using 6.0 µl 

GeneJammer. Cells were harvested 48 h post-transfection. For NS-EGFPHDQ74-

ATEL expression analysis cells were transfected with 1 µg of pcDNA3.3-NS-

EGFPHDQ74-ATEL alone or with 5 µg of pcDNA3.0-ArLEA1A-FLAG-

mCherry/pcDNA3.0-ArLEA1B-FLAG-mCherry using 6.0 µl /36.0 µl of GeneJammer 

for single/double transfections. For MTS assay, cells were grown in a 96-well plate to 

around 70-80% confluence, and transfected with 50 ng of pcDNA3.3-NS-

EGFPHDQ74-ATEL alone or with 250ng of pcDNA3.0-ArLEA1A-FLAG-

mCherry/pcDNA3.0-ArLEA1B-FLAG-mCherry per well. 0.15µl/0.90 µl of 

GeneJammer was used for single/double transfections. MG132 and TMAO were 

added to cells expressing NS-EGFPHDQ74-ATEL at a final concentration of 1 µM 

and 100mM right after transfection.  

 

2.4 ER-Tracker Green and MitoTracker Green staining  

ER-Tracker Green (BODIPY® FL glibenclamide) (1mM stock, Invitrogen) stock 

solution (prepared in DMSO) was diluted to 1 μM in pre-warmed Hank's Balanced 

Salt Solution (HBSS). After removing media, cells were rinsed with HBSS and pre-

warmed staining solution was added, then incubated at 37°C for 30 min. The 

staining solution was subsequently removed and pre-warmed PBS with 2% FBS was 

added to view cells under the confocal microscope. For MitoTracker Green FM 

(1mM stock, Invitrogen) staining, stock solution (prepared in DMSO) was diluted to 

100 nM in pre-warmed DMEM medium. The growth medium was replaced with 2 ml 

staining media and cells were incubated at 37°C for 15 min. The staining medium 

was subsequently replaced with pre-warmed media and cells were visualised under 

the confocal microscope. 
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2.5 Fixation and DAPI staining 

Cells co-expressing NS-EGFPHDQ74-ATEL and NS-mCherry-ATEL were grown on 

coverslips. After 24h/48h/72h post-transfection, cells were washed with 1X PBS once 

and fixed with 1 ml 4% paraformaldehyde for 15 min at room temperature. 

Subsequently, paraformaldehyde was removed and cells were washed twice with 1X 

PBS. The coverslips were subsequently mounted on 15 µl DAPI (Vectashield) on 

glass slides and sealed with nail polish. After air-drying for 30 min, slides were stored 

at 4°C in the dark. 

 

2.6 Confocal microscopy  

Imaging was performed using a Zeiss LSM 510 META laser scanning confocal 

microscope (X63, 1.4 N.A., Plan apochromat objective). Excitation wavelengths were 

405 nm for DAPI, 488 nm for ER-Tracker Green/EGFP/GFP and 543 nm for mCherry; 

emission wavelengths were 420-480 nm for DAPI, 505-530 nm for ER-Tracker 

Green/EGFP/GFP and 560-615 nm for mCherry. For the co-localisation analysis, the 

voxel dimensions were set according to the Nyquist criteria (Scriven et al., 2008). 

The x, y and z dimensions of pixel sizes were calculated for 488 nm excitation 

wavelength as x= 43 nm; y= 43 nm; z= 0.13 μm; digital zoom: 1.6; resolution: 2048; 

pinhole size: 1 Airy unit. Calculations were made using 

www.svi.nl/NyquistCalculator. Images were processed using manufacturer’s 

software. 2D pixel analysis of red and green channel intensities was performed using 

JACoP (Just Another Colocalisation Plug-in) (Bolte and Cordelieres, 2006) on ImageJ 

1.45s.  

 

2.7 FLIM 

Cells transfected with pcDNA3.3-NS-EGFPHDQ74-ATEL were visualised on an 

inverted confocal microscope attached to a time correlated single photon counting 

(TCSPC) device that permits excitation and emission spectra as well as fluorescence 

lifetime to be recorded in every image pixel (Kaminski Schierle et al., 2011). Images 
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were taken at 24h and 48h post-transfection. At least 8 sample images were collected 

for each time point. Cells expressing NS-EGFP-ATEL in the ER and EGFPHDQ74 in 

the cytoplasm were used as controls. The multi-parametric imaging system used is 

described in detail in Frank et al. (Frank et al., 2007; Kaminski Schierle et al., 2011). 

A pulsed supercontinuum source (SC 450, Fianium Ltd., Southampton, UK) was used 

for excitation, emitting a train of sub 10 ps pulses at a 40 MHz repetition rate. The 

fluorescence light was band pass filtered and passed onto a fast photomultiplier tube 

(PMT-100, Becker & Hickl GmbH, Berlin, Germany). Lifetimes were recorded using 

time correlated single photon counting, TCSPC, circuitry (SPC-830, Becker & Hickl 

GmbH, Berlin, Germany). An excitation wavelength of 488 nm was used, with an 

emission longpass filter of 515 nm. Photon count rates were kept below 1% of the 

laser repetition rate to prevent pulse pile-up. Images were acquired during 100 s, and 

photobleaching was verified to be negligible during these acquisition times. All 

TCSPC images were processed using SPCImage (Becker & Hickl GmbH, Berlin, 

Germany) and fitted with a monoexponential decay function. Pixel binning was 

increased until approximately 3500 to 5000 photons were obtained per pixel. Image 

processing and data analysis were carried out using various codes developed in-

house using Matlab (The Mathworks Ltd., Cambridge, UK; Chakrabortee et al., 2010; 

Elder et al., 2009; Esposito et al., 2010; Schlachter et al., 2009). The mean 

fluorescence lifetime +- 1 SD was calculated for each image.  

 

2.8 Protein methods 

2.8.1 Protein concentration determination 

Total protein concentration was estimated using DC++ protein assay kit (BioRad) 

based on the Lowry method according to the manufacturer’s instructions. Bovine 

serum albumin (BSA) standards in the range of 0.1-1 mg/ml were used to plot a 

calibration curve. Absorbance was measured at 750 nm.  

2.8.2 Protein dialysis 

Volumes lesser than 300 µl were dialysed in Slide-A-Lyzer mini dialysis cups, 

3500MW cutoff (MWCO)(Pierce). Dialysis cups were washed thoroughly in distilled 
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water 30 minutes before dialysis. Dialysis was carried out at 4°C with stirring and 

buffer changes every 2h. Larger volumes were dialysed in Spectra/Por dialysis tubing, 

3500 MWCO (Spectrum Laboratories). Tubing was washed with distilled water for 30 

min before dialysis. Dialysis was carried out at 4°C with constant stirring and buffer 

changes.  

2.8.3 Protein concentration 

Protein samples were concentrated using Vivaspin 2 (Sartorius Stedim) with 3000 

MWCO polyethersulfone (PES) membranes according to the manufacturer’s 

instructions.  

2.8.4 Polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was carried out in Mini Protean 3 gel tank (BioRad) according to the 

manufacturer’s instructions. Either 10% or 15% gels were used according to the 

following recipe: 

10% resolving gel:  3.3 ml 30% 29:1 Acrylamide/bisacrylamide solution, 2.5 ml 

1.5M Tris-HCl pH 8.8, 0.1 ml 10% SDS, 50 µl 10% APS and 10 µl TEMED, 4.05 ml 

water. 

15% resolving gel: 5.0 ml 30% 29:1 Acrylamide/bisacrylamide solution, 2.5 ml 1.5M 

Tris-HCl pH 8.8, 0.1 ml 10% SDS, 50 µl 10% APS and 10 µl TEMED, 2.35 ml water.  

4% stacking gel: 1.3 ml 30% 29:1 Acrylamide/bisacrylamide solution, 2.5 ml 0.5M 

Tris-HCl pH 6.8, 0.1 ml 10% SDS, 50 µl 10% APS and 10 µl TEMED, 6.1 ml water.  

2X SDS-PAGE sample buffer: 30% glycerol, 60 mM Tris-HCl pH6.8, 0.5% 

bromophenol blue, 2% SDS, 5% β-mercaptoethanol. Samples were mixed with 

loading buffer in a 1:1 ratio and boiled for 5 min. 5 µl of molecular weight ladder 

(Fermentas) was run along with the samples at 30 mA for sufficient amount of time in 

1X SDS running buffer. Gels were visualised by staining in a solution of 0.2% 

coomassie brilliant blue in 10% acetic acid and 45% methanol for 30 min-12h. 

Destaining was performed in a solution containing 10% acetic acid and 30% 

methanol for 12h.  
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2.8.5 Recombinant protein expression in E. coli 

pET-28a(+) expression vectors containing ArLEA1A/ArLEA1B (Pouchkina-Stantcheva 

et al., 2007), AavLEA1-FLAG-mCherry and pET-15b containing AavLEA1 (Goyal et 

al., 2003), were transformed into E. coli BL21 (DE3) cells. 20 µl of cell solution was 

spread on LB plates containing 50 mg/ml kanamycin. After selecting clones 

expressing the recombinant protein of interest, single colonies were inoculated in 5 

ml of LB with 50 µg/ml kanamycin and incubated overnight.  400 µl of overnight 

culture was inoculated into 400 ml LB containing 50 µg/ml kanamycin and 

incubated at 30°C until the OD600 reached 0.6. IPTG was added to a final 

concentration of 1 mM and the cells were cultured overnight. Samples of induced 

and pre-induced cultures were analysed by SDS-PAGE to check for expression levels.  

For mCherry production, E. coli were grown at 30°C, and subsequently induced at 

three different temperatures: 16°C, 30°C and 37°C. Sample lysates were tested for 

optimum expression of mCherry protein at 1,2,3 and 5 h post-induction. For final 

purification, cultures grown at 30°C were used. 

2.8.6 Protein extraction 

Protein extraction was carried out at 4°C. Induced cells were harvested by 

centrifugation at 4000 RPM for 30 minutes in the Sorvall GSA30 rotor. Cell pellets 

were re-suspended in lysis buffer (100 mM NaH2PO4, 10 mM Tris·Cl, 6 M GuHCl, 

pH 8.0) at 2-3 ml per gram weight of the pellet. Cells were lysed by sonication (10 s 

off, 15 s on followed by 90 s off). The lysate was stored on ice for 15 min. 

Supernatant was collected and retained after centrifugation at 18000 RPM for 20 min 

in the Sorvall SS34 rotor.  

2.8.7 Nickel-nitrilotriacetic acid (Ni-NTA) column purification 

Histidine-tagged recombinant proteins were purified on a 5 ml Ni-NTA column at 

4°C. The column was washed with 25 ml distilled water, and equilibrated with 25 ml 

lysis buffer. The lysate was applied on the column and the flow through was 

collected. Subsequently, the column was washed with 3 x 5 ml wash buffer (50 mM 

NaH2PO4, 300 mM NaCl, 20 mM imidazole, 0.05% Tween 20, pH 8.0). The protein 
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was finally eluted 3-5 times with 3 ml elution buffer (50 mM NaH2PO4 300 mM 

NaCl 250 mM imidazole 0.05% Tween 20, pH 8.0). The flow-through, washes and 

eluted proteins were analysed by SDS-PAGE. 

 

2.8.8 Thrombin cleavage 

mCherry was cleaved using the Thrombin CleanCleave Kit (Sigmal-Aldrich) 

according to the manufacturer’s instructions. The remaining purified proteins were 

dialysed into phosphate buffered saline and the His-tag was cleaved by overnight 

incubation at 4°C with 50 µl thrombin (1 unit/µl, GE Healthcare) according to the 

manufacturer’s instructions. The tag and any uncleaved protein were removed by Ni-

NTA sepharose and thrombin was removed using benzamidine sepharose (GE 

Healthcare). 

2.8.9 Gel filtration 

The HiPrep 16/60, Superdex 75 gel filtration column was attached to ÄKTAxpress 

FPLC machine. The column was equilibrated with gel filtration buffer containing 0.05 

M sodium phosphate and 0.15M NaCl, pH 6.2. The void volume was calculated by 

running blue-dextran solution (10 mg dissolved in 10 ml PBS), filtered through 0.22 

µm Millipore filter, through the gel filtration column. The column was calibrated by 

running proteins of known molecular weight through the column (Ribonuclease A-

13.7 kDa, Lysozyme- 14.3 kDa, Ovalbumin- 44kDa and BSA- 66.3 KDa). After re-

equilibrating the column, thrombin cleaved mCherry protein was applied to the 

column after passing it through the 0.22 µm Millipore filter. The fraction containing 

the elution peak was analysed by SDS PAGE gel.   

2.8.10 Ion-exchange chromatography 

mCherry protein was dialysed overnight in 20mM Tris HCl pH 8.0 with two changes 

of buffer. The MonoQ ion-exchange column was attached to the ÄKTAxpress FPLC 

machine (GE Healthcare) and was equilibrated with 20mM Tris HCl pH 8.0. The 

protein sample was then applied to the column. Proteins were subsequently eluted 
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using a linear gradient of NaCl from 0-0.5M NaCl in 20mM Tris HCl pH 8.0. 

Fractions were analysed by SDS PAGE.  

 

2.9 mCherry drying experiments 

Prior to drying experiments all thrombin cleaved proteins were dialysed extensively 

against water and the concentrations determined by measuring the absorbance at 

280 nm using the following molar extinction coefficients: mCherry, 32430 M-1cm-1; 

ArLEA1A, 14080 M-1cm-1; ArLEA1B, 12800 M-1cm-1; AavLEA1, 8250 M-1cm-1; 

AavLEA1-FLAG-mCherry, 41960 M-1cm-1; BSA (Sigma-Aldrich, product number 

A7906), 43824 M-1cm-1. 100 µl samples in water were prepared containing 30 µM 

mCherry alone or in the presence of other proteins at molar ratios of 1:5. AavLEA1-

FLAG-mCherry fusion protein was also used at 30 µM concentration. 

For generating mCherry absorbance and emission spectra, mCherry was dried 

in an Eppendorf 5301 vacuum concentrator, transferred to a Dura-StopTM 

microprocessor-controlled vacuum tray drier (FTS Systems, Stone Ridge, NY) for 1h at 

500 mTorr with a tray temperature of 25°C, and re-suspended in 100 µl of water; 

four cycles of drying and rehydration were carried out. mCherry absorbance was 

measured at 23°C in a Lambda 35 UV/visible spectrophotometer (PerkinElmer, 

Cambridge, UK), using a 1 cm path-length UV-transparent cuvette. Wavelengths 

between 350 and 650 nm were measured with a scanning rate of 240 nm/min and a 

data interval of 1 nm. Fluorescence emission spectra were recorded using a Cary 

Eclipse fluorimeter (Agilent Technologies). Excitation was set at 543 nm and emission 

spectra were recorded between 570 and 700 nm with a scan rate of 600 nm/min and 

a data interval of 1 nm. Emission and excitation slit width was set at +/-10 nm and a 

photomultiplier tube voltage of 690 V was used.  

In the second round of experiments, mCherry was dried with or without LEA 

proteins/BSA in an Eppendorf 5301 vacuum concentrator and then transferred to 

Dura-StopTM microprocessor-controlled vacuum tray drier (FTS Systems, Stone Ridge, 

NY) for 1h at 500 mTorr with a tray temperature of 25°C, and re-suspended in 100 µl 

of water; four cycles of drying and rehydration were carried out. Fluorescence and 
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absorbance measurements were carried out in triplicate using EnVision plate reader 

(PerkinElmer) in a 96 well OptiPlate. Absorbance was measured at the absorbance 

maxima of 587nm. Fluorescence emission was measured using excitation 

wavelength of 544 nm at 615nm.  

 

2.10 Western blot analysis 

For confirming the expression of ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-

mCherry 48 h post-transfection, cells were trypsinized and re-suspended in PBS and 

pelleted at 5000 RPM for 5 min at 4°C. The cells were harvested again in 500 µl PBS, 

transferred to fresh eppendorf tubes and centrifuged at 5000 RPM for 5 min, 4°C. 

After discarding the supernatant, pellets were lysed with 100 µl of 1X lysis buffer. 2X 

lysis buffer consisted of 20mM Tris HCl, 137mM NaCl, 1mM EGTA, 1% TritonX, 

10% glycerol and water. 1 tablet containing protease inhibitors with EDTA (Roche) 

was dissolved in 15 ml water. 142 µl of protease inhibitor, 358 µl water and 500 µl 

of 2X lysis buffer were finally mixed to make 1 ml of 1X lysis buffer.  Protein 

concentration was estimated using BioRad (Lowry) protein estimation kit. 10 µg of 

lysate was loaded onto a 10% SDS PAGE gel, along with 5 µl protein ladder. After 

running the gel, the gel was soaked in 1X transfer buffer containing 48 mM Tris HCl 

pH 6.8, 39 mM glycine, 0.035% SDS, 20% methanol, for 15 min. The PVDF 

membrane (Amersham Hybond, GE Healthcare) was treated with methanol (20 s), 

flipped and soaked in water (5 min) and transfer buffer (10 min). The membrane was 

then loaded on top of blotting paper pre-soaked in transfer buffer. The protein gel 

was carefully placed over the membrane, which was covered with another sheet of 

blotting paper. The transfer was carried out at 15V for 30 min. The membrane was 

then blocked with 5% milk in PBST for one hour and incubated with primary 

antibody (1:1000 dilution in 1% PBST) overnight. It was then washed the next day 

with PBST for 15, 10, and 5 min. Secondary antibody was added in 1:4000 dilution 

(1% milk in PBST) overnight. It was then washed with PBST and developed with 

Lumigen Chemiluminiscence reagent A and B. The X-Ray film was exposed to the 

membrane for 3 min and developed.  
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Analysis of NS-EGFPHDQ74-ATEL expression with or without ArLEA1A-

FLAG-mCherry/ArLEA1B-FLAG-mCherry/MG132/TMAO was performed as follows. 5 

µg of lysates were loaded in two identical 10% SDS PAGE gel simultaneously, along 

with 5 µl protein ladder. After running SDS-PAGE, the proteins were transferred to 

PVDF membranes from both the gels as described above. After transfer, the 

membranes were washed twice with 5 ml PBST and blocked in 5ml PBST, containing 

5 % milk for 1 h. Subsequently, the membranes were incubated with anti-GFP 

(1:2500) or anti-ArLEA1A (1:1000) in the blocking solution for 1 h. After washing the 

membrane in PBST (3×5 min), the membrane was incubated in the HRP-linked 

secondary antibody (anti-mouse for GFP and anti-rabbit for ArLEA1A) in 1:4000 

dilution for 40 min. After washing the membrane in PBST (3×5 min), it was placed on 

OHP film and 700 µl of ECL Prime (350µl of Solution A and 350 µl of Solution B) 

was added uniformly on each membrane. After leaving the membranes in the dark 

for 5 min all liquid was removed and the membranes were exposed in the G-Box 

western blot developer (Syngene) for 10 min.  

 

2.11 MTS assay 

20 µl of MTS reagent (Promega) was added to 100 µl of cell culture medium. The 

plate was covered in aluminium foil, to prevent exposure to light and incubated at 

37°C in a humidified atmosphere containing 5% CO2 and incubated for 1 h. The 

absorbance was subsequently measured at 490 nm in an EnVision plate reader 

(PerkinElmer). Experiments were carried out in triplicate. 

 

2.12 mCherry fluorescence measurements in cell supernatants 

Supernatants obtained after transfection experiments were centrifuged at 4000rpm, 

4˚C to pellet cell debris. Vivaspin 2 concentrators (Sartorius Stedim) were used to 

concentrate supernatants following the manufacturer’s instructions. Supernatants (4 

ml) were concentrated to approximately 200 μl. Protein concentration of 

supernatants was determined using DC Protein Assay kit (Biorad). Fluorescence 
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measurements were carried out using normalised amount of protein in all samples, 

with an EnVision plate reader (PerkinElmer) in a 96-well opaque OptiPlate, using 

excitation wavelength of 544 nm. Emitted light was collected at 615 nm. Number of 

flashes was set to 10. 

 

2.13 Statistical analysis 

All statistical analysis was performed using the InStat package version 3.1a 

(Graphpad Software, Inc.). Since, the fluorescence values in supernatants did not pass 

the Kolmogorov-Smirnov (KS) normality test, square-root transformation of the data 

was performed. Statistical significance between different groups was determined by 

one-way ANOVA and Tukey’s post-hoc test. Data were plotted using Microsoft Excel. 

FLIM data was analysed using the one-sided t-test with Welch correction. MTS assay 

data at 48 h time point was analysed by one-way ANOVA and Tukey’s post-hoc test. 

mCherry drying data was normalised with respect to pre-dried samples and analysed 

using one-way ANOVA and Tukey’s post-hoc test when the data was normal. 

Otherwise non-parametric ANOVA and Dunn’s post-hoc test was applied.  
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Chapter Three: Bioinformatics of Bdelloid 
LEA Proteins 

 

3.1 Introduction 

Although we have gained significant understanding of the potential functions of 

ArLEA1A and ArLEA1B as anti-aggregating agents and membrane stabilisers by in 

vitro experiments (Pouchkina-Stantcheva et al., 2007), a knowledge gap regarding 

their phylogeny, domains, structural features, signalling and interacting motifs 

persists. In order to fill this gap, it was decided to use bioinformatics to discover 

novel features and functions of these proteins.  

Bioinformatics was a term coined by Paulien Hogeweg and Ben Hesper in 

1970 (Hesper and Hogeweg, 1970) and was originally defined as “the study of 

informatic processes in biotic systems”. This definition was inspired by the 

observation that life processes are information driven, with the information in DNA 

being translated into intra-cellular and inter-cellular functions of organisms. More 

recently with the deluge in biological data, the use of this term has expanded to 

include the development and application of computational methods for large-scale 

analysis of genomes, transcriptomes, proteomes, interactomes, metabolic and 

regulatory networks etc.   Such methods can also be applied to decipher protein 

functions as discussed below. 

In modern day research, phylogenetic trees built by sequence comparison 

tools can be used to deduce the evolutionary relationships and functions of novel 

genes and proteins in newly sequenced genomes (Nierman et al., 2001; Trucksis et 

al., 1998). The phylogenetic analysis of a protein (Fig. 3.1) usually starts with the 

detection of other homologous members of its family (Gabaldon, 2005). This is 

performed by comparing the sequence of the protein of interest with other sequences 

stored in a database and subsequently, selecting those that are significantly similar. 

The assumption is that proteins with similar sequences are derived from a common 
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ancestral protein (Fitch, 1970). Many algorithms can be used to perform this task like 

Smith-Waterman (Smith and Waterman, 1981) and its faster counterpart, BLAST 

(Altschul et al., 1997). Once the sequences of a protein family are retrieved, they can 

be aligned by using multiple sequence alignment (MSA) techniques. MSA aims to 

display residues for each protein on a single line, such that equivalent residues 

appear on the same column. Finding an optimal multiple alignment in a set of 

sequences is a complex mathematical problem and can be performed by using either 

global, progressive or local alignment techniques (Do and Katoh, 2008). 

 

                                    

Figure 3.1: Phylogenetic tree construction. (a) The protein sequence of interest is compared 
to a sequence database to retrieve significantly similar proteins; (b) homologous proteins are 
aligned to place homologous residues on top of each other under the assumption of an 
evolutionary model, (c) phylogenetic tree representing the evolutionary relationships among 
the protein sequences is reconstructed; if this process (a to c) is repeated over all proteins 
encoded by a genome, the total set of phylogenetic trees or phylome is reconstructed (d). 
Taken from Gabaldon, 2005, with permission. 
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Subsequently, a specific evolutionary model can be applied to explain the 

amino acid substitutions observed in the MSAs and the evolutionary distances 

between all pairs of proteins can be computed (Gabaldon, 2005). The evolutionary 

distance, which reflects the expected mean number of changes per site that have 

occurred since two sequences diverged from their common ancestor, can be derived 

by using distance-methods for phylogenetic inference such as the Neighbor Joining 

method (NJ) (Saitou and Nei, 1987) or by using the Maximum Likelihood (ML) 

(Schadt et al., 1998) or Maximum Parsimony (MP) (Felsenstein, 1996) methods. 

These trees can then be used to establish orthology and paralogy relationships among 

proteins (Fitch, 1970) and to detect horizontal gene transfers (HGT) (Bapteste et al., 

2004) between different species. The evolutionary relationships and functions of 

bdelloid LEA proteins have been deduced by phylogenetic tree construction in 

Section 3.2.1. 

Another approach to analyse protein functions involves grouping them into 

specific families, in a manner similar to classification of elements in the periodic 

table, using a database called Pfam (Sammut et al., 2008). This database was first 

founded in 1995 by Erik Sonnhammer, Sean Eddy and Richard Durbin (Sonnhammer 

et al., 1997) and originated from the idea that proteins can be clustered into families 

whose members have diverged from a common ancestor and hence have similar 

sequences and folds and possibly similar functions (Chothia, 1992). Since the 

original estimates of around 1000 families covering the entire protein universe, the 

latest release of Pfam has around 13,672 manually curated families (Finn et al., 

2010). To perform a search in Pfam, a query sequence is converted into a ‘hidden 

Markov model’ (HMM) profile, which is a position-specific probabilistic model of a 

multiple sequence alignment derived with the aid of the BLOSUM62 standard 

scoring matrix plus the empirically set insertion/deletion transition probabilities of 

aligned sequences. The current version of Pfam employs the HMMER (version 3) 

program that designates proteins into families by computing local HMM alignments. 

Moreover, each family consists of sequences with manually defined threshold values 

(also referred to as the ‘gathering threshold cut-off values’) such that each sequence 

in the family exceeds these values, thereby reducing the number of false positives. 

Pfam entries have been divided into two parts: Pfam-A, that consists of high quality, 
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manually curated matches; and Pfam-B, that consists of automatically generated 

alignments from various databases like ADDA (Automatic Domain Decomposition 

Algorithm) (Finn et al., 2010), and which are considered to be less reliable. However, 

Pfam-B families can also hint towards possible functions of newly identified domains 

in novel sequences. The Pfam domains in ArLEA1A and ArLEA1B have been 

characterised in Section 3.2.2. 

Protein functions are often determined by their structures as well. Previous 

analysis of secondary structure of ArLEA1A and ArLEA1B in hydrated and dry states 

by far-ultraviolet circular dichroism spectroscopy (Pouchkina-Stantcheva et al., 2007) 

has shown that ArLEA1A is predominantly unstructured in solution (with 29% α-

helical content) and acquires a greater proportion of α-helices upon drying (84% α-

helical content), while ArLEA1B is structured both in the hydrated (82% α-helical 

content) and dry states (87% α-helical content). However recently, Boschetti et al. 

have reported that bdelloid LEA proteins are unusual compared with group 3 LEA 

proteins found in other species since they possess a greater degree of order and 

folding as evident by their high GRAVY and FoldIndex unfoldability scores (Boschetti 

et al., 2011). Hence, it was decided to unravel the possible three-dimensional 

structures of ArLEA1A and ArLEA1B using an online modeling tool called I-TASSER 

(Roy et al., 2010; Zhang, 2008). I-TASSER employs a hierarchial protein structure 

modeling approach based upon secondary structure enhanced profile-profile 

threading alignment (PPA). Target sequences are threaded through a representative 

PDB structure library (with a pair-wise sequence identity cut-off of 70%) to search for 

possible folds. Models are further refined by Monte-Carlo simulations. The top five 

models are finally reported after multiple cycles of clustering, statistical modeling and 

energy optimizations. These models are described in Section 3.2.3.  

Determining sub-cellular localisation is also important for elucidating protein 

functions. Pouchkina-Stantcheva et al. have reported that both ArLEA1A and 

ArLEA1B proteins possess a 19-residue hydrophobic sequence at the N terminus for 

ER translocation, and a putative variant ER retention signal, ATEL, at the C terminus 

(Pouchkina-Stantcheva et al., 2007). To confirm the identity of the N-terminal signal, 

two sub-cellular localisation prediction tools: SignalP and TargetP (Emanuelsson et 
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al., 2007; Petersen et al., 2011) were applied. SignalP 4.0 is a neural network based 

program that has been trained on transmembrane sequences as negative data to 

improve its performance in detecting true signal peptides. It is an improvement over 

existing prediction methods for signal peptide detection like SignalP 3.0, PrediSi, 

SPEPlip, Signal-CF, Signal-3L and Signal-BLAST which have only limited capacity to 

distinguish between signal peptides and N-terminal transmembrane helices (Petersen 

et al., 2011). TargetP 1.1 (Emanuelsson et al., 2007) is another tool for subcellular 

localisation predictions of newly synthesised proteins. Using the N-terminal 

sequence information, it discriminates between proteins destined for the 

mitochondrion, the chloroplast (for plant sequences) or the secretory pathway. These 

two tools have been applied to confirm the presence of localisation signals in 

ArLEA1A and ArLEA1B in Section 3.2.4  

Moreover, as most biological phenomena are dependent on multiple 

interactions between different proteins that might be affected by specific 

environmental or metabolic signals, it was speculated that ArLEA1A and ArLEA1B 

might interact with other proteins during anhydrobiosis. In order to test this 

hypothesis, bdelloid LEA sequences were searched for the presence of interacting 

motifs using Scansite in Section 3.2.5. 

 

3.2 Results 

3.2.1 Sequence comparison and phylogenetic analysis of bdelloid LEA 

proteins 

In order to infer the phylogenetic relationships of ArLEA1A and ArLEA1B, a ‘local 

alignment’ based BLAST search (Dereeper et al., 2010) was carried out using the 

Phylogeny.fr analysis suite (Dereeper et al., 2008). There were 597 and 467 hits 

obtained for ArLEA1A and ArLEA1B sequences, respectively, corresponding to 

sequences from diverse taxa including bacteria, yeast, fungi, plants, worms and 

insects. A majority of these sequences corresponded to LEA proteins, although many 

hypothetical proteins were pulled out in the search as well. The top 50 hits from 

various species ranging from eukaryotes like A. vaga, C. elegans, Polypedilum 
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vanderplanki, A. thaliana and prokaryotes like Nostoc and Clostridium were 

processed in the ‘One-click’ work-flow mode in Phylogeny.fr. Redundant sequences 

were filtered out and an MSA was constructed using the MUSCLE program (Edgar, 

2004a, b). Subsequently, the aligned sequences were used to plot the phylograms 

depicting the phylogenetic distances between these sequences using PhyML and 

TreeDyn (Fig. 3.2, 3.3) (Chevenet et al., 2006; Guindon et al., 2010).  

As can be observed in the phylograms (Fig. 3.2, 3.3), ArLEA1A and ArLEA1B 

form a distinct evolutionary clade that is separate from other clades consisting of LEA 

protein isoforms from organisms like P. vanderplanki, C. elegans, C. brenneri, A.  

thaliana etc. The approximate likelihood ratio test scores for clades consisting of 

ArLEA1A and ArLEA1B matches are 0.98 and 0.99 respectively. These results suggest 

that bdelloid LEA proteins have evolved independently of other related group 3 LEA 

proteins and therefore might possess unique functions. 

The observed phylogeny of ArLEA1A and ArLEA1B can also be used to 

deduce novel functions of these proteins. For example, ArLEA1A and ArLEA1B are 

also found to be homologous to dehydration-induced group 3 LEA proteins found in 

P. vanderplanki (PvLEA1, gi_90959527 and PvLEA3, gi_90959531) (Kikawada et al., 

2006). A recent study has demonstrated that the 11-mer repeat units of these proteins 

can contribute towards glass formation with a high glass transition temperature (>100 

degrees C) and a low enthalpy relaxation rate (Shimizu et al., 2010). It is tempting to 

speculate that bdelloid LEA proteins might vitrify in the absence of water in a manner 

similar to these proteins. 

Interestingly, ArLEA1A and ArLEA1B also exhibit homology to ankyrin 

proteins found in certain ant species like Acromyrmex and Camponotus floridanus 

(gi_332022332 and gi_307184783). Ankyrin proteins are responsible for anchoring 

various receptors and other scaffold proteins to the plasma membrane (Bennett and 

Baines, 2001) and are hypothesised to play a role in preserving cell and tissue 

integrity in various metazoa species. One can suppose that ArLEA1A and ArLEA1B 

might provide structural stability to membranes in a manner similar to ankyrin 

proteins.  
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Figure 3.2: Phylogram consisting of ArLEA1A homologs, plotted with PhyML (Maximum 
likelihood approach) and TreeDyn in Phylogeny.fr. The scale-bar represents the amino acid 
changes per site, while the likelihood scores for each branch are shown in red. As can be 
observed, bdelloid LEA proteins form a distinct evolutionary clade. Purple: Eukaryotes, 
orange: prokaryotes. 
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Figure 3.3: Phylogram consisting of ArLEA1B homologs, plotted with PhyML (Maximum 
likelihood approach) and TreeDyn in Phylogeny.fr. The scale-bar represents the amino acid 
changes per site, while the likelihood scores for each branch are shown in red. As can be 
observed, bdelloid LEA proteins form a distinct evolutionary clade. Purple: Eukaryotes, 
orange: prokaryotes. 
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Moreover, ArLEA1B has also been found to be homologous to a stress related 

protein KLTH0E16258p found in yeast Lachancea thermotolerans, with a LEA-1-like 

domain and a cell envelope integrity inner membrane protein domain. These 

similarities provide further evidence related to the potential function of ArLEA1B in 

stabilising membranes during anhydrobiosis (Pouchkina-Stantcheva et al., 2007). 

However, the fact that ArLEA1A also exhibits homology to ankyrin implies that it 

might interact with membranes as well. However, this hypothesis is only partially 

supported by the FTIR data obtained by Pouchkina-Stantcheva et al. which 

demonstrates that only 30% of ArLEA1A is found in the bound fraction of P=O 

groups of dried membranes compared to 42% of ArLEA1B (Pouchkina-Stantcheva et 

al., 2007). These results suggest that ArLEA1A might bind weakly to membranes, in 

comparison with ArLEA1B that might demonstrate a stronger interaction with 

membranes during anhydrobiosis. 

Bdelloid LEA proteins are also found to be homologous to the LEA-76 protein 

found in the genus Clostridium which consists of Gram-positive bacteria that are 

capable of producing desiccation-resistant endospores. The LEA-76 family belongs to 

group 3, first identified in desiccation-induced gene sets in various plants (Curry and 

Walker-Simmons, 1993; Dure, 1993; Hsing et al., 1995). Besides plants, at least two 

proteins of this family (DR0105 and DR1172) are also present in extremophiles like 

Deinococcus radiodurans (Makarova et al., 2001). Hence, it is likely that rotifer LEA 

proteins might share functions with these proteins. 

Interestingly, ArLEA1A and ArLEA1B demonstrate close phylogenetic linkage 

with some prokaryotic proteins. For example, ArLEA1A is found to be related to a 5'-

nucleotidase/2' 3'-cyclic phosphodiesterase, (gi_168335032) found in Epulopiscium 

sp., a resident of the intestinal tract of tropical fish. ArLEA1B, on the other hand 

clusters with Tol-Pal system protein YbgF (gi_240851215), responsible for 

maintaining membrane integrity of parasitic Bartonella sp. Similarity in sequences of 

proteins of distantly related organisms, can sometimes indicate the possibility of 

horizontal gene transfer (HGT) between these species.  

However, one must be very careful in interpreting results from this 

phylogenetic analysis since phylogenetic tree accuracy is dependent on the quality of 
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multiple sequence alignments which might sometimes be compromised by the 

presence of repeats, deletions and insertions in protein sequences. Such repeats, 

deletions and insertions are often observed in LEA protein sequences as well (for 

review see Battaglia et al., 2008). Further, Bapteste et al. have pointed out the 

inherent difficulties in providing evidence for or against HGT, since for a given set of 

proteins, it is possible to construct rooted trees in many different ways (Bapteste et 

al., 2004).  

 

3.2.2 Pfam domains in ArLEA1A and ArLEA1B 

In order to identify the domains in ArLEA1A and ArLEA1B, their protein sequences 

along with their few selected homologues from Ad. vaga, C. elegans, A. thaliana, P. 

vanderplanki and Clostridium sp. were deposited in the Pfam server. The AavLEA1 

sequence from the worm A. avenae was also used for comparative purposes. The 

search criteria were adjusted to include the gathering threshold cut-off values and 

Pfam-B families.  

Table 3.1 shows the Pfam classifications of rotifer LEA proteins, along with 

their eukaryotic and prokaryotic homologues. As can be observed, ArLEA1A and 

ArLEA1B (designated lea-1A and lea-1B respectively) do not show any significant 

Pfam-A matches. Instead, they contain three Pfam-B domains: PB00621, PB006097 

and PB008237. Ad. vaga homolog lea-1B also possesses these domains, while lea-

1B’ lacks PB008237 and lea-1C lacks both PB006097 and PB008237. Further, lea-1C 

contains PB00621, which is common to other rotifer LEAs as well. However, it also 

possesses PB002305 that is absent in the rotifer set, but present in AavLEA1.  

Pfam-B domain PB00621 is present in all the bacterial, worm, plant and insect 

homologues of rotifer LEA proteins and is perhaps critical for the function of these 

proteins. Further investigation into the properties of this domain using the ADDA 

database reveals that it is widely distributed in signalling kinases in a number of 

bacteria and fungi like Bacillus, Nostoc and Trichomonas species. The HMM profile 

of the second Pfam-B domain PB006097 found in rotifer LEA proteins, is observed 

solely among prokaryotic proteins and has no representative sequences in 
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eukaryotes. These results suggest common evolutionary origins of eukaryotic and 

prokaryotic LEA proteins. The functions of other Pfam-B domains like PB008237 and 

PB002305 remain unknown. 

In contrast with ArLEA1A and ArLEA1B, LEA protein homologues from other 

eukaryotic species like C. elegans, P. vanderplanki and A. thaliana contain a unique 

Pfam-A domain called LEA_4 (PF02987.11). This domain is prevalent in 777 protein 

sequences curated in Pfam, spanning 80 different species ranging from archaea, 

bacteria, plants, worms and insects and is found to be related to a bacterial stress 

protein CsbD (Pragai and Harwood, 2002). The fact that this domain has been 

preserved during the course of evolution of LEA proteins in various species, seems to 

suggest that it might be important in determining the overall architecture and 

function of many eukaryotic group 3 LEA proteins. However, bdelloid LEA proteins 

lack this domain, raising the possibility that these proteins might have evolved 

independently in these organisms. Moreover, this domain is also absent in LEA-76 

protein found in Clostridium species, suggesting that bdelloid LEA proteins are more 

closely related to prokaryotic LEA proteins than eukaryotic LEA proteins. 
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3.2.3 Predicted three-dimensional structure of ArLEA1A and ArLEA1B  

ArLEA1A and ArLEA1B protein structures were modeled using I-TASSER (Roy et al., 

2010; Zhang, 2008). The reliability of predicted models can be assessed by the C-

score. The C-score is a function of relative clustering density of models and is found 

to correlate with the reliability of the predicted models. Values greater than -1.5 are 

considered to be significant. I-TASSER predicts α-helical models for ArLEA1A (Fig. 

3.4). The C-scores for models 1,2 and 3 are -1.08, -1.08 and -1.11, while models 4 

and 5 show a relatively lower C-score of -2.19 and -2.42 respectively making the 

latter less reliable.  

 

Figure 3.4: I-TASSER models of ArLEA1A. 

 

For ArLEA1B (Fig. 3.5), besides observing α-helical structures (models 1,3,4 

and 5), one also observes the formation of a possible filamentous structure 

resembling tropomyosin filaments (model 2, magnified in Fig. 3.6). Tropomyosin is a 

40 nm-long coiled-coil protein that polymerises to form a continuous filament and 
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associates with actin in muscle and numerous non-muscle cells (Whitby et al., 1992; 

Whitby and Phillips, 2000). It is known that that ArLEA1B is prone to aggregation in 

solution (Pouchkina-Stantcheva et al., 2007). Hence, one might speculate that it 

polymerises in a manner analogous to tropomyosin filaments during desiccation. This 

polymerisation might be essential for its function in protecting membranes and 

possibly other proteins. The C-score for model 2 (-1.16) is within the range of 

significance. However, of the remaining predicted models of ArLEA1B, only models 

1 and 3 seem to be reliable by virtue of their C-scores (-1.16) while models 4 and 5 

have C-scores less than -1.5, making the latter less significant. In order to address 

why ArLEA1A and ArLEA1B might be structurally different, a 44 amino acid deletion 

corresponding to ArLEA1B was made in ArLEA1A and the sequence was deposited in 

I-TASSER. Interestingly, a tropomyosin like structure was retrieved for ArLEA1A (Fig. 

3.7, model 2 magnified in Fig. 3.8) suggesting that this deletion might be responsible 

for the observed differences in these two proteins that are hypothesised to have 

originated from a common allele.  I-TASSER predictions for AavLEA1 failed to yield 

statistically significant models, as their C-scores fell below -1.5 (Fig. 3.9).  This could 

be attributed to the unstructured nature of AavLEA1 that might fail to form any 

discrete folds. 

 

Figure 3.5: I-TASSER models of ArLEA1B. 
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Figure 3.6: Magnified I-TASSER model 2 of ArLEA1B. 

 

 

 

 

Figure 3.7:  I-TASSER models of ArLEA1A with 44 amino acid deletion. 
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Figure 3.8: Magnified I-TASSER model 2 of ArLEA1A with 44 amino acid deletion. 

 

 

Figure 3.9: I-TASSER models for AavLEA1. 
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3.2.4. Predicting cellular localisation signals in ArLEA1A and ArLEA1B 

In order to accurately confirm the identity of the ER localisation signal in ArLEA1A 

and ArLEA1B proteins, the SignalP 4.0 program was applied (Petersen et al., 2011). 

The most significant signal peptidase cleavage site is predicted between the 19th and 

20th amino acid positions in both ArLEA1A and ArLEA1B (Fig. 3.10a and 3.10b) with 

a maximum S-score (signal sequence prediction score) of 0.95 and a C-score 

(cleavage site prediction score) of 0.695 due to sequence identity in their N-terminal 

region. In contrast, AavLEA1, derived from anhydrobiotic nematode A. avenae, lacks 

any N-terminal signal sequences or cleavage site, as evidenced by low S- and C-

scores (Fig. 3.10c). Using TargetP both ArLEA1A and ArLEA1B show high scores 

(0.95) for localisation in the secretory pathway and correspondingly low scores for 

mitochondrial targeting (0.029) (Table 3.2). AavLEA1 on the other hand gives a very 

low score for localisation in the secretory pathway and mitochondria (0.043 and 

0.156, respectively). Hence both SignalP and TargetP indicate a high probability of 

translocation of ArLEA1A and ArLEA1B into the ER via N-terminal signal sequences. 
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          a. 

 

            b. 

 

             c. 

 

Figure 3.10: SignalP 4.0 predictions for (a) ArLEA1A, (b) ArLEA1B and (c) AavLEA1. C-score 
(red) gives the “cleavage site” score, S-score (green) gives the score for predicting the signal 
peptide sequence and Y-score (blue) is a derivative of the C-score and S-score combined. 
Both ArLEA1A and ArLEA1B are predicted to contain the N-terminal signal sequence and 
undergo cleavage between 19th and 20th amino acid positions. On the contrary, AavLEA1 
lacks any signal sequence or cleavage site. The D-scores (weighted average of S-mean and Y-
max score) for ArLEA1A, ArLEA1B and AavLEA1 are 0.883, 0.865 and 0.105 respectively. 
The dotted line depicts the D-cutoff value of 0.45. 
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Table 3.2: TargetP predictions for sub-cellular 
localisation 
  mTP SP Other 
ArLEA1A 0.029 0.951 0.049 
ArLEA1B 0.029 0.951 0.05 
AavLEA1 0.156 0.043 0.879 
mTP: Mitochondria, SP: Secretory Pathway                                         

 

  

3.2.5 Protein-protein interaction sites in ArLEA1A and ArLEA1B 

In order to identify protein-protein interaction motifs in ArLEA1A and ArLEA1B, their 

sequences were deposited in Scansite (http://scansite.mit.edu), which is an online 

computational tool built on experimental binding and/or substrate information from 

oriented peptide library screening and phage display experiments (Obenauer et al., 

2003).  It consists of a weight matrix-based scoring algorithm that predicts protein–

protein interactions and sites of phosphorylation. Although this program has been 

built using a database of vertebrate sequences, the high level of evolutionary 

conservation observed between vertebrate and invertebrate signalling mechanisms 

(Lomberk et al., 2010; Manning et al., 2003; Stout et al., 2010) makes this tool a 

viable option for detecting possible interacting sites in bdelloid protein sequences. 

This program can be used at high (top 0.2%), medium (top 1%) and low (top 5%) 

stringency levels to identify binding sites. For identifying interacting motifs in 

ArLEA1A and ArLEA1B, it was decided to rely on high and medium stringency level 

predictions. As can be observed in Fig. 3.11, both ArLEA1A and ArLEA1B sequences 

are enriched for various kinase binding serines and SH2 (Src homology 2) binding 

tyrosine residues. However, AavLEA1 (Fig. 3.11c) fails to yield any Scansite 

predictions at either high or medium levels of stringency. These results suggest that 

bdelloid LEA proteins might interface with the signalling machinery inside cells 

during anhydrobiosis. 
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a. 

                               

b. 

                                  

c. 

                                                       

Figure 3.11: Scansite predictions. Protein-protein interaction motifs corresponding to kinase 
binding, basophilic serine-threonine kinase binding and SH2 binding domains are observed 
in (a) ArLEA1A and (b) ArLEA1B (at high and medium stringency levels). (c) AavLEA1 was 
used as a control and does not show any predicted interacting motifs.  
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3.3 Discussion 

The fact that bdelloid rotifers do not rely on the production of non-reducing sugars 

like trehalose for survival in the desiccated state, has led to the development of an 

alternative hypothesis for the involvement of other molecules, mainly proteins, in 

protecting these animals during anhydrobiosis (Tunnacliffe and Lapinski, 2003). It is 

therefore hardly surprising that bdelloid rotifers express ArLEA1A and ArLEA1B 

(Pouchkina-Stantcheva et al., 2007), group 3 LEA proteins of the type thought to 

confer desiccation tolerance in a variety of other anhydrobiotic organisms. Although, 

considerable effort has been invested in understanding the functions of these proteins 

(Pouchkina-Stantcheva et al., 2007), there is a huge gap in the literature regarding 

their evolutionary, structural and functional relationships. To begin to fill this gap, a 

comprehensive bioinformatics analysis was performed. 

The phylogenetic analysis of ArLEA1A and ArLEA1B protein sequences reveals 

that although these proteins are found to be homologous to a number of LEA proteins 

from different organisms like C. elegans, A. thaliana and Clostridium species, these 

proteins along with their closest homologues in Ad. vaga have evolved 

independently as a unique evolutionary clade. These results also support recent 

findings that have reported the unique evolution of bdelloid rotifers as an 

independent asexual clade through morphological and genetic analysis (Fontaneto et 

al., 2007). 

Furthermore, the phylogeny of ArLEA1A and ArLEA1B reveals novel insights 

regarding their possible functions as glass forming agents and membrane anchors 

during anhydrobiosis. Verifications of these functions by experiments might provide 

important insights into their roles during anhydrobiosis.   

It has been recently shown that bdelloid rotifers have acquired many foreign 

genes of bacterial, plant and fungal origin through this mechanism (Gladyshev et al., 

2008). It is hypothesised that this gene transfer is facilitated by membrane disruption 

and DNA fragmentation and repair occurring during anhydrobiosis and is 

presumably an adaptive response to desiccation in these animals. However, from the 



	
  

	
   64	
  	
  

existing phylogenetic data it is difficult to provide conclusive evidence for HGT of 

LEA genes.  

Pfam classification of ArLEA1A and ArLEA1B highlights the similarities and 

differences in the domain compositions of bdelloid LEA proteins and their homologs 

and provides further evidence for the independent evolution of these proteins. The 

discovery of the Pfam-B domain PB00621 in LEA proteins raises the possibility that 

these proteins might play a role in cell signalling mechanisms.  

Recently, Boschetti et al. have reported that bdelloid LEA proteins are unusual 

compared with group 3 LEA proteins found in other species since they possess a 

greater degree of order and folding as evident by their high GRAVY and FoldIndex 

unfoldability scores (Boschetti et al., 2011). I-TASSER further corroborates these 

findings since it predicts the presence of higher order structure of ArLEA1A and 

ArLEA1B consisting of mainly α-helices. The fact that I-TASSER fails to yield any 

statistically significant results for AavLEA1 points towards the reliability of this 

program in distinguishing between unstructured and structured proteins. Interestingly, 

ArLEA1B is predicted to polymerise into a filamentous tropomyosin like structure. 

This prediction could explain the tendency of ArLEA1B to aggregate in solution 

(Pouchkina-Stantcheva et al., 2007). Deleting 44 amino acids in ArLEA1A 

corresponding to ArLEA1B, also results in the formation of a filamentous 

tropomyosin-like structure. These results highlight the key differences between 

ArLEA1A and ArLEA1B that contribute towards functional divergence of these 

proteins. Verifying the structures of ArLEA1A and ArLEA1B proteins by NMR or X-ray 

diffraction, might provide important insights regarding their mode of action during 

anhydrobiosis. For example, if ArLEA1B polymerises into a filamentous structure as 

predicted, it could provide structural integrity to membrane-enclosed organelles like 

the ER by forming a supportive scaffolding. 

Computational predictions for intra-cellular localisation of ArLEA1A and 

ArLEA1B indicate that these proteins might be targeted to the ER via their N-terminal 

signal sequence. Additionally, a putative C-terminal ER retention signal is present that 

might retain these proteins within the ER (Pouchkina-Stantcheva et al., 2007). In 
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Chapter four, experimental evidence for the ER localisation of these proteins and the 

functions of their N-terminal and C-terminal signal sequences is provided.  

Scansite further predicts the presence of numerous kinase binding and SH2 

binding domains in these protein sequences. Overall, these findings suggest that 

bdelloid LEA proteins might participate in signal transduction mechanisms during 

anhydrobiosis, presumably within the ER environment to counter ER-stress (Kaufman 

et al., 2002; Ron, 2002). These predictions would have to be verified by screening for 

protein-protein interactions using ArLEA1A or ArLEA1B as ‘bait’ proteins and 

identifying potential interacting partners as ‘prey’ using two-hybrid assays. 

Alternatively tandem-affinity purification, followed by mass spectrometry could also 

be performed. 
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Chapter Four: Trafficking of Bdelloid 
LEA Proteins 

 

4.1 Introduction 

Previous work involving the study of ArLEA1A and ArLEA1B proteins during 

desiccation has looked at their activity in simple homogenous mixtures outside living 

cells (McGee, 2006; Pouchkina-Stantcheva et al., 2007). However, our knowledge of 

their functions in the context of the cellular environment remains obscure. Analysis 

of LEA protein distribution by immunohistochemistry and confocal microscopy in 

bdelloids demonstrated that LEA protein staining was absent from nuclei, and present 

in the cytoplasmic space, but it was difficult to resolve the signal further (McGee, 

2006). Currently, it remains unclear whether ArLEA1A and ArLEA1B might act in a 

specific subcellular location like LEAM, which localises to plant mitochondria 

(Tolleter et al., 2007), or whether they might be more widely distributed in cells.  

It is known that both ArLEA1A and ArLEA1B possess an N-terminal ER 

translocation signal (Pouchkina-Stantcheva et al., 2007). These signal sequences 

allow translated proteins to attach to signal-recognition particles (SRP) which enable 

the recruitment of translated peptides along with ribosomes to the ER membranes by 

binding to SRP receptors (Gilmore et al., 1982; Walter and Blobel, 1980, 1982). The 

crystal structure of the SRP protein shows that it consists of hydrophobic amino acid 

residues like methionines that allow it to bind to a large variety of hydrophobic 

sequences (Keenan et al., 1998). Once bound to the ER membrane, the translated 

peptide sequence is translocated across the membrane in a loop-like manner via a 

protein translocator called the Sec61 complex (Deshaies and Schekman, 1987, 1989; 

Goerlich et al., 1992; Rothblatt et al., 1989; Stirling et al., 1992). X-ray 

crystallography has shown that this pore is gated by a short helix that keeps the pore 

closed when no translocation occurs (Van den Berg et al., 2004). After the protein 

has been completely translocated into the ER lumen, the pore closes and the 

hydrophobic signal sequence is cleaved off by a signal peptidase (Milstein et al., 
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1972). Certain chaperone proteins like BiP have been shown to facilitate the release 

of the cleaved protein into the ER lumen (Brodsky et al., 1995; Vogel et al., 1990). 

Günter Blobel was awarded the Nobel Prize in Physiology and Medicine in 1999 for 

his discovery of signal peptides and proposition of the ‘signal hypothesis’ which 

states that proteins are delivered to specific intra-cellular compartments via their 

signal sequences (Blobel and Dobberstein, 1975; Blobel and Sabatini, 1971). Figure 

4.1 shows a model to depict the translocation of a protein across the ER membrane. 

 

Figure 4.1: Model for co-translational SRP and SR dependent protein transport into the ER. 
Note that cleavable signal peptides within nascent precursor proteins insert into the Sec61 
complex in a loop like fashion that orients the aminoterminus to the cytosol and the 
carboxyterminus plus the SPC cleavage site to the ER lumen. The signal peptide is 
subsequently cleaved by the signal peptidase (Spase). The protein is released in the ER lumen 
with the help of a chaperone protein, BiP. Taken from Zimmermann et al., 2011 with 
permission. 

 

The signal peptides from various proteins usually consist of positively charged 

n-region, followed by a hydrophobic h-region and a neutral but polar c-region. The 

(–3,–1) rule states that the residues at positions -3 and -1 (relative to the cleavage site) 

must be small and neutral for cleavage to occur correctly (von Heijne, 1983, 

1985,1986). The most widely used method for predicting the location of the cleavage 

site is a weight matrix which was published in 1986 (von Heijne, 1986). More 
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recently, a neural network based method for signal peptide detection in protein 

sequences has been devised (Emanuelsson et al., 2007; Petersen et al., 2011).  

Once the newly synthesised proteins enter the ER, these proteins are 

subsequently transported to the Golgi or the cell surface for secretion or are retained 

within the ER with the help of ER retention signals (Munro and Pelham, 1987). These 

signals are located at the C-terminal end of proteins and directly bind to COPI coated 

vesicles to enable retrograde delivery of proteins to the ER that might escape into the 

Golgi. Such sequences consist of two lysines (KKXX) or KDEL-like amino acid 

residues. A more detailed analysis of efficiency of different ER retention signals has 

been recently performed by Raykhel et al. (Raykhel et al., 2008). Receptors that bind 

to these signals demonstrate high binding affinity in the Golgi compartments and low 

affinity in the ER, where transported cargo proteins are allowed to unload. This 

differential affinity might be regulated by pH (Wilson et al., 1993) or other factors 

that are currently not known. Bdelloid LEA proteins are also predicted to contain a 

putative ER retention signal ATEL at their C-terminal end (Pouchkina-Stantcheva et 

al., 2007). 

                         

Figure 4.2: Sorting pathway for ER proteins. Both secretory proteins and ER proteins travel 
together to the salvage compartment lying in between ER and Golgi compartments. ER 
proteins are returned to the ER via COPI vesicles, while secretory proteins move to the Golgi. 
Taken from Pelham, 1989, National Library of Medicine. 

 

In this chapter, the intracellular localisation of both full length ArLEA1A and 

ArLEA1B tagged with the fluorescent protein mCherry (Section 4.2.1), and of 
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modified versions of both mCherry and EGFP containing bdelloid LEA protein N and 

C-terminal signal sequences (Sections 4.2.2,4.2.3,4.2.4) has been studied using 

confocal microscopy. Moreover, the ER-retention efficiency of ATEL has been 

assessed by measuring the amount of secreted proteins in cell supernatants (Section 

4.2.5).  

 

4.2 Results 

4.2.1 ArLEA1A and ArLEA1B colocalise with ER-Tracker Green 

Since rotifer cell cultures were not available, intracellular LEA protein localisation 

was assessed after expression of tagged proteins in mammalian cells. COS-7 cells 

were transfected with pcDNA3.0 containing ArLEA1A-FLAG-mCherry, ArLEA1B-

FLAG-mCherry or mCherry. Cells expressing ArLEA1A-FLAG-mCherry, ArLEA1B-

FLAG-mCherry and mCherry were stained with ER-Tracker Green (BODIPY FL 

glibenclamide; Invitrogen), a cell permeant, live-cell stain that binds to sulfonylurea 

receptors of ATP-sensitive K+ channels in the ER membrane, and colocalisation was 

assessed by confocal microscopy. Images obtained within the red and green channels 

were merged and the fluorescent intensity signals were measured in selected regions 

(Fig. 4.3a,b). For cells containing ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-

mCherry, substantial overlap of the red and green fluorescence signals was observed, 

indicating colocalisation with ER-Tracker Green. The overlap is not complete, 

however, possibly due to the delivery of ArLEA1A and ArLEA1B to vesicles and 

compartments outside the ER. In contrast, mCherry alone is mostly distributed both in 

the cytoplasm and in the nucleus (Fig. 4.3c). Some mCherry is observed to colocalise 

with ER-Tracker Green possibly due to its hydrophobic nature that might favour its 

association with the ER membrane. Higher magnification might enable better 

resolution of the two compartments. 
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  a.    ER-Tracker Green     ArLEA1A-FLAG-mCherry          Merged   

     

 

  b.   ER-Tracker Green     ArLEA1B-FLAG-mCherry           Merged   

       

 

Figure 4.3: ER localisation of ArLEA1A and ArLEA1B. COS-7 cells were transfected with 
pcDNA3.0 vector containing mCherry tagged ArLEA1A and ArLEA1B. 24 h post-transfection, 
cells were stained with ER-Tracker Green. Live-cell imaging was performed with LSM510 
confocal microscope. Colocalisation is observed between ER-Tracker Green and (a) 
ArLEA1A-FLAG-mCherry and (b) ArLEA1B-FLAG-mCherry. Left, green channel (ER-Tracker 
Green); middle, red channel (mCherry); right, red/green merged image. Plots depicting the 
red and green fluorescent intensities at selected region of interest (arrow) are also shown 
below. Scale bar: 10 µm. 
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c.   ER-Tracker Green                 mCherry                        Merged   

   

 

Figure 4.3: (continued) COS-7 cells were transfected with pcDNA3.0 vector containing 
mCherry. 24 h post transfection, cells were stained with ER-Tracker Green for 30 min. Live-
cell imaging was performed with LSM510 confocal microscope. (c) No colocalisation is 
observed between ER-Tracker Green and mCherry. Left, green channel (ER-Tracker Green); 
middle, red channel (mCherry); right, red/green merged image. Plots depicting the red and 
green fluorescent intensities at selected region of interest (arrow) are also shown below. Scale 
bar: 10 µm. 

 

As a control, ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-mCherry signal location 

was compared with MitoTracker Green, a mitochondrial stain (Fig. 4.4a,b). No 

overlap is observed between the red and green channels indicating absence of 

ArLEA1A and ArLEA1B in the mitochondria.  
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a.    MitoTracker Green    ArLEA1A-FLAG-mCherry          Merged 

   

 

b.    MitoTracker Green     ArLEA1B-FLAG-mCherry        Merged 

   

  

Figure 4.4: MitoTracker Green staining. 24 h post-transfection, cells were stained with 
MitoTracker Green for 15 min at 37°C. Live-cell imaging was performed with LSM510 
confocal microscope. No colocalisation is observed between MitoTracker Green and (a) 
ArLEA1A-FLAG-mCherry and (b) ArLEA1B-FLAG-mCherry. Left, green channel (MitoTracker 
Green); middle, red channel (mCherry); right, red/green merged image. Plots depicting the 
red and green fluorescent intensities at selected region of interest (arrow) are also shown. 
Scale bar: 10 µm. 
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In order to confirm expression of ArLEA1A and ArLEA1B in COS-7 cells, western blot 

analysis was performed (Fig. 4.5) using COS-7 cell lysates. Cells expressing AavLEA1-

FLAG-mCherry and untransfected cells were used as negative controls. The primary 

antibody used was specific for ArLEA1A and was raised in rabbit (McGee, 2006). The 

secondary antibody was HRP-linked anti-rabbit antibody. As can be observed in Fig. 

4.5, the first two lanes correspond to full length ArLEA1A-FLAG-mCherry (72.6kDa) 

and ArLEA1B-FLAG-mCherry (67.9kDa). However, their sizes are slightly larger than 

expected indicating possible post-translational modifications of these proteins inside 

cells, or incomplete binding to SDS resulting in higher observed molecular weight, 

which is commonly observed for intrinsically disordered proteins (Chakrabortee et 

al., 2010). Moreover, there seem to be smaller sized bands observed in both lanes. 

These results suggest that these proteins might be truncated into smaller peptides 

inside cells.  

 

 

Figure 4.5: Western blot detection of ArLEA1A-FLAG-mCherry, (lane-1) and ArLEA1B-FLAG-
mCherry (lane-2) in COS-7 cells. Primary antibody raised in rabbit against ArLEA1A and was 
used in 1:10000 dilution. HRP-linked-anti-rabbit secondary antibody was used in 1:4000 
dilution. Protein extracts from cells expressing AavLEA1-FLAG-mCherry (lane-3) and 
untransfected cells (lane 4) were used as negative controls. The MW markers are shown on 
the left. 
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4.2.2 Functional verification of N- and C-terminal signals of ArLEA1A 

and ArLEA1B 

In order to verify the functions of the N- and C-terminal signals of ArLEA1A and 

ArLEA1B, a new set of plasmids were made where the DNA sequence corresponding 

to the first 22 amino acids of ArLEA1A (termed ‘NS’), which is almost identical to 

ArLEA1B except for a conserved leucine-> isoleucine amino-acid substitution at the 

N-terminal end, was cloned in frame with mCherry at the 5' end, and either the 

rotifer sequence ATEL or the conventional ER retention signal KDEL were engineered 

at the 3' end. NS-mCherry without a C-terminal signal was also produced as a 

control. COS-7 cells transfected with either NS-mCherry, NS-mCherry-KDEL or NS-

mCherry-ATEL and stained with ER-Tracker Green show that NS-mCherry-KDEL 

colocalised substantially with ER-Tracker Green (Fig. 4.6a), but either ATEL or no 

retention signal at the C-terminal end of mCherry resulted in only partial overlap of 

red and green signals, suggesting the presence of mCherry in compartments other 

than the ER (Fig. 4.6 b,c). 

To test whether ATEL mediates differential localisation as compared to KDEL, 

constructs with EGFP containing N-terminal signal and either KDEL or ATEL at the C-

terminal end were made. COS-7 cells were then cotransfected with either NS-

mCherry-ATEL or NS-mCherry-KDEL, and either NS-EGFP-ATEL or NS-EGFP-KDEL. 

As shown in Fig. 4.7a and b, the red and green channel intensities show good 

overlap when cells are transfected with NS-mCherry-KDEL and NS-EGFP-KDEL or 

NS-mCherry-ATEL and NS-EGFP-ATEL. However, NS-EGFP-KDEL and NS-mCherry-

KDEL seem to only partially colocalise with NS-mCherry-ATEL and NS-EGFP-ATEL, 

respectively (Fig. 4.7 c,d). Compartments enriched for ATEL-tagged mCherry or EGFP 

seem to lie close to the nucleus in a pattern reminiscent of the Golgi apparatus. 
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a.    ER-Tracker Green          NS-mCherry-KDEL                Merged   

   

 

b.    ER-Tracker Green          NS-mCherry-ATEL                    Merged   

   

 

Figure 4.6: N-terminal signal peptide sequence mediates ER localisation. COS-7 cells were 
transfected with pcDNA3.3 vectors containing (a) NS-mCherry-KDEL and (b) NS-mCherry-
ATEL, where NS corresponds to N-terminal sequence of ArLEA1A containing the first 22 
amino acids. 24 h post-transfection, cells were stained with ER-Tracker Green. Colocalisation 
within the ER is observed for NS-mCherry-KDEL and NS-mCherry-ATEL. Left, green channel 
(ER-Tracker Green); middle, red channel (mCherry); right, red/green merged image. Plots 
showing red and green fluorescent intensities in the selected region of interest (arrow) are 
also shown. Scale bar: 10 µm. 
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c.    ER-Tracker Green            NS-mCherry                       Merged   

   

 

Figure 4.6 (continued). COS-7 cells transfected with pcDNA3.3 containing NS-mCherry were 
stained with ER-Tracker Green. (c) NS-mCherry is observed to colocalise with ER-Tracker 
Green. Left, green channel (ER-Tracker Green); middle, red channel (mCherry); right, 
red/green merged image. Plots showing red and green fluorescent intensities in the selected 
region of interest (arrow) are also shown. Scale bar: 10 µm. 
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        a.     NS-EGFP-KDEL          NS-mCherry-KDEL                Merged 

         

 

         b.       NS-EGFP-ATEL         NS-mCherry-ATEL               Merged 

          

 

Figure 4.7: Differential localisation mediated by ATEL and KDEL. COS-7 cells were 
cotransfected with pcDNA3.3 containing the following constructs: (a) NS-mCherry-KDEL and 
NS-EGFP-KDEL; (b) NS-mCherry-ATEL and NS-EGFP-ATEL. Cells were observed under the 
confocal microscope, 24 h post-transfection. Similar localisation patterns for red and green 
channels are observed when NS-EGFP and NS-mCherry are fused with identical C-terminal 
sequences (a,b). Left, green channel (EGFP); middle, red channel (mCherry); right, red/green 
merged image. Plots showing red and green fluorescent intensities in the selected region of 
interest (arrow) are also shown. Scale bar: 10 µm. 
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       c.        NS-EGFP-KDEL          NS-mCherry-ATEL               Merged 

         

 

      d.       NS-EGFP-ATEL            NS-mCherry-KDEL              Merged 

         

 

Figure 4.7 (continued): COS-7 cells were cotransfected with pcDNA3.3 containing the 
following constructs: (c) NS-mCherry-ATEL and NS-EGFP-KDEL and (d) NS-mCherry-KDEL 
and NS-EGFP-ATEL. Cells were observed under the confocal microscope, 24 h post-
transfection. Differential localisation patterns are observed for EGFP and mCherry constructs. 
Left, green channel (EGFP); middle, red channel (mCherry); right, red/green merged image. 
Plots showing red and green fluorescent intensities in the selected region of interest (arrow) 
are also shown. Scale bar: 10 µm. 
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4.2.3 ATEL, but not KDEL, colocalises with Golgi stacks and vesicles 

To confirm the presence of ATEL-tagged proteins in the Golgi, colocalisation analysis 

of NS-mCherry-KDEL or NS-mCherry-ATEL with GFP-tagged GMAP210 constructs 

was performed. GMAP210 is a long coiled-coil cis-Golgi associated protein that 

plays a role in maintaining Golgi ribbon integrity and position (Yadav et al., 2009). 

The N-terminal end of GMAP210 fused to GFP (NterGMAP210-GFP) has been found 

to concentrate in vesicles lying in the periphery of Golgi elements, while the C-

terminal end of GMAP210 fused to GFP (GFP-CterGMAP210) appears to be 

distributed uniformly in the cis-cisternae of the Golgi apparatus (Cardenas et al., 

2009). There seems to be poor colocalisation of NS-mCherry-KDEL with either 

NterGMAP210-GFP or GFP-CterGMAP210 (Fig. 4.8a,b), while NS-mCherry-ATEL is 

found to overlap partially with both NterGMAP210-GFP and GFP-CterGMAP210 

(Fig. 4.8c,d). 
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a.  NS-mCherry-KDEL        GFP-CterGMAP210                Merged  

   

 

 b.  NS-mCherry-KDEL       NterGMAP210-GFP               Merged  

   

 

Figure 4.8: Golgi localisation. COS-7 cells were cotransfected with pcDNA3.3 containing 
NS-mCherry-KDEL and GFP tagged CterGMAP210/NterGMAP210 (Golgi markers). Cells 
were observed 24 h post-transfection. Scant colocalisation is observed between (a) NS-
mCherry-KDEL and GFP-CterGMAP210 and (b) NterGMAP210-GFP. Left, red channel 
(mCherry); middle, green channel (GFP); right, red/green merged image. Plots showing red 
and green fluorescent intensities in the selected region of interest (arrow) are also shown. 
Scale bar: 10 µm. 
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c.  NS-mCherry-ATEL         GFP-CterGMAP210                 Merged 

   

 

d.  NS-mCherry-ATEL        NterGMAP210-GFP                 Merged 

   

 

Figure 4.8 (continued): ATEL allows progression into Golgi. COS-7 cells were cotransfected 
with pcDNA3.3 containing NS-mCherry-ATEL and GFP tagged 
CterGMAP210/NterGMAP210 (Golgi markers).  Cells were observed 24 h post-transfection. 
Colocalisation is observed between (c) NS-mCherry-ATEL and GFP-CterGMAP210 and (d) 
NterGMAP210-GFP. Left, red channel (mCherry); middle, green channel (GFP); right, 
red/green merged image. Plots showing red and green fluorescent intensities in the selected 
region of interest (arrow) are also shown. Scale bar: 10 µm. 
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4.2.4 Scatter plots of colocalised pixels 

Fig. 4.9 and 4.10 show 2D-scatter plots of colocalised pixel intensities for the red and 

green channels and the corresponding correlation values for all the confocal images. 

Both ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-mCherry show higher Pearson’s 

and Mander’s correlation values with ER-Tracker Green (0.37,0.72,0.44 and 

0.62,0.90,0.65 respectively) than mCherry (0.14,0.07,0.49) (Fig. 4.9). In contrast, 

ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-mCherry show low Pearson’s and 

Mander’s correlation values with MitoTracker Green (-0.03,0.02,0.09 and -

0.02,0.09,0.13 respectively). NS-mCherry-KDEL shows higher Pearson’s and 

Mander’s correlation values with ER-Tracker Green (0.52,0.63,0.98) compared to 

NS-mCherry-ATEL (0.28,0.5,0.5) and NS-mCherry (0.26,0.28,0.62). The scatter plots 

also confirm differential localisation mediated by ATEL and KDEL sequences (Fig. 

4.10) as evident by the higher Pearson’s and Mander’s correlation values for NS-

mCherry-KDEL and NS-EGFP-KDEL (0.87,0.95,0.91); NS-mCherry-ATEL and NS-

EGFP-ATEL (0.76,0.82,0.92); as compared to NS-mCherry-ATEL and NS-EGFP-KDEL 

(0.50,0.51,0.91) and NS-mCherry-KDEL and NS-EGFP-ATEL (0.43,0.79,0.54). 

Moreover, KDEL containing proteins are found to be excluded from the Golgi as 

indicated by the low Pearson’s and Mander’s correlation values for NS-mCherry-

KDEL and GFP-CterGMAP210 (0.08,0.05,0.53) and NS-mCherry-KDEL and 

NterGMAP210-GFP (0.01,0.00,0.23). In contrast, NS-mCherry-ATEL shows higher 

correlation values with GFP-CterGMAP210 (0.48,0.33,0.94) and NterGMAP210-GFP 

(0.19,0.08,0.84) indicating Golgi translocation mediated by ATEL. 
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Fig. 4.9: 2D-pixel analysis of red and green fluorescent intensities. Channel 1 (Ch1) 
represents the red channel, while channel 2 (Ch2) represents the green channel. The linear 
regression line is shown in red. Pearson’s correlation coefficient and Mander’s correlation 
coefficients: M1 (ratio of the summed intensities of pixels from the green image for which the 
intensity in the red channel is above zero to the total intensity in the green channel) and M2 
(ratio of the summed intensities of pixels from the red image for which the intensity in the 
green channel is above zero to the total intensity in the red channel) are depicted for each 
image.  
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Fig. 4.10: 2D-pixel analysis of red and green fluorescent intensities. Channel 1 (Ch1) 
represents the red channel, while channel 2 (Ch2) represents the green channel. The linear 
regression line is shown in red. Pearson’s correlation coefficient and Mander’s correlation 
coefficients: M1 (ratio of the summed intensities of pixels from the green image for which the 
intensity in the red channel is above zero to the total intensity in the green channel) and M2 
(ratio of the summed intensities of pixels from the red image for which the intensity in the 
green channel is above zero to the total intensity in the red channel) are depicted for each 
image.  
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4.2.5 ATEL retards secretion into the extra-cellular medium 

The fact that ATEL-containing proteins are present in both ER and Golgi raises the 

question whether ATEL has any retention function at all; if not, we might expect 

ATEL-containing proteins to progress to the extracellular space to a similar extent as 

those without ATEL. Therefore, mCherry fluorescence was measured in supernatants 

of COS-7 cells expressing mCherry, NS-mCherry, NS-mCherry-KDEL or NS-mCherry-

ATEL. Untransfected cells were used as controls. The means and standard deviations 

(Table 4.1) were plotted (Fig. 4.11). One-way ANOVA showed that statistical 

difference between various groups was highly significant (F(4,10)=1671.5, 

p<0.0001). Pairwise comparison between different groups performed using Tukey’s 

post-hoc test (Table 4.2) revealed that mCherry fluorescence was significantly 

enhanced (p<0.001) in supernatants of cells expressing NS-mCherry compared to 

other experimental groups, suggesting efficient secretion of NS-mCherry to the cell 

exterior. The fluorescence values of both NS-mCherry-KDEL and NS-mCherry-ATEL 

were significantly reduced as compared to cells expressing NS-mCherry (p<0.001). 

However, secretion of NS-mCherry-ATEL was significantly higher (p<0.001) than NS-

mCherry-KDEL. These results suggest that although both ATEL and KDEL mediate 

retention of mCherry within the secretory pathway, ATEL allows more leakage to the 

cell exterior and is not as effective as KDEL in retaining proteins within the ER.  
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Figure 4.11: ATEL retards secretion into extracellular medium. mCherry fluorescence was 
measured in concentrated (20X) supernatants of COS-7 cells expressing NS-mCherry, NS-
mCherry-ATEL, NS-mCherry-KDEL and mCherry, 24 h post-transfection. Untransfected cells 
were used as controls. Measurements were made using a PerkinElmer plate-reader at 615 
nm. The mean and standard deviation are plotted.  
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4.3 Discussion 

Previous work on the functional characterisation of ArLEA1A and ArLEA1B suggested 

a role in preventing protein aggregation and in stabilising membranes respectively 

(Pouchkina-Stantcheva et al., 2007). It was speculated that these proteins were 

translocated into the ER via their N-terminal signals. In this chapter, the use of 

mammalian cells has allowed confirmation of the distribution of tagged bdelloid LEA 

proteins within the ER and the function of their N-terminal signal peptide sequences 

in delivering these proteins to this compartment. Further the function of the putative 

ER retention signal, ATEL, has been verified.  

Proteins normally enter the ER cotranslationally and are either retained there or 

targeted to other destinations including the Golgi (Bannykh et al., 1998), lysosomes 

(Andrews, 2000) or the cell exterior (Burgess and Kelly, 1987). Their functions within 

the ER might include lipid biosynthesis (Black, 1972; Sisson and Fahrenbach, 1967), 

participation in ‘quality control’ processes of other proteins and lipids (Hammond 

and Helenius, 1995), mediating the unfolded protein response within the ER 

(Chakrabarti et al., 2011), calcium storage (Martone et al., 1993; Sammels et al., 

2010) and secretion (Wiest et al., 1990). Protein retention within the ER is most 

commonly signal dependent, controlled by sequence-specific receptors (Munro and 

Pelham, 1987; Pelham, 1990). 

It is known that the C-terminal sequence KDEL (or its variants) retains soluble 

proteins within the ER by retrograde transport from the early Golgi compartments by 

binding to KDEL receptors (Wilson et al., 1993) and trafficking them back to the ER 

via COPI-coated vesicles (Letourneur et al., 1994). However, it has also been shown 

that this system allows some leakage of ER-resident proteins into the extracellular 

medium, as observed for phytohemaglutinin in plant cells (Herman et al., 1990) and 

protein disulfide isomerase in a rat pancreatic exocrine cell line (Yoshimori et al., 

1990). Hence the finding that a small amount of KDEL-tagged protein is detected in 

the supernatants is not surprising. Additionally, it is revealed that proteins containing 

ATEL are retained to a limited degree within the ER, and that unlike KDEL, greater 

population of other compartments of the secretory system, and indeed the 

extracellular space, also occurs. This is consistent with a study that examined the ER 
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retention capacity of 152 variants of KDEL in mammalian cells (Raykhel et al., 2007). 

Although the authors did not describe ATEL, they showed that the –3 position (i.e. T 

in ATEL) is not crucial (unless it is proline). Therefore, ATEL is probably similar in 

function to ADEL, for example, which was shown to allow at least 50% of associated 

protein to escape the ER. 

Although extrapolating results from a mammalian cell to an invertebrate 

requires caution, trafficking mechanisms are highly conserved between yeast and 

humans (Dancourt and Barlowe, 2010), so it is likely that these results are also 

applicable to bdelloids. The presence of ArLEA1A and ArLEA1B throughout 

intracellular vesicular compartments, as well as the extracellular tissue fluid would 

allow a small number of protective proteins to protect a large physiological space in 

the animal, consistent with their role in stress tolerance.  

The loss of structure and integrity of the ER has been previously reported in 

cortical parenchyma cells of mulberry trees during freezing and dehydration 

(Fujikawa and Takabe, 1996). For example, initiation of freezing at –5 °C resulted in 

the formation of multiplex lamellae (MPL) that completely covered the area beneath 

the plasma membrane. These MPL were produced by fusion of pre-existing ER 

vesicular network consisting of a parallel array of sheet-like ER cisternae. This 

structural reorganisation of the ER was observed within 10 min upon freezing at –5 

°C and was quickly reversed upon thawing. The same structural reorganisation of the 

ER was produced by osmotic dehydration of the cortical tissues with a 2.7 osmol 

sorbitol solution at 20 °C. It is speculated that the formation of MPL with the 

initiation of freezing and drying might play a specific role in inhibiting the close 

apposition of membranes during water loss. In addition to MPL formation, cortical 

parenchyma cells have also been shown to accumulate group 3 LEA proteins in their 

vesicular and multiplex lamellae-form ER (Ukaji et al., 2001). It is hypothesised that 

conversion of the ER to MPL and accumulation of WAP27 in the ER during winter 

might minimize plasma membrane destabilization due to the close approach of 

membranes and consequently confer extremely high freezing tolerance to cortical 

parenchyma cells of mulberry tree. It is speculated that ArLEA1B might have similar 

protective effects in rotifers during water loss since it has been demonstrated to 
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interact with membranes (Pouchkina-Stantcheva et al., 2007). In the previous 

chapter, ArLEA1B has been predicted to polymerise into a filamentous structure, 

hence it can be imagined that this function might be crucial in its role in forming a 

supportive meshwork to stabilise intra-cellular membranes during anhydrobiosis. 
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Chapter Five: Evaluating the Protective 
Effects of ArLEA1A and ArLEA1B Within 

the Mammalian ER 
 

5.1 Introduction 

The ER is the site of synthesis for various secreted, plasma membrane and chaperone 

proteins. Analysis of the human genome has revealed that approximately a third of all 

open reading frames code for proteins that enter the ER, demonstrating the 

importance of this organelle for global protein maturation in living cells (Braakman 

and Bulleid, 2011). Desiccation in bdelloids is expected to result in perturbation of 

ER homeostasis due to accumulation of unfolded or misfolded proteins causing ER 

stress (Puthalakath et al., 2007; Ron, 2002; Rutkowski et al., 2006; Szegezdi et al., 

2006; Urano et al., 2000). Since ArLEA1A has been shown to reduce aggregation of 

proteins in vitro (Pouchkina-Stantcheva et al., 2007), it was hypothesised that it might 

protect cells from the potential toxic effects of protein misfolding and aggregation in 

the physiological context of the ER-Golgi compartments where it has been shown to 

localise. Since, it was not possible to directly monitor protein misfolding and 

aggregation in bdelloids, it was decided to test this hypothesis using a spontaneously 

aggregating polyglutamine (polyQ) expansion protein fused with EGFP (Ravikumar et 

al., 2002) and bdelloid LEA protein N- and C-terminal signals (NS-EGFPHDQ74-

ATEL) targeted to the ER-Golgi compartments in mammalian cells.  

PolyQ proteins are often the causative agents of a number of 

neurodegenerative disorders (Bates, 2005; Gatchel and Zoghbi, 2005) including 

Huntington’s disease, SBMA (spinobulbar muscular atrophy), SCA1 (spinocerebellar 

ataxia) etc. and are believed to disrupt neural functions by interfering with cellular 

processes like transcription (Sugars and Rubinsztein, 2003), proteasomal degradation 

(Finkbeiner and Mitra, 2008; Sakahira et al., 2002) or conductance of cell 

membranes (Jeub et al., 2006; Sanchez et al., 2008). Although inclusions are 
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observed in a number of diseased neurons, it is believed that these inclusions do not 

directly contribute towards disease pathogenesis (Arrasate et al., 2004) and may even 

provide protection to cells by sequestering toxic proteins. Instead a role of misfolded 

polyQ monomers and possibly small oligomers has been recently shown to 

contribute towards increased risk of cell death (Miller et al., 2011).  

Previously, Rousseau et al. have claimed that targeting polyQ protein to the 

ER completely abolished its aggregation (Rousseau et al., 2004). These authors cited 

the presence of chaperone proteins within the ER that might prevent formation of 

aggregates. They also suggested that when these proteins escape from the ER to the 

cytoplasm by retrograde transport, formation of inclusions is accelerated. 

There are many reasons to question the conclusions made by the authors in 

their study. (1) The microscopic imaging performed by the authors in their study 

might not be sensitive enough to detect the formation of small aggregates within the 

ER. (2) Although the filter retardation assay shows marked reduction in aggregates 

observed in cells expressing SP-HttQ73-KDEL in the ER, compared to cells expressing 

HttQ73 in the cytoplasm, one cannot rule out the possibility that small soluble 

aggregates might be formed within this compartment that might not be retained on 

the cellulose acetate filter. Indeed it has been previously shown that the cytotoxic 

polyQ proteins are not detected in filters of 0.2µm pore size (Miller et al., 2011). (3) 

If the environment in the ER is unfavourable for protein aggregation as claimed by the 

authors, then one should not observe the formation of any inclusions in this 

compartment using other aggregation-prone proteins. However, there have been 

many studies that have reported the formation of aggregates within this compartment 

(Gong et al., 2009; Rivera et al., 2000). 

 Therefore, it was decided to re-evaluate polyQ aggregation within the ER by 

fluorescence lifetime imaging microscopy (FLIM) (Section 5.2.1). FLIM is a useful tool 

for investigating the molecular environment of a fluorophore in living cells, including 

detection of conformational changes, protein-protein interactions and protein 

aggregation (Borst and Visser, 2010; Kaminski Schierle et al., 2011). A decrease in 

fluorescence lifetime during protein aggregation has been attributed to the formation 

supramolecular assemblies that result in disruption of fluorophore emission 
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properties due to Fluorescence Resonance Energy Transfer (FRET) between the donor 

fluorophore and the acceptor aggregate. Lifetime measurements are made using time 

and space-correlated single photon counting (TSCSPC) method that enables 

simultaneous acquisition of fluorescence lifetime information from each pixel at 

picosecond level resolution. Average fluorescence lifetimes can subsequently be 

computed for samples containing aggregated fluorophore and unaggregated controls. 

However, this method cannot be used to establish the intra-cellular localisation of 

aggregates. Hence confocal microscopy was performed to confirm the location of 

aggregates observed in cells (Section 5.2.2). 

Additionally, MTS assay was carried out to assess the viability of cells 

expressing NS-EGFPHDQ74-ATEL alone or in the presence of ArLEA1A-FLAG-

mCherry/ArLEA1B-FLAG-mCherry/MG132/TMAO (Section 5.2.3). MTS is a 

colorimetric method for determining the number of viable cells in a given cell 

population. The CellTiter 96® AQueousOne Solution Reagent contains a tetrazolium 

compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt; MTS] and an electron coupling reagent 

(phenazine ethosulfate; PES). PES has enhanced chemical stability, which allows it to 

be combined with MTS to form a stable solution. Phenazine methosulfate (PMS) is 

used as an electron coupling reagent in the assay. The quantity of formazan product 

is measured by the amount of absorbance at 490 nm which is indicative of 

mitochondrial activity which in turn is directly proportional to the number of living 

cells in culture. As misfolded proteins expressed within the ER might be targeted to 

the ubiquitin-proteasomal machinery in the cytoplasm by retrograde transport, 

inhibition of this complex by MG132, is expected to increase protein aggregation 

(Rousseau et al., 2004) and therefore decrease cell viability. Trimethylamine N-oxide 

(TMAO) is a chemical chaperone that has been recently demonstrated to reduce 

aggregation of mutant αA-crystallin within the ER (Gong et al., 2009). Adding TMAO 

might increase the viability of cells expressing NS-EGFPHDQ74-ATEL.  

Lastly, the expression of NS-EGFPHDQ74-ATEL with or without ArLEA1A-

FLAG-mCherry/ArLEA1B-FLAG-mCherry/MG132/TMAO was analysed by western 

blot (Section 5.2.4).  
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5.2 Results 

5.2.1 Fluorescence lifetime imaging of cells expressing NS-

EGFPHDQ74-ATEL  

Fluorescence lifetime imaging (FLIM) was performed on COS-7 cells expressing NS-

EGFPHDQ74-ATEL at 24 h and 48 h post-transfection. Cells expressing NS-EGFP-

ATEL in the ER and EGFPHDQ74 in the cytoplasm and the nucleus were used as 

controls. As can be observed (Fig. 5.1a-i), there is no significant difference in the 

fluorescence lifetime observed in cells expressing either NS-EGFPHDQ74-ATEL or 

NS-EGFP-ATEL at 24 h post-transfection, indicating absence of amyloid formation. In 

contrast, distinct reduction in fluorescence lifetime is observed in cells expressing 

EGFPHDQ74 in the cytoplasm (Fig. 5.1j). However, one observes that the ER-

morphology in cells expressing NS-EGFPHDQ74-ATEL is considerably fragmented 

compared to the uniform morphology of the ER observed in control cells expressing 

NS-EGFP-ATEL. These results suggest the occurrence of ER stress in cells expressing 

NS-EGFPHDQ74-ATEL within 24 h of transfection. Similar fragmentation of the ER 

network has been described in various conditions of ER stress (Howarth et al., 2012; 

Santi-Rocca et al., 2012; Sokka et al., 2007). 

At 48 h, a drastic reduction in fluorescence lifetime is observed in five out of 

eight cells expressing NS-EGFPHDQ74-ATEL, potentially indicating the formation of 

amyloid (Fig. 5.2a-h). Fig. 5.3 compares the average fluorescence lifetime observed 

at 24 h and 48 h in cells expressing NS-EGFPHDQ74-ATEL. The average lifetime is 

significantly reduced at 48 h compared with 24 h (t=2.235, P = 0.0261, one-sided t-

test with Welch correction).  
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a.                                       b.                                    c. 

 

d.                                       e.                                     f. 

 

g.                                       h.                                     i. 

  

j. 

 
Figure 5.1: Fluorescence lifetime imaging of NS-EGFPHDQ74-ATEL in COS-7 cells at 24 h. 
(a-h) Fluorescence lifetime was measured in eight different cells. (i) NS-EGFP-ATEL was used 
as a control. (j) PolyQ expression observed in the cytoplasm. Lifetime was measured in 
picoseconds as shown in the colour-scale. This data was obtained in collaboration with Drs. 
Claire Michel and Gabriele S. Kaminski Schierle.  
 
 



	
  

	
   95	
  	
  

a.                                      b.                                     c. 

 

d.                                      e.                                       f. 

 

g.                                      h. 

 

Figure 5.2: Fluorescence lifetime imaging of NS-EGFPHDQ74-ATEL in COS-7 cells at 48 h. 
(a-h) Fluorescence lifetime was measured in eight different cells. Lifetime was measured in 
picoseconds as shown in the colour-scale. This data was obtained in collaboration with Drs. 
Claire Michel and Gabriele S. Kaminski Schierle.  
 
 

     
Figure 5.3: Average lifetime for NS-EGFPHDQ74-ATEL at 24 h and 48 h. Error bars indicate 
average SD for n=8 at 24 h and n=9 at 48 h. 
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5.2.2 Monitoring NS-EGFPHDQ74-ATEL expression in COS-7 cells by 

confocal microscopy 

In order to confirm the intracellular localisation of aggregates, COS-7 cells were co-

transfected with pcDNA3.3 containing NS-EGFPHDQ74-ATEL and NS-mCherry-

ATEL (the latter was used as a marker for ER-Golgi compartments, as described in 

Chapter Four). Cells were subsequently fixed and stained with DAPI. Colocalisation 

analysis was performed as before. Around 70% of the cells observed at 24 h, showed 

colocalisation of NS-EGFPHDQ74-ATEL with NS-mCherry-ATEL, with little evidence 

of aggregate formation (Fig. 5.4a). However, in around 5% of the cells aggregate 

formation was detectable in the cytoplasm and in the nucleus (Fig. 5.4b). The ER 

network in these cells was found to be quite uneven. Moreover, the nuclei in these 

cells appeared to be fragmented indicating the initiation of apoptosis. These 

aggregates could have formed by retrograde transport of misfolded/aggregating 

proteins from the ER to the cytoplasm and nucleus. At 48 hours, as many as 50% of 

cells expressing NS-EGFPHDQ74-ATEL were observed to be in the later stages of 

apoptosis as evidenced by appearance of nuclear fragments (Fig. 5.4c). The uniform 

ER network in these cells was no longer visible and was replaced by large polyQ 

aggregates colocalising with NS-mCherry-ATEL. Moreover, nuclear fragments were 

also observed to co-cluster with NS-EGFPHDQ74-ATEL and NS-mCherry-ATEL 

indicating fusion of ER-Golgi compartments with these fragments. Such co-clustering 

of Golgi vesicles with other organelles has recently been described by Nozawa et al. 

in cells undergoing apoptosis (Nozawa et al., 2009). In a few cells, significant 

dilation and clumping within ER-Golgi vesicles was also observed (Fig. 5.4d). These 

results hint at the prevalence of aggregated polyQ proteins within the ER-Golgi 

compartments. 
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a.            DAPI             NS-EGFPHDQ74-ATEL    NS-mCherry-ATEL 

     

            Merged   

    

b.        DAPI                   NS-EGFPHDQ74-ATEL    NS-mCherry-ATEL 

    

           Merged 

   

 

Figure 5.4: Confocal microscopy of COS-7 cells expressing (a,b) NS-EGFPHDQ74-ATEL and 
NS-mCherry-ATEL at 24 h. Distinct aggregates are observed in (b). Plots depict blue, green 
and red fluorescent signals in selected region of interest (arrow). Scale bar: 10 µm. 
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c.     DAPI                    NS-EGFPHDQ74-ATEL    NS-mCherry-ATEL 

   

           Merged 

      

 

d.     DAPI                   NS-EGFPHDQ74-ATEL    NS-mCherry-ATEL 

   

          Merged 

          

 

Figure 5.4 (continued): Formation of inclusions in the ER-Golgi compartments is observed at 
(c) 48 h and (d) 72 h. Plots depict blue, green and red fluorescent signals in selected region 
of interest (arrow). Scale bar: 10 µm.  
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5.2.3 Cell viability measurements 

Cells expressing NS-EGFPHDQ74-ATEL alone, or with ArLEA1A-FLAG-

mCherry/ArLEA1B-FLAG-mCherry/MG132/TMAO were treated with MTS reagent at 

3, 12, 24 and 48 h post-transfection. Untransfected cells were used as controls. The 

absorbance was recorded in a spectrophotometer at 490nm. The means and standard 

deviations (n=3) were plotted (Fig. 5.5). Statistical significance of variation observed 

between different groups at 48 h was determined using One-way ANOVA, which 

demonstrated that the difference observed between different groups was highly 

significant (F(5,12)=33.046, p<0.0001). Pair-wise comparison between different 

groups performed using Tukey’s post-hoc test revealed that although there was a 

decrease in viability of cells expressing NS-EGFPHDQ74-ATEL compared to 

untransfected controls the difference observed was not statistically significant. Adding 

TMAO to cells expressing NS-EGFPHDQ74-ATEL was observed to improve cell 

viability slightly however, the difference observed was also not statistically 

significant. Surprisingly, over-expressing either ArLEA1A-FLAG-mCherry or 
ArLEA1B-FLAG-mCherry was observed to reduce the viability of cells significantly 

(p<0.001). Adding proteasomal inhibitor MG132, results in the most dramatic 

decrease in cell viability (p<0.001), confirming previous results that have shown that 

failure to clear aggregates is detrimental for cell survival (Lauricella et al., 2003). 
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Figure 5.5: MTS assay for cell viability was performed on cells expressing NS-EGFPHDQ74-
ATEL alone, or with ArLEA1A-FLAG-mCherry/ArLEA1B-FLAG-mCherry/TMAO/MG132. 
Untransfected cells were used as controls. Absorbance was measured at 490nm at 3, 12, 24 
and 48 h post-transfection. Experiments were performed in triplicate. Error bars depict +-
1SD. 

 

5.2.4 Western blot detection of NS-EGFPHDQ74-ATEL 

In order to evaluate NS-EGFPHDQ74-ATEL protein levels in COS-7 cells with or 

without ArLEA1A-FLAG-mCherry/ArLEA1B-FLAG-mCherry/MG132/TMAO, it was 

decided to focus on the soluble fraction of proteins, since it has been shown that it is 

the monomeric or small oligomeric polyQ protein that contributes towards 

cytotoxicity and not the protein present in insoluble aggregates (Miller et al., 2011).  

Western blot experiments were carried out 48 h post-transfection. As misfolded 

proteins expressed within the ER might be targeted to the ubiquitin-proteasomal 
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machinery in the cytoplasm by retrograde transport, inhibition of this complex by 

MG132, is expected to result in an increase in NS-EGFPHDQ74-ATEL (Rousseau et 

al., 2004). On the other hand, adding TMAO, which is a chemical chaperone, 

should have no effect on the amount of polyQ protein (Gong et al., 2009). As can be 

observed in Fig. 5.6, there is a drastic decrease in NS-EGFPHDQ74-ATEL in cells 

over-expressing ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-mCherry (lanes 4 and 

5), as compared to cells expressing NS-EGFPHDQ74-ATEL alone (lane 2). Adding 

TMAO does not affect NS-EGFPQ74-ATEL expression (lane 3), while adding MG132 

results in an increase in the amount of NS-EGFPHDQ74-ATEL as expected (lane 6). 

The lack of loading controls and input material controls is acknowledged in this data. 

 
Figure 5.6: Western blot detection of NS-EGFPHDQ74-ATEL in COS-7 cells, 48 h post-
transfection (top panel). 5µg of protein extract was loaded in each lane. The primary 
antibody used was anti-GFP, while the secondary body was HRP-linked anti-mouse 
antibody. ArLEA1A-FLAG-mCherry and ArLEA1B-FLAG-mCherry were detected (bottom 
panel) by using rabbit anti-ArLEA1A primary antibody and HRP-linked secondary anti-rabbit 
antibody. Lane 1: untransfected cells, lane 2: NS-EGFPHDQ74-ATEL, lane 3: NS-
EGFPHDQ74-ATEL+TMAO, lane 4:NS-EGFPHDQ74-ATEL+ArLEA1A-FLAG-mCherry, lane 
5: NS-EGFPHDQ74-ATEL+ArLEA1B-FLAG-mCherry, lane 6:NS-EGFPHDQ74-ATEL+MG132, 
lane 7: NS-EGFP-ATEL. MW markers are shown on the left.  
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5.3 Discussion 

In order to evaluate the protective effects of ArLEA1A/ArLEA1B within the 

physiological context of the ER-Golgi compartments, it was important to devise a 

cell-based system where protein misfolding and aggregation could be induced and 

monitored within these organelles. Hence, expression of GFP-tagged polyQ protein 

was targeted to the ER and Golgi in COS-7 cells. At 24 h, there was little evidence of 

aggregation within these compartments, although the ER morphology was found to 

be considerably fragmented indicating ER stress. In a few cells, aggregate formation 

was detected in the cytoplasm and nucleus as reported previously (Rousseau et al., 

2004). These aggregates are hypothesised to form as a result of retrograde transport of 

oligomerised/aggregated polyQ proteins from the ER to the cytoplasm. At later time 

points aggregates were also observed within the ER-Golgi compartments. Moreover, 

considerable nuclear fragmentation indicated the onset of apoptosis in these cells.  

MTS assays revealed that cells expressing NS-EGFPHDQ74-ATEL experienced 

a reduction in viability compared to untransfected cells although the effect was not 

statistically significant. This could be due to the fact that the cells used in these 

experiments are dividing and although many cells might undergo apoptosis due to 

NS-EGFPHDQ74-ATEL expression, the reduction in metabolic activity might be 

neutralised by a net increase in the number of cells in the total population. However, 

co-expression of ArLEA1A/ArLEA1B with NS-EGFPHDQ74-ATEL did not protect cells 

from deleterious effects of NS-EGFPHDQ74-ATEL expression. On the contrary, 

expressing these proteins resulted in considerable loss of cell viability at the 48 h 

timepoint. The exact cause of this effect is not very well understood.  It is possible 

that these proteins might provide protection exclusively in bdelloid cells under the 

influence of specific signalling factors. Alternatively, the possibility of ‘ER overload’ 

(Ewbank and Pujol, 2010) that might result in subsequent cell necrosis  cannot be 

ignored since ArLEA1A and ArLEA1B have been expressed in 5:1 ratio to NS-

EGFPHDQ74-ATEL. In the future, it might be useful to test the expression of ArLEA1A 

and ArLEA1B proteins in cells expressing NS-EGFPHDQ74-ATEL in 1:1 ratio without 

any fluorescent tags, since one cannot rule out the possibility that mCherry might 

contribute towards some amount of toxicity. One could also test the anti-aggregation 
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effects of AavLEA1 from Aphelenchus avenae in the ER by cloning the N and C-

terminal ER translocation signals in frame with this protein.  

It is interesting to note that adding TMAO, a chemical chaperone to cells 

expressing NS-EGFPHDQ74-ATEL, resulted in slight improvement of cell viability. 

These results are consistent with previous findings that have shown that TMAO 

alleviates aggregation of mutant αA-crystallin within the ER (Gong et al., 2009) by 

increasing the amount of ER chaperone proteins like heat shock protein 70 (HSP70).  

As misfolded proteins are transported from the ER to the cytoplasm where they 

might be degraded by the ubiquitin-proteasomal complex, inhibition of proteasomal 

degradation by MG132 is expected to increase ER stress by inhibiting the clearance 

of improperly folded proteins from the ER, resulting in the activation of the unfolded 

protein response (UPR) and subsequent apoptosis (Bernales et al., 2006; Chakrabarti 

et al., 2011; Kaufman et al., 2002; Ron and Walter, 2007). Previously polyQ 

aggregation in the cytoplasm has been shown to trigger ER stress through 

proteasomal dysfunction (Nishitoh et al., 2002). Indeed, adding MG132 to cells 

expressing NS-EGFPHDQ74-ATEL is catastrophic for cell survival.  

Western blot analysis showed that over-expression of ArLEA1A/ArLEA1B 

resulted in drastic reduction of NS-EGFPHDQ74-ATEL expression. It is speculated 

that this could be due to direct-translational inhibition of NS-EGFPHDQ74-ATEL due 

to ER overload (Ewbank and Pujol, 2010).  Adding TMAO did not cause any change 

in NS-EGFPHDQ74-ATEL expression as expected, since it is not a regulator of 

protein translation or degradation mechanisms. In contrast, adding MG132, resulted 

in a net increase in NS-EGFPHDQ74-ATEL levels due to inhibition of proteasomal 

degradation.  

Overall the results in this chapter highlight the complications involved in 

expressing heterologous proteins in the mammalian ER. Encouraging results for 

TMAO suggest possible therapeutic applications of this chemical chaperone in the 

treatment of various diseases caused by protein misfolding in the ER such as 

Alzhiemer’s disease, diabetes mellitus, retinitis pigmentosa (Lin et al., 2008). 
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Chapter Six: Assessing Protective Effects 
of ArLEA1A and ArLEA1B During 

Desiccation-Induced Damage of mCherry 
Fluorescent Protein 

 

6.1 Introduction 

Fluorescent proteins are valuable biotechnological tools that have enabled the study 

of biological molecules and pathways in living cells, tissues, whole animals, plants 

and microorganisms. GFP was the first fluorescent protein to be characterised 

(Shimomura et al., 1962) as a companion protein to aequorin from jellyfish Aequorea 

victoria. In recognition of the importance of this protein in improving our 

understanding of life processes, Martin Chalfie, Osamu Shimomura and Roger Y. 

Tsien were awarded the Nobel Prize in Chemistry in 2008. Over the years since its 

discovery, GFP has been subject to several rounds of engineering to improve its 

brightness and fluorescent properties. Alteration of key residues around its 

fluorophore has resulted in the development of different colours such as blue, yellow 

and cyan, that has enabled multicolor tracking inside cells and FRET measurements 

involving energy transfer between different fluorophores. However, modification of 

GFP to derivatives emitting in the red or near-infrared region of the spectrum 

remained elusive for a long time. The quest for the discovery of fluorescent proteins 

with longer emission wavelengths ultimately led to the identification of red 

fluorescent protein drFP583 from Discosoma coral species, which later became 

known as DsRed (Matz et al., 1999). This protein has excitation and emission 

maxima at 558 and 583 nm respectively and shows stable fluorescence in vivo. The 

DsRed fluorophore is formed from the primary sequence Gln-Tyr-Gly (residues 66-

68) arranged in a rectangular array in two approximately antiparallel pairs (Gross et 

al., 2000). However this protein is tetrameric in nature (Yarbrough et al., 2001) and 
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its fluorophore undergoes slow maturation kinetics involving post-translational 

modifications of Gln66, Tyr67 and Gly68 into an imidazolidinone heterocycle with 

p-hydroxybenzylidene and acylimine substituents (Baird et al., 2000; Matz et al., 

1999).  

In order to overcome problems of tetramerization and slow fluorophore 

maturation kinetics in DsRed, it was subject to multiple rounds of directed evolution 

that resulted in the formation of an improved monomeric version called mRFP 

(monomeric red fluorescent protein) (Bevis and Glick, 2002). Although mRFP proved 

to be widely useful, it was found to be sensitive to N-terminal fusions (Shaner et al., 

2004) and its fluorophore maturation process had scope for further improvement. 

Therefore, Shaner et al. developed the next generation of monomers of mRFP through 

additional rounds of directed mutations in residues surrounding the fluorophore 

(Shaner et al., 2004). These variants (called ‘mFruits’) have overcome some of the 

previous drawbacks of mRFP and consist of seven members: mHoneydew, mBanana, 

mOrange, tdTomato, mTangerine, mStrawberry and mCherry.   

mCherry contains an Q66M (glutamine->methionine) mutation that promotes 

a more complete maturation of the fluorophore and demonstrates an additional 5 nm 

red-shift in both the excitation and emission spectra relative to mRFP. It also 

demonstrates increased brightness, faster maturation and is less prone to 

photobleaching than mRFP. Furthermore, the N- and C-terminal ends of mRFP have 

been replaced with GFP residues to increase its tolerance to both N-terminal and C-

terminal fusions. Its 3D structure is remarkably similar to GFP and DsRed with the 

typical 11-stranded beta barrel, a coaxial helix and a centrally located fluorophore 

(Shu et al., 2006). Fig. 6.1 compares the crystal structures of mCherry, DsRed and 

GFP. 

The fluorophore environment of mCherry is substantially more hydrophobic 

than DsRed. The K163Q(lysine->glutamine) substitution results in loss of hydrogen 

bonding of the phenolate oxygen of the fluorophore leading to a possible shift of 

electron density towards the imidazolinone moiety. The K83M(lysine->methionine) 

mutation also results in minor side chain arrangements in the fluorophore. Fig. 6.2 

depicts the fluorophore organisation in mCherry.  
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Figure 6.1: Crystal structures of (a) mCherry (Shu et al., 2006), (b) DsRed (Tubbs et al., 2005) 
and (d) GFP (Yang et al., 1996) downloaded from RCSB PDB. mCherry is observed to be 
monomeric, while DsRed is tetrameric and GFP is dimeric. These crystal structures were 
solved at a resolution of 1.36 Å for mCherry, 2.0 Å for DsRed and 1.9 Å for GFP. 
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Figure 6.2: Fluorophore organisation of mCherry. The substitution K163Q (mCherry) leads to 
a loss of hydrogen-bonding opportunities for the phenolate oxygen of the fluorophore and 
presumably results in a net shift of electron density toward the imidazolinone moiety. 
Common to all of these structures is the mutation of K83L mutation in mCherry. This 
substitution results in the terminal N of conserved Lys 70 to move away by about 2.7 Å from 
its position over the methylene bridge of the fluorophore in DsRed. Its new position is 
stabilised through the interaction with Glu 148. Glu 215 appears to be protonated and forms 
a hydrogen bond (2.7 Å) with the imidazolinone ring nitrogen. Note the presence of water 
(W) molecules in determining the fluorophore structure. Taken from Shu et al., 2006, with 
permission.  

  

It is important to recognise the role of water molecules in determining the 

quantum chemistry of the mCherry fluorophore. Topol et al. observed significant 

spectral tuning of the excitation and absorption spectra of mCherry by slightly 

modifying the orientation of the hydrogen bonded water network around the 

fluorophore (Topol et al., 2011). Moreover, the state of protonation of the conserved 

Glu215 residue in the fluorophore environment and its interaction with the 

neighboring water molecule might also affect its absorption properties (Topol et al., 

2011).  

It was hypothesised that drying mCherry might significantly alter its spectral 

properties presumably due to protein denaturation and loss of water molecules that 

are predicted to be crucial for the structural and functional integrity of the mCherry 

fluorophore. Since, ArLEA1A from bdelloid rotifers and AavLEA1 from Aphelenchus 

avenae have been demonstrated to function as ‘molecular shields’, it was decided to 
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test whether adding these proteins might protect mCherry from the deleterious effects 

of drying. Molecular shields are hypothesised to prevent intermolecular interactions 

between aggregating proteins by forming a physical barrier between them (Goyal et 

al., 2005b). Moreover, their functions have been found to be quite different from 

classical molecular chaperones. For example, molecular chaperones form complexes 

with their client proteins mostly through hydrophobic patches (Saibil, 2008; Tam et 

al., 2009) whereas both in vivo and in vitro experiments suggest that shield proteins 

act by slowing the collision rate of aggregating protein species (Liu et al., 2011). 

Moreover, the interaction of shield proteins with their clients has been found to be 

quite loose in comparison with chaperones that are more tightly associated 

(Chakrabortee et al., 2010; Chakrabortee et al., 2012). It can therefore be 

hypothesised that these proteins might be ineffective in preventing intra-molecular 

changes of protein structures caused by water loss.  

In order to test this hypothesis, mCherry protein along with ArLEA1A, 

ArLEA1B, AavLEA1 and AavLEA1-FLAG-mCherry were expressed and purified as 

described in Sections 6.2.1 and 6.2.2. The effect of drying on the fluorescence and 

absorbance spectra of mCherry was analysed in Section 6.2.3. Subsequently the 

protective effects of ArLEA1A, ArLEA1B and AavLEA1 in rescuing mCherry 

fluorescence and absorbance properties were assessed in Section 6.2.4. Lastly, the 

protective effect of fusing AavLEA1 with mCherry in cis was analysed in Section 

6.2.5.   
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6.2 Results 

6.2.1 Expression and purification of mCherry 

mCherry was cloned into pET-28a(+) vector, in frame with the His6 tag at the N-

terminal end. The plasmid was subsequently transformed into competent BL21DE3 E. 

coli cells. After screening transformants for optimal expression, single colonies were 

grown overnight in 5ml of LB. Overnight cultures were subsequently used to 

inoculate 400 ml LB and grown at 30°C until the OD600 reached 0.6. Protein 

expression was induced by adding 1mM IPTG. Cultures were further grown at three 

different temperatures (16°C, 30°C and 37°C) to optimise protein expression. 

Aliquots were withdrawn at 1, 2, 3 and 5 h post-induction and sample lysates were 

analyzed on SDS-PAGE gel (Fig. 6.3). One observes the presence of a truncated 

product, around 20 kDa in length within the first hour of expression at 37°C (Fig. 6.3 

a), 2 h at 30°C (Fig. 6.3b) and within 3 h at 16°C (Fig. 6.3c).  However, the amount 

of protein produced at 16°C was found to be drastically reduced. Hence it was 

decided to use cultures grown at 30°C for production of mCherry.  

mCherry was purified using Nickel-NTA column (Fig. 6.4) and the His6 tag 

was removed by thrombin cleavage (Fig. 6.5). The smaller truncated products have 

not been reported so far in the literature. However, other groups attempting to purify 

mCherry have also observed these products (personal communication by Dr. N.C. 

Shaner) and are believed to result from protease cleavage of the exposed helix-loop-

helix region in the beta-barrel structure of mCherry. 
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Figure 6.3: SDS-PAGE gels for monitoring mCherry expression at (a) 37°C, (b) 30°C and (c) 
16°C. (10% SDS-PAGE gels were used). Pre: Pre-induced cell lysate. Cell lysates obtained at 
1, 2, 3 and 5 h are in lanes labelled 1, 2, 3 and 5, respectively. Full length mCherry (29.3 
kDa) and truncated mCherry (approximately 20 kDa) are observed. Molecular weight ladder 
(in kDa) is shown on the left.  Performed in collaboration with Dr. Matthew Watson. 
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Figure 6.4: Purification of His6-tagged mCherry. (10% SDS-PAGE gel was used). FT: 
Flowthrough. W1-3: Wash fractions. E1-5: Eluates. FL: Full length His6-tagged mCherry (MW 
29.3 kDa). Truncated product is marked by an arrow. MW ladder (in KDa) is shown on the 
left. 

 

 

Figure 6.5: Thrombin cleavage of mCherry observed after 1h, 3h and overnight (o/n) 
incubation. (15% SDS-PAGE gel was used). Full-length His6-tagged mCherry (His) is 
observed in the first lane (His). The molecular weight ladder is shown on the left. The arrows 
point towards truncated products.  
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Additional protein separation methods like gel-filtration and ion-exchange 

chromatography were carried out to enable the separation of the truncated product 

from the full length protein.  

Gel filtration separates molecules according to differences in size as they pass 

through a gel filtration medium packed in a column. This technique also provides a 

means of determining the molecular weight of a given protein. This is usually done 

by comparing an elution volume parameter, such as Kav of the protein of interest with 

the values obtained for several known calibration standards.  

Kav= Ve-Vo/Vt - Vo 

where Ve = elution volume for the protein 

Vo = column void volume = elution volume for Blue Dextran 2000 

Vt = total bed volume 

The void volume of the column was calculated by taking the elution volume 

of blue dextran (Fig. 6.6a). Fig. 6.6b demonstrates the elution curves for the protein 

calibration standards run on the HiLoad 16/60 Superdex 75 gel filtration column. The 

corresponding standard curve is plotted for the Kav values for individual protein 

standards (on the linear scale) against the corresponding molecular weight (on the 

logarithmic scale) (Fig. 6.6c). Fig. 6.6d demonstrates a single elution peak obtained 

for the mCherry protein sample. The estimated molecular weight of this complex is 

found to be approximately 50.1 kDa, which is close to the combined estimated 

weights of 27.1 kDa mCherry and the 20 kDa truncated product. These results 

indicate that the mCherry protein migrates as a tightly associated complex with the 

truncated product and does not resolve as a separate peak. The eluent when 

analyzed on the gel also resulted in two bands corresponding to the full-length 

protein and the truncated product (Fig. 6.6 e). 
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Figure 6.6: Gel-filtration of mCherry protein.  (a) The void volume of the column was 
calculated according to the elution volume of blue dextran. (b and c) The column was 
calibrated using protein standards (BSA, ovalbumin (Ov), lysozyme (Ly) and Ribonuclease 
(Ri) for plotting the standard curve for molecular weight estimation of the mCherry complex. 
(d) mCherry was eluted as a single peak. (e) 10% SDS-PAGE gel was run to analyze the 
eluate. Pre: mCherry before gel filtration. GF: mCherry after gel filtration. Molecular weight 
marker is shown on the left. Top arrow points towards full length mCherry, while the bottom 
arrow points towards the truncated product.                      

 

Since gel filtration failed to separate the full-length mCherry protein and its 

truncated version, ion-exchange chromatography was tried as an alternative option. 

Ion exchange chromatography (IEX) is a form of an adsorption chromatography, 

which separates molecules on the basis of charge. After dialysing mCherry overnight 

in ion-exchange buffer (see Materials and Methods), mCherry was applied on a 

negatively charged MonoQ column. After washing off unbound material, elution was 

carried out by increasing the concentration of NaCl over time. As can be observed 

(Fig. 6.7 a), mCherry elutes as a single peak, along with its truncated version. Eluted 

fractions along with the flow-through were analyzed by SDS-PAGE (Fig. 6.7 b). These 
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results confirm the strong association between full length mCherry and its truncated 

version.  

 

a.                                                          b.   

 

Figure 6.7: Ion-exchange chromatography of mCherry. Thrombin-cleaved mCherry was 
loaded onto MonoQ column. The flow-through was collected. (a) After washing off unbound 
material, mCherry was eluted by an increasing gradient of salt denoted by a rise in the 
conductivity. (b) 10% SDS-PAGE gel was run to analyze the protein fractions. Pre: Sample 
before ion-exchange chromatography. FT:Flow-through. A10-12, B12: Elution fractions. 
Molecular weight ladder is shown on the left. Performed in collaboration with Dr. Matthew 
Watson. 

 

In order to verify the identity of the full length and the major truncated 

product, MALDI (Matrix-assisted laser desorption/ionization) mass fingerprinting of 

the tryptic digests of these proteins was carried out by isolating the protein bands 

from the SDS-PAGE gel (Fig. 6.8 a). The molecular masses of the peptide fragments of 

the full-length protein, match up with the mCherry protein sequence almost 

completely (Fig. 6.8b). There are a few fragments that are not detected as they might 

be too small in size. However, the truncated protein has several bands missing that 

are present in the full-length protein (Fig. 6.8c).  
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a. 

 

b. 

 

Figure 6.8: MALDI mass-fingerprinting analysis of full length and truncated mCherry protein. 
The tryptic digestion results in a series of peptide fragments whose masses are shown for (a) 
full-length mCherry (O2 Band 1) and (b) truncated mCherry (O2 band 2). The peptide 
fragments match up almost entirely with full length mCherry sequence. Peptide sequences 
that are detected are marked in colour, while those residues that are absent are uncoloured. 
(Performed by Protein Analysis Services, Department of Biochemistry).  
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c. 

 

 

Figure 6.8: (Continued) (c) Peptide fragments corresponding to the truncated product (O2 
Band 2). The N-terminal end of mCherry is missing. Matching peptide fragments are colored, 
while unmatched residues are uncolored. (Performed by Protein Analysis Services, 
Department of Biochemistry). 

 

The truncated protein on the other hand lacks the first 59 amino acids at the 

N-terminal end (Fig. 6.8c). The exact position of the truncation cannot be determined 

in this analysis. Edman sequencing might help in determining the cleavage site. From 

the translated protein sequence of thrombin cleaved mCherry, its mass should be 

27134.6Da. However, the observed mass of mCherry by mass spectrometry is 

27113.8+/-1Da which is 20 Da less than expected.  The current MALDI analysis is 

accurate to the level of 1Da, so the difference observed might be real. The 

fluorophore maturation process of mCherry involves the formation of an ‘acylimine’ 

by an oxidation step that results in the loss an H2O2 moiety and an additional proton 

whose approximate mass is in the range of 20 Da (Shu et al., 2006). It is possible that 

these modifications might result in the observed minor differences in the molecular 
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mass of mCherry. Similar differences have also been reported in the DsRed 

fluorophore (Gross et al., 2000). 

 

6.2.2 Expression and purification of ArLEA1A, ArLEA1B, AavLEA1 and 

AavLEA1-FLAG-mCherry 

pET-28a(+) vector containing N-terminally truncated versions of ArLEA1A, ArLEA1B 

(Pouchkina-Stantcheva et al., 2007) and AavLEA1-FLAG-mCherry (see Materials and 

Methods)  were transformed into BL21DE3 E. coli strain for expression of 

recombinant proteins. Similarly, pET-15b vector containing AavLEA1 (Goyal et al., 

2003), was also used to transform BL21DE3 strain for protein expression. Single 

colonies were inoculated in 5 ml of LB. Overnight cultures were subsequently used 

to inoculate 400 ml LB and grown at 30°C, until OD600 0.6. Protein expression was 

then induced with the addition of 1 mM IPTG. Cultures were further grown overnight 

and harvested the next day. The bacteria were pelleted and lysed by sonication at 

4°C. Proteins were subject to purification using the QIAGEN Ni-NTA columns (Fig. 

6.9 a,b,c,d) and subsequent thrombin cleavage (Fig. 6.10 a,b,c,d).  

 
Figure 6.9: Purification of His6-tagged (a) ArLEA1A, (b) ArLEA1B, (c) AavLEA1 and (d) 
AavLEA1-FLAG-mCherry. 10% SDS-PAGE gels were used. FT: Flowthrough, W1-W3: wash 
fractions, WC: wash fractions combined, E1-E3: Elution fractions. 
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Figure 6.10: Thrombin cleavage of (a) ArLEA1A, (b) ArLEA1B, (c) AavLEA1 and (d) AavLEA1-
FLAG-mCherry. 15% SDS-PAGE gels were used. Pre: Pre-thrombin cleavage. Post: Post-
thrombin cleavage. Molecular weight ladder is shown on the left.  

 

6.2.3 Monitoring mCherry absorbance and fluorescence upon drying 

mCherry was subjected to four cycles of drying and the absorbance and fluorescence 

spectra were recorded before and after drying. There is a gradual loss of fluorescence 

and absorbance after one, two and four drying cycles, however for the sake of 

simplicity, data for only before and after four drying cycles is shown. Both spectra are 

observed to be substantially altered, indicating damage to the protein’s fluorophore, 

possibly induced by loss of water molecules (Fig. 6.11a,b). In the absorption 

spectrum, the maximum at 587 nm was found to decrease with the number of drying 

cycles. Moreover, new absorption peaks were identified at 395 and 509 nm after 

drying. The fluorescence emission spectrum also decreased dramatically in intensity 

upon desiccation, consistent with the absorption data. Further, excitation at 395 and 

509 nm did not give rise to appreciable levels of fluorescence, suggesting that the 

properties of the fluorophore had been lost entirely. 

 

 



	
  

	
   119	
  	
  

a. 

                                        

b. 

                                           

                                       

Figure 6.11: (a) Absorbance and (b) fluorescence emission spectra of mCherry, before and 
after four cycles of drying and rehydration. (Data obtained in collaboration with Dr. Matthew 
Watson). 

 

6.2.4 ArLEA1A, ArLEA1B and AavLEA1 partially protect mCherry 

absorbance and fluorescence properties upon desiccation 

In order to test the protective effects of LEA proteins on mCherry spectral properties 

during drying, bdelloid LEA proteins ArLEA1A and ArLEA1B, along with AavLEA1 

from A. avenae, were mixed with mCherry in 5:1 molar ratio. Bovine serum albumin 

(BSA) was used as a control. Up to four drying cycles were performed and the 

changes in mCherry absorbance and fluorescence were recorded. Fig. 6.12a shows 

changes in mCherry absorbance values at a wavelength of 587 nm. As can be 

observed, there is gradual reduction in A587 of mCherry after two and four drying 

cycles in all cases tested. Intriguingly, only AavLEA1 resulted in moderate level of 

protection of mCherry at a 5:1 molar ratio after four cycles of desiccation, with 
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p<0.01 (Fig. 6.12 a). In contrast, ArLEA1A, ArLEA1B and BSA offered very limited 

protection to mCherry, both after two and four drying cycles.  

                             
 

Figure 6.12: LEA proteins provide partial protection to mCherry upon drying. (a) Effect of 
drying on mCherry absorbance at 587nm in the absence or presence of AavLEA1, ArLEA1A, 
ArLEA1B or BSA at molar ratios of 1:5. (b) Effect of drying on mCherry fluorescence emission 
at 615nm in the absence or presence of AavLEA1, ArLEA1A, ArLEA1B or BSA at molar ratios 
of 1:5. Measurements after two and four cycles of drying and rehydration are shown. Data 
were normalised, with the absorbance and fluorescence values of the untreated sample 
represented as 1. All experiments were carried out in triplicate. Error bars indicate +-1SD. 
**:p<0.01. 

 

Fig. 6.12b shows the changes in mCherry fluorescence emission at 615nm after two 

and four cycles of drying. The trends observed in fluorescence measurements after 

two drying cycles are slightly different compared to the changes observed in the 

absorbance values as one observes that ArLEA1B offered the best protection to 

mCherry fluorescence (p<0.01), followed by ArLEA1A, AavLEA1 and BSA in 

decreasing order. However, after four drying cycles no protein was found to 

significantly protect mCherry fluorescence, although AavLEA1 resulted in some 

amount of protection.  

a.	
  

	
  

	
  

	
  

	
  

	
  

b.	
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6.2.5 Fusion to AavLEA1 does not improve protection of mCherry 

against desiccation damage 

If drying mCherry in the presence of AavLEA1 provides some protection of its 

absorbance properties, one might expect that a covalent linkage of the two proteins 

would increase the effective local concentration of AavLEA1 with respect to mCherry 

and afford better protection. Therefore, an AavLEA1-mCherry fusion protein was 

tested for protection of mCherry after four cycles of drying. However, as can be 

observed, this proved to be ineffective, since drying of the fusion protein (Fig. 6.13) 

gave similar results to mCherry alone.  

 

                      

Figure 6.13: Effect of desiccation on mCherry and an AavLEA1-mCherry fusion protein. 
Absorbance at 587 nm was measured before and after four cycles of drying and rehydration. 
Data were normalised, with the absorbance of the untreated sample represented as 1. All 
experiments were carried out in triplicate; error bars indicate  +-1 SD. As can be observed, 
the difference between AavLEA1-mCherry after four cycles of drying is statistically not 
significant (ns). Data was obtained in collaboration with Dr. Matthew Watson. 

 

6.3 Discussion 

Water is crucial for guiding the folding of protein molecules and determining their 

secondary, tertiary and quarternary structures. Moreover, water molecules have also 

been shown to be important in determining the quantum chemistry of fluorophores 

of fluorescent proteins like mCherry (Topol et al., 2011). In this chapter, I have 

analysed the effects of water loss on the absorbance and fluorescence properties of 

mCherry and assessed the functions of LEA proteins in preserving these properties 

upon desiccation.  
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mCherry protein was expressed and purified in E. coli, revealing its unique 

properties that have not been so far discussed in the literature. Firstly, mCherry is 

prone to truncation at the N-terminal end, although the exact position of this 

truncation is currently not determined. It is not known whether this truncation might 

affect mCherry absorbance and fluorescence, however despite the presence of the 

truncated protein, my mCherry preparation exhibits the expected properties. 

Secondly, the estimated mass of mCherry by MALDI mass fingerprinting analysis falls 

short of the theoretical value by 20 Da. The current MALDI analysis is accurate to 1 

Da, so the difference observed might be real.  It is possible that these differences 

might be caused by the fluorophore maturation process of mCherry that involves the 

removal of H2O2 and deprotonation of the -X-Y-G- amino acids into an acylimine 

residue (Shu et al., 2006). This modification delocalises the fluorophore electron 

density over the polypeptide backbone and results in the observed red-shift in the 

excitation and emission spectra of the molecule. Similar differences have also been 

reported in the DsRed fluorophore (Gross et al., 2000). 

Subjecting mCherry to four drying cycles is observed to greatly reduce the 

fluorescence and absorbance of this protein. Loss of water is predicted to affect both 

the structural integrity of the 11-stranded beta-barrel structure of mCherry and its 

internal fluorophore. The beta sheets in the barrel consist of beta strands connected 

laterally by at least two or three hydrogen bonds, forming a twisted, pleated sheet. A 

number of salt bridges and hydrogen bonds are formed in this structure with the aid 

of surrounding water molecules. Moreover, the fluorophore structure of mCherry is 

also found to be dependent on the surrounding hydrogen bonded water network 

(Topol et al., 2011). Hence it is hardly surprising that removal of water molecules 

surrounding mCherry significantly impacts its absorbance and fluorescence 

properties. Moreover this damage is irreversible and does not restore mCherry 

properties upon rehydration. 

Further, I have assessed the effects of LEA proteins in providing some amount 

of protection to mCherry during water loss. LEA proteins ArLEA1A and AavLEA1 have 

been classically proposed to function as molecular shields, whereby they have been 

shown to prevent the inter-molecular interactions between aggregating proteins 
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during desiccation. It is not known whether these proteins offer any intramolecular 

protection to protein structures upon water loss. Drying mCherry in the presence of 

these proteins should help validate this hypothesis. It is observed that mCherry suffers 

marked decrease in absorbance and emission properties after four drying cycles 

regardless of whether other proteins, like ArLEA1A, ArLEA1B, AavLEA1 or the control 

protein BSA, are present or not. Hence these results support the hypothesis that LEA 

proteins mostly act as shields and are quite ineffective in preventing intramolecular 

changes in protein structures caused by water loss.  

However, limited protection of mCherry fluorescence is mediated by ArLEA1B 

after two drying cycles. ArLEA1B has mean Kyte-Doolittle hydrophobicity -0.58 with 

alternating hydrophilic and hydrophobic patches that might allow it to partially 

protect both the hydrophilic and hydrophobic regions of mCherry from denaturation. 

However, after four drying cycles, only AavLEA1 is able to provide very slight 

protection of mCherry fluorescence and absorbance. These results suggest AavLEA1 

might be able to associate loosely with mCherry and partially replace the water 

network surrounding the beta-barrel structure and the fluorophore due to its highly 

hydrophilic nature. It is also possible that it might sequester water molecules, thereby 

reducing water loss. Alternatively it has been proposed that that disordered regions of 

LEA proteins might gain structure on interaction with misfolded client proteins, thus 

allowing the client to partially unfold through an entropy transfer effect, and then 

follow the correct folding pathway leading to its native conformation (Tompa et al., 

2008).  

If AavLEA1 is able to offer moderate protection to mCherry, it can be imagined 

that fusing this protein to mCherry in cis might enable greater protection of mCherry 

during desiccation. However, the data shows that the fusion protein AavLEA1-

mCherry is as sensitive to desiccation damage as mCherry by itself. These results are 

contrary to recent reports that have suggested that the presence of an unstructured 

regions in proteins correlates with desiccation tolerance of proteomes in organisms 

(Krisko et al., 2010). Singh et al. have also shown that covalently linked LEA proteins 

can decrease the potential for aggregation under some circumstances (Singh et al., 

2005). It is possible that a high molar ratio of AavLEA1 might be more desirable to 
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mediate sufficient protection of the mCherry 3D structure than using fusion proteins 

containing AavLEA1 and mCherry in 1:1 ratio. 

Overall, these results provide evidence regarding the importance of water 

molecules in determining the spectral properties of mCherry fluorescent protein, and 

how LEA proteins like ArLEA1A, ArLEA1B and AavLEA1 might provide only very 

limited protection to these properties in the absence of water. Engineering key amino 

acid residues surrounding the mCherry fluorophore might enhance its tolerance to 

desiccation. Adopting principles of the state of disorder and hydrophilicity of LEA 

proteins in fluorescent protein structures might enable the derivation of brighter and 

more photo-stable molecules. Imaging dried biological structures using such 

desiccation-resistant fluorescent proteins might enable better understanding of the 

principles of anhydrobiosis and bio-stability in vivo. 
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Chapter Seven: Conclusions and Future 
Work 

 

Nature demonstrates tremendous flexibility that allows both unicellular and multi-

cellular organisms to thrive in harsh geochemical or physical conditions that might 

seem detrimental to most life forms. The survival of bdelloid rotifers A. ricciae in the 

absence of water is one such fine example of robustness observed in organisms to 

perpetuate in extreme conditions. This phenomenon has been termed anhydrobiosis 

(Giard, 1894) or ‘life without water’. The biochemical and cellular processes that 

form the basis of the adaptive response observed in these animals remain largely 

unknown. Various other anhydrobiotic organisms like brine shrimps (Clegg, 1965, 

1967, 2001; Crowe and Clegg, 1978), nematodes (Erkut et al., 2011; Goyal et al., 

2005a), plants (Quillet and Soulet, 1964) and tardigrades (Westh and Ramlov, 1991) 

have been shown to rely on the presence of non-reducing disaccharides like 

trehalose to protect their tissues in the absence of water. However, the absence of 

these sugars in bdelloids (Tunnacliffe and Lapinski, 2003) has led to the search for 

other factors that might be involved in regulating this phenomenon.  

Recently, the discovery of two late embryogenesis abundant proteins, 

ArLEA1A and ArLEA1B, has raised the possibility that these proteins might play a 

central role during anhydrobiosis in bdelloids (Pouchkina-Stantcheva et al., 2007). 

LEA proteins are a broad family implicated in desiccation tolerance in a variety of 

organisms like plants, insects, worms and bacteria (Tunnacliffe and Wise, 2007). 

ArLEA1A has been shown to prevent aggregation of proteins while ArLEA1B has been 

found to associate with membranes, possibly playing a role in membrane 

stabilisation during anhydrobiosis. However, these functions have been deduced in 

vitro and it is possible that these proteins might play a more multifaceted role in the 

physiological environment of cells. Hence, it was decided to examine the functional 

and structural properties of these proteins in greater detail in this current study.  
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Preliminary findings indicate that bdelloid LEA proteins have evolved as an 

independent evolutionary clade raising the possibility that the functions of these 

proteins might be unique compared to LEA proteins found in other anhydrobiotic 

organisms. Moreover, it is speculated that LEA genes might have been acquired by 

HGT in rotifers from other organisms. It has been recently shown that bdelloid 

rotifers have acquired many foreign genes of bacterial, plant and fungal origin 

through this mechanism (Gladyshev et al., 2008). This genetic transfer is thought to 

be facilitated by membrane disruption and DNA fragmentation and repair occurring 

during anhydrobiosis and is presumably an adaptive response to desiccation in these 

animals. HGT has also been implicated in the acquisition of novel metabolic 

functions in a variety of prokaryotic and eukaryotic species. For example nematodes 

have presumably acquired genes encoding cell wall degrading enzymes from 

bacteria and/or fungi through this mechanism as a key adaptation towards parasitism 

and pathogenicity (Smant, 1998). However, it is hard to be completely confident of 

the occurrence of HGT events, as the topology of a given phylogenetic tree can never 

be 100% accurate (Bapteste et al., 2004; Doyon et al., 2011).  

Moreover, ArLEA1A and ArLEA1B have been shown to demonstrate homology 

with PvLEA1 and ankyrin. These results hint towards their role in vitrification and 

membrane anchorage respectively. Verifying these properties might provide 

additional clues related to their functions during anhydrobiosis.  

The fact that ArLEA1B is predicted to polymerise into a filamentous structure 

lends further support to the hypothesis that it might a play a role in stabilising 

membranes and other integral membrane proteins by forming a supportive 

scaffolding. Structural characterisation of ArLEA1B by NMR or electron microscopy 

might provide additional insights regarding its conformation.  

So far there has been little evidence available regarding the role of LEA 

proteins in interacting with cell signalling molecules. Scansite predicts numerous 

kinase-binding, serine-threonine kinase binding and SH2-interacting motifs in both 

ArLEA1A and ArLEA1B. Verifying these predictions by two-hybrid assays or tandem 

affinity purification followed by mass spectrometry might identify the target signalling 

molecules of ArLEA1A and ArLEA1B during anhydrobiosis. It can be speculated that 
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bdelloids might respond to water loss by triggering various stress response pathways 

and bdelloid LEA proteins might acquire novel functions in collaboration with 

various signalling kinases to protect cells during anhydrobiosis. This possibility 

remains to be tested.  

Current data seems to suggest that bdelloid LEA proteins are present in both 

the hydrated (McGee, 2006) and desiccating animals (Pouchkina-Stantcheva et al., 

2007). One might speculate that these proteins might prepare hydrated animals to 

respond quickly to dehydrating conditions. One cannot rule out the possibility that 

these proteins might acquire special functions upon water-loss. Moreover, the 

observation that these proteins might be truncated to smaller peptides (McGee, 2006) 

suggests that these proteins might be processed to smaller active molecules within 

cells whose functions currently remain unknown. Characterisation of truncated 

peptides by mass spectrometry might elucidate their properties. Recently, several LEA 

proteins have been identified in Arabidopsis seeds as components of the 

phosphoproteome (Irar et al., 2006). Similar analysis of the proteome in bdelloids 

might result in the identification of physiologically relevant post-translational 

modifications in LEA proteins.   

Previously it has been predicted that bdelloid LEA proteins might localise to 

the ER inside cells. Confocal microscopy has enabled the visualisation of these 

proteins within the ER in living cells for the first time. This localisation has been 

shown to be dependent on the N-terminal signal sequences in these proteins. A 

novel function of the putative ER retention signal ATEL in regulating the distribution 

of proteins in both the ER and Golgi compartments has been elucidated. This is in 

contrast with other conventional ER retention signals that normally restrict protein 

distribution in the ER compartments. ATEL has also been shown to regulate the 

secretion of proteins to the cell exterior. These results provide novel insights 

regarding how LEA protein concentration might be modulated in the entire secretory 

system both inside and outside cells, a property that might be crucial to their 

functions in protecting bdelloid tissues during anhydrobiosis.  

The endoplasmic reticulum is the site of synthesis and folding of a large 

fraction of the total proteins present in a cell. Therefore, it can be envisaged that the 
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protein flux through the ER must be carefully monitored for abnormalities including 

the buildup of misfolded proteins during anhydrobiosis. Since ArLEA1A has been 

demonstrated to prevent protein aggregation in vitro (Pouchkina-Stantcheva et al., 

2007), it was hypothesised that it might be able to protect cells from the deleterious 

effects of protein misfolding and aggregation within the mammalian ER. Thus, a cell-

based system consisting of aggregating polyQ proteins in the ER-Golgi compartments 

was devised. However, it was demonstrated that instead of providing protection, 

bdelloid LEA protein overexpression in the mammalian ER reduced cell viability. 

These results alert us to the possibility of heterologous proteins being toxic in 

mammalian cells and hence they should be used with caution for any future 

therapeutic purposes in diseases caused by protein aggregation within the ER like 

neurodegeneration and diabetes (Lin et al., 2008). Alternatively it is possible that this 

effect observed might be solely due to ‘ER overload’ (Ewbank and Pujol, 2010) that 

might disturb ER homeostasis by inhibiting translation of other ER resident proteins. It 

is also possible that mCherry fusions might result in the observed cytotoxicity. 

Optimising expression within this compartment might be an option to observe any 

beneficial effects of these proteins. Previously Chakrabortee et al. have looked at the 

effects of overexpression of cytoplasmic LEA proteins in cells expressing polyQ 

proteins and have found that LEA proteins reduced the number of aggregates 

observed in mammalian cells (Chakrabortee et al., 2007). Moreover these proteins 

have been shown to act as kinetic stabilisers of aggregating polyQ proteins, reducing 

the number of observed aggregates in cells over time (Liu et al., 2011). Although 

these results hint at their possible functions as molecular shields, it is not clear 

whether LEA expression in eukaryotic cells is toxic. It might be also useful to test the 

cytotoxicity of these proteins in mammalian cells. 

The protective ability of bdelloid LEA proteins could also be tested using other 

cell-based systems expressing ER-aggregating proteins like α-crystallin (Gong et al., 

2009), or proinsulin and human growth hormone fused with conditional aggregation 

domain (Rivera et al., 2000). This might enable the development of strategies that 

could stabilise secreted proteins within the ER and enhance ER quality processes 

resulting in production of bioactive proteins like human hormones and antibodies in 

cell expression systems. TMAO or Trimethylamine N-oxide might be one such 
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compound that could be applied to enhance ER quality control since it has been 

shown to alleviate ER stress caused by the aggregation of α-crystallin in the ER by 

increasing the level of chaperone proteins like HSP70 (Gong et al., 2009). Indeed, 

this molecule is also found to slightly improve the viability of cells expressing polyQ 

proteins within the ER. 

Lastly, an elegant experiment involving the use of mCherry whose fluorophore 

structure has been shown to be dependent on the presence of surrounding water 

molecules has shown that bdelloid LEA proteins and AavLEA1 from A. avenae 

species are only able to provide partial protection of its fluorescence and absorbance 

upon drying. These results demonstrate how LEA proteins might be ineffective in 

preserving structures of surrounding protein molecules during anhydrobiosis. 

Bdelloids and other anhydrobiotic organisms might rely on other factors such as 

chaperone proteins to mediate this protection that might be crucial for cell survival. 

Identification of these factors in the desiccation-induced gene set of bdelloids might 

enable the use of such molecules to stabilise therapeutic proteins such as vaccines, 

monoclonal antibodies, anti-coagulation factors and enzymes that are critically 

dependent on their structural integrity for their biological functions. Discovery of 

such stabilising proteins might enable the storage of such therapeutic agents at 

ambient temperatures, enabling their delivery to areas with little access to modern 

storage facilities. 

Hence, although our understanding of ArLEA1A and ArLEA1B functions has 

improved, more investigations regarding their mode of action are warranted. It 

remains to be seen how their expression might be regulated inside cells. Tools like 

RNA interference and gene-knock outs in bdelloids might help us understand LEA 

protein functions in these animals.  Such efforts are currently underway in the 

Tunnacliffe laboratory. Recently, cross-species RNAi has been applied to silence 

genes in anhydrobiotic worms Panagrolaimus superbus using DNA from 

Aphelenchus avenae species since A.avenae was found to be recalcitrant to gene 

silencing due to technical difficulties (Reardon et al., 2010). This resulted in the 

identification of two genes, one novel gene of unknown function and the other 

encoding glutathioine peroxidase which might function as an anti-oxidant during 
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anhydrobiosis. A similar strategy could be applied in bdelloids to identify other 

components of the anhydrobiotic toolkit.  

The rapid pace of development of novel technologies like genomics, 

transcriptomics, proteomics and systems biology should enable the deciphering of 

molecular mechanisms of these proteins in greater detail and result in the 

identification of additional factors involved in the phenomenon of anhydrobiosis. 

The Tunnacliffe laboratory has recently generated both genome and transcriptome 

assemblies (www.bdelloid.org) which are currently being analysed for the presence 

of novel genes and pathways that might play a role during anhydrobiosis in bdelloid 

rotifers. The molecular circuitry of anhydrobiosis is expected to include chaperone 

proteins, proteins that protect cells against DNA damage, signalling kinases and 

molecules that protect cells against reactive oxygen species. Some of these factors 

have indeed been identified by gene-expression profiling of human cells subject to 

desiccation (Huang et al., 2010; Huang and Tunnacliffe, 2005). However, 

understanding the actual interplay between different factors in the cellular 

environment will always remain a challenge due to the lack of sufficient diversity in 

fluorescently coloured proteins. Future expansion of the colour palette of fluorescent 

proteins might result in the better understanding of physiological processes like 

anhydrobiosis inside cells. 
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