
Automatic Model Construction
with Gaussian Processes

David Kristjanson Duvenaud
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Pembroke College June 2014

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
University. This dissertation is the result of my own work and includes nothing which
is the outcome of work done in collaboration, except where specifically indicated in the
text. This dissertation contains less than 60,000 words and has less than 150 figures.

David Kristjanson Duvenaud
June 2014

Acknowledgements

First, I would like to thank my supervisor, Carl Rasmussen, for so much advice and
encouragement. It was wonderful working with someone who has spent many years
thinking deeply about the business of modeling. Carl was patient while I spent the first
few months of my PhD chasing half-baked ideas, and then gently suggested a series of
ideas which actually worked.

I’d also like to thank my advisor, Zoubin Ghahramani, for providing much encour-
agement, support, feedback and advice, and for being an example. I’m also grateful for
Zoubin’s efforts to constantly populate the lab with interesting visitors.

Thanks to Michael Osborne, whose thesis was an inspiration early on, and to Ro-
man Garnett for being a sane third party. Sinead Williamson, Peter Orbanz and John
Cunningham gave me valuable advice when I was still bewildered. Ferenc Huszár and
Dave Knowles made it clear that constantly asking questions was the right way to go.

Tom Dean and Greg Corrado made me feel at home at Google. Philipp Hennig
was a mentor to me during my time in Tübingen, and demonstrated an inspiring level
of effectiveness. Who else finishes their conference papers with entire days to spare?
I’d also like to thank Ryan Adams for hosting me during my visit to Harvard, for our
enjoyable collaborations, and for building such an awesome group. Josh Tenenbaum’s
broad perspective and enthusiasm made the projects we worked on very rewarding. The
time I got to spend with Roger Grosse was mind-expanding – he constantly surprised me
by pointing out basic unsolved questions about decades-old methods, and had extremely
high standards for his own work.

I’d like to thank Andrew McHutchon, Konstantina Palla, Alex Davies, Neil Houlsby,
Koa Heaukulani, Miguel Hernández-Lobato, Yue Wu, Ryan Turner, Roger Frigola, Sae
Franklin, David Lopez-Paz, Mark van der Wilk and Rich Turner for making the lab feel
like a family. I’d like to thank James Lloyd for many endless and enjoyable discussions,
and for keeping a level head even during the depths of deadline death-marches. Christian
Steinruecken showed me that amazing things are hidden all around.

Thanks to Mel for reminding me that I needed to write a thesis, for supporting me

iv

during the final push, and for her love.
My graduate study was supported by the National Sciences and Engineering Research

Council of Canada, the Cambridge Commonwealth Trust, Pembroke College, a grant
from the Engineering and Physical Sciences Research Council, and a grant from Google.

Abstract

This thesis develops a method for automatically constructing, visualizing and describ-
ing a large class of models, useful for forecasting and finding structure in domains such
as time series, geological formations, and physical dynamics. These models, based on
Gaussian processes, can capture many types of statistical structure, such as periodicity,
changepoints, additivity, and symmetries. Such structure can be encoded through ker-
nels, which have historically been hand-chosen by experts. We show how to automate
this task, creating a system that explores an open-ended space of models and reports
the structures discovered.

To automatically construct Gaussian process models, we search over sums and prod-
ucts of kernels, maximizing the approximate marginal likelihood. We show how any
model in this class can be automatically decomposed into qualitatively different parts,
and how each component can be visualized and described through text. We combine
these results into a procedure that, given a dataset, automatically constructs a model
along with a detailed report containing plots and generated text that illustrate the
structure discovered in the data.

The introductory chapters contain a tutorial showing how to express many types of
structure through kernels, and how adding and multiplying different kernels combines
their properties. Examples also show how symmetric kernels can produce priors over
topological manifolds such as cylinders, toruses, and Möbius strips, as well as their
higher-dimensional generalizations.

This thesis also explores several extensions to Gaussian process models. First, build-
ing on existing work that relates Gaussian processes and neural nets, we analyze natural
extensions of these models to deep kernels and deep Gaussian processes. Second, we ex-
amine additive Gaussian processes, showing their relation to the regularization method
of dropout. Third, we combine Gaussian processes with the Dirichlet process to produce
the warped mixture model: a Bayesian clustering model having nonparametric cluster
shapes, and a corresponding latent space in which each cluster has an interpretable
parametric form.

Contents

List of Figures x

List of Tables xii

Notation xiii

1 Introduction 1
1.1 Gaussian process models . 1

1.1.1 Model selection . 3
1.1.2 Prediction . 3
1.1.3 Useful properties of Gaussian processes 4
1.1.4 Limitations of Gaussian processes 5

1.2 Outline and contributions of thesis . 6

2 Expressing Structure with Kernels 8
2.1 Definition . 8
2.2 A few basic kernels . 9
2.3 Combining kernels . 10

2.3.1 Notation . 10
2.3.2 Combining properties through multiplication 11
2.3.3 Building multi-dimensional models 12

2.4 Modeling sums of functions . 13
2.4.1 Modeling noise . 14
2.4.2 Additivity across multiple dimensions 14
2.4.3 Extrapolation through additivity 15
2.4.4 Example: An additive model of concrete strength 16
2.4.5 Posterior variance of additive components 18

2.5 Changepoints . 20

Contents vii

2.5.1 Multiplication by a known function 21
2.6 Feature representation of kernels . 21

2.6.1 Relation to linear regression . 21
2.6.2 Feature-space view of combining kernels 22

2.7 Expressing symmetries and invariances 22
2.7.1 Three recipes for invariant priors 23
2.7.2 Example: Periodicity . 25
2.7.3 Example: Symmetry about zero 25
2.7.4 Example: Translation invariance in images 26

2.8 Generating topological manifolds . 26
2.8.1 Möbius strips . 28

2.9 Kernels on categorical variables . 29
2.10 Multiple outputs . 29
2.11 Building a kernel in practice . 30

3 Automatic Model Construction 31
3.1 Ingredients of an automatic statistician 32
3.2 A language of regression models . 33
3.3 A model search procedure . 34
3.4 A model comparison procedure . 37
3.5 A model description procedure . 37
3.6 Structure discovery in time series . 38

3.6.1 Mauna Loa atmospheric CO2 . 38
3.6.2 Airline passenger counts . 39

3.7 Related work . 40
3.8 Experiments . 44

3.8.1 Interpretability versus accuracy 44
3.8.2 Predictive accuracy on time series 44
3.8.3 Multi-dimensional prediction . 46
3.8.4 Structure recovery on synthetic data 46

3.9 Conclusion . 47

4 Automatic Model Description 48
4.1 Generating descriptions of composite kernels 49

4.1.1 Simplification rules . 49
4.1.2 Describing each part of a product of kernels 50

viii Contents

4.1.3 Combining descriptions into noun phrases 51
4.1.4 Worked example . 53

4.2 Example descriptions . 53
4.2.1 Summarizing 400 years of solar activity 53
4.2.2 Describing changing noise levels 56

4.3 Related work . 57
4.4 Limitations of this approach . 57
4.5 Conclusions . 58

5 Deep Gaussian Processes 59
5.1 Relating deep neural networks to deep GPs 60

5.1.1 Definition of deep GPs . 60
5.1.2 Single-hidden-layer models . 60
5.1.3 Multiple hidden layers . 62
5.1.4 Two network architectures equivalent to deep GPs 63

5.2 Characterizing deep Gaussian process priors 64
5.2.1 One-dimensional asymptotics . 64
5.2.2 Distribution of the Jacobian . 66

5.3 Formalizing a pathology . 67
5.4 Fixing the pathology . 69
5.5 Deep kernels . 75

5.5.1 Infinitely deep kernels . 76
5.5.2 When are deep kernels useful models? 77

5.6 Related work . 77
5.7 Conclusions . 80

6 Additive Gaussian Processes 81
6.1 Different types of multivariate additive structure 82
6.2 Defining additive kernels . 83

6.2.1 Weighting different orders of interaction 83
6.2.2 Efficiently evaluating additive kernels 84

6.3 Additive models allow non-local interactions 86
6.4 Dropout in Gaussian processes . 87

6.4.1 Dropout on infinitely-wide hidden layers has no effect 87
6.4.2 Dropout on inputs gives additive covariance 88

6.5 Related work . 89

Contents ix

6.6 Regression and classification experiments 91
6.6.1 Datasets . 92
6.6.2 Results . 93

6.7 Conclusions . 95

7 Warped Mixture Models 96
7.1 The Gaussian process latent variable model 96
7.2 The infinite warped mixture model . 98
7.3 Inference . 99
7.4 Related work . 100
7.5 Experimental results . 102

7.5.1 Synthetic datasets . 102
7.5.2 Clustering face images . 104
7.5.3 Density estimation . 105
7.5.4 Mixing . 105
7.5.5 Visualization . 106
7.5.6 Clustering performance . 107
7.5.7 Density estimation . 108

7.6 Conclusions . 108
7.7 Future work . 109

8 Discussion 111
8.1 Summary of contributions . 111
8.2 Structured versus unstructured models 112
8.3 Approaches to automating model construction 113
8.4 Conclusion . 114

Appendix A Gaussian Conditionals 115

Appendix B Kernel Definitions 116

Appendix C Search Operators 118

Appendix D Example Automatically Generated Report 120

Appendix E Inference in the Warped Mixture Model 128

References 133

List of Figures

1.1 A one-dimensional Gaussian process posterior 2

2.1 Examples of structures expressible by some basic kernels 9
2.2 Examples of structures expressible by multiplying kernels 11
2.3 A product of squared-exponential kernels across different dimensions . . . 12
2.4 Examples of structures expressible by adding kernels 13
2.5 Additive kernels correspond to additive functions 15
2.6 Extrapolation in functions with additive structure 16
2.7 Decomposition of posterior into interpretable one-dimensional functions . 17
2.8 Visualizing posterior correlations between components 19
2.9 Draws from changepoint priors . 20
2.10 Three ways to introduce symmetry . 24
2.11 Generating 2D manifolds with different topological structures 27
2.12 Generating Möbius strips . 28

3.1 Another set of basic kernels . 33
3.2 A search tree over kernels . 35
3.3 Progression of models as the search depth increases 36
3.4 Decomposition of the Mauna Loa model 39
3.5 Decomposition of airline dataset model 40
3.6 Extrapolation error of all methods on 13 time-series datasets 45

4.1 Solar irradiance dataset . 54
4.2 Automatically-generated description of the solar irradiance data set . . . 54
4.3 A component corresponding to the Maunder minimum 55
4.4 ABCD isolating part of the signal explained by a slowly-varying trend . . 55
4.5 Automatic description of the solar cycle 55
4.6 Short descriptions of the four components of the airline model 56

List of Figures xi

4.7 Describing non-stationary periodicity in the airline data 56
4.8 Describing time-changing variance in the airline dataset 57

5.1 Neural network architectures giving rise to GPs 62
5.2 Neural network architectures giving rise to deep GPs 63
5.3 A one-dimensional draw from a deep GP prior 65
5.4 Desirable properties of representations of manifolds 68
5.5 Distribution of singular values of the Jacobian of a deep GP 69
5.6 Points warped by a draw from a deep GP 70
5.7 Visualization of a feature map drawn from a deep GP 71
5.8 Two different architectures for deep neural networks 72
5.9 A draw from a 1D deep GP prior with each layer connected to the input 72
5.10 Points warped by a draw from an input-connected deep GP 73
5.11 Distribution of singular values of an input-connected deep GP 73
5.12 Feature map of an input-connected deep GP 74
5.13 Infinitely deep kernels . 76

6.1 Isocontours of additive kernels in 3 dimensions 86
6.2 A comparison of different additive model classes 90

7.1 One-dimensional Gaussian process latent variable model 97
7.2 Two-dimensional Gaussian process latent variable model 98
7.3 A draw from the infinite warped mixture model prior 99
7.4 Recovering clusters on synthetic data . 103
7.5 Latent clusters of face images . 104
7.6 Comparing density estimates of the GP-LVM and the iWMM 105
7.7 Visualization of the behavior of a sampler for the iWMM 106
7.8 Comparison of latent coordinate estimates 106

List of Tables

3.1 Common regression models expressible in the kernel language 34
3.2 Kernels chosen on synthetic data . 46

4.1 Descriptions of the effect of each kernel, written as a post-modifier 51
4.2 Noun phrase descriptions of each type of kernel 51

6.1 Relative variance contributed by each order of the additive model 84
6.2 Regression dataset statistics . 92
6.3 Classification dataset statistics . 93
6.4 Comparison of predictive error on regression problems 94
6.5 Comparison of predictive likelihood on regression problems 94
6.6 Comparison of predictive error on classification problems 94
6.7 Comparison of predictive likelihood on classification problems 94

7.1 Datasets used for evaluation of the iWMM 107
7.2 Clustering performance comparison . 107
7.3 Predictive likelihood comparison . 108

Notation

Unbolded x represents a single number, boldface x represents a vector, and capital
boldface X represents a matrix. An individual element of a vector is denoted with a
subscript and without boldface. For example, the ith element of a vector x is xi. A bold
lower-case letter with an index such as xj represents a particular row of matrix X.

Symbol Description

SE
The squared-exponential kernel, also known as the radial-basis
function (RBF) kernel, the Gaussian kernel, or the exponentiated
quadratic.

RQ The rational-quadratic kernel.
Per The periodic kernel.
Lin The linear kernel.
WN The white-noise kernel.
C The constant kernel.

σ
The changepoint kernel, σ(x, x′) = σ(x)σ(x′), where σ(x) is a sig-
moidal function such as the logistic function.

ka + kb Addition of kernels, shorthand for ka(x, x′) + kb(x, x′)
ka × kb Multiplication of kernels, shorthand for ka(x, x′) × kb(x, x′)
k(X, X) The Gram matrix, whose i, jth element is k(xi, xj).
K Shorthand for the Gram matrix k(X, X)
f(X) A vector of function values, whose ith element is given by f(xi).
mod(i, j) The modulo operator, giving the remainder after dividing i by j.
O(·) The big-O asymptotic complexity of an algorithm.
Y:,d the dth column of matrix Y.

Precise definitions of all kernels listed here are given in appendix B.

Chapter 1

Introduction

“All models are wrong, but yours are stupid too.”
@ML_Hipster (2013)

Prediction, extrapolation, and induction are all examples of learning a function from
data. There are many ways to learn functions, but one particularly elegant way is by
probabilistic inference. Probabilistic inference takes a group of hypotheses (a model),
and weights those hypotheses based on how well their predictions match the data. This
approach is appealing for two reasons. First, keeping all hypotheses that match the
data helps to guard against over-fitting. Second, comparing how well a dataset is fit by
different models gives a way of finding which sorts of structure are present in that data.

This thesis focuses on constructing models of functions. Chapter 2 describes how to
model functions having many different types of structure, such as additivity, symmetry,
periodicity, changepoints, or combinations of these, using Gaussian processes (GPs).
Chapters 3 and 4 show how such models can be automatically constructed from data,
and then automatically described. Later chapters explore several extensions of these
models. This short chapter introduces the basic properties of GPs, and provides an
outline of the thesis.

1.1 Gaussian process models

Gaussian processes are a simple and general class of models of functions. To be pre-
cise, a GP is any distribution over functions such that any finite set of function values
f(x1), f(x2), . . . f(xN) have a joint Gaussian distribution (Rasmussen and Williams,
2006, chapter 2). A GP model, before conditioning on data, is completely specified by

2 Introduction

f(x)

f(x)

x x

Figure 1.1: A visual representation of a Gaussian process modeling a one-dimensional
function. Different shades of red correspond to deciles of the predictive density at each
input location. Coloured lines show samples from the process – examples of some of the
hypotheses included in the model. Top left: A GP not conditioned on any datapoints.
Remaining plots: The posterior after conditioning on different amounts of data. All
plots have the same axes.

its mean function,

E [f(x)] = µ(x) (1.1)

and its covariance function, also called the kernel:

Cov [f(x), f(x′)] = k(x, x′) (1.2)

It is common practice to assume that the mean function is simply zero everywhere, since
uncertainty about the mean function can be taken into account by adding an extra term
to the kernel.

After accounting for the mean, the kind of structure that can be captured by a
GP model is entirely determined by its kernel. The kernel determines how the model
generalizes, or extrapolates to new data.

1.1 Gaussian process models 3

There are many possible choices of covariance function, and we can specify a wide
range of models just by specifying the kernel of a GP. For example, linear regression,
splines, and Kalman filters are all examples of GPs with particular kernels. However,
these are just a few familiar examples out of a wide range of possibilities. One of the
main difficulties in using GPs is constructing a kernel which represents the particular
structure present in the data being modelled.

1.1.1 Model selection

The crucial property of GPs that allows us to automatically construct models is that
we can compute the marginal likelihood of a dataset given a particular model, also
known as the evidence (MacKay, 1992). The marginal likelihood allows one to compare
models, balancing between the capacity of a model and its fit to the data (MacKay,
2003; Rasmussen and Ghahramani, 2001). The marginal likelihood under a GP prior of
a set of function values [f(x1), f(x2), . . . f(xN)] := f(X) at locations X is given by:

p(f(X)|X, µ(·), k(·, ·)) = N (f(X)|µ(X), k(X, X)) (1.3)
= (2π)− N

2 × |k(X, X)|− 1
2︸ ︷︷ ︸

controls model capacity

× exp
{

−1
2 (f(X) − µ(X))T k(X, X)−1 (f(X) − µ(X))

}
︸ ︷︷ ︸

encourages fit with data

This multivariate Gaussian density is referred to as the marginal likelihood because it
implicitly integrates (marginalizes) over all possible functions values f(X̄), where X̄ is
the set of all locations where we have not observed the function.

1.1.2 Prediction

We can ask the model which function values are likely to occur at any location, given the
observations seen so far. By the formula for Gaussian conditionals (given in appendix A),

4 Introduction

the predictive distribution of a function value f(x⋆) at a test point x⋆ has the form:

p(f(x⋆)|f(X), X, µ(·), k(·, ·)) = N
(
f(x⋆) | µ(x⋆) + k(x⋆, X)k(X, X)−1 (f(X) − µ(X))︸ ︷︷ ︸

predictive mean follows observations

,

k(x⋆, x⋆) − k(x⋆, X)k(X, X)−1k(X, x⋆)︸ ︷︷ ︸
predictive variance shrinks given more data

)

(1.4)

These expressions may look complex, but only require a few matrix operations to
evaluate.

Sampling a function from a GP is also straightforward: a sample from a GP at a finite
set of locations is just a single sample from a single multivariate Gaussian distribution,
given by equation (1.4). Figure 1.1 shows prior and posterior samples from a GP, as
well as contours of the predictive density.

Our use of probabilities does not mean that we are assuming the function being
learned is stochastic or random in any way; it is simply a consistent method of keeping
track of uncertainty.

1.1.3 Useful properties of Gaussian processes

There are several reasons why GPs in particular are well-suited for building a language
of regression models:

• Analytic inference. Given a kernel function and some observations, the predic-
tive posterior distribution can be computed exactly in closed form. This is a rare
property for nonparametric models to have.

• Expressivity. Through the choice of covariance function, we can express a wide
range of modeling assumptions. Some examples will be shown in chapter 2.

• Integration over hypotheses. The fact that a GP posterior, given a fixed kernel,
lets us integrate exactly over a wide range of hypotheses means that overfitting
is less of an issue than in comparable model classes. For example, compared to
neural networks, relatively few parameters need to be estimated, which lessens the
need for the complex optimization or regularization schemes.

• Model selection. A side benefit of being able to integrate over all hypotheses
is that we can compute the marginal likelihood of the data given a model. This

1.1 Gaussian process models 5

gives us a principled way of comparing different models.

• Closed-form predictive distribution. The predictive distribution of a GP at a
set of test points is simply a multivariate Gaussian distribution. This means that
GPs can easily be composed with other models or decision procedures.

• Easy to analyze. It may seem unsatisfying to restrict ourselves to a limited
model class, as opposed to trying to do inference in the set of all computable
functions. However, simple models can be used as well-understood building blocks
for constructing more interesting models.

For example, consider linear models. Although they form an extremely limited
model class, they are simple, easy to analyze, and easy to incorporate into other
models or procedures. Gaussian processes can be seen as an extension of linear
models which retain these attractive properties (Rasmussen and Williams, 2006,
chapter 2).

1.1.4 Limitations of Gaussian processes

There are several issues which make GPs sometimes difficult to use:

• Slow inference. Computing the matrix inverse in equations (1.3) and (1.4) takes
O(N3) time, making exact inference prohibitively slow for more than a few thou-
sand datapoints. However, this problem can be addressed by approximate inference
schemes (Hensman et al., 2013; Quiñonero-Candela and Rasmussen, 2005; Snelson
and Ghahramani, 2006).

• Light tails of the predictive distribution. The predictive distribution of a
standard GP model is Gaussian. We may sometimes with to use non-Gaussian
predictive likelihoods, for example in order to be robust to outliers, or to perform
classification. Using non-Gaussian likelihoods requires approximate inference. For-
tunately, mature software packages exist (Hensman et al., 2014b; Rasmussen and
Nickisch, 2010; Vanhatalo et al., 2013) which can automatically perform approxi-
mate inference for a wide variety of non-Gaussian likelihoods, and also implement
sparse approximations.

• The need to choose a kernel. The flexibility of GP models raises the question
of which kernel to use for a given problem. Choosing a useful kernel is equivalent
to learning a useful representation of the input. Kernel parameters can be set

6 Introduction

automatically by maximizing the marginal likelihood, but until recently, human
experts were required to choose the parametric form of the kernel. Chapter 3 will
show a way in which kernels can be automatically constructed for a given dataset.

1.2 Outline and contributions of thesis

The main contribution of this thesis is to develop a method to automatically model,
visualize, and describe a variety of statistical structures in data, by searching through
an open-ended language of regression models. This thesis also includes a set of related
results showing how Gaussian processes can be extended or composed with other models.

Chapter 2 is a tutorial showing how to build a wide variety of structured models
of functions by constructing appropriate covariance functions. We will also show how
GPs can produce nonparametric models of manifolds with diverse topological structures,
such as cylinders, toruses and Möbius strips.

Chapter 3 shows how to search over an open-ended language of models, built by
adding and multiplying different kernels. Since we can evaluate each model by the
marginal likelihood, we can automatically construct custom models for each dataset
by a straightforward search procedure. We will show how the nature of GPs allow
the resulting models to be visualized by decomposing them into diverse, interpretable
components, each capturing a different type of structure. Our experiments show that
capturing such high-level structure sometimes allows one to extrapolate beyond the range
of the data.

One benefit of using a compositional model class is that the resulting models are
relatively interpretable. Chapter 4 demonstrates a system which automatically describes
the structure implied by a given kernel on a given dataset, generating reports with graphs
and English-language text describing the resulting model. Combined with the automatic
model search developed in chapter 3, this system represents the beginnings of what could
be called an “automatic statistician”, capable of some aspects of model-building and
explanation currently performed by experts.

Chapter 5 analyzes deep neural network models by characterizing the prior over
functions obtained by composing GP priors to form deep Gaussian processes. We show
that, as the number of layers increase, the amount of information retained about the
original input diminishes to a single degree of freedom. A simple change to the network
architecture fixes this pathology. We relate these models to neural networks, and as a
side effect derive several forms of infinitely deep kernels.

1.2 Outline and contributions of thesis 7

Chapter 6 examines a more limited, but much faster way of discovering structure
using GPs. Specifying a kernel having many different types of structure, we use kernel
parameters to discard whichever types of structure are not found in the current dataset.
The particular model class we examine is called additive Gaussian processes, a model
summing over exponentially-many GPs, each depending on a different subset of the
input variables. We give a polynomial-time inference algorithm for this model, and
relate it to other model classes. For example, additive GPs are shown to have the same
covariance as a GP that uses dropout, a recently developed regularization technique for
neural networks.

Chapter 7 develops a Bayesian clustering model in which the clusters have nonpara-
metric shapes, called the infinite warped mixture model. The density manifolds learned
by this model follow the contours of the data density, and have interpretable, parametric
forms in the latent space. The marginal likelihood lets us infer the effective dimension
and shape of each cluster separately, as well as the number of clusters.

Chapter 2

Expressing Structure with Kernels

This chapter shows how to use kernels to build models of functions with many different
kinds of structure: additivity, symmetry, periodicity, interactions between variables,
and changepoints. We also show several ways to encode group invariants into kernels.
Combining a few simple kernels through addition and multiplication will give us a rich,
open-ended language of models.

The properties of kernels discussed in this chapter are mostly known in the literature.
The original contribution of this chapter is to gather them into a coherent whole and
to offer a tutorial showing the implications of different kernel choices, and some of the
structures which can be obtained by combining them.

2.1 Definition

A kernel (also called a covariance function, kernel function, or covariance kernel), is
a positive-definite function of two inputs x, x′. In this chapter, x and x′ are usually
vectors in a Euclidean space, but kernels can also be defined on graphs, images, discrete
or categorical inputs, or even text.

Gaussian process models use a kernel to define the prior covariance between any two
function values:

Cov [f(x), f(x′)] = k(x, x′) (2.1)

Colloquially, kernels are often said to specify the similarity between two objects. This is
slightly misleading in this context, since what is actually being specified is the similarity
between two values of a function evaluated on each object. The kernel specifies which

2.2 A few basic kernels 9

functions are likely under the GP prior, which in turn determines the generalization
properties of the model.

2.2 A few basic kernels

To begin understanding the types of structures expressible by GPs, we will start by
briefly examining the priors on functions encoded by some commonly used kernels: the
squared-exponential (SE), periodic (Per), and linear (Lin) kernels. These kernels are
defined in figure 2.1.

Kernel name: Squared-exp (SE) Periodic (Per) Linear (Lin)

k(x, x′) = σ2
f exp

(
− (x−x′)2

2ℓ2

)
σ2

f exp
(
− 2

ℓ2 sin2
(
π x−x′

p

))
σ2

f (x − c)(x′ − c)

Plot of k(x, x′):

0 0

0

x − x′ x − x′ x (with x′ = 1)
↓ ↓ ↓

Functions f(x)
sampled from

GP prior:

x x x
Type of structure: local variation repeating structure linear functions

Figure 2.1: Examples of structures expressible by some basic kernels.

Each covariance function corresponds to a different set of assumptions made about
the function we wish to model. For example, using a squared-exp (SE) kernel implies that
the function we are modeling has infinitely many derivatives. There exist many variants
of “local” kernels similar to the SE kernel, each encoding slightly different assumptions
about the smoothness of the function being modeled.

Kernel parameters Each kernel has a number of parameters which specify the precise
shape of the covariance function. These are sometimes referred to as hyper-parameters,
since they can be viewed as specifying a distribution over function parameters, instead of
being parameters which specify a function directly. An example would be the lengthscale

10 Expressing Structure with Kernels

parameter ℓ of the SE kernel, which specifies the width of the kernel and thereby the
smoothness of the functions in the model.

Stationary and Non-stationary The SE and Per kernels are stationary, meaning
that their value only depends on the difference x − x′. This implies that the probability
of observing a particular dataset remains the same even if we move all the x values by
the same amount. In contrast, the linear kernel (Lin) is non-stationary, meaning that
the corresponding GP model will produce different predictions if the data were moved
while the kernel parameters were kept fixed.

2.3 Combining kernels

What if the kind of structure we need is not expressed by any known kernel? For many
types of structure, it is possible to build a “made to order” kernel with the desired
properties. The next few sections of this chapter will explore ways in which kernels can
be combined to create new ones with different properties. This will allow us to include
as much high-level structure as necessary into our models.

2.3.1 Notation

Below, we will focus on two ways of combining kernels: addition and multiplication. We
will often write these operations in shorthand, without arguments:

ka + kb = ka(x, x′) + kb(x, x′) (2.2)
ka × kb = ka(x, x′) × kb(x, x′) (2.3)

All of the basic kernels we considered in section 2.2 are one-dimensional, but kernels
over multi-dimensional inputs can be constructed by adding and multiplying between
kernels on different dimensions. The dimension on which a kernel operates is denoted
by a subscripted integer. For example, SE2 represents an SE kernel over the second
dimension of vector x. To remove clutter, we will usually refer to kernels without
specifying their parameters.

2.3 Combining kernels 11

Lin × Lin SE × Per Lin × SE Lin × Per

0 0

0
0

x (with x′ = 1) x − x′ x (with x′ = 1) x (with x′ = 1)
↓ ↓ ↓ ↓

quadratic functions locally periodic increasing variation growing amplitude

Figure 2.2: Examples of one-dimensional structures expressible by multiplying kernels.
Plots have same meaning as in figure 2.1.

2.3.2 Combining properties through multiplication

Multiplying two positive-definite kernels together always results in another positive-
definite kernel. But what properties do these new kernels have? Figure 2.2 shows some
kernels obtained by multiplying two basic kernels together.

Working with kernels, rather than the parametric form of the function itself, allows
us to express high-level properties of functions that do not necessarily have a simple
parametric form. Here, we discuss a few examples:

• Polynomial Regression. By multiplying together T linear kernels, we obtain a
prior on polynomials of degree T . The first column of figure 2.2 shows a quadratic
kernel.

• Locally Periodic Functions. In univariate data, multiplying a kernel by SE
gives a way of converting global structure to local structure. For example, Per
corresponds to exactly periodic structure, whereas Per×SE corresponds to locally
periodic structure, as shown in the second column of figure 2.2.

• Functions with Growing Amplitude. Multiplying by a linear kernel means
that the marginal standard deviation of the function being modeled grows linearly
away from the location given by kernel parameter c. The third and fourth columns
of figure 2.2 show two examples.

12 Expressing Structure with Kernels

One can multiply any number of kernels together in this way to produce kernels
combining several high-level properties. For example, the kernel SE×Lin×Per specifies
a prior on functions which are locally periodic with linearly growing amplitude. We will
see a real dataset having this kind of structure in chapter 3.

2.3.3 Building multi-dimensional models

A flexible way to model functions having more than one input is to multiply together
kernels defined on each individual input. For example, a product of SE kernels over
different dimensions, each having a different lengthscale parameter, is called the SE-ARD
kernel:

SE-ARD(x, x′) =
D∏

d=1
σ2

d exp
(

−1
2

(xd − x′
d)2

ℓ2
d

)
= σ2

f exp
(

−1
2

D∑
d=1

(xd − x′
d)2

ℓ2
d

)
(2.4)

Figure 2.3 illustrates the SE-ARD kernel in two dimensions.

× = →

SE1(x1, x′
1) SE2(x2, x′

2) SE1×SE2
f(x1, x2) drawn from
GP(0, SE1×SE2)

Figure 2.3: A product of two one-dimensional kernels gives rise to a prior on functions
which depend on both dimensions.

ARD stands for automatic relevance determination, so named because estimating
the lengthscale parameters ℓ1, ℓ2, . . . , ℓD, implicitly determines the “relevance” of each
dimension. Input dimensions with relatively large lengthscales imply relatively little
variation along those dimensions in the function being modeled.

SE-ARD kernels are the default kernel in most applications of GPs. This may be
partly because they have relatively few parameters to estimate, and because those pa-
rameters are relatively interpretable. In addition, there is a theoretical reason to use
them: they are universal kernels (Micchelli et al., 2006), capable of learning any contin-
uous function given enough data, under some conditions.

2.4 Modeling sums of functions 13

However, this flexibility means that they can sometimes be relatively slow to learn,
due to the curse of dimensionality (Bellman, 1956). In general, the more structure we
account for, the less data we need - the blessing of abstraction (Goodman et al., 2011)
counters the curse of dimensionality. Below, we will investigate ways to encode more
structure into kernels.

2.4 Modeling sums of functions

An additive function is one which can be expressed as f(x) = fa(x) + fb(x). Additivity
is a useful modeling assumption in a wide variety of contexts, especially if it allows us
to make strong assumptions about the individual components which make up the sum.
Restricting the flexibility of component functions often aids in building interpretable
models, and sometimes enables extrapolation in high dimensions.

Lin + Per SE + Per SE + Lin SE(long) + SE(short)

0

0

0

0

x (with x′ = 1) x − x′ x (with x′ = 1) x − x′

↓ ↓ ↓ ↓

periodic plus trend periodic plus noise linear plus variation slow & fast variation

Figure 2.4: Examples of one-dimensional structures expressible by adding kernels. Rows
have the same meaning as in figure 2.1. SE(long) denotes a SE kernel whose lengthscale
is long relative to that of SE(short)

It is easy to encode additivity into GP models. Suppose functions fa, fb are drawn
independently from GP priors:

fa ∼ GP(µa, ka) (2.5)
fb ∼ GP(µb, kb) (2.6)

14 Expressing Structure with Kernels

Then the distribution of the sum of those functions is simply another GP:

fa + fb ∼ GP(µa + µb, ka + kb). (2.7)

Kernels ka and kb can be of different types, allowing us to model the data as a sum
of independent functions, each possibly representing a different type of structure. Any
number of components can be summed this way.

2.4.1 Modeling noise

Additive noise can be modeled as an unknown, quickly-varying function added to the
signal. This structure can be incorporated into a GP model by adding a local kernel such
as an SE with a short lengthscale, as in the fourth column of figure 2.4. The limit of the
SE kernel as its lengthscale goes to zero is a “white noise” (WN) kernel. Function values
drawn from a GP with a WN kernel are independent draws from a Gaussian random
variable.

Given a kernel containing both signal and noise components, we may wish to isolate
only the signal components. Section 2.4.5 shows how to decompose a GP posterior into
each of its additive components.

In practice, there may not be a clear distinction between signal and noise. For
example, section 3.6 contains examples of models having long-term, medium-term, and
short-term trends. Which parts we designate as the “signal” sometimes depends on the
task at hand.

2.4.2 Additivity across multiple dimensions

When modeling functions of multiple dimensions, summing kernels can give rise to addi-
tive structure across different dimensions. To be more precise, if the kernels being added
together are each functions of only a subset of input dimensions, then the implied prior
over functions decomposes in the same way. For example,

f(x1, x2) ∼ GP(0, k1(x1, x′
1) + k2(x2, x′

2)) (2.8)

2.4 Modeling sums of functions 15

+ =

k1(x1, x′
1) k2(x2, x′

2) k1(x1, x′
1) + k2(x2, x′

2)

↓ ↓ ↓

+ =

f1(x1) ∼ GP (0, k1) f2(x2) ∼ GP (0, k2) f1(x1) + f2(x2)

Figure 2.5: A sum of two orthogonal one-dimensional kernels. Top row: An additive
kernel is a sum of kernels. Bottom row: A draw from an additive kernel corresponds to
a sum of draws from independent GP priors, each having the corresponding kernel.

is equivalent to the model

f1(x1) ∼ GP(0, k1(x1, x′
1)) (2.9)

f2(x2) ∼ GP(0, k2(x2, x′
2)) (2.10)

f(x1, x2) = f1(x1) + f2(x2) . (2.11)

Figure 2.5 illustrates a decomposition of this form. Note that the product of two
kernels does not have an analogous interpretation as the product of two functions.

2.4.3 Extrapolation through additivity

Additive structure sometimes allows us to make predictions far from the training data.
Figure 2.6 compares the extrapolations made by additive versus product-kernel GP mod-
els, conditioned on data from a sum of two axis-aligned sine functions. The training
points were evaluated in a small, L-shaped area. In this example, the additive model is
able to correctly predict the height of the function at an unseen combinations of inputs.
The product-kernel model is more flexible, and so remains uncertain about the function

16 Expressing Structure with Kernels

GP mean using GP mean using
True function: sum of SE kernels: product of SE kernels:

f(x1, x2) = sin(x1) + sin(x2) k1(x1, x′
1) + k2(x2, x′

2) k1(x1, x′
1)×k2(x2, x′

2)

Figure 2.6: Left: A function with additive structure. Center: A GP with an additive
kernel can extrapolate away from the training data. Right: A GP with a product kernel
allows a different function value for every combination of inputs, and so is uncertain
about function values away from the training data. This causes the predictions to revert
to the mean.

away from the data.
These types of additive models have been well-explored in the statistics literature.

For example, generalized additive models (Hastie and Tibshirani, 1990) have seen wide
adoption. In high dimensions, we can also consider sums of functions of multiple input
dimensions. Chapter 6 considers this model class in more detail.

2.4.4 Example: An additive model of concrete strength

To illustrate how additive kernels give rise to interpretable models, we built an addi-
tive model of the strength of concrete as a function of the amount of seven different
ingredients (cement, slag, fly ash, water, plasticizer, coarse aggregate and fine aggre-
gate), and the age of the concrete (Yeh, 1998). Our simple model is a sum of 8 different
one-dimensional functions, each depending on only one of these quantities:

f(x) = f1(cement) + f2(slag) + f3(fly ash) + f4(water)
+ f5(plasticizer) + f6(coarse) + f7(fine) + f8(age) + noise (2.12)

where noise iid∼ N (0, σ2
n). Each of the functions f1, f2, . . . , f8 was modeled using a GP

with an SE kernel. These eight SE kernels plus a white noise kernel were added together
as in equation (2.8) to form a single GP model whose kernel had 9 additive components.

2.4 Modeling sums of functions 17

After learning the kernel parameters by maximizing the marginal likelihood of the
data, one can visualize the predictive distribution of each component of the model.

st
re

ng
th

cement (kg/m3) slag (kg/m3) fly ash (kg/m3)

st
re

ng
th

water (kg/m3) plasticizer (kg/m3) coarse (kg/m3)

st
re

ng
th

Data

Posterior density

Posterior samples

fine (kg/m3) age (days)
Figure 2.7: The predictive distribution of each one-dimensional function in a multi-
dimensional additive model. Blue crosses indicate the original data projected on to each
dimension, red indicates the marginal posterior density of each function, and colored lines
are samples from the marginal posterior distribution of each one-dimensional function.
The vertical axis is the same for all plots.

Figure 2.7 shows the marginal posterior distribution of each of the eight one-dimensional
functions in the model. The parameters controlling the variance of two of the functions,
f6(coarse) and f7(fine) were set to zero, meaning that the marginal likelihood preferred
a parsimonious model which did not depend on these inputs. This is an example of the
automatic sparsity that arises by maximizing marginal likelihood in GP models, and is
another example of automatic relevance determination (ARD) (Neal, 1995).

The ability to learn kernel parameters in this way is much more difficult when using
non-probabilistic methods such as Support Vector Machines (Cortes and Vapnik, 1995),
for which cross-validation is often the best method to select kernel parameters.

18 Expressing Structure with Kernels

2.4.5 Posterior variance of additive components

Here we derive the posterior variance and covariance of all of the additive components
of a GP. These formulas allow one to make plots such as figure 2.7.

First, we write down the joint prior distribution over two functions drawn indepen-
dently from GP priors, and their sum. We distinguish between f(X) (the function values
at training locations [x1, x2, . . . , xN]T := X) and f(X⋆) (the function values at some set
of query locations [x⋆

1, x⋆
2, . . . , x⋆

N]T := X⋆).
Formally, if f1 and f2 are a priori independent, and f1 ∼ GP(µ1, k1) and f2 ∼ GP(µ2, k2),

then

f1(X)
f1(X⋆)
f2(X)
f2(X⋆)
f1(X) + f2(X)
f1(X⋆) + f2(X⋆)


∼ N





µ1

µ⋆
1

µ2

µ⋆
2

µ1 + µ2

µ⋆
1 + µ⋆

2


,



K1 K⋆
1 0 0 K1 K⋆

1

K⋆
1

T K⋆⋆
1 0 0 K⋆

1 K⋆⋆
1

0 0 K2 K⋆
2 K2 K⋆

2

0 0 K⋆
2

T K⋆⋆
2 K⋆

2 K⋆⋆
2

K1 K⋆
1

T K2 K⋆
2

T K1 + K2 K⋆
1 + K⋆

2

K⋆
1

T K⋆⋆
1 K⋆

2
T K⋆⋆

2 K⋆
1

T + K⋆
2

T K⋆⋆
1 + K⋆⋆

2




(2.13)

where we represent the Gram matrices, whose i, jth entry is given by k(xi, xj) by

Ki = ki(X, X) (2.14)
K⋆

i = ki(X, X⋆) (2.15)
K⋆⋆

i = ki(X⋆, X⋆) (2.16)

The formula for Gaussian conditionals A.2 can be used to give the conditional distri-
bution of a GP-distributed function conditioned on its sum with another GP-distributed
function:

f1(X⋆)
∣∣∣f1(X) + f2(X) ∼ N

(
µ⋆

1 + K⋆T

1 (K1 + K2)−1
[
f1(X) + f2(X) − µ1 − µ2

]
,

K⋆⋆
1 − K⋆T

1 (K1 + K2)−1K⋆
1

)
(2.17)

These formulas express the model’s posterior uncertainty about the different components
of the signal, integrating over the possible configurations of the other components. To
extend these formulas to a sum of more than two functions, the term K1 +K2 can simply
be replaced by ∑i Ki everywhere.

2.4 Modeling sums of functions 19

cement slag fly ash water plasticizer age
ce

m
en

t
sla

g
fly

as
h

wa
te

r
pl

as
tic

iz
er

ag
e

Correlation

−0.5

0

0.5

1

Figure 2.8: Posterior correlations between the heights of different one-dimensional func-
tions in equation (2.12), whose sum models concrete strength. Red indicates high corre-
lation, teal indicates no correlation, and blue indicates negative correlation. Plots on the
diagonal show posterior correlations between different evaluations of the same function.
Correlations are evaluated over the same input ranges as in figure 2.7. Correlations with
f6(coarse) and f7(fine) are not shown, because their estimated variance was zero.

Posterior covariance of additive components

One can also compute the posterior covariance between the height of any two functions,
conditioned on their sum:

Cov
[
f1(X⋆), f2(X⋆)

∣∣∣f(X)
]

= −K⋆T

1 (K1 + K2)−1K⋆
2 (2.18)

If this quantity is negative, it means that there is ambiguity about which of the two
functions is high or low at that location. For example, figure 2.8 shows the posterior
correlation between all non-zero components of the concrete model. This figure shows

20 Expressing Structure with Kernels

that most of the correlation occurs within components, but there is also negative corre-
lation between the height of f1(cement) and f2(slag).

2.5 Changepoints

An example of how combining kernels can give rise to more structured priors is given by
changepoint kernels, which can express a change between different types of structure.
Changepoints kernels can be defined through addition and multiplication with sigmoidal
functions such as σ(x) = 1/1+exp(−x):

CP(k1, k2)(x, x′) = σ(x)k1(x, x′)σ(x′) + (1 − σ(x))k2(x, x′)(1 − σ(x′)) (2.19)

which can be written in shorthand as

CP(k1, k2) = k1×σ + k2×σ̄ (2.20)

where σ = σ(x)σ(x′) and σ̄ = (1 − σ(x))(1 − σ(x′)).

This compound kernel expresses a change from one kernel to another. The parameters
of the sigmoid determine where, and how rapidly, this change occurs. Figure 2.9 shows
some examples.

CP(SE, Per) CP(SE, Per) CP(SE, SE) CP(Per, Per)

f(x)

x x x x

Figure 2.9: Draws from different priors on using changepoint kernels, constructed by
adding and multiplying together base kernels with sigmoidal functions.

We can also build a model of functions whose structure changes only within some
interval – a change-window – by replacing σ(x) with a product of two sigmoids, one
increasing and one decreasing.

2.6 Feature representation of kernels 21

2.5.1 Multiplication by a known function

More generally, we can model an unknown function that’s been multiplied by any fixed,
known function a(x), by multiplying the kernel by a(x)a(x′). Formally,

f(x) = a(x)g(x), g ∼ GP(0, k(x, x′)) ⇐⇒ f ∼ GP(0, a(x)k(x, x′)a(x′)) .

(2.21)

2.6 Feature representation of kernels

By Mercer’s theorem (Mercer, 1909), any positive-definite kernel can be represented as
the inner product between a fixed set of features, evaluated at x and at x′:

k(x, x′) = h(x)Th(x′) (2.22)

For example, the squared-exponential kernel (SE) on the real line has a representation
in terms of infinitely many radial-basis functions of the form hi(x) ∝ exp(− 1

4ℓ2 (x − ci)2).
More generally, any stationary kernel can be represented by a set of sines and cosines - a
Fourier representation (Bochner, 1959). In general, any particular feature representation
of a kernel is not necessarily unique (Minh et al., 2006).

In some cases, the input to a kernel, x, can even be the implicit infinite-dimensional
feature mapping of another kernel. Composing feature maps in this way leads to deep
kernels, which are explored in section 5.5.

2.6.1 Relation to linear regression

Surprisingly, GP regression is equivalent to Bayesian linear regression on the implicit
features h(x) which give rise to the kernel:

f(x) = wTh(x), w ∼ N (0, I) ⇐⇒ f ∼ GP
(

0, h(x)Th(x)
)

(2.23)

The link between Gaussian processes, linear regression, and neural networks is explored
further in section 5.1.

22 Expressing Structure with Kernels

2.6.2 Feature-space view of combining kernels

We can also view kernel addition and multiplication as a combination of the features of
the original kernels. For example, given two kernels

ka(x, x′) = a(x)Ta(x′) (2.24)
kb(x, x′) = b(x)Tb(x′) (2.25)

their addition has the form:

ka(x, x′) + kb(x, x′) = a(x)Ta(x′) + b(x)Tb(x′) =
 a(x)

b(x)

T  a(x′)
b(x′)

 (2.26)

meaning that the features of ka + kb are the concatenation of the features of each kernel.
We can examine kernel multiplication in a similar way:

ka(x, x′) × kb(x, x′) =
[
a(x)Ta(x′)

]
×
[
b(x)Tb(x′)

]
(2.27)

=
∑

i

ai(x)ai(x′) ×
∑

j

bj(x)bj(x′) (2.28)

=
∑
i,j

[
ai(x)bj(x)

][
ai(x′)bj(x′)

]
(2.29)

In words, the features of ka ×kb are made of up all pairs of the original two sets of
features. For example, the features of the product of two one-dimensional SE kernels
(SE1×SE2) cover the plane with two-dimensional radial-basis functions of the form:

hij(x1, x2) ∝ exp
(

−1
2

(x1 − ci)2

2ℓ2
1

)
exp

(
−1

2
(x2 − cj)2

2ℓ2
2

)
(2.30)

2.7 Expressing symmetries and invariances

When modeling functions, encoding known symmetries can improve predictive accuracy.
This section looks at different ways to encode symmetries into a prior on functions. Many
types of symmetry can be enforced through operations on the kernel.

We will demonstrate the properties of the resulting models by sampling functions
from their priors. By using these functions to define smooth mappings from R2 → R3,
we will show how to build a nonparametric prior on an open-ended family of topological
manifolds, such as cylinders, toruses, and Möbius strips.

2.7 Expressing symmetries and invariances 23

2.7.1 Three recipes for invariant priors

Consider the scenario where we have a finite set of transformations of the input space
{g1, g2, . . .} to which we wish our function to remain invariant:

f(x) = f(g(x)) ∀x ∈ X , ∀g ∈ G (2.31)

As an example, imagine we wish to build a model of functions invariant to swapping
their inputs: f(x1, x2) = f(x2, x1), ∀x1, x2. Being invariant to a set of operations is
equivalent to being invariant to all compositions of those operations, the set of which
forms a group. (Armstrong et al., 1988, chapter 21). In our example, the elements of the
group Gswap containing all operations the functions are invariant to has two elements:

g1([x1, x2]) = [x2, x1] (swap) (2.32)
g2([x1, x2]) = [x1, x2] (identity) (2.33)

How can we construct a prior on functions which respect these symmetries? Gins-
bourger et al. (2012) and Ginsbourger et al. (2013) showed that the only way to construct
a GP prior on functions which respect a set of invariances is to construct a kernel which
respects the same invariances with respect to each of its two inputs:

k(x, x′) = k(g(x), g(x′)), ∀x, x′ ∈ X , ∀g, g′ ∈ G (2.34)

Formally, given a finite group G whose elements are operations to which we wish our
function to remain invariant, and f ∼ GP(0, k(x, x′)), then every f is invariant under
G (up to a modification) if and only if k(·, ·) is argument-wise invariant under G. See
Ginsbourger et al. (2013) for details.

It might not always be clear how to construct a kernel respecting such argument-wise
invariances. Fortunately, there are a few simple ways to do this for any finite group:

1. Sum over the orbit. The orbit of x with respect to a group G is {g(x) : g ∈ G},
the set obtained by applying each element of G to x. Ginsbourger et al. (2012)
and Kondor (2008) suggest enforcing invariances through a double sum over the
orbits of x and x′ with respect to G:

ksum(x, x′) =
∑

g,∈G

∑
g′∈G

k(g(x), g′(x′)) (2.35)

24 Expressing Structure with Kernels

Additive method Projection method Product method

SE(x1, x′
1)×SE(x2, x′

2)
+ SE(x1, x′

2)×SE(x2, x′
1)

SE(min(x1, x2), min(x′
1, x′

2))
×SE(max(x′

1, x′
2), max(x′

1, x′
2))

SE(x1, x′
1)×SE(x2, x′

2)
× SE(x1, x′

2)×SE(x2, x′
1)

Figure 2.10: Functions drawn from three distinct GP priors, each expressing symmetry
about the line x1 = x2 using a different type of construction. All three methods introduce
a different type of nonstationarity.

For the group Gswap, this operation results in the kernel:

kswitch(x, x′) =
∑

g∈Gswap

∑
g′∈Gswap

k(g(x), g′(x′)) (2.36)

= k(x1, x2, x′
1, x′

2) + k(x1, x2, x′
2, x′

1)
+ k(x2, x1, x′

1, x′
2) + k(x2, x1, x′

2, x′
1) (2.37)

For stationary kernels, some pairs of elements in this sum will be identical, and
can be ignored. Figure 2.10(left) shows a draw from a GP prior with a product of
SE kernels symmetrized in this way. This construction has the property that the
marginal variance is doubled near x1 = x2, which may or may not be desirable.

2. Project onto a fundamental domain. Ginsbourger et al. (2013) also explored
the possibility of projecting each datapoint into a fundamental domain of the
group, using a mapping AG:

kproj(x, x′) = k(AG(x), AG(x′)) (2.38)

For example, a fundamental domain of the group Gswap is all {x1, x2 : x1 < x2},
a set which can be mapped to using AGswap(x1, x2) =

[
min(x1, x2), max(x1, x2)

]
.

Constructing a kernel using this method introduces a non-differentiable “seam”
along x1 = x2, as shown in figure 2.10(center).

2.7 Expressing symmetries and invariances 25

3. Multiply over the orbit. Ryan P. Adams (personal communication) suggested
a construction enforcing invariances through a double product over the orbits:

ksum(x, x′) =
∏
g∈G

∏
g′∈G

k(g(x), g′(x′)) (2.39)

This method can sometimes produce GP priors with zero variance in some regions,
as in figure 2.10(right).

There are often many possible ways to achieve a given symmetry, but we must be careful
to do so without compromising other qualities of the model we are constructing. For
example, simply setting k(x, x′) = 0 gives rise to a GP prior which obeys all possible
symmetries, but this is presumably not a model we wish to use.

2.7.2 Example: Periodicity

Periodicity in a one-dimensional function corresponds to the invariance

f(x) = f(x + τ) (2.40)

where τ is the period.
The most popular method for building a periodic kernel is due to MacKay (1998),

who used the projection method in combination with an SE kernel. A fundamental
domain of the symmetry group is a circle, so the kernel

Per(x, x′) = SE (sin(x), sin(x′))×SE (cos(x), cos(x′)) (2.41)

achieves the invariance in equation (2.40). Simple algebra reduces this kernel to the
form given in figure 2.1.

2.7.3 Example: Symmetry about zero

Another example of an easily-enforceable symmetry is symmetry about zero:

f(x) = f(−x). (2.42)

This symmetry can be enforced using the sum over orbits method, by the transform

kreflect(x, x′) = k(x, x′) + k(x, −x′) + k(−x, x′) + k(−x, −x′). (2.43)

26 Expressing Structure with Kernels

2.7.4 Example: Translation invariance in images

Many models of images are invariant to spatial translations (LeCun and Bengio, 1995).
Similarly, many models of sounds are also invariant to translation through time.

Note that this sort of translation invariance is completely distinct from the station-
arity of kernels such as SE or Per. A stationary kernel implies that the prior is invariant
to translations of the entire training and test set. In contrast, here we use translation
invariance to refer to situations where the signal has been discretized, and each pixel
(or the audio equivalent) corresponds to a different input dimension. We are interested
in creating priors on functions that are invariant to swapping pixels in a manner that
corresponds to shifting the signal in some direction:

f

  = f

  (2.44)

For example, in a one-dimensional image or audio signal, translation of an input vector
by i pixels can be defined as

shift(x, i) =
[
xmod(i+1,D), xmod(i+2,D), . . . , xmod(i+D,D)

]T
(2.45)

As above, translation invariance in one dimension can be achieved by a double sum over
the orbit, given an initial translation-sensitive kernel between signals k:

kinvariant (x, x′) =
D∑

i=1

D∑
j=1

k(shift(x, i), shift(x, j)) . (2.46)

The extension to two dimensions, shift(x, i, j), is straightforward, but notationally
cumbersome. Kondor (2008) built a more elaborate kernel between images that was
approximately invariant to both translation and rotation, using the projection method.

2.8 Generating topological manifolds

In this section we give a geometric illustration of the symmetries encoded by different
compositions of kernels. The work presented in this section is based on a collaboration
with David Reshef, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. The
derivation of the Möbius kernel was my original contribution.

Priors on functions obeying invariants can be used to create a prior on topological

2.8 Generating topological manifolds 27

Euclidean (SE1 × SE2) Cylinder (SE1 × Per2) Toroid (Per1 × Per2)

Figure 2.11: Generating 2D manifolds with different topologies. By enforcing that the
functions mapping from R2 to R3 obey certain symmetries, the surfaces created have
corresponding topologies, ignoring self-intersections.

manifolds by using such functions to warp a simply-connected surface into a higher-
dimensional space. For example, one can build a prior on 2-dimensional manifolds
embedded in 3-dimensional space through a prior on mappings from R2 to R3. Such
mappings can be constructed using three independent functions [f1(x), f2(x), f3(x)],
each mapping from R2 to R. Different GP priors on these functions will implicitly give
rise to different priors on warped surfaces. Symmetries in [f1, f2, f3] can connect different
parts of the manifolds, giving rise to non-trivial topologies on the sampled surfaces.

Figure 2.11 shows 2D meshes warped into 3D by functions drawn from GP priors
with various kernels, giving rise to a different topologies. Higher-dimensional analogues
of these shapes can be constructed by increasing the latent dimension and including
corresponding terms in the kernel. For example, an N -dimensional latent space using
kernel Per1×Per2×. . .×PerN will give rise to a prior on manifolds having the topology
of N -dimensional toruses, ignoring self-intersections.

This construction is similar in spirit to the GP latent variable model (GP-LVM) of
Lawrence (2005), which learns a latent embedding of the data into a low-dimensional
space, using a GP prior on the mapping from the latent space to the observed space.

28 Expressing Structure with Kernels

Draw from GP with kernel:
Per(x1, x′

1)×Per(x2, x′
2)

+Per(x1, x′
2)×Per(x2, x′

1)
Möbius strip drawn from

R2 → R3 GP prior
Sudanese Möbius strip

generated parametrically

x2

x1

Figure 2.12: Generating Möbius strips. Left: A function drawn from a GP prior obeying
the symmetries given by equations (2.47) to (2.49). Center: Simply-connected surfaces
mapped from R2 to R3 by functions obeying those symmetries have a topology corre-
sponding to a Möbius strip. Surfaces generated this way do not have the familiar shape
of a flat surface connected to itself with a half-twist. Instead, they tend to look like
Sudanese Möbius strips (Lerner and Asimov, 1984), whose edge has a circular shape.
Right: A Sudanese projection of a Möbius strip. Image adapted from Wikimedia Com-
mons (2005).

2.8.1 Möbius strips

A space having the topology of a Möbius strip can be constructed by enforcing invariance
to the following operations (Reid and Szendrői, 2005, chapter 7):

gp1([x1, x2]) = [x1 + τ, x2] (periodic in x1) (2.47)
gp2([x1, x2]) = [x1, x2 + τ] (periodic in x2) (2.48)
gs([x1, x2]) = [x2, x1] (symmetric about x1 = x2) (2.49)

Section 2.7 already showed how to build GP priors invariant to each of these types of
transformations. We’ll call a kernel which enforces these symmetries a Möbius kernel.
An example of such a kernel is:

k(x1, x2, x′
1, x′

2) = Per(x1, x′
1)×Per(x2, x′

2) + Per(x1, x′
2)×Per(x2, x′

1) (2.50)

Moving along the diagonal x1 = x2 of a function drawn from the corresponding GP prior
is equivalent to moving along the edge of a notional Möbius strip which has had that

2.9 Kernels on categorical variables 29

function mapped on to its surface. Figure 2.12(left) shows an example of a function
drawn from such a prior. Figure 2.12(center) shows an example of a 2D mesh mapped
to 3D by functions drawn from such a prior. This surface doesn’t resemble the typical
representation of a Möbius strip, but instead resembles an embedding known as the
Sudanese Möbius strip (Lerner and Asimov, 1984), shown in figure 2.12(right).

2.9 Kernels on categorical variables

Categorical variables are variables which can take values only from a discrete, unordered
set, such as {blue, green, red}. A simple way to construct a kernel over categorical
variables is to represent that variable by a set of binary variables, using a one-of-k
encoding. For example, if x can take one of four values, x ∈ {A, B, C, D}, then a one-of-k
encoding of x will correspond to four binary inputs, and one-of-k(C) = [0, 0, 1, 0]. Given
a one-of-k encoding, we can place any multi-dimensional kernel on that space, such as
the SE-ARD:

kcategorical(x, x′) = SE-ARD(one-of-k(x), one-of-k(x′)) (2.51)

Short lengthscales on any particular dimension of the SE-ARD kernel indicate that the
function value corresponding to that category is uncorrelated with the others. More
flexible parameterizations are also possible (Pinheiro and Bates, 1996).

2.10 Multiple outputs

Any GP prior can easily be extended to the model multiple outputs: f1(x), f2(x), . . . , fT (x).
This can be done by building a model of a single-output function which has had an ex-
tra input added that denotes the index of the output: fi(x) = f(x, i). This can be
done by extending the original kernel k(x, x′) to have an extra discrete input dimension:
k(x, i, x′, i′).

A simple and flexible construction of such a kernel multiplies the original kernel
k(x, x′) with a categorical kernel on the output index (Bonilla et al., 2007):

k(x, i, x′, i′) = kx(x, x′)×ki(i, i′) (2.52)

30 Expressing Structure with Kernels

2.11 Building a kernel in practice

This chapter outlined ways to choose the parametric form of a kernel in order to express
different sorts of structure. Once the parametric form has been chosen, one still needs to
choose, or integrate over, the kernel parameters. If the kernel relatively few parameters,
these parameters can be estimated by maximum marginal likelihood, using gradient-
based optimizers. The kernel parameters estimated in sections 2.4.3 and 2.4.4 were
optimized using the GPML toolbox (Rasmussen and Nickisch, 2010), available at
http://www.gaussianprocess.org/gpml/code.

A systematic search over kernel parameters is necessary when appropriate parameters
are not known. Similarly, sometimes appropriate kernel structure is hard to guess.
The next chapter will show how to perform an automatic search not just over kernel
parameters, but also over an open-ended space of kernel expressions.

Source code

Source code to produce all figures and examples in this chapter is available at
http://www.github.com/duvenaud/phd-thesis.

http://www.gaussianprocess.org/gpml/code
http://www.github.com/duvenaud/phd-thesis

Chapter 3

Automatic Model Construction

“It would be very nice to have a formal apparatus that gives us some
‘optimal’ way of recognizing unusual phenomena and inventing new classes
of hypotheses that are most likely to contain the true one; but this remains
an art for the creative human mind.”

– E. T. Jaynes (1985)

In chapter 2, we saw that the choice of kernel determines the type of structure that
can be learned by a GP model, and that a wide variety of models could be constructed
by adding and multiplying a few base kernels together. However, we did not answer the
difficult question of which kernel to use for a given problem. Even for experts, choosing
the kernel in GP regression remains something of a black art.

The contribution of this chapter is to show a way to automate the process of building
kernels for GP models. We do this by defining an open-ended space of kernels built by
adding and multiplying together kernels from a fixed set. We then define a procedure
to search over this space to find a kernel which matches the structure in the data.

Searching over such a large, structured model class has two main benefits. First,
this procedure has good predictive accuracy, since it tries out a large number of different
regression models. Second, this procedure can sometimes discover interpretable structure
in datasets. Because GP posteriors can be decomposed (as in section 2.4.4), the resulting
structures can be examined visually. In chapter 4, we also show how to automatically
generate English-language descriptions of the resulting models.

This chapter is based on work done in collaboration with James Robert Lloyd, Roger
Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani. It was published in Duvenaud
et al. (2013) and Lloyd et al. (2014). Myself, James Lloyd and Roger Grosse jointly de-
veloped the idea of searching through a grammar-based language of GP models, inspired

32 Automatic Model Construction

by Grosse et al. (2012), and wrote the first versions of the code together. James Lloyd
ran most of the experiments, and I constructed most of the figures.

3.1 Ingredients of an automatic statistician

Gelman (2013) asks: “How can an artificial intelligence do statistics? . . . It needs not
just an inference engine, but also a way to construct new models and a way to check
models. Currently, those steps are performed by humans, but the AI would have to do
it itself”. This section will discuss the different parts we think are required to build an
artificial intelligence that can do statistics.

1. An open-ended language of models. Many learning algorithms consider all
models in a class of fixed size. For example, graphical model learning algorithms
(Eaton and Murphy, 2007; Friedman and Koller, 2003) search over different con-
nectivity graphs for a given set of nodes. Such methods can be powerful, but
human statisticians are sometimes capable of deriving novel model classes when
required. An automatic search through an open-ended class of models can achieve
some of this flexibility, possibly combining existing structures in novel ways.

2. A search through model space. Every procedure which eventually considers
arbitrarily-complex models must start with relatively simple models before moving
on to more complex ones. Thus any search strategy capable of building arbitrarily
complex models is likely to resemble an iterative model-building procedure. Just
as human researchers iteratively refine their models, search procedures can propose
new candidate models based on the results of previous model fits.

3. A model comparison procedure. Search strategies requires an objective to
optimize. In this work, we use approximate marginal likelihood to compare models,
penalizing complexity using the Bayesian Information Criterion as a heuristic.
More generally, an automatic statistician needs to somehow check the models it has
constructed. Gelman and Shalizi (2012) review the literature on model checking.

4. A model description procedure. Part of the value of statistical models comes
from helping humans to understand a dataset or a phenomenon. Furthermore,
a clear description of the statistical structure found in a dataset helps a user to
notice when the dataset has errors, the wrong question was asked, the model-

3.2 A language of regression models 33

building procedure failed to capture known structure, a relevant piece of data or
constraint is missing, or when a novel statistical structure has been found.

In this chapter, we introduce a system containing simple examples of all the above
ingredients. We call this system the automatic Bayesian covariance discovery (ABCD)
system. The next four sections of this chapter describe the mechanisms we use to
incorporate these four ingredients into a limited example of an artificial intelligence
which does statistics.

3.2 A language of regression models

As shown in chapter 2, one can construct a wide variety of kernel structures by adding
and multiplying a small number of base kernels. We can therefore define a language of
GP regression models simply by specifying a language of kernels.

Kernel name: Rational quadratic (RQ) Cosine (cos) White noise (Lin)

k(x, x′) = σ2
f

(
1 + (x−x′)2

2αℓ2

)−α
σ2

f cos
(
2π (x−x′)

p

)
σ2

fδ(x − x′)

Plot of kernel:

0

0

0

x − x′ x − x′ x − x′

↓ ↓ ↓
Functions f(x)

sampled from
GP prior:

x x x
Type of structure: multiscale variation sinusoidal uncorrelated noise

Figure 3.1: New base kernels introduced in this chapter, and the types of structure
they encode. Other types of kernels can be constructed by adding and multiplying base
kernels together.

Our language of models is specified by a set of base kernels which capture different
properties of functions, and a set of rules which combine kernels to yield other valid
kernels. In this chapter, we will use such base kernels as white noise (WN), constant

34 Automatic Model Construction

(C), linear (Lin), squared-exponential (SE), rational-quadratic (RQ), sigmoidal (σ) and
periodic (Per). We use a form of Per due to James Lloyd (personal communication)
which has its constant component removed, and cos(x − x′) as a special case. Figure 3.1
shows the new kernels introduced in this chapter. For precise definitions of all kernels,
see appendix B.

To specify an open-ended language of structured kernels, we consider the set of all
kernels that can be built by adding and multiplying these base kernels together, which
we write in shorthand by:

k1 + k2 = k1(x, x′) + k2(x, x′) (3.1)
k1 × k2 = k1(x, x′) × k2(x, x′) (3.2)

The space of kernels constructable by adding and multiplying the above set of kernels
contains many existing regression models. Table 3.1 lists some of these, which are
discussed in more detail in section 3.7.

Regression model Kernel structure Example of related work
Linear regression C + Lin + WN
Polynomial regression C + ∏

Lin + WN
Semi-parametric Lin + SE + WN Ruppert et al. (2003)
Multiple kernel learning ∑

SE + WN Gönen and Alpaydın (2011)
Fourier decomposition C + ∑ cos + WN
Trend, cyclical, irregular ∑

SE + ∑
Per + WN Lind et al. (2006)

Sparse spectrum GPs ∑ cos + WN Lázaro-Gredilla et al. (2010)
Spectral mixture ∑

SE×cos + WN Wilson and Adams (2013)
Changepoints e.g. CP(SE, SE) + WN Garnett et al. (2010)
Time-changing variance e.g. SE + Lin×WN
Interpretable + flexible ∑

d SEd + ∏
d SEd Plate (1999)

Additive GPs e.g. ∏d(1 + SEd) Chapter 6

Table 3.1: Existing regression models expressible by sums and products of base kernels.
cos(·, ·) is a special case of our reparametrized Per(·, ·).

3.3 A model search procedure

We explore this open-ended space of regression models using a simple greedy search. At
each stage, we choose the highest scoring kernel, and propose modifying it by applying

3.3 A model search procedure 35

No structure

SE RQ

SE + RQ . . . Per + RQ

SE + Per + RQ . . . SE×(Per + RQ)

.

. . .

. . . Per×RQ

Lin Per

Figure 3.2: An example of a search tree over kernel expressions. Figure 3.3 shows the
corresponding model increasing in sophistication as the kernel expression grows.

an operation to one of its parts, that combines or replaces that part with another base
kernel. The basic operations we can perform on any part k of a kernel are:

Replacement: k → k′

Addition: k → (k + k′)
Multiplication: k → (k × k′)

where k′ is a new base kernel. These operators can generate all possible algebraic
expressions involving addition and multiplication of base kernels. To see this, observe
that if we restricted the addition and multiplication rules to only apply to base kernels,
we would obtain a grammar which generates the set of algebraic expressions.

Figure 3.2 shows an example search tree followed by our algorithm. Figure 3.3 shows
how the resulting model changes as the search is followed. In practice, we also include
extra operators which propose commonly-occurring structures, such as changepoints. A
complete list is contained in appendix C.

Our search operators have rough parallels with strategies used by human researchers
to construct regression models. In particular,

• One can look for structure in the residuals of a model, such as periodicity, and
then extend the model to capture that structure. This corresponds to adding a
new kernel to the existing structure.

36 Automatic Model Construction

Level 1: Level 2: Level 3:
RQ Per + RQ SE×(Per + RQ)

RQ

2000 2005 2010
−20

0

20

40

60

(Per + RQ)

2000 2005 2010
0

10

20

30

40
SE × (Per + RQ)

2000 2005 2010
10

20

30

40

50

Figure 3.3: Posterior mean and variance for different depths of kernel search on the
Mauna Loa dataset, described in section 3.6.1. The dashed line marks the end of the
dataset. Left: First, the function is only modeled as a locally smooth function, and the
extrapolation is poor. Middle: A periodic component is added, and the extrapolation
improves. Right: At depth 3, the kernel can capture most of the relevant structure, and
is able to extrapolate reasonably.

• One can start with structure which is assumed to hold globally, such as linear-
ity, but find that it only holds locally. This corresponds to multiplying a kernel
structure by a local kernel such as SE.

• One can incorporate input dimensions incrementally, analogous to algorithms like
boosting, back-fitting, or forward selection. This corresponds to adding or multi-
plying with kernels on dimensions not yet included in the model.

Hyperparameter initialization

Unfortunately, optimizing the marginal likelihood over parameters is not a convex op-
timization problem, and the space can have many local optima. For example, in data
having periodic structure, integer multiples of the true period (harmonics) are often local
optima. We take advantage of our search procedure to provide reasonable initializations:
all parameters which were part of the previous kernel are initialized to their previous
values. Newly introduced parameters are initialized randomly. In the newly proposed
kernel, all parameters are then optimized using conjugate gradients. This procedure
is not guaranteed to find the global optimum, but it implements the commonly used
heuristic of iteratively modeling residuals.

3.4 A model comparison procedure 37

3.4 A model comparison procedure

Choosing a kernel requires a method for comparing models. We choose marginal likeli-
hood as our criterion, since it balances the fit and complexity of a model (Rasmussen
and Ghahramani, 2001). Conditioned on kernel parameters, the marginal likelihood of
a GP can be computed analytically by equation (1.3). In addition, if one compares GP
models by the maximum likelihood value obtained after optimizing their kernel param-
eters, then all else being equal, the model having more free parameters will be chosen.
This introduces a bias in favor of more complex models.

We could avoid overfitting by integrating the marginal likelihood over all free param-
eters, but this integral is difficult to do in general. Instead, we loosely approximate this
integral using the Bayesian information criterion (BIC) (Schwarz, 1978):

BIC(M) = log p(D | M) − 1
2 |M | log N (3.3)

where p(D|M) is the marginal likelihood of the data evaluated at the optimized kernel
parameters, |M | is the number of kernel parameters, and N is the number of data points.
BIC simply penalizes the marginal likelihood in proportion to how many parameters the
model has. Because BIC is a function of the number of parameters in a model, we did
not count kernel parameters known to not affect the model. For example, when two
kernels are multiplied, one of their output variance parameters becomes redundant, and
can be ignored.

The assumptions made by BIC are clearly inappropriate for the model class being
considered. For instance, BIC assumes that the data are i.i.d. given the model param-
eters, which is not true except under a white noise kernel. Other more sophisticated
approximations are possible, such as Laplace’s approximation. We chose to try BIC first
because of its simplicity, and it performed reasonably well in our experiments.

3.5 A model description procedure

As discussed in chapter 2, a GP whose kernel is a sum of kernels can be viewed as a sum
of functions drawn from different GPs. We can always express any kernel structure as a
sum of products of kernels by distributing all products of sums. For example,

SE×(RQ + Lin) = SE×RQ + SE×Lin . (3.4)

38 Automatic Model Construction

When all kernels in a product apply to the same dimension, we can use the formulas in
section 2.4.5 to visualize the marginal posterior distribution of that component. This
decomposition into additive components provides a method of visualizing GP models
which disentangles the different types of structure in the model.

The following section shows examples of such decomposition plots. In chapter 4, we
will extend this model visualization method to include automatically generated English
text explaining types of structure discovered.

3.6 Structure discovery in time series

To investigate our method’s ability to discover structure, we ran the kernel search on
several time-series. In the following example, the search was run to depth 10, using SE,
RQ, Lin, Per and WN as base kernels.

3.6.1 Mauna Loa atmospheric CO2

First, our method analyzed records of carbon dioxide levels recorded at the Mauna Loa
observatory (Tans and Keeling, accessed January 2012). Since this dataset was analyzed
in detail by Rasmussen and Williams (2006, chapter 5), we can compare the kernel chosen
by our method to a kernel constructed by human experts.

Figure 3.3 shows the posterior mean and variance on this dataset as the search depth
increases. While the data can be smoothly interpolated by a model with only a single
base kernel, the extrapolations improve dramatically as the increased search depth allows
more structure to be included.

Figure 3.4 shows the final model chosen by our method together with its decompo-
sition into additive components. The final model exhibits plausible extrapolation and
interpretable components: a long-term trend, annual periodicity, and medium-term de-
viations. These components have similar structure to the kernel hand-constructed by
Rasmussen and Williams (2006, chapter 5):

SE︸︷︷︸
long-term trend

+ SE×Per︸ ︷︷ ︸
yearly periodic

+ RQ︸︷︷︸
medium-term irregularities

+ SE + WN︸ ︷︷ ︸
short-term noise

(3.5)

We also plot the residuals modeled by a white noise (WN) component, showing that
there is little obvious structure left in the data. More generally, some components capture
slowly-changing structure while others capture quickly-varying structure, but often there

3.6 Structure discovery in time series 39

Complete model: Lin×SE + SE×(Per + RQ) + WN
(Lin × SE + SE × (Per + RQ))

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−40

−20

0

20

40

60

Long-term trend: Lin×SE Yearly periodic: SE×Per
 Lin × SE

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−40

−20

0

20

40

60

SE × Per

1984 1985 1986 1987 1988 1989

−5

0

5

Medium-term deviation: SE×RQ Noise: WN
SE × RQ

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−4

−2

0

2

4

Residuals

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

−0.5

0

0.5

Figure 3.4: First row: The full posterior on the Mauna Loa dataset, after a search of
depth 10. Subsequent rows: The automatic decomposition of the time series. The model
is a sum of long-term, yearly periodic, medium-term components, and residual noise,
respectively. The yearly periodic component has been rescaled for clarity.

is no hard distinction between “signal” components and “noise” components.

3.6.2 Airline passenger counts

Figure 3.5 shows the decomposition produced by applying our method to monthly totals
of international airline passengers (Box et al., 1970). We observe similar components to
those in the Mauna Loa dataset: a long term trend, annual periodicity, and medium-
term deviations. In addition, the composite kernel captures the near-linearity of the
long-term trend, and the linearly growing amplitude of the annual oscillations.

40 Automatic Model Construction

Complete Model: SE×Lin + Per×Lin×SE + Lin×SE + WN×LinFull model posterior with extrapolations

1948 1950 1952 1954 1956 1958 1960 1962 1964
0

200

400

600

800

1000

Long-term trend: SE×Lin Yearly periodic: Per×Lin×SEPosterior of component 1

1948 1950 1952 1954 1956 1958 1960 1962 1964
0

100

200

300

400

500

600

700

800
Posterior of component 2

1948 1950 1952 1954 1956 1958 1960 1962 1964
−200

−100

0

100

200

300

Medium-term deviation: SE Growing noise: WN×LinPosterior of component 3

1948 1950 1952 1954 1956 1958 1960 1962 1964
−30

−20

−10

0

10

20

30

2.3 Component 3 : A smooth function

This component is a smooth function with a typical lengthscale of 8.1 months.

Posterior of component 3

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−40

−30

−20

−10

0

10

20

30

40
Sum of components up to component 3

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
100

200

300

400

500

600

700

Figure 6: Pointwise posterior of component 3 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 3

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−20

−15

−10

−5

0

5

10

15

20

Figure 7: Pointwise posterior of residuals after adding component 3
Figure 3.5: First row: The airline dataset and posterior after a search of depth 10.
Subsequent rows: Additive decomposition of posterior into long-term smooth trend,
yearly variation, and short-term deviations. Due to the linear kernel, the marginal
variance grows over time, making this a heteroskedastic model.

The model search can be run without modification on multi-dimensional datasets (as
in sections 3.8.4 and 6.6), but the resulting structures are more difficult to visualize.

3.7 Related work

Building kernel functions by hand

Rasmussen and Williams (2006, chapter 5) devoted 4 pages to manually constructing

3.7 Related work 41

a composite kernel to model the Mauna Loa dataset. Other examples of papers whose
main contribution is to manually construct and fit a composite GP kernel are Preotiuc-
Pietro and Cohn (2013), Lloyd (2013), and Klenske et al. (2013). These papers show
that experts are capable of constructing kernels, in one or two dimensions, of similar
complexity to the ones shown in this chapter. However, a more systematic search can
consider possibilities that might otherwise be missed. For example, the kernel structure
SE×Per×Lin, while appropriate for the airline dataset, had never been considered by
the authors before it was chosen by the automatic search.

Nonparametric regression in high dimensions

Nonparametric regression methods such as splines, locally-weighted regression, and GP
regression are capable of learning arbitrary smooth functions from data. Unfortunately,
they suffer from the curse of dimensionality: it is sometimes difficult for these models
to generalize well in more than a few dimensions.

Applying nonparametric methods in high-dimensional spaces can require imposing
additional structure on the model. One such structure is additivity. Generalized additive
models (Hastie and Tibshirani, 1990) assume the regression function is a transformed
sum of functions defined on the individual dimensions: E[f(x)] = g−1(∑D

d=1 fd(xd)).
These models have a restricted form, but one which is interpretable and often generalizes
well. Models in our grammar can capture similar structure through sums of base kernels
along different dimensions, although we have not yet tried incorporating a warping
function g(·).

It is possible to extend additive models by adding more flexible interaction terms
between dimensions. Chapter 6 considers GP models whose kernel implicitly sums over
all possible interactions of input variables. Plate (1999) constructs a special case of this
model class, summing an SE kernel along each dimension (for interpretability) plus a
single SE-ARD kernel over all dimensions (for flexibility). Both types of model can be
expressed in our grammar.

A closely related procedure is smoothing-splines ANOVA (Gu, 2002; Wahba, 1990).
This model is a weighted sum of splines along each input dimension, all pairs of dimen-
sions, and possibly higher-dimensional combinations. Because the number of terms to
consider grows exponentially with the number of dimensions included in each term, in
practice, only one- and two-dimensional terms are usually considered.

Semi-parametric regression (e.g. Ruppert et al., 2003) attempts to combine inter-
pretability with flexibility by building a composite model out of an interpretable, para-

42 Automatic Model Construction

metric part (such as linear regression) and a “catch-all” nonparametric part (such as a
GP having an SE kernel). This model class can be represented through kernels such as
SE + Lin.

Kernel learning

There is a large body of work attempting to construct rich kernels through a weighted
sum of base kernels, called multiple kernel learning (MKL) (e.g. Bach et al., 2004; Gönen
and Alpaydın, 2011). These approaches usually have a convex objective function. How-
ever the component kernels, as well as their parameters, must be specified in advance.
We compare to a Bayesian variant of MKL in section 3.8, expressed as a restriction of
our language of kernels.

Salakhutdinov and Hinton (2008) use a deep neural network with unsupervised pre-
training to learn an embedding g(x) onto which a GP with an SE kernel is placed:
Cov [f(x), f(x′)] = k(g(x), g(x′)). This is a flexible approach to kernel learning, but
relies mainly on finding structure in the input density p(x). Instead, we focus on domains
where most of the interesting structure is in f(x).

Sparse spectrum GPs (Lázaro-Gredilla et al., 2010) approximate the spectral density
of a stationary kernel function using sums of Dirac delta functions, which corresponds
to kernels of the form ∑ cos. Similarly, Wilson and Adams (2013) introduced spectral
mixture kernels, which approximate the spectral density using a mixture of Gaussians,
corresponding to kernels of the form ∑

SE × cos. Both groups demonstrated, using
Bochner’s theorem (Bochner, 1959), that these kernels can approximate any stationary
covariance function. Our language of kernels includes both of these kernel classes (see
table 3.1).

Changepoints

There is a wide body of work on changepoint modeling. Adams and MacKay (2007)
developed a Bayesian online changepoint detection method which segments time-series
into independent parts. This approach was extended by Saatçi et al. (2010) to Gaus-
sian process models. Garnett et al. (2010) developed a family of kernels which modeled
changepoints occurring abruptly at a single point. The changepoint kernel (CP) pre-
sented in this work is a straightforward extension to smooth changepoints.

3.7 Related work 43

Equation learning

Todorovski and Džeroski (1997), Washio et al. (1999) and Schmidt and Lipson (2009)
learned parametric forms of functions, specifying time series or relations between quan-
tities. In contrast, ABCD learns a parametric form for the covariance function, allowing
it to model functions which do not have a simple parametric form but still have high-
level structure. An examination of the structure discovered by the automatic equation-
learning software Eureqa (Schmidt and Lipson, accessed February 2013) on the airline
and Mauna Loa datasets can be found in Lloyd et al. (2014).

Structure discovery through grammars

Kemp and Tenenbaum (2008) learned the structural form of graphs that modeled human
similarity judgements. Their grammar on graph structures includes planes, trees, and
cylinders. Some of their discrete graph structures have continuous analogues in our
language of models. For example, SE1×SE2 and SE1×Per2 can be seen as mapping the
data onto a Euclidean surface and a cylinder, respectively. Section 2.8 examined these
structures in more detail.

Diosan et al. (2007) and Bing et al. (2010) learned composite kernels for support
vector machines and relevance vector machines, respectively, using genetic search algo-
rithms to optimize cross-validation error. Similarly, Kronberger and Kommenda (2013)
searched over composite kernels for GPs using genetic programming, optimizing the un-
penalized marginal likelihood. These methods explore similar languages of kernels to
the one explored in this chapter. It is not clear whether the complex genetic searches
used by these methods offer advantages over the straightforward but naïve greedy search
used in this chapter. Our search criterion has the advantages of being both differentiable
with respect to kernel parameters, and of trading off model fit and complexity automat-
ically. These related works also did not explore the automatic model decomposition,
summarization and description made possible by the use of GP models.

Grosse et al. (2012) performed a greedy search over a compositional model class for
unsupervised learning, using a grammar of matrix decomposition models, and a greedy
search procedure based on held-out predictive likelihood. This model class contains
many existing unsupervised models as special cases, and was able to discover diverse
forms of structure, such as co-clustering or sparse latent feature models, automatically
from data. Our framework takes a similar approach, but in a supervised setting.

Similarly, Steinruecken (2014) showed to automatically perform inference in arbitrary

44 Automatic Model Construction

compositions of discrete sequence models. More generally, Dechter et al. (2013) and
Liang et al. (2010) constructed grammars over programs, and automatically searched
the resulting spaces.

3.8 Experiments

3.8.1 Interpretability versus accuracy

BIC trades off model fit and complexity by penalizing the number of parameters in a
kernel expression. This can result in ABCD favoring kernel expressions with nested
products of sums, producing descriptions involving many additive components after
expanding out all terms. While these models typically have good predictive performance,
their large number of components can make them less interpretable. We experimented
with not allowing parentheses during the search, discouraging nested expressions. This
was done by distributing all products immediately after each search operator was applied.
We call this procedure ABCD-interpretability, in contrast to the unrestricted version of
the search, ABCD-accuracy.

3.8.2 Predictive accuracy on time series

We evaluated the performance of the algorithms listed below on 13 real time-series from
various domains from the time series data library (Hyndman, accessed July 2013). The
pre-processed datasets used in our experiments are available at
http://github.com/jamesrobertlloyd/gpss-research/tree/master/data/tsdlr

Algorithms

We compare ABCD to equation learning using Eureqa (Schmidt and Lipson, accessed
February 2013), as well as six other regression algorithms: linear regression, GP regres-
sion with a single SE kernel (squared exponential), a Bayesian variant of multiple kernel
learning (MKL) (e.g. Bach et al., 2004; Gönen and Alpaydın, 2011), changepoint model-
ing (e.g. Fox and Dunson, 2013; Garnett et al., 2010; Saatçi et al., 2010), spectral mixture
kernels (Wilson and Adams, 2013) (spectral kernels), and trend-cyclical-irregular models
(e.g. Lind et al., 2006).

We set Eureqa’s search objective to the default mean-absolute-error. All algorithms
besides Eureqa can be expressed as restrictions of our modeling language (see table 3.1),

http://github.com/jamesrobertlloyd/gpss-research/tree/master/data/tsdlr

3.8 Experiments 45

so we performed inference using the same search and objective function, with appropriate
restrictions to the language.

We restricted our experiments to regression algorithms for comparability; we did not
include models which regress on previous values of times series, such as auto-regressive or
moving-average models (e.g. Box et al., 1970). Constructing a language of autoregressive
time-series models would be an interesting area for future research.

Extrapolation experiments

To test extrapolation, we trained all algorithms on the first 90% of the data, predicted
the remaining 10% and then computed the root mean squared error (RMSE). The
RMSEs were then standardised by dividing by the smallest RMSE for each data set, so
the best performance on each data set has a value of 1.

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

ABCD
accuracy

ABCD
interpretability

Spectral
kernels

Trend, cyclical
irregular

Bayesian
MKL Eureqa Changepoints

Squared
Exponential

Linear
regression

S
ta

nd
ar

di
se

d
R

M
S

E

Figure 3.6: Box plot (showing median and quartiles) of standardised extrapolation RMSE
(best performance = 1) on 13 time-series. Methods are ordered by median.

Figure 3.6 shows the standardised RMSEs across algorithms. ABCD-accuracy usually
outperformed ABCD-interpretability. Both algorithms had lower quartiles than all other
methods.

Overall, the model construction methods having richer languages of models per-
formed better: ABCD outperformed trend-cyclical-irregular, which outperformed Bayesian
MKL, which outperformed squared-exponential. Despite searching over a rich model
class, Eureqa performed relatively poorly. This may be because few datasets are parsi-
moniously explained by a parametric equation, or because of the limited regularization
ability of this procedure.

46 Automatic Model Construction

Not shown on the plot are large outliers for spectral kernels, Eureqa, squared expo-
nential and linear regression with normalized RMSEs of 11, 493, 22 and 29 respectively.

3.8.3 Multi-dimensional prediction

ABCD can be applied to multidimensional regression problems without modification.
An experimental comparison with other methods can be found in section 6.6, where it
has the best performance on every dataset.

3.8.4 Structure recovery on synthetic data

The structure found in the examples above may seem reasonable, but we may wonder to
what extent ABCD is consistent – that is, does it recover all the structure in any given
dataset? It is difficult to tell from predictive accuracy alone if the search procedure is
finding the correct structure, especially in multiple dimensions. To address this question,
we tested our method’s ability to recover known structure on a set of synthetic datasets.

For several composite kernel expressions, we constructed synthetic data by first sam-
pling 300 locations uniformly at random, then sampling function values at those loca-
tions from a GP prior. We then added i.i.d. Gaussian noise to the functions at various
signal-to-noise ratios (SNR).

Table 3.2: Kernels chosen by ABCD on synthetic data generated using known kernel
structures. D denotes the dimension of the function being modeled. SNR indicates the
signal-to-noise ratio. Dashes (–) indicate no structure was found. Each kernel implicitly
has a WN kernel added to it.

True kernel D SNR = 10 SNR = 1 SNR = 0.1
SE + RQ 1 SE SE×Per SE
Lin×Per 1 Lin×Per Lin×Per SE

SE1 + RQ2 2 SE1 + SE2 Lin1 + SE2 Lin1

SE1 + SE2×Per1 + SE3 3 SE1 + SE2×Per1 + SE3 SE2×Per1 + SE3 –
SE1×SE2 4 SE1×SE2 Lin1×SE2 Lin2

SE1×SE2 + SE2×SE3 4 SE1×SE2 + SE2×SE3 SE1 + SE2×SE3 SE1

(SE1 + SE2)×(SE3 + SE4) 4 (SE1 + SE2)× . . . (SE1 + SE2)× . . . –
(SE3×Lin3×Lin1 + SE4) SE3×SE4

Table 3.2 shows the results. For the highest signal-to-noise ratio, ABCD usually

3.9 Conclusion 47

recovers the correct structure. The reported additional linear structure in the last row
can be explained the fact that functions sampled from SE kernels with long length-scales
occasionally have near-linear trends. As the noise increases, our method generally backs
off to simpler structures rather than reporting spurious structure.

Source code

All GP parameter optimization was performed by automated calls to the GPML tool-
box (Rasmussen and Nickisch, 2010). Source code to perform all experiments is available
at http://www.github.com/jamesrobertlloyd/gp-structure-search.

3.9 Conclusion

This chapter presented a system which constructs a model from an open-ended language,
and automatically generates plots decomposing the different types of structure present
in the model.

This was done by introducing a space of kernels defined by sums and products of a
small number of base kernels. The set of models in this space includes many standard
regression models. We proposed a search procedure for this space of kernels, and argued
that this search process parallels the process of model-building by statisticians.

We found that the learned structures enable relatively accurate extrapolation in
time-series datasets. The learned kernels can yield decompositions of a signal into di-
verse and interpretable components, enabling model-checking by humans. We hope that
this procedure has the potential to make powerful statistical model-building techniques
accessible to non-experts.

Some discussion of the limitations of this approach to model-building can be found in
section 4.4, and discussion of this approach relative to other model-building approaches
can be found in section 8.3. The next chapter will show how the model components
found by ABCD can be automatically described using English-language text.

http://www.github.com/jamesrobertlloyd/gp-structure-search

Chapter 4

Automatic Model Description

“Not a wasted word. This has been a main point to my literary thinking
all my life.”

– Hunter S. Thompson

The previous chapter showed how to automatically build structured models by search-
ing through a language of kernels. It also showed how to decompose the resulting models
into the different types of structure present, and how to visually illustrate the type of
structure captured by each component. This chapter shows how automatically describe
the resulting model structures using English text.

The main idea is to describe every part of a given product of kernels as an adjective,
or as a short phrase that modifies the description of a kernel. To see how this could
work, recall that the model decomposition plots of chapter 3 showed that most of the
structure in each component was determined by that component’s kernel. Even across
different datasets, the meanings of individual parts of different kernels are consistent in
some ways. For example, Per indicates repeating structure, and SE indicates smooth
change over time.

This chapter also presents a system that generates reports combining automatically
generated text and plots which highlight interpretable features discovered in a data sets.
A complete example of an automatically-generated report can be found in appendix D.

The work appearing in this chapter was written in collaboration with James Robert
Lloyd, Roger Grosse, Joshua B. Tenenbaum, and Zoubin Ghahramani, and was published
in Lloyd et al. (2014). The procedure translating kernels into adjectives developed out
of discussions between James and myself. James Lloyd wrote the code to automatically
generate reports, and ran all of the experiments. The paper upon which this chapter is
based was written mainly by both James Lloyd and I.

4.1 Generating descriptions of composite kernels 49

4.1 Generating descriptions of composite kernels

There are two main features of our language of GP models that allow description to be
performed automatically. First, any kernel expression in the language can be simplified
into a sum of products. As discussed in section 2.4, a sum of kernels corresponds to a
sum of functions, so each resulting product of kernels can be described separately, as part
of a sum. Second, each kernel in a product modifies the resulting model in a consistent
way. Therefore, one can describe a product of kernels by concatenating descriptions of
the effect of each part of the product. One part of the product needs to be described
using a noun, which is modified by the other parts.

For example, one can describe the product of kernels Per×SE by representing Per
by a noun (“a periodic function”) modified by a phrase representing the effect of the SE
kernel (“whose shape varies smoothly over time”). To simplify the system, we restricted
base kernels to the set {C, Lin, WN, SE, Per, and σ}. Recall that the sigmoidal kernel
σ(x, x′) = σ(x)σ(x′) allows changepoints and change-windows.

4.1.1 Simplification rules

In order to be able to use the same phrase to describe the effect of each base kernel
in different circumstances, our system converts each kernel expression into a standard,
simplified form.

First, our system distributes all products of sums into sums of products. Then, it
applies several simplification rules to the kernel expression:

• Products of two or more SE kernels can be equivalently replaced by a single SE
with different parameters.

• Multiplying the white-noise kernel (WN) by any stationary kernel (C, WN, SE, or
Per) gives another WN kernel.

• Multiplying any kernel by the constant kernel (C) only changes the parameters of
the original kernel, and so can be factored out of any product in which it appears.

After applying these rules, any composite kernel expressible by the grammar can be
written as a sum of terms of the form:

K
∏
m

Lin(m)∏
n

σ(n), (4.1)

50 Automatic Model Description

where K is one of {WN, C, SE,
∏

k Per(k)} or {SE×∏
k Per(k)}, and ∏i k(i) denotes a prod-

uct of kernels, each having different parameters. Superscripts denote different instances
of the same kernel appearing in a product: SE(1) can have different kernel parameters
than SE(2).

4.1.2 Describing each part of a product of kernels

Each kernel in a product modifies the resulting GP model in a consistent way. This
allows one to describe the contribution of each kernel in a product as an adjective, or
more generally as a modifier of a noun.

We now describe how each of the kernels in our grammar modifies a GP model:

• Multiplication by SE removes long range correlations from a model, since SE(x, x′)
decreases monotonically to 0 as |x − x′| increases. This converts any global corre-
lation structure into local correlation only.

• Multiplication by Lin is equivalent to multiplying the function being modeled
by a linear function. If f(x) ∼ GP(0, k), then x×f(x) ∼ GP (0, Lin×k). This
causes the standard deviation of the model to vary linearly, without affecting the
correlation between function values.

• Multiplication by σ is equivalent to multiplying the function being modeled by
a sigmoid, which means that the function goes to zero before or after some point.

• Multiplication by Per removes correlation between all pairs of function values
not close to one period apart, allowing variation within each period, but maintain-
ing correlation between periods.

• Multiplication by any kernel modifies the covariance in the same way as mul-
tiplying by a function drawn from a corresponding GP prior. This follows from
the fact that if f1(x) ∼ GP(0, k1) and f2(x) ∼ GP(0, k2) then

Cov
[
f1(x)f2(x), f1(x′)f2(x′)

]
= k1(x, x′)×k2(x, x′). (4.2)

Put more plainly, a GP whose covariance is a product of kernels has the same
covariance as a product of two functions, each drawn from the corresponding GP
prior. However, the distribution of f1×f2 is not always GP distributed – it can have
third and higher central moments as well. This identity can be used to generate

4.1 Generating descriptions of composite kernels 51

a cumbersome “worst-case” description in cases where a more concise description
of the effect of a kernel is not available. For example, it is used in our system to
describe products of more than one periodic kernel.

Table 4.1 gives the corresponding description of the effect of each type of kernel in a
product, written as a post-modifier.

Kernel Postmodifier phrase
SE whose shape changes smoothly
Per modulated by a periodic function
Lin with linearly varying amplitude∏

k Lin(k) with polynomially varying amplitude∏
k σ(k) which applies until / from [changepoint]

Table 4.1: Descriptions of the effect of each kernel, written as a post-modifier.

Table 4.2 gives the corresponding description of each kernel before it has been mul-
tiplied by any other, written as a noun phrase.

Kernel Noun phrase
WN uncorrelated noise
C constant
SE smooth function
Per periodic function
Lin linear function∏

k Lin(k) {quadratic, cubic, quartic, . . . } function

Table 4.2: Noun phrase descriptions of each type of kernel.

4.1.3 Combining descriptions into noun phrases

In order to build a noun phrase describing a product of kernels, our system chooses one
kernel to act as the head noun, which is then modified by appending descriptions of the
other kernels in the product.

As an example, a kernel of the form Per×Lin×σ could be described as a

Per︸︷︷︸
periodic function

× Lin︸︷︷︸
with linearly varying amplitude

× σ︸︷︷︸
which applies until 1700.

52 Automatic Model Description

where Per was chosen to be the head noun.
In our system, the head noun is chosen according to the following ordering:

Per, WN, SE, C,
∏
m

Lin(m),
∏
n

σ(n) (4.3)

Combining tables 4.1 and 4.2 with ordering 4.3 provides a general method to produce
descriptions of sums and products of these base kernels.

Extensions and refinements

In practice, the system also incorporates a number of other rules which help to make
the descriptions shorter, easier to parse, or clearer:

• The system adds extra adjectives depending on kernel parameters. For example,
an SE with a relatively short lengthscale might be described as “a rapidly-varying
smooth function” as opposed to just “a smooth function”.

• Descriptions can include kernel parameters. For example, the system might write
that a function is “repeating with a period of 7 days”.

• Descriptions can include extra information about the model not contained in the
kernel. For example, based on the posterior distribution over the function’s slope,
the system might write “a linearly increasing function” as opposed to “a linear
function”.

• Some kernels can be described through pre-modifiers. For example, the system
might write “an approximately periodic function” as opposed to “a periodic func-
tion whose shape changes smoothly”.

Ordering additive components

The reports generated by our system attempt to present the most interesting or im-
portant features of a dataset first. As a heuristic, the system orders components by
always adding next the component which most reduces the 10-fold cross-validated mean
absolute error.

4.2 Example descriptions 53

4.1.4 Worked example

This section shows an example of our procedure describing a compound kernel containing
every type of base kernel in our set:

SE×(WN×Lin + CP(C, Per)). (4.4)

The kernel is first converted into a sum of products, and the changepoint is converted
into sigmoidal kernels (recall the definition of changepoint kernels in section 2.5):

SE×WN×Lin + SE×C×σ + SE×Per×σ̄ (4.5)

which is then simplified using the rules in section 4.1.1 to

WN×Lin + SE×σ + SE×Per×σ̄. (4.6)

To describe the first component, (WN × Lin), the head noun description for WN,
“uncorrelated noise”, is concatenated with a modifier for Lin, “with linearly increasing
standard deviation”.

The second component, (SE×σ), is described as “A smooth function with a length-
scale of [lengthscale] [units]”, corresponding to the SE, “which applies until [change-
point]”.

Finally, the third component, (SE × Per × σ̄), is described as “An approximately
periodic function with a period of [period] [units] which applies from [changepoint]”.

4.2 Example descriptions

In this section, we demonstrate the ability of our procedure, ABCD, to write intelligible
descriptions of the structure present in two time series. The examples presented here
describe models produced by the automatic search method presented in chapter 3.

4.2.1 Summarizing 400 years of solar activity

First, we show excerpts from the report automatically generated on annual solar irradi-
ation data from 1610 to 2011. This dataset is shown in figure 4.1.

This time series has two pertinent features: First, a roughly 11-year cycle of solar
activity. Second, a period lasting from 1645 to 1715 having almost no variance. This flat

54 Automatic Model Description

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1650 1700 1750 1800 1850 1900 1950 2000 2050
1360

1360.5

1361

1361.5

1362
Full model posterior with extrapolations

1650 1700 1750 1800 1850 1900 1950 2000 2050
1359.5

1360

1360.5

1361

1361.5

1362

1362.5

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 6 additive components explain 99.7% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.

• A constant. This function applies from 1643 until 1716.

• A smooth function. This function applies until 1643 and from 1716 onwards.

• An approximately periodic function with a period of 10.8 years. This function applies until
1643 and from 1716 onwards.

• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-
wards.

• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise. This function applies from 1643 until 1716.

R2 (%) ∆R2 (%) Residual R2 (%) Cross validated MAE Reduction in MAE (%)
- - - - 1360.65 -
1 0.0 0.0 0.0 0.33 100.0
2 37.4 37.4 37.4 0.23 32.0
3 72.8 35.4 56.6 0.18 21.1
4 92.3 19.4 71.5 0.15 16.8
5 98.1 5.9 75.9 0.15 0.4
6 99.7 1.6 85.6 0.15 0.0
7 100.0 0.3 99.8 0.15 0.0
8 100.0 0.0 100.0 0.15 0.0

Table 1: Summary statistics for cumulative additive fits to the data. The residual coefficient of
determination (R2) values are computed using the residuals from the previous fit as the target values;
this measures how much of the residual variance is explained by each new component. The mean
absolute error (MAE) is calculated using 10 fold cross validation with a contiguous block design;
this measures the ability of the model to interpolate and extrapolate over moderate distances. The
model is fit using the full data and the MAE values are calculated using this model; this double use of
data means that the MAE values cannot be used reliably as an estimate of out-of-sample predictive
performance.

Figure 4.1: Solar irradiance data (Lean et al., 1995).

region is known as to the Maunder minimum, a period in which sunspots were extremely
rare (Lean et al., 1995). The Maunder minimum is an example of the type of structure
that can be captured by change-windows.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1650 1700 1750 1800 1850 1900 1950 2000 2050
1360

1360.5

1361

1361.5

1362
Full model posterior with extrapolations

1650 1700 1750 1800 1850 1900 1950 2000 2050
1359.5

1360

1360.5

1361

1361.5

1362

1362.5

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 6 additive components explain 99.7% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.

• A constant. This function applies from 1643 until 1716.

• A smooth function. This function applies until 1643 and from 1716 onwards.

• An approximately periodic function with a period of 10.8 years. This function applies until
1643 and from 1716 onwards.

• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-
wards.

• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-
tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise. This function applies from 1643 until 1716.

R2 (%) ∆R2 (%) Residual R2 (%) Cross validated MAE Reduction in MAE (%)
- - - - 1360.65 -
1 0.0 0.0 0.0 0.33 100.0
2 37.4 37.4 37.4 0.23 32.0
3 72.8 35.4 56.6 0.18 21.1
4 92.3 19.4 71.5 0.15 16.8
5 98.1 5.9 75.9 0.15 0.4
6 99.7 1.6 85.6 0.15 0.0
7 100.0 0.3 99.8 0.15 0.0
8 100.0 0.0 100.0 0.15 0.0

Table 1: Summary statistics for cumulative additive fits to the data. The residual coefficient of
determination (R2) values are computed using the residuals from the previous fit as the target values;
this measures how much of the residual variance is explained by each new component. The mean
absolute error (MAE) is calculated using 10 fold cross validation with a contiguous block design;
this measures the ability of the model to interpolate and extrapolate over moderate distances. The
model is fit using the full data and the MAE values are calculated using this model; this double use of
data means that the MAE values cannot be used reliably as an estimate of out-of-sample predictive
performance.

Figure 4.2: Automatically generated descriptions of the first four components discovered
by ABCD on the solar irradiance data set. The dataset has been decomposed into diverse
structures having concise descriptions.

The first section of each report generated by ABCD is a summary of the structure
found in the dataset. Figure 4.2 shows natural-language summaries of the top four
components discovered by ABCD on the solar dataset. From these summaries, we can
see that the system has identified the Maunder minimum (second component) and the 11-
year solar cycle (fourth component). These components are visualized and described in
figures 4.3 and 4.5, respectively. The third component, visualized in figure 4.4, captures
the smooth variation over time of the overall level of solar activity.

The complete report generated on this dataset can be found in appendix D. Each
report also contains samples from the model posterior.

4.2 Example descriptions 55
2.2 Component 2 : A constant. This function applies from 1643 until 1716

This component is constant. This component applies from 1643 until 1716.

This component explains 37.4% of the residual variance; this increases the total variance explained
from 0.0% to 37.4%. The addition of this component reduces the cross validated MAE by 31.97%
from 0.33 to 0.23.

Posterior of component 2

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Sum of components up to component 2

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2

1650 1700 1750 1800 1850 1900 1950 2000
−1

−0.5

0

0.5

1

1.5

Figure 5: Pointwise posterior of residuals after adding component 2

2.2 Component 2 : A constant. This function applies from 1643 until 1716

This component is constant. This component applies from 1643 until 1716.

This component explains 37.4% of the residual variance; this increases the total variance explained
from 0.0% to 37.4%. The addition of this component reduces the cross validated MAE by 31.97%
from 0.33 to 0.23.

Posterior of component 2

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Sum of components up to component 2

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2

1650 1700 1750 1800 1850 1900 1950 2000
−1

−0.5

0

0.5

1

1.5

Figure 5: Pointwise posterior of residuals after adding component 2

Figure 4.3: Extract from an automatically-generated report describing the model com-
ponent corresponding to the Maunder minimum.2.3 Component 3 : A smooth function. This function applies until 1643 and from 1716

onwards

This component is a smooth function with a typical lengthscale of 23.1 years. This component
applies until 1643 and from 1716 onwards.

This component explains 56.6% of the residual variance; this increases the total variance explained
from 37.4% to 72.8%. The addition of this component reduces the cross validated MAE by 21.08%
from 0.23 to 0.18.

Posterior of component 3

1650 1700 1750 1800 1850 1900 1950 2000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Sum of components up to component 3

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 6: Pointwise posterior of component 3 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 3

1650 1700 1750 1800 1850 1900 1950 2000
−1

−0.5

0

0.5

1

Figure 7: Pointwise posterior of residuals after adding component 3

2.3 Component 3 : A smooth function. This function applies until 1643 and from 1716
onwards

This component is a smooth function with a typical lengthscale of 23.1 years. This component
applies until 1643 and from 1716 onwards.

This component explains 56.6% of the residual variance; this increases the total variance explained
from 37.4% to 72.8%. The addition of this component reduces the cross validated MAE by 21.08%
from 0.23 to 0.18.

Posterior of component 3

1650 1700 1750 1800 1850 1900 1950 2000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Sum of components up to component 3

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 6: Pointwise posterior of component 3 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 3

1650 1700 1750 1800 1850 1900 1950 2000
−1

−0.5

0

0.5

1

Figure 7: Pointwise posterior of residuals after adding component 3

Figure 4.4: Characterizing the medium-term smoothness of solar activity levels. By
allowing other components to explain the periodicity, noise, and the Maunder minimum,
ABCD can isolate the part of the signal best explained by a slowly-varying trend.2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This

function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Posterior of component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Sum of components up to component 4

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 9: Pointwise posterior of residuals after adding component 4

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This
function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of
this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function
within each period is very smooth and resembles a sinusoid. This component applies until 1643 and
from 1716 onwards.

This component explains 71.5% of the residual variance; this increases the total variance explained
from 72.8% to 92.3%. The addition of this component reduces the cross validated MAE by 16.82%
from 0.18 to 0.15.

Posterior of component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Sum of components up to component 4

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 9: Pointwise posterior of residuals after adding component 4

Figure 4.5: This part of the report isolates and describes the approximately 11-year
sunspot cycle, also noting its disappearance during the Maunder minimum.

56 Automatic Model Description

4.2.2 Describing changing noise levels

Next, we present excerpts of the description generated by our procedure on a model of
international airline passenger counts over time, shown in figure 3.5. High-level descrip-
tions of the four components discovered are shown in figure 4.6.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1950 1952 1954 1956 1958 1960 1962
100

200

300

400

500

600

700
Full model posterior with extrapolations

1950 1952 1954 1956 1958 1960 1962
0

100

200

300

400

500

600

700

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified four additive components in the data. The first 2
additive components explain 98.5% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 3 additive components explain 99.8% of the variation
in the data. After the first 3 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A linearly increasing function.
• An approximately periodic function with a period of 1.0 years and with linearly increasing

amplitude.
• A smooth function.
• Uncorrelated noise with linearly increasing standard deviation.

R2 (%) ∆R2 (%) Residual R2 (%) Cross validated MAE Reduction in MAE (%)
- - - - 280.30 -
1 85.4 85.4 85.4 34.03 87.9
2 98.5 13.2 89.9 12.44 63.4
3 99.8 1.3 85.1 9.10 26.8
4 100.0 0.2 100.0 9.10 0.0

Table 1: Summary statistics for cumulative additive fits to the data. The residual coefficient of
determination (R2) values are computed using the residuals from the previous fit as the target values;
this measures how much of the residual variance is explained by each new component. The mean
absolute error (MAE) is calculated using 10 fold cross validation with a contiguous block design;
this measures the ability of the model to interpolate and extrapolate over moderate distances. The
model is fit using the full data and the MAE values are calculated using this model; this double use of
data means that the MAE values cannot be used reliably as an estimate of out-of-sample predictive
performance.

Model checking statistics are summarised in table 2 in section 4. These statistics have not revealed
any inconsistencies between the model and observed data.

The rest of the document is structured as follows. In section 2 the forms of the additive components
are described and their posterior distributions are displayed. In section 3 the modelling assumptions
of each component are discussed with reference to how this affects the extrapolations made by the
model. Section 4 discusses model checking statistics, with plots showing the form of any detected
discrepancies between the model and observed data.

Figure 4.6: Short descriptions of the four components of a model describing the airline
dataset.

2.2 Component 2 : An approximately periodic function with a period of 1.0 years and with
linearly increasing amplitude

This component is approximately periodic with a period of 1.0 years and varying amplitude. Across
periods the shape of this function varies very smoothly. The amplitude of the function increases
linearly. The shape of this function within each period has a typical lengthscale of 6.0 weeks.

This component explains 89.9% of the residual variance; this increases the total variance explained
from 85.4% to 98.5%. The addition of this component reduces the cross validated MAE by 63.45%
from 34.03 to 12.44.

Posterior of component 2

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−150

−100

−50

0

50

100

150

200
Sum of components up to component 2

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
0

100

200

300

400

500

600

700

Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−50

0

50

Figure 5: Pointwise posterior of residuals after adding component 2

2.2 Component 2 : An approximately periodic function with a period of 1.0 years and with
linearly increasing amplitude

This component is approximately periodic with a period of 1.0 years and varying amplitude. Across
periods the shape of this function varies very smoothly. The amplitude of the function increases
linearly. The shape of this function within each period has a typical lengthscale of 6.0 weeks.

This component explains 89.9% of the residual variance; this increases the total variance explained
from 85.4% to 98.5%. The addition of this component reduces the cross validated MAE by 63.45%
from 34.03 to 12.44.

Posterior of component 2

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−150

−100

−50

0

50

100

150

200
Sum of components up to component 2

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
0

100

200

300

400

500

600

700

Figure 4: Pointwise posterior of component 2 (left) and the posterior of the cumulative sum of
components with data (right)

Residuals after component 2

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−50

0

50

Figure 5: Pointwise posterior of residuals after adding component 2

Figure 4.7: Describing non-stationary periodicity in the airline data.

The second component, shown in figure 4.7, is accurately described as approximately
(SE) periodic (Per) with linearly growing amplitude (Lin).

The description of the fourth component, shown in figure 4.8, expresses the fact that
the scale of the unstructured noise in the model grows linearly with time.

The complete report generated on this dataset can be found in the supplementary
material of Lloyd et al. (2014). Other example reports describing a wide variety of
time-series can be found at http://mlg.eng.cam.ac.uk/lloyd/abcdoutput/

http://mlg.eng.cam.ac.uk/lloyd/abcdoutput/

4.3 Related work 57
2.4 Component 4 : Uncorrelated noise with linearly increasing standard deviation

This component models uncorrelated noise. The standard deviation of the noise increases linearly.

This component explains 100.0% of the residual variance; this increases the total variance explained
from 99.8% to 100.0%. The addition of this component reduces the cross validated MAE by 0.00%
from 9.10 to 9.10. This component explains residual variance but does not improve MAE which
suggests that this component describes very short term patterns, uncorrelated noise or is an artefact
of the model or search procedure.

Posterior of component 4

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−20

−15

−10

−5

0

5

10

15

20
Sum of components up to component 4

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
0

100

200

300

400

500

600

700

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

2.4 Component 4 : Uncorrelated noise with linearly increasing standard deviation

This component models uncorrelated noise. The standard deviation of the noise increases linearly.

This component explains 100.0% of the residual variance; this increases the total variance explained
from 99.8% to 100.0%. The addition of this component reduces the cross validated MAE by 0.00%
from 9.10 to 9.10. This component explains residual variance but does not improve MAE which
suggests that this component describes very short term patterns, uncorrelated noise or is an artefact
of the model or search procedure.

Posterior of component 4

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
−20

−15

−10

−5

0

5

10

15

20
Sum of components up to component 4

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
0

100

200

300

400

500

600

700

Figure 8: Pointwise posterior of component 4 (left) and the posterior of the cumulative sum of
components with data (right)

Figure 4.8: Describing time-changing variance in the airline dataset.

4.3 Related work

To the best of our knowledge, our procedure is the first example of automatic textual
description of a nonparametric statistical model. However, systems with natural lan-
guage output have been developed for automatic video description (Barbu et al., 2012)
and automated theorem proving (Ganesalingam and Gowers, 2013).

Although not a description procedure, Durrande et al. (2013) developed an analytic
method for decomposing GP posteriors into entirely periodic and entirely non-periodic
parts, even when using non-periodic kernels.

4.4 Limitations of this approach

During development, we noted several difficulties with this overall approach:

• Some kernels are hard to describe. For instance, we did not include the RQ
kernel in the text-generation procedure. This was done for several reasons. First,
the RQ kernel can be equivalently expressed as a scale mixture of SE kernels,
making it redundant in principle. Second, it was difficult to think of a clear and
concise description for effect of the hyperparameter that controls the heaviness
of the tails of the RQ kernel. Third, a product of two RQ kernels does not give
another RQ kernel, which raises the question of how to concisely describe products
of RQ kernels.

• Reliance on additivity. Much of the modularity of the description procedure is
due to the additive decomposition. However, additivity is lost under any nonlinear

58 Automatic Model Description

transformation of the output. Such warpings can be learned (Snelson et al., 2004),
but descriptions of transformations of the data may not be as clear to the end user.

• Difficulty of expressing uncertainty. A natural extension to the model search
procedure would be to report a posterior distribution on structures and kernel
parameters, rather than point estimates. Describing uncertainty about the hyper-
parameters of a particular structure may be feasible, but describing even a few
most-probable structures might result in excessively long reports.

Source code

Source code to perform all experiments is available at
http://www.github.com/jamesrobertlloyd/gpss-research.

4.5 Conclusions

This chapter presented a system which automatically generates detailed reports describ-
ing statistical structure captured by a GP model. The properties of GPs and the kernels
being used allow a modular description, avoiding an exponential blowup in the number
of special cases that need to be considered.

Combining this procedure with the model search of chapter 3 gives a system com-
bining all the elements of an automatic statistician listed in section 3.1: an open-ended
language of models, a method to search through model space, a model comparison
procedure, and a model description procedure. Each particular element used in the sys-
tem presented here is merely a proof-of-concept. However, even this simple prototype
demonstrated the ability to discover and describe a variety of patterns in time series.

http://www.github.com/jamesrobertlloyd/gpss-research

Chapter 5

Deep Gaussian Processes

“I asked myself: On any given day, would I rather be wrestling with a
sampler, or proving theorems?”

– Peter Orbanz, personal communication

For modeling high-dimensional functions, a popular alternative to the Gaussian pro-
cess models explored earlier in this thesis are deep neural networks. When training
deep neural networks, choosing appropriate architectures and regularization strategies
is important for good predictive performance. In this chapter, we propose to study this
problem by viewing deep neural networks as priors on functions. By viewing neural
networks this way, one can analyze their properties without reference to any particular
dataset, loss function, or training method.

As a starting point, we will relate neural networks to Gaussian processes, and ex-
amine a class of infinitely-wide, deep neural networks called deep Gaussian processes:
compositions of functions drawn from GP priors. Deep GPs are an attractive model
class to study for several reasons. First, Damianou and Lawrence (2013) showed that
the probabilistic nature of deep GPs guards against overfitting. Second, Hensman et al.
(2014a) showed that stochastic variational inference is possible in deep GPs, allowing
mini-batch training on large datasets. Third, the availability of an approximation to the
marginal likelihood allows one to automatically tune the model architecture without the
need for cross-validation. Finally, deep GPs are attractive from a model-analysis point
of view, because they remove some of the details of finite neural networks.

Our analysis will show that in standard architectures, the representational capacity
of standard deep networks tends to decrease as the number of layers increases, retaining
only a single degree of freedom in the limit. We propose an alternate network architecture

60 Deep Gaussian Processes

that connects the input to each layer that does not suffer from this pathology. We also
examine deep kernels, obtained by composing arbitrarily many fixed feature transforms.

The ideas contained in this chapter were developed through discussions with Oren
Rippel, Ryan Adams and Zoubin Ghahramani, and appear in Duvenaud et al. (2014).

5.1 Relating deep neural networks to deep GPs

This section gives a precise definition of deep GPs, reviews the precise relationship
between neural networks and Gaussian processes, and gives two equivalent ways of con-
structing neural networks which give rise to deep GPs.

5.1.1 Definition of deep GPs

We define a deep GP as a distribution on functions constructed by composing functions
drawn from GP priors. An example of a deep GP is a composition of vector-valued
functions, with each function drawn independently from GP priors:

f (1:L)(x) = f (L)(f (L−1)(. . . f (2)(f (1)(x)) . . .)) (5.1)
with each f

(ℓ)
d

ind∼ GP
(
0, k

(ℓ)
d (x, x′)

)
Multilayer neural networks also implement compositions of vector-valued functions,

one per layer. Therefore, understanding general properties of function compositions
might helps us to gain insight into deep neural networks.

5.1.2 Single-hidden-layer models

First, we relate neural networks to standard “shallow” Gaussian processes, using the
standard neural network architecture known as the multi-layer perceptron (MLP) (Rosen-
blatt, 1962). In the typical definition of an MLP with one hidden layer, the hidden unit
activations are defined as:

h(x) = σ (b + Vx) (5.2)

where h are the hidden unit activations, b is a bias vector, V is a weight matrix and σ

is a one-dimensional nonlinear function, usually a sigmoid, applied element-wise. The

5.1 Relating deep neural networks to deep GPs 61

output vector f(x) is simply a weighted sum of these hidden unit activations:

f(x) = Wσ (b + Vx) = Wh(x) (5.3)

where W is another weight matrix.

Neal (1995, chapter 2) showed that some neural networks with infinitely many hidden
units, one hidden layer, and unknown weights correspond to Gaussian processes. More
precisely, for any model of the form

f(x) = 1
K

wTh(x) = 1
K

K∑
i=1

wihi(x), (5.4)

with fixed1 features [h1(x), . . . , hK(x)]T = h(x) and i.i.d. w’s with zero mean and finite
variance σ2, the central limit theorem implies that as the number of features K grows,
any two function values f(x) and f(x′) have a joint distribution approaching a Gaussian:

lim
K→∞

p

 f(x)
f(x′)

 = N

 0
0

 ,
σ2

K

 ∑K
i=1 hi(x)hi(x) ∑K

i=1 hi(x)hi(x′)∑K
i=1 hi(x′)hi(x) ∑K

i=1 hi(x′)hi(x′)

 (5.5)

A joint Gaussian distribution between any set of function values is the definition of a
Gaussian process.

The result is surprisingly general: it puts no constraints on the features (other than
having uniformly bounded activation), nor does it require that the feature weights w be
Gaussian distributed. An MLP with a finite number of nodes also gives rise to a GP,
but only if the distribution on w is Gaussian.

One can also work backwards to derive a one-layer MLP from any GP: Mercer’s
theorem, discussed in section 2.6, implies that any positive-definite kernel function cor-
responds to an inner product of features: k(x, x′) = h(x)Th(x′).

Thus, in the one-hidden-layer case, the correspondence between MLPs and GPs is
straightforward: the implicit features h(x) of the kernel correspond to hidden units of
an MLP.

1The above derivation gives the same result if the parameters of the hidden units are random, since
in the infinite limit, their distribution on outputs is always the same with probability one. However, to
avoid confusion, we refer to layers with infinitely-many nodes as “fixed”.

62 Deep Gaussian Processes

Neural net corresponding to a GP Net corresponding to a GP with a deep kernel

x1

x2

x3

h1

h2

h∞

f1

f2

f3

...

Inputs
Fixed

Random

x1

x2

x3

h
(1)
1

h
(1)
2

h(1)
∞

h
(2)
1

h
(2)
2

h(2)
∞

f1

f2

f3

Inputs

...

Fixed

...

Fixed
Random

Figure 5.1: Left: GPs can be derived as a one-hidden-layer MLP with infinitely many
fixed hidden units having unknown weights. Right: Multiple layers of fixed hidden units
gives rise to a GP with a deep kernel, but not a deep GP.

5.1.3 Multiple hidden layers

Next, we examine infinitely-wide MLPs having multiple hidden layers. There are several
ways to construct such networks, giving rise to different priors on functions.

In an MLP with multiple hidden layers, activation of the ℓth layer units are given by

h(ℓ)(x) = σ
(
b(ℓ) + V(ℓ)h(ℓ−1)(x)

)
. (5.6)

This architecture is shown on the right of figure 5.1. For example, if we extend the
model given by equation (5.3) to have two layers of feature mappings, the resulting
model becomes

f(x) = 1
K

wTh(2)
(
h(1)(x)

)
. (5.7)

If the features h(1)(x) and h(2)(x) are fixed with only the last-layer weights w un-
known, this model corresponds to a shallow GP with a deep kernel, given by

k(x, x′) =
[
h(2)(h(1)(x))

]T
h(2)(h(1)(x′)) . (5.8)

Deep kernels, explored in section 5.5, imply a fixed representation as opposed to
a prior over representations. Thus, unless we richly parameterize these kernels, their

5.1 Relating deep neural networks to deep GPs 63

A neural net with fixed activation functions corresponding to a 3-layer deep GP

x1

x2

x3

h
(1)
1

h
(1)
2

h(1)
∞

h
(2)
1

h
(2)
2

h(2)
∞

h
(3)
1

h
(3)
2

h(3)
∞

f
(1)
1

f
(1)
2

f
(1)
3

f
(2)
1

f
(2)
2

f
(2)
3

f
(3)
1

f
(3)
2

f
(3)
3

Inputs

x

Fixed

f (1)(x)

Random
Fixed

f (1:2)(x)

Random
Fixed

Random

y

...

A net with nonparametric activation functions corresponding to a 3-layer deep GP

x1

x2

x3

Inputs

x

GP GP

f (1)(x) f (1:2)(x)

GP

y

Figure 5.2: Two equivalent views of deep GPs as neural networks. Top: A neural network
whose every other layer is a weighted sum of an infinite number of fixed hidden units,
whose weights are initially unknown. Bottom: A neural network with a finite number
of hidden units, each with a different unknown non-parametric activation function. The
activation functions are visualized by draws from 2-dimensional GPs, although their
input dimension will actually be the same as the output dimension of the previous layer.

capacity to learn an appropriate representation will be limited in comparison to more
flexible models such as deep neural networks or deep GPs.

5.1.4 Two network architectures equivalent to deep GPs

There are two equivalent neural network architectures that correspond to deep GPs: one
having fixed nonlinearities, and another having GP-distributed nonlinearities.

64 Deep Gaussian Processes

To construct a neural network corresponding to a deep GP using only fixed nonlin-
earities, one can start with the infinitely-wide deep GP shown in figure 5.1(right), and
introduce a finite set of nodes in between each infinitely-wide set of fixed basis functions.
This architecture is shown in the top of figure 5.2. The D(ℓ) nodes f (ℓ)(x) in between
each fixed layer are weighted sums (with random weights) of the fixed hidden units of
the layer below, and the next layer’s hidden units depend only on these D(ℓ) nodes.

This alternating-layer architecture has an interpretation as a series of linear infor-
mation bottlenecks. To see this, substitute equation (5.3) into equation (5.6) to get

h(ℓ)(x) = σ
(
b(ℓ) +

[
V(ℓ)W(ℓ−1)

]
h(ℓ−1)(x)

)
(5.9)

where W(ℓ−1) is the weight matrix connecting h(ℓ−1) to f (ℓ−1). Thus, ignoring the in-
termediate outputs f (ℓ)(x), a deep GP is an infinitely-wide, deep MLP with each pair of
layers connected by random, rank-Dℓ matrices given by V(ℓ)W(ℓ−1).

The second, more direct way to construct a network architecture corresponding to
a deep GP is to integrate out all W(ℓ), and view deep GPs as a neural network with a
finite number of nonparametric, GP-distributed basis functions at each layer, in which
f (1:ℓ)(x) represent the output of the hidden nodes at the ℓth layer. This second view
lets us compare deep GP models to standard neural net architectures more directly.
Figure 5.1(bottom) shows an example of this architecture.

5.2 Characterizing deep Gaussian process priors

This section develops several theoretical results characterizing the behavior of deep GPs
as a function of their depth. Specifically, we show that the size of the derivative of a one-
dimensional deep GP becomes log-normal distributed as the network becomes deeper.
We also show that the Jacobian of a multivariate deep GP is a product of independent
Gaussian matrices having independent entries. These results will allow us to identify a
pathology that emerges in very deep networks in section 5.3.

5.2.1 One-dimensional asymptotics

In this section, we derive the limiting distribution of the derivative of an arbitrarily deep,
one-dimensional GP having a squared-exp kernel:

5.2 Characterizing deep Gaussian process priors 65

1 Layer 2 Layers 5 Layers 10 Layers

f
(1

:ℓ
) (x

)

−4 −2 0 2 4
−2

−1.5

−1

−0.5

0

0.5

1
Layer 1 Compostion

−4 −2 0 2 4
−1.5

−1

−0.5

0
Layer 2 Compostion

−4 −2 0 2 4
−1

−0.5

0

0.5

1

1.5

2
Layer 5 Compostion

−4 −2 0 2 4
0.88

0.89

0.9

0.91

0.92

0.93
Layer 10 Compostion

x x x x

Figure 5.3: A function drawn from a one-dimensional deep GP prior, shown at different
depths. The x-axis is the same for all plots. After a few layers, the functions begin
to be either nearly flat, or quickly-varying, everywhere. This is a consequence of the
distribution on derivatives becoming heavy-tailed. As well, the function values at each
layer tend to cluster around the same few values as the depth increases. This happens
because once the function values in different regions are mapped to the same value in
an intermediate layer, there is no way for them to be mapped to different values in later
layers.

SE(x, x′) = σ2 exp
(

−(x − x′)2

2w2

)
. (5.10)

The parameter σ2 controls the variance of functions drawn from the prior, and the
lengthscale parameter w controls the smoothness. The derivative of a GP with a squared-
exp kernel is point-wise distributed as N (0, σ2/w2). Intuitively, a draw from a GP is likely
to have large derivatives if the kernel has high variance and small lengthscales.

By the chain rule, the derivative of a one-dimensional deep GP is simply a product
of the derivatives of each layer, which are drawn independently by construction. The
distribution of the absolute value of this derivative is a product of half-normals, each
with mean

√
2σ2/πw2. If one chooses kernel parameters such that σ2/w2 = π/2, then the

expected magnitude of the derivative remains constant regardless of the depth.

The distribution of the log of the magnitude of the derivatives has finite moments:

mlog = E
[
log

∣∣∣∣∣∂f(x)
∂x

∣∣∣∣∣
]

= 2 log
(

σ

w

)
− log 2 − γ

vlog = V
[
log

∣∣∣∣∣∂f(x)
∂x

∣∣∣∣∣
]

= π2

4 + log2 2
2 − γ2 − γ log 4 + 2 log

(
σ

w

) [
γ + log 2 − log

(
σ

w

)]
(5.11)

where γ u 0.5772 is Euler’s constant. Since the second moment is finite, by the central
limit theorem, the limiting distribution of the size of the gradient approaches a log-

66 Deep Gaussian Processes

normal as L grows:

log
∣∣∣∣∣∂f (1:L)(x)

∂x

∣∣∣∣∣ = log
L∏

ℓ=1

∣∣∣∣∣∂f (ℓ)(x)
∂x

∣∣∣∣∣ =
L∑

ℓ=1
log

∣∣∣∣∣∂f (ℓ)(x)
∂x

∣∣∣∣∣ L→∞∼ N
(
Lmlog, L2vlog

)
(5.12)

Even if the expected magnitude of the derivative remains constant, the variance of the
log-normal distribution grows without bound as the depth increases.

Because the log-normal distribution is heavy-tailed and its domain is bounded below
by zero, the derivative will become very small almost everywhere, with rare but very
large jumps. Figure 5.3 shows this behavior in a draw from a 1D deep GP prior. This
figure also shows that once the derivative in one region of the input space becomes very
large or very small, it is likely to remain that way in subsequent layers.

5.2.2 Distribution of the Jacobian

Next, we characterize the distribution on Jacobians of multivariate functions drawn
from deep GP priors, finding them to be products of independent Gaussian matrices
with independent entries.

Lemma 5.2.1. The partial derivatives of a function mapping RD → R drawn from a
GP prior with a product kernel are independently Gaussian distributed.

Proof. Because differentiation is a linear operator, the derivatives of a function drawn
from a GP prior are also jointly Gaussian distributed. The covariance between partial
derivatives with respect to input dimensions d1 and d2 of vector x are given by Solak
et al. (2003):

cov
(

∂f(x)
∂xd1

,
∂f(x)
∂xd2

)
= ∂2k(x, x′)

∂xd1∂x′
d2

∣∣∣∣∣
x=x′

(5.13)

If our kernel is a product over individual dimensions k(x, x′) = ∏D
d kd(xd, x′

d), then the
off-diagonal entries are zero, implying that all elements are independent.

For example, in the case of the multivariate squared-exp kernel, the covariance be-

5.3 Formalizing a pathology 67

tween derivatives has the form:

f(x) ∼ GP
(

0, σ2
D∏

d=1
exp

(
−1

2
(xd − x′

d)2

w2
d

))

=⇒ cov
(

∂f(x)
∂xd1

,
∂f(x)
∂xd2

)
=


σ2

w2
d1

if d1 = d2

0 if d1 ̸= d2

(5.14)

Lemma 5.2.2. The Jacobian of a set of D functions RD → R drawn from independent
GP priors, each having product kernel is a D×D matrix of independent Gaussian R.V.’s

Proof. The Jacobian of the vector-valued function f(x) is a matrix J with elements
Jij(x) = ∂fi(x)

∂xj
. Because the GPs on each output dimension f1(x), f2(x), . . . , fD(x) are

independent by construction, it follows that each row of J is independent. Lemma 5.2.1
shows that the elements of each row are independent Gaussian. Thus all entries in the
Jacobian of a GP-distributed transform are independent Gaussian R.V.’s.

Theorem 5.2.3. The Jacobian of a deep GP with a product kernel is a product of inde-
pendent Gaussian matrices, with each entry in each matrix being drawn independently.

Proof. When composing L different functions, we denote the immediate Jacobian of
the function mapping from layer ℓ − 1 to layer ℓ as J (ℓ)(x), and the Jacobian of the
entire composition of L functions by J (1:L)(x). By the multivariate chain rule, the
Jacobian of a composition of functions is given by the product of the immediate Ja-
cobian matrices of each function. Thus the Jacobian of the composed (deep) function
f (L)(f (L−1)(. . . f (3)(f (2)(f (1)(x))) . . .)) is

J (1:L)(x) = J (L)J (L−1) . . . J (3)J (2)J (1). (5.15)

By lemma 5.2.2, each J
(ℓ)
i,j

ind∼ N , so the complete Jacobian is a product of independent
Gaussian matrices, with each entry of each matrix drawn independently.

This result allows us to analyze the representational properties of a deep Gaussian
process by examining the properties of products of independent Gaussian matrices.

5.3 Formalizing a pathology

A common use of deep neural networks is building useful representations of data man-
ifolds. What properties make a representation useful? Rifai et al. (2011a) argued that

68 Deep Gaussian Processes

good representations of data manifolds are invariant in directions orthogonal to the data
manifold. They also argued that, conversely, a good representation must also change
in directions tangent to the data manifold, in order to preserve relevant information.
Figure 5.4 visualizes a representation having these two properties.

tangent

orthogonal

Figure 5.4: Representing a 1-D data manifold. Colors are a function of the computed
representation of the input space. The representation (blue & green) changes little
in directions orthogonal to the manifold (white), making it robust to noise in those
directions. The representation also varies in directions tangent to the data manifold,
preserving information for later layers.

As in Rifai et al. (2011b), we characterize the representational properties of a function
by the singular value spectrum of the Jacobian. The number of relatively large singular
values of the Jacobian indicate the number of directions in data-space in which the
representation varies significantly. Figure 5.5 shows the distribution of the singular
value spectrum of draws from 5-dimensional deep GPs of different depths.2 As the nets
gets deeper, the largest singular value tends to dominate, implying there is usually only
one effective degree of freedom in the representations being computed.

Figure 5.6 demonstrates a related pathology that arises when composing functions
to produce a deep density model. The density in the observed space eventually becomes
locally concentrated onto one-dimensional manifolds, or filaments. This again suggests
that, when the width of the network is relatively small, deep compositions of indepen-
dent functions are unsuitable for modeling manifolds whose underlying dimensionality
is greater than one.

To visualize this pathology in another way, figure 5.7 illustrates a color-coding of
the representation computed by a deep GP, evaluated at each point in the input space.
After 10 layers, we can see that locally, there is usually only one direction that one can
move in x-space in order to change the value of the computed representation, or to cross

2Rifai et al. (2011b) analyzed the Jacobian at location of the training points, but because the priors
we are examining are stationary, the distribution of the Jacobian is identical everywhere.

5.4 Fixing the pathology 69

2 Layers 6 Layers

N
or

m
al

iz
ed

sin
gu

la
r

va
lu

e

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Singular value index Singular value index
Figure 5.5: The distribution of normalized singular values of the Jacobian of a func-
tion drawn from a 5-dimensional deep GP prior 25 layers deep (Left) and 50 layers
deep (Right). As nets get deeper, the largest singular value tends to become much
larger than the others. This implies that with high probability, these functions vary
little in all directions but one, making them unsuitable for computing representations of
manifolds of more than one dimension.

a decision boundary. This means that such representations are likely to be unsuitable
for decision tasks that depend on more than one property of the input.

To what extent are these pathologies present in the types of neural networks com-
monly used in practice? In simulations, we found that for deep functions with a fixed
hidden dimension D, the singular value spectrum remained relatively flat for hundreds
of layers as long as D > 100. Thus, these pathologies are unlikely to severely effect the
relatively shallow, wide networks most commonly used in practice.

5.4 Fixing the pathology

As suggested by Neal (1995, chapter 2), we can fix the pathologies exhibited in figures
figure 5.6 and 5.7 by simply making each layer depend not only on the output of the pre-
vious layer, but also on the original input x. We refer to these models as input-connected
networks, and denote deep functions having this architecture with the subscript C, as
in fC(x). Formally, this functional dependence can be written as

f
(1:L)
C (x) = f (L)

(
f

(1:L−1)
C (x), x

)
, ∀L (5.16)

70 Deep Gaussian Processes

No transformation: p(x) 1 Layer: p
(
f (1)(x)

)

4 Layers: p
(
f (1:4)(x)

)
6 Layers: p

(
f (1:6)(x)

)

Figure 5.6: Points warped by a function drawn from a deep GP prior. Top left: Points
drawn from a 2-dimensional Gaussian distribution, color-coded by their location. Sub-
sequent panels: Those same points, successively warped by compositions of functions
drawn from a GP prior. As the number of layers increases, the density concentrates
along one-dimensional filaments. Warpings using random finite neural networks exhibit
the same pathology, but also tend to concentrate density into 0-dimensional manifolds
(points) due to saturation of all of the hidden units.

5.4 Fixing the pathology 71

Identity Map: y = x 1 Layer: y = f (1)(x)

10 Layers: y = f (1:10)(x) 40 Layers: y = f (1:40)(x)

Figure 5.7: A visualization of the feature map implied by a function f drawn from a
deep GP. Colors are a function of the 2D representation y = f(x) that each point is
mapped to. The number of directions in which the color changes rapidly corresponds to
the number of large singular values in the Jacobian. Just as the densities in figure 5.6
became locally one-dimensional, there is usually only one direction that one can move
x in locally to change y. This means that f is unlikely to be a suitable representation
for decision tasks that depend on more than one aspect of x. Also note that the overall
shape of the mapping remains the same as the number of layers increase. For example, a
roughly circular shape remains in the top-left corner even after 40 independent warpings.

72 Deep Gaussian Processes

Figure 5.8 shows a graphical representation of the two connectivity architectures.

a) Standard MLP connectivity b) Input-connected architecture

x f (1)(x) f (2)(x) f (3)(x) x f
(1)
C (x) f

(2)
C (x) f

(3)
C (x)

Figure 5.8: Two different architectures for deep neural networks. Left: The standard
architecture connects each layer’s outputs to the next layer’s inputs. Right: The input-
connected architecture also connects the original input x to each layer.

Similar connections between non-adjacent layers can also be found the primate visual
cortex (Maunsell and van Essen, 1983). Visualizations of the resulting prior on functions
are shown in figures 5.9, 5.10 and 5.12.

1 Layer 2 Layers 5 Layers 10 Layers

f
(1

:L
)

C
(x

)

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5
Layer 1 Compostion

−4 −2 0 2 4
−1.5

−1

−0.5

0

0.5

1

1.5
Layer 2 Compostion

−4 −2 0 2 4
−4

−2

0

2

4
Layer 5 Compostion

−4 −2 0 2 4
−2

−1

0

1

2
Layer 10 Compostion

x x x x

Figure 5.9: A draw from a 1D deep GP prior having each layer also connected to the
input. The x-axis is the same for all plots. Even after many layers, the functions remain
relatively smooth in some regions, while varying rapidly in other regions. Compare to
standard-connectivity deep GP draws shown in figure 5.3.

The Jacobian of an input-connected deep function is defined by the recurrence

J
(1:L)
C = J (L)

 J
(1:L−1)
C

ID

. (5.17)

where ID is a D-dimensional identity matrix. Thus the Jacobian of an input-connected
deep GP is a product of independent Gaussian matrices each with an identity matrix
appended. Figure 5.11 shows that with this architecture, even 50-layer deep GPs have
well-behaved singular value spectra.

The pathology examined in this section is an example of the sort of analysis made
possible by a well-defined prior on functions. The figures and analysis done in this

5.4 Fixing the pathology 73

3 Connected layers: p
(
f

(1:3)
C (x)

)
6 Connected layers: p

(
f

(1:6)
C (x)

)

Figure 5.10: Points warped by a draw from a deep GP with each layer connected to the
input x. As depth increases, the density becomes more complex without concentrating
only along one-dimensional filaments.

25 layers 50 layers

N
or

m
al

iz
ed

sin
gu

la
r

va
lu

e

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Singular value number Singular value number
Figure 5.11: The distribution of singular values drawn from 5-dimensional input-
connected deep GP priors, 25 layers deep (Left) and 50 layers deep (Right). Compared
to the standard architecture, the singular values are more likely to remain the same
size as one another, meaning that the model outputs are more often sensitive to several
directions of variation in the input.

74 Deep Gaussian Processes

Identity map: y = x 2 Connected layers: y = f (1:2)(x)

10 Connected layers: y = f (1:10)(x) 20 Connected layers: y = f (1:20)(x)

Figure 5.12: The feature map implied by a function f drawn from a deep GP prior with
each layer also connected to the input x, visualized at various depths. Compare to the
map shown in figure 5.7. In the mapping shown here there are sometimes two directions
that one can move locally in x to in order to change the value of f(x). This means that
the input-connected prior puts significant probability mass on a greater variety of types
of representations, some of which depend on all aspects of the input.

5.5 Deep kernels 75

section could be done using Bayesian neural networks with finite numbers of nodes, but
would be more difficult. In particular, care would need to be taken to ensure that the
networks do not produce degenerate mappings due to saturation of the hidden units.

5.5 Deep kernels

Bengio et al. (2006) showed that kernel machines have limited generalization ability when
they use “local” kernels such as the squared-exp. However, as shown in chapters 2, 3
and 6, structured, non-local kernels can allow extrapolation. Another way to build non-
local kernels is by composing fixed feature maps, creating deep kernels. To return to an
example given in section 2.7, periodic kernels can be viewed as a 2-layer-deep kernel, in
which the first layer maps x → [sin(x), cos(x)], and the second layer maps through basis
functions corresponding to the implicitly feature map giving rise to an SE kernel.

This section builds on the work of Cho and Saul (2009), who derived several kinds
of deep kernels by composing multiple layers of feature mappings.

In principle, one can compose the implicit feature maps of any two kernels ka and kb

to get a new kernel, which we denote by (kb ◦ ka):

ka(x, x′) = ha(x)Tha(x′) (5.18)
kb(x, x′) = hb(x)Thb(x′) (5.19)

(kb ◦ ka) (x, x′) = kb

(
ha(x), ha(x′)

)
= [hb (ha(x))]T hb (ha(x′)) (5.20)

However, this composition might not always have a closed form if the number of hidden
features of either kernel is infinite.

Fortunately, composing the squared-exp (SE) kernel with the implicit mapping given
by any other kernel has a simple closed form. If k(x, x′) = h(x)Th(x′), then

(SE ◦ k) (x, x′) = kSE

(
h(x), h(x′)

)
(5.21)

= exp
(

−1
2 ||h(x) − h(x′)||22

)
(5.22)

= exp
(

−1
2
[
h(x)Th(x) − 2h(x)Th(x′) + h(x′)Th(x′)

])
(5.23)

= exp
(

−1
2
[
k(x, x) − 2k(x, x′) + k(x′, x′)

])
. (5.24)

This formula expresses the composed kernel (SE ◦ k) exactly in terms of evaluations of
the original kernel k.

76 Deep Gaussian Processes

Input-connected deep kernels Draws from corresponding GPs

k
(x

,x
′)

−2 0 2 4
0

0.2

0.4

0.6

0.8

1

x − x’

co
v(

 f(
x)

, f
(x

’)

1 layer

2 layers

3 layers

∞ layers f
(x

)

−2 0 2 4

−2

−1

0

1

2

x − x′ x

Figure 5.13: Left: Input-connected deep kernels of different depths. By connecting the
input x to each layer, the kernel can still depend on its input even after arbitrarily many
layers of composition. Right: Draws from GPs with deep input-connected kernels.

5.5.1 Infinitely deep kernels

What happens when one repeatedly composes feature maps many times, starting with
the squared-exp kernel? If the output variance of the SE is normalized to k(x, x) = 1,
then the infinite limit of composition with SE converges to (SE ◦ SE ◦ . . . ◦ SE) (x, x′) = 1
for all pairs of inputs. A constant covariance corresponds to a prior on constant functions
f(x) = c.

As above, we can overcome this degeneracy by connecting the input x to each layer.
To do so, we concatenate the composed feature vector at each layer, h(1:ℓ)(x), with the
input vector x to produce an input-connected deep kernel k

(1:L)
C , defined by:

k
(1:ℓ+1)
C (x, x′) = exp

−1
2

∣∣∣∣∣∣
∣∣∣∣∣∣
 h(1:ℓ)(x)

x

−

 h(1:ℓ)(x′)
x′

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

 (5.25)

= exp
(

− 1
2
[
k

(1:ℓ)
C (x, x) − 2k

(1:ℓ)
C (x, x′) + k

(1:ℓ)
C (x′, x′)−||x − x′||22

])

Starting with the squared-exp kernel, this repeated mapping satisfies

k
(1:∞)
C (x, x′) − log

(
k

(1:∞)
C (x, x′)

)
= 1 + 1

2 ||x − x′||22 . (5.26)

The solution to this recurrence is related to the Lambert W function (Corless et al., 1996)
and has no closed form. In one input dimension, it has a similar shape to the Ornstein-
Uhlenbeck covariance OU(x, x′) = exp(−|x − x′|) but with lighter tails. Samples from a
GP prior having this kernel are not differentiable, and are locally fractal. Figure 5.13

5.6 Related work 77

shows this kernel at different depths, as well as samples from the corresponding GP
priors.

One can also consider two related connectivity architectures: one in which each layer
is connected to the output layer, and another in which every layer is connected to all
subsequent layers. It is easy to show that in the limit of infinite depth of composing SE
kernels, both these architectures converge to k(x, x′) = δ(x, x′), the white noise kernel.

5.5.2 When are deep kernels useful models?

Kernels correspond to fixed feature maps, and so kernel learning is an example of im-
plicit representation learning. As we saw in chapters 2 and 3, kernels can capture rich
structure and can enable many types of generalization. We believe that the relatively
uninteresting properties of the deep kernels derived in this section simply reflect the fact
that an arbitrary computation, even if it is “deep”, is not likely to give rise to a useful
representation unless combined with learning. To put it another way, any fixed repre-
sentation is unlikely to be useful unless it has been chosen specifically for the problem
at hand.

5.6 Related work

Deep Gaussian processes

Neal (1995, chapter 2) explored properties of arbitrarily deep Bayesian neural networks,
including those that would give rise to deep GPs. He noted that infinitely deep random
neural networks without extra connections to the input would be equivalent to a Markov
chain, and therefore would lead to degenerate priors on functions. He also suggested
connecting the input to each layer in order to fix this problem. Much of the analysis
in this chapter can be seen as a more detailed investigation, and vindication, of these
claims.

The first instance of deep GPs being used in practice was (Lawrence and Moore,
2007), who presented a model called “hierarchical GP-LVMs”, in which time was mapped
through a composition of multiple GPs to produce observations.

The term “deep Gaussian processes” was first used by Damianou and Lawrence
(2013), who developed a variational inference method, analyzed the effect of automatic
relevance determination, and showed that deep GPS could learn with relatively little
data. They used the term “deep GP” to refer both to supervised models (compositions

78 Deep Gaussian Processes

of GPs) and to unsupervised models (compositions of GP-LVMs). This conflation may
be reasonable, since the activations of the hidden layers are themselves latent variables,
even in supervised settings: Depending on kernel parameters, each latent variable may
or may not depend on the layer below.

In general, supervised models can also be latent-variable models. For example, Wang
and Neal (2012) investigated single-layer GP regression models that had additional latent
inputs.

Nonparametric neural networks

Adams et al. (2010) proposed a prior on arbitrarily deep Bayesian networks having
an unknown and unbounded number of parametric hidden units in each layer. Their
architecture has connections only between adjacent layers, and so may have similar
pathologies to the one discussed in the chapter as the number of layers increases.

Wilson et al. (2012) introduced Gaussian process regression networks, which are
defined as a matrix product of draws from GPs priors, rather than a composition. These
networks have the form:

y(x) = W(x)f(x) where each fd, Wd,j
iid∼ GP(0, SE + WN) . (5.27)

We can easily define a “deep” Gaussian process regression network:

y(x) = W(3)(x)W(2)(x)W(1)(x)f(x) (5.28)

which repeatedly adds and multiplies functions drawn from GPs, in contrast to deep
GPs, which repeatedly compose functions. This prior on functions has a similar form
to the Jacobian of a deep GP (equation (5.15)), and so might be amenable to a similar
analysis to that of section 5.2.

Information-preserving architectures

Deep density networks (Rippel and Adams, 2013) are constructed through a series of
parametric warpings of fixed dimension, with penalty terms encouraging the preservation
of information about lower layers. This is another promising approach to fixing the
pathology discussed in section 5.3.

5.6 Related work 79

Recurrent networks

Bengio et al. (1994) and Pascanu et al. (2012) analyzed a related problem with gradient-
based learning in recurrent networks, the “exploding-gradients” problem. They noted
that in recurrent neural networks, the size of the training gradient can grow or shrink
exponentially as it is back-propagated, making gradient-based training difficult.

Hochreiter and Schmidhuber (1997) addressed the exploding-gradients problem by
introducing hidden units designed to have stable gradients. This architecture is known
as long short-term memory.

Deep kernels

The first systematic examination of deep kernels was done by Cho and Saul (2009), who
derived closed-form composition rules for SE, polynomial, and arc-cosine kernels, and
showed that deep arc-cosine kernels performed competitively in machine-vision applica-
tions when used in a SVM.

Hermans and Schrauwen (2012) constructed deep kernels in a time-series setting,
constructing kernels corresponding to infinite-width recurrent neural networks. They
also proposed concatenating the implicit feature vectors from previous time-steps with
the current inputs, resulting in an architecture analogous to the input-connected archi-
tecture proposed by Neal (1995, chapter 2).

Analyses of deep learning

Montavon et al. (2010) performed a layer-wise analysis of deep networks, and noted
that the performance of MLPs degrades as the number of layers with random weights
increases, a result consistent with the analysis of this chapter.

The experiments of Saxe et al. (2011) suggested that most of the good performance of
convolutional neural networks could be attributed to the architecture alone. Later, Saxe
et al. (2013) looked at the dynamics of gradient-based training methods in deep linear
networks as a tractable approximation to standard deep (nonlinear) neural networks.

Source code

Source code to produce all figures is available at http://www.github.com/duvenaud/

deep-limits. This code is also capable of producing visualizations of mappings such
as figures 5.7 and 5.12 using neural nets instead of GPs at each layer.

http://www.github.com/duvenaud/deep-limits
http://www.github.com/duvenaud/deep-limits

80 Deep Gaussian Processes

5.7 Conclusions

This chapter demonstrated that well-defined priors allow explicit examination of the
assumptions being made about functions being modeled by different neural network
architectures. As an example of the sort of analysis made possible by this approach,
we attempted to gain insight into the properties of deep neural networks by charac-
terizing the sorts of functions likely to be obtained under different choices of priors on
compositions of functions.

First, we identified deep Gaussian processes as an easy-to-analyze model correspond-
ing to multi-layer preceptrons having nonparametric activation functions. We then
showed that representations based on repeated composition of independent functions
exhibit a pathology where the representations becomes invariant to all but one direction
of variation. Finally, we showed that this problem could be alleviated by connecting
the input to each layer. We also examined properties of deep kernels, corresponding to
arbitrarily many compositions of fixed feature maps.

Much recent work on deep networks has focused on weight initialization (Martens,
2010), regularization (Lee et al., 2007) and network architecture (Gens and Domingos,
2013). If we can identify priors that give our models desirable properties, these might
in turn suggest regularization, initialization, and architecture choices that also provide
such properties.

Existing neural network practice also requires expensive tuning of model hyperpa-
rameters such as the number of layers, the size of each layer, and regularization penalties
by cross-validation. One advantage of deep GPs is that the approximate marginal like-
lihood allows a principled method for automatically determining such model choices.

Chapter 6

Additive Gaussian Processes

Chapter 3 showed how to learn the structure of a kernel by building it up piece-by-piece.
This chapter presents an alternative approach: starting with many different types of
structure in a kernel, adjusting kernel parameters to discard whatever structure is not
present in the current dataset. The advantage of this approach is that we do not need
to run an expensive discrete-and-continuous search in order to build a structured model,
and implementation is simpler.

This model, which we call additive Gaussian processes, is a sum of functions of all
possible combinations of input variables. This model can be specified by a weighted sum
of all possible products of one-dimensional kernels.

There are 2D combinations of D objects, so naïve computation of this kernel is
intractable. Furthermore, if each term has different kernel parameters, fitting or inte-
grating over so many parameters is difficult. To address these problems, we introduce a
restricted parameterization of the kernel which allows efficient evaluation of all interac-
tion terms, while still allowing a different weighting of each order of interaction. Empiri-
cally, this model has good predictive performance in regression tasks, and its parameters
are relatively interpretable. This model also has an interpretation as an approximation
to dropout, a recently-introduced regularization method for neural networks.

The work in this chapter was done in collaboration with Hannes Nickisch and Carl
Rasmussen, who derived and coded up the additive kernel. My role in the project was
to examine the properties of the resulting model, clarify the connections to existing
methods, to create all figures and run all experiments. That work was published in
Duvenaud et al. (2011). The connection to dropout regularization in section 6.4 is an
independent contribution.

82 Additive Gaussian Processes

6.1 Different types of multivariate additive structure

Chapter 2 showed how additive structure in a GP prior enabled extrapolation in multi-
variate regression problems. In general, models of the form

f(x) = g
(
f(x1) + f(x2) + · · · + f(xD)

)
(6.1)

are widely used in machine learning and statistics, partly for this reason, and partly
because they are relatively easy to fit and interpret. Examples include logistic regres-
sion, linear regression, generalized linear models (Nelder and Wedderburn, 1972) and
generalized additive models (Hastie and Tibshirani, 1990).

At the other end of the spectrum are models which allow the response to depend on
all input variables simultaneously, without any additive decomposition:

f(x) = f(x1, x2, . . . , xD) (6.2)

An example would be a GP with an SE-ARD kernel. Such models are much more flexible
than those having the form (6.1), but this flexibility can make it difficult to generalize
to new combinations of input variables.

In between these extremes are function classes depending on pairs or triplets of
inputs, such as

f(x1, x2, x3) = f12(x1, x2) + f23(x2, x3) + f13(x1, x3). (6.3)

We call the number of input variables appearing in each term the order of that term.
Models containing terms only of intermediate order such as (6.3) allow more flexibility
than models of form (6.2) (first-order), but have more structure than those of form (6.1)
(D-th order).

Capturing the low-order additive structure present in a function can be expected to
improve predictive accuracy. However, if the function being learned depends in some
way on an interaction between all input variables, a Dth-order term is required in order
for the model to be consistent.

6.2 Defining additive kernels 83

6.2 Defining additive kernels

To define the additive kernels introduced in this chapter, we first assign each dimension
i ∈ {1 . . . D} a one-dimensional base kernel ki(xi, x′

i). Then the first order, second order
and nth order additive kernels are defined as:

kadd1(x, x′) = σ2
1

D∑
i=1

ki(xi, x′
i) (6.4)

kadd2(x, x′) = σ2
2

D∑
i=1

D∑
j=i+1

ki(xi, x′
i)kj(xj, x′

j) (6.5)

kaddn(x, x′) = σ2
n

∑
1≤i1<i2<...<in≤D

[
n∏

d=1
kid

(xid
, x′

id
)
]

(6.6)

kaddD
(x, x′) = σ2

D

∑
1≤i1<i2<...<iD≤D

[
D∏

d=1
kid

(xid
, x′

id
)
]

= σ2
D

D∏
d=1

kd(xd, x′
d) (6.7)

where D is the dimension of the input space, and σ2
n is the variance assigned to all

nth order interactions. The nth-order kernel is a sum of
(

D
n

)
terms. In particular, the

Dth-order additive kernel has
(

D
D

)
= 1 term, a product of each dimension’s kernel. In

the case where each base kernel is a one-dimensional squared-exponential kernel, the
Dth-order term corresponds to the multivariate squared-exponential kernel, also known
as SE-ARD:

D∏
d=1

SE(xd, x′
d) =

D∏
d=1

σ2
d exp

(
−(xd − x′

d)2

2ℓ2
d

)
= σ2

D exp
(

−
D∑

d=1

(xd − x′
d)2

2ℓ2
d

)
(6.8)

The full additive kernel is a sum of the additive kernels of all orders.
The only design choice necessary to specify an additive kernel is the selection of a one-

dimensional base kernel for each input dimension. Parameters of the base kernels (such
as length-scales ℓ1, ℓ2, . . . , ℓD) can be learned as per usual by maximizing the marginal
likelihood of the training data.

6.2.1 Weighting different orders of interaction

In addition to the parameters of each dimension’s kernel, additive kernels are equipped
with a set of D parameters σ2

1 . . . σ2
D. These order variance parameters have a use-

ful interpretation: the dth order variance parameter specifies how much of the target
function’s variance comes from interactions of the dth order.

84 Additive Gaussian Processes

Table 6.1 shows examples of the variance contributed by different orders of interac-
tion, estimated on real datasets. These datasets are described in section 6.6.1.

Table 6.1: Percentage of variance contributed by each order of interaction of the additive
model on different datasets. The maximum order of interaction is set to the input
dimension or 10, whichever is smaller.

Order of interaction
Dataset 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

pima 0.1 0.1 0.1 0.3 1.5 96.4 1.4 0.0
liver 0.0 0.2 99.7 0.1 0.0 0.0

heart 77.6 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 22.0
concrete 70.6 13.3 13.8 2.3 0.0 0.0 0.0 0.0

pumadyn-8nh 0.0 0.1 0.1 0.1 0.1 0.1 0.1 99.5
servo 58.7 27.4 0.0 13.9

housing 0.1 0.6 80.6 1.4 1.8 0.8 0.7 0.8 0.6 12.7

On different datasets, the dominant order of interaction estimated by the additive
model varies widely. In some cases, the variance is concentrated almost entirely onto
a single order of interaction. This may may be a side-effect of using the same length-
scales for all orders of interaction; lengthscales appropriate for low-dimensional regression
might not be appropriate for high-dimensional regression.

6.2.2 Efficiently evaluating additive kernels

An additive kernel over D inputs with interactions up to order n has O(2n) terms.
Naïvely summing these terms is intractable. One can exactly evaluate the sum over all
terms in O(D2), while also weighting each order of interaction separately.

To efficiently compute the additive kernel, we exploit the fact that the nth order
additive kernel corresponds to the nth elementary symmetric polynomial (Macdonald,
1998) of the base kernels, which we denote en. For example, if x has 4 input dimensions

6.2 Defining additive kernels 85

(D = 4), and if we use the shorthand notation kd = kd(xd, x′
d), then

kadd0(x, x′) = e0(k1, k2, k3, k4) = 1 (6.9)
kadd1(x, x′) = e1(k1, k2, k3, k4) = k1 + k2 + k3 + k4 (6.10)
kadd2(x, x′) = e2(k1, k2, k3, k4) = k1k2 + k1k3 + k1k4 + k2k3 + k2k4 + k3k4 (6.11)
kadd3(x, x′) = e3(k1, k2, k3, k4) = k1k2k3 + k1k2k4 + k1k3k4 + k2k3k4 (6.12)
kadd4(x, x′) = e4(k1, k2, k3, k4) = k1k2k3k4 (6.13)

The Newton-Girard formulas give an efficient recursive form for computing these poly-
nomials.

kaddn(x, x′) = en(k1, k2, . . . , kD) = 1
n

n∑
a=1

(−1)(a−1)en−a(k1, k2, . . . , kD)
D∑

i=1
ka

i (6.14)

Each iteration has cost O(D), given the next-lowest polynomial.

Evaluation of derivatives

Conveniently, we can use the same trick to efficiently compute the necessary derivatives
of the additive kernel with respect to the base kernels. This can be done by removing
the base kernel of interest, kj, from each term of the polynomials:

∂kaddn

∂kj

= ∂en(k1, k2, . . . , kD)
∂kj

= en−1(k1, k2, . . . , kj−1, kj+1, . . . kD) (6.15)

Equation (6.15) gives all terms that kj is multiplied by in the original polynomial, which
are exactly the terms required by the chain rule. These derivatives allow gradient-based
optimization of the base kernel parameters with respect to the marginal likelihood.

Computational cost

The computational cost of evaluating the Gram matrix k(X, X) of a product kernel
such as the SE-ARD scales as O(N2D), while the cost of evaluating the Gram matrix of
the additive kernel scales as O(N2DR), where R is the maximum degree of interaction
allowed (up to D). In high dimensions this can be a significant cost, even relative to
the O(N3) cost of inverting the Gram matrix. However, table 6.1 shows that sometimes
only the first few orders of interaction contribute much variance. In those cases, one
may be able to limit the maximum degree of interaction in order to save time, without

86 Additive Gaussian Processes

losing much accuracy.

6.3 Additive models allow non-local interactions

Commonly-used kernels such as the SE, RQ or Matérn kernels are local kernels, depend-
ing only on the scaled Euclidean distance between two points, all having the form:

k(x, x′) = g

 D∑
d=1

(
xd − x′

d

ℓd

)2
 (6.16)

for some function g(·). Bengio et al. (2006) argued that models based on local kernels
are particularly susceptible to the curse of dimensionality (Bellman, 1956), and are
generally unable to extrapolate away from the training data. Methods based solely on
local kernels sometimes require training examples at exponentially-many combinations
of inputs.

In contrast, additive kernels can allow extrapolation away from the training data.
For example, additive kernels of second order give high covariance between function
values at input locations which are similar in any two dimensions.

1st-order terms: 2nd-order terms: 3rd-order terms: All interactions:
k1 + k2 + k3 k1k2 + k2k3 + k1k3 k1k2k3

SE-ARD kernel Additive kernel

x − x′ x − x′ x − x′ x − x′

Figure 6.1: Isocontours of additive kernels in D = 3 dimensions. The Dth-order kernel
only considers nearby points relevant, while lower-order kernels allow the output to
depend on distant points, as long as they share one or more input value.

Figure 6.1 provides a geometric comparison between squared-exponential kernels
and additive kernels in 3 dimensions. Section 2.4.2 contains an example of how additive
kernels extrapolate differently than local kernels.

6.4 Dropout in Gaussian processes 87

6.4 Dropout in Gaussian processes

Dropout is a recently-introduced method for regularizing neural networks (Hinton et al.,
2012; Srivastava, 2013). Training with dropout entails independently setting to zero
(“dropping”) some proportion p of features or inputs, in order to improve the robustness
of the resulting network, by reducing co-dependence between neurons. To maintain
similar overall activation levels, the remaining weights are divided by p. Predictions are
made by approximately averaging over all possible ways of dropping out neurons.

Baldi and Sadowski (2013) and Wang and Manning (2013) analyzed dropout in terms
of the effective prior induced by this procedure in several models, such as linear and
logistic regression. In this section, we perform a similar analysis for GPs, examining the
priors on functions that result from performing dropout in the one-hidden-layer neural
network implicitly defined by a GP.

Recall from section 5.1 that some GPs can be derived as infinitely-wide one-hidden-
layer neural networks, with fixed activation functions h(x) and independent random
weights w having zero mean and finite variance σ2

w:

f(x) = 1
K

K∑
i=1

wihi(x) =⇒ f
K→∞∼ GP

(
0, σ2

wh(x)Th(x′)
)

. (6.17)

6.4.1 Dropout on infinitely-wide hidden layers has no effect

First, we examine the prior obtained by dropping features from h(x) by setting weights
in w to zero independently with probability p. For simplicity, we assume that E [w] = 0.
If the weights wi initially have finite variance σ2

w before dropout, then the weights after
dropout (denoted by riwi, where ri is a Bernoulli random variable) will have variance:

ri
iid∼ Ber(p) V [riwi] = pσ2

w . (6.18)

Because equation (6.17) is a result of the central limit theorem, it does not depend on the
exact form of the distribution on w, but only on its mean and variance. Thus the central
limit theorem still applies. Performing dropout on the features of an infinitely-wide MLP
does not change the resulting model at all, except to rescale the output variance. Indeed,
dividing all weights by √

p restores the initial variance:

V
[

1
p

1
2
riwi

]
= p

p
σ2

w = σ2
w (6.19)

88 Additive Gaussian Processes

in which case dropout on the hidden units has no effect at all. Intuitively, this is because
no individual feature can have more than an infinitesimal contribution to the network
output.

This result does not hold in neural networks having a finite number of hidden features
with Gaussian-distributed weights, another model class that also gives rise to GPs.

6.4.2 Dropout on inputs gives additive covariance

One can also perform dropout on the D inputs to the GP. For simplicity, consider
a stationary product kernel k(x, x′) = ∏D

d=1 kd(xd, x′
d) which has been normalized such

that k(x, x) = 1, and a dropout probability of p = 1/2. In this case, the generative model
can be written as:

r = [r1, r2, . . . , rD], each ri
iid∼ Ber

(1
2

)
, f(x)|r ∼ GP

(
0,

D∏
d=1

kd(xd, x′
d)rd

)
(6.20)

This is a mixture of 2D GPs, each depending on a different subset of the inputs:

p (f(x)) =
∑

r
p (f(x)|r) p(r) = 1

2D

∑
r∈{0,1}D

GP
(

f(x)
∣∣∣∣ 0,

D∏
d=1

kd(xd, x′
d)rd

)
(6.21)

We present two results which might give intuition about this model.
First, if the kernel on each dimension has the form kd(xd, x′

d) = g
(

xd−x′
d

ℓd

)
, as does

the SE kernel, then any input dimension can be dropped out by setting its lengthscale
ℓd to ∞. In this case, performing dropout on the inputs of a GP corresponds to putting
independent spike-and-slab priors on the lengthscales, with each dimension’s distribution
independently having “spikes” at ℓd = ∞ with probability mass of 1/2.

Another way to understand the resulting prior is to note that the dropout mixture
(equation (6.21)) has the same covariance as an additive GP, scaled by a factor of 2−D:

cov
 f(x)

f(x′)

 = 1
2D

∑
r∈{0,1}D

D∏
d=1

kd(xd, x′
d)rd (6.22)

For dropout rates p ̸= 1/2, the dth order terms will be weighted by p(D−d)(1 − p)d.
Therefore, performing dropout on the inputs of a GP gives a distribution with the same
first two moments as an additive GP. This suggests an interpretation of additive GPs as
an approximation to a mixture of models where each model only depends on a subset

6.5 Related work 89

of the input variables.

6.5 Related work

Since additive models are a relatively natural and easy-to-analyze model class, the lit-
erature on similar model classes is extensive. This section attempts to provide a broad
overview.

Previous examples of additive GPs

The additive models considered in this chapter are axis-aligned, but transforming the
input space allows one to recover non-axis aligned additivity. This model was explored
by Gilboa et al. (2013), who developed a linearly-transformed first-order additive GP
model, called projection-pursuit GP regression. They showed that inference in this model
was possible in O(N) time.

Durrande et al. (2011) also examined properties of additive GPs, and proposed a
layer-wise optimization strategy for kernel hyperparameters in these models.

Plate (1999) constructed an additive GP having only first-order and Dth-order terms,
motivated by the desire to trade off the interpretability of first-order models with the
flexibility of full-order models. However, table 6.1 shows that sometimes the intermediate
degrees of interaction contribute most of the variance.

Kaufman and Sain (2010) used a closely related procedure called Gaussian process
ANOVA to perform a Bayesian analysis of meteorological data using 2nd and 3rd-order
interactions. They introduced a weighting scheme to ensure that each order’s total
contribution sums to zero. It is not clear if this weighting scheme permits the use of the
Newton-Girard formulas to speed computation of the Gram matrix.

Hierarchical kernel learning

A similar model class was recently explored by Bach (2009) called hierarchical kernel
learning (HKL). HKL uses a regularized optimization framework to build a weighted
sum of an exponential number of kernels that can be computed in polynomial time.
This method chooses among a hull of kernels, defined as a set of terms such that if∏

j∈J kj(x, x′) is included in the set, then so are all products of strict subsets of the same
elements: ∏j∈J/i kj(x, x′), for all i ∈ J . HKL does not estimate a separate weighting
parameter for each order.

90 Additive Gaussian Processes

Hierarchical kernel learning All-orders additive GP

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

GP with product kernel First-order additive GP

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

1 2 3 4

12 13 1423 24 34

123 124 134 234

∅

1234

Figure 6.2: A comparison of different additive model classes of 4-dimensional functions.
Circles represent different interaction terms, ranging from first-order to fourth-order
interactions. Shaded boxes represent the relative weightings of different terms. Top left:
HKL can select a hull of interaction terms, but must use a pre-determined weighting
over those terms. Top right: the additive GP model can weight each order of interaction
separately, but weights all terms equally within each order. Bottom row: GPs with
product kernels (such as the SE-ARD kernel) and first-order additive GP models are
special cases of the all-orders additive GP, with all variance assigned to a single order
of interaction.

6.6 Regression and classification experiments 91

Figure 6.2 contrasts the HKL model class with the additive GP model. Neither
model class encompasses the other. The main difficulty with this approach is that its
parameters are hard to set other than by cross-validation.

Support vector machines

Vapnik (1998) introduced the support vector ANOVA decomposition, which has the
same form as our additive kernel. They recommend approximating the sum over all
interactions with only one set of interactions “of appropriate order”, presumably because
of the difficulty of setting the parameters of an SVM. This is an example of a model
choice which can be automated in the GP framework.

Stitson et al. (1999) performed experiments which favourably compared the pre-
dictive accuracy of the support vector ANOVA decomposition against polynomial and
spline kernels. They too allowed only one order to be active, and set parameters by
cross-validation.

Other related models

A closely related procedure from Wahba (1990) is smoothing-splines ANOVA (SS-ANOVA).
An SS-ANOVA model is a weighted sum of splines along each dimension, splines over all
pairs of dimensions, all triplets, etc, with each individual interaction term having a sepa-
rate weighting parameter. Because the number of terms to consider grows exponentially
in the order, only terms of first and second order are usually considered in practice.

This more general model class, in which each interaction term is estimated separately,
is known in the physical sciences as high dimensional model representation (HDMR).
Rabitz and Aliş (1999) review some properties and applications of this model class.

The main benefits of the model setup and parameterization proposed in this chapter
are the ability to include all D orders of interaction with differing weights, and the
ability to learn kernel parameters individually per input dimension, allowing automatic
relevance determination to operate.

6.6 Regression and classification experiments

Choosing the base kernel

An additive GP using a separate SE kernel on each input dimension will have 3×D ef-
fective parameters. Because each additional parameter increases the tendency to overfit,

92 Additive Gaussian Processes

in our experiments we fixed each one-dimensional kernel’s output variance to be 1, and
only estimated the lengthscale of each kernel.

Methods

We compared six different methods. In the results tables below, GP Additive refers to
a GP using the additive kernel with squared-exp base kernels. For speed, we limited
the maximum order of interaction to 10. GP-1st denotes an additive GP model with
only first-order interactions: a sum of one-dimensional kernels. GP Squared-exp is a GP
using an SE-ARD kernel. HKL was run using the all-subsets kernel, which corresponds
to the same set of interaction terms considered by GP Additive.

For all GP models, we fit kernel parameters by the standard method of maximizing
training-set marginal likelihood, using L-BFGS (Nocedal, 1980) for 500 iterations, allow-
ing five random restarts. In addition to learning kernel parameters, we fit a constant
mean function to the data. In the classification experiments, approximate GP inference
was performed using expectation propagation (Minka, 2001).

The regression experiments also compared against the structure search method from
chapter 3, run up to depth 10, using only the SE and RQ base kernels.

6.6.1 Datasets

We compared the above methods on regression and classification datasets from the UCI
repository (Bache and Lichman, 2013). Their size and dimension are given in tables 6.2
and 6.3:

Table 6.2: Regression dataset statistics

Method bach concrete pumadyn servo housing
Dimension 8 8 8 4 13
Number of datapoints 200 500 512 167 506

Bach synthetic dataset

In addition to standard UCI repository datasets, we generated a synthetic dataset using
the same recipe as Bach (2009). This dataset was presumably designed to demonstrate

6.6 Regression and classification experiments 93

Table 6.3: Classification dataset statistics

Method breast pima sonar ionosphere liver heart
Dimension 9 8 60 32 6 13
Number of datapoints 449 768 208 351 345 297

the advantages of HKL over a GP using an SE-ARD kernel. It is generated by passing
correlated Gaussian-distributed inputs x1, x2, . . . , x8 through a quadratic function

f(x) =
4∑

i=1

4∑
j=i+1

xixj + ϵ ϵ ∼ N (0, σϵ) . (6.23)

This dataset will presumably be well-modeled by an additive kernel which includes all
two-way interactions over the first 4 variables, but does not depend on the extra 4
correlated nuisance inputs or the higher-order interactions.

6.6.2 Results

Tables 6.4 to 6.7 show mean performance across 10 train-test splits. Because HKL does
not specify a noise model, it was not included in the likelihood comparisons.

On each dataset, the best performance is in boldface, along with all other perfor-
mances not significantly different under a paired t-test. The additive and structure search
methods usually outperformed the other methods, especially on regression problems.

The structure search outperforms the additive GP at the cost of a slower search over
kernels. Structure search was on the order of 10 times slower than the additive GP,
which was on the order of 10 times slower than GP-SE.

The additive GP performed best on datasets well-explained by low orders of inter-
action, and approximately as well as the SE-GP model on datasets which were well
explained by high orders of interaction (see table 6.1). Because the additive GP is a su-
perset of both the GP-1st model and the GP-SE model, instances where the additive GP
performs slightly worse are presumably due to over-fitting, or due to the hyperparameter
optimization becoming stuck in a local maximum. Performance of all GP models could
be expected to benefit from approximately integrating over kernel parameters.

The performance of HKL is consistent with the results in Bach (2009), performing
competitively but slightly worse than SE-GP.

94 Additive Gaussian Processes

Table 6.4: Regression mean squared error

Method bach concrete pumadyn-8nh servo housing
Linear Regression 1.031 0.404 0.641 0.523 0.289
GP-1st 1.259 0.149 0.598 0.281 0.161
HKL 0.199 0.147 0.346 0.199 0.151
GP Squared-exp 0.045 0.157 0.317 0.126 0.092
GP Additive 0.045 0.089 0.316 0.110 0.102
Structure Search 0.044 0.087 0.315 0.102 0.082

Table 6.5: Regression negative log-likelihood

Method bach concrete pumadyn-8nh servo housing
Linear Regression 2.430 1.403 1.881 1.678 1.052
GP-1st 1.708 0.467 1.195 0.800 0.457
GP Squared-exp −0.131 0.398 0.843 0.429 0.207
GP Additive −0.131 0.114 0.841 0.309 0.194
Structure Search −0.141 0.065 0.840 0.265 0.059

Table 6.6: Classification percent error

Method breast pima sonar ionosphere liver heart
Logistic Regression 7.611 24.392 26.786 16.810 45.060 16.082
GP-1st 5.189 22.419 15.786 8.524 29.842 16.839
HKL 5.377 24.261 21.000 9.119 27.270 18.975
GP Squared-exp 4.734 23.722 16.357 6.833 31.237 20.642
GP Additive 5.566 23.076 15.714 7.976 30.060 18.496

Table 6.7: Classification negative log-likelihood

Method breast pima sonar ionosphere liver heart
Logistic Regression 0.247 0.560 4.609 0.878 0.864 0.575
GP-1st 0.163 0.461 0.377 0.312 0.569 0.393
GP Squared-exp 0.146 0.478 0.425 0.236 0.601 0.480
GP Additive 0.150 0.466 0.409 0.295 0.588 0.415

6.7 Conclusions 95

Source code

All of the experiments in this chapter were performed using the standard GPML tool-
box, available at http://wwww.gaussianprocess.org/gpml/code. The additive kernel de-
scribed in this chapter is included in GPML as of version 3.2. Code to perform all exper-
iments in this chapter is available at http://www.github.com/duvenaud/additive-gps.

6.7 Conclusions

This chapter presented a tractable GP model consisting of a sum of exponentially-many
functions, each depending on a different subset of the inputs. Our experiments indicate
that, to varying degrees, such additive structure is useful for modeling real datasets.
When it is present, modeling this structure allows our model to perform better than
standard GP models. In the case where no such structure exists, the higher-order inter-
action terms present in the kernel can recover arbitrarily flexible models. The additive
GP also affords some degree of interpretability: the variance parameters on each order
of interaction indicate which sorts of structure are present the data, although they do
not indicate which particular interactions explain the dataset.

The model class considered in this chapter is a subset of that explored by the structure
search presented in chapter 3. Thus additive GPs can be considered a quick-and-dirty
structure search, being strictly more limited in the types of structure that it can discover,
but much faster and simpler to implement.

Closely related model classes have previously been explored, most notably smoothing-
splines ANOVA and the support vector ANOVA decomposition. However, these models
can be difficult to apply in practice because their kernel parameters, regularization penal-
ties, and the relevant orders of interaction must be set by hand or by cross-validation.
This chapter illustrates that the GP framework allows these model choices to be per-
formed automatically.

http://wwww.gaussianprocess.org/gpml/code
http://www.github.com/duvenaud/additive-gps

Chapter 7

Warped Mixture Models

“What, exactly, is a cluster?”
- Bernhard Schölkopf, personal communication

Previous chapters showed how the probabilistic nature of GPs sometimes allows the
automatic determination of the appropriate structure when building models of functions.
One can also take advantage of this property when composing GPs with other models,
automatically trading-off complexity between the GP and the other parts of the model.

This chapter considers a simple example: a Gaussian mixture model warped by a
draw from a GP. This novel model produces clusters (density manifolds) having arbitrary
nonparametric shapes. We call the proposed model the infinite warped mixture model
(iWMM). The probabilistic nature of the iWMM lets us automatically infer the number,
dimension, and shape of a set of nonlinear manifolds, and summarize those manifolds in
a low-dimensional latent space.

The work comprising the bulk of this chapter was done in collaboration with Tomo-
haru Iwata and Zoubin Ghahramani, and appeared in Iwata et al. (2013). The main idea
was born out of a conversation between Tomoharu and myself, and together we wrote
almost all of the code as well as the paper. Tomoharu ran most of the experiments, and
Zoubin Ghahramani provided guidance and many helpful suggestions throughout the
project.

7.1 The Gaussian process latent variable model

The iWMM can be viewed as an extension of the Gaussian process latent variable model
(GP-LVM) (Lawrence, 2004), a probabilistic model of nonlinear manifolds. The GP-LVM

7.1 The Gaussian process latent variable model 97

Warping function: y = f(x)

−2−10123
Latent x coordinate

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

ob
se
rv
ed
 y
 c
oo
rd
in
at
e

W
ar

pe
d

de
ns

ity
:

p(
y
)

Latent density: p(x)
Figure 7.1: A draw from a one-dimensional Gaussian process latent variable model.
Bottom: the density of a set of samples from a 1D Gaussian specifying the distribution
p(x) in the latent space. Top left: A function y = f(x) drawn from a GP prior. Grey
lines show points being mapped through f . Right: A nonparametric density p(y) defined
by warping the latent density through the sampled function.

smoothly warps a Gaussian density into a more complicated distribution, using a draw
from a GP. Usually, we say that the Gaussian density is defined in a “latent space”
having Q dimensions, and the warped density is defined in the “observed space” having
D dimensions.

A generative definition of the GP-LVM is:

latent coordinates X = (x1, x2, . . . , xN)T iid∼ N (x|0, IQ) (7.1)
warping functions f = (f1, f2, . . . , fD)T iid∼ GP(0, SE-ARD + WN) (7.2)

observed datapoints Y = (y1, y2, . . . , yN)T = f(X) (7.3)

Under the GP-LVM, the probability of observations Y given the latent coordinates

98 Warped Mixture Models

Latent space p(x) Observed space p(y)

f(x)→

Figure 7.2: A draw from a two-dimensional Gaussian process latent variable model.
Left: Isocontours and samples from a 2D Gaussian, specifying the distribution p(x) in
the latent space. Right: The observed density p(y) has a nonparametric shape, defined
by warping the latent density through a function drawn from a GP prior.

X, integrating over the mapping functions f is simply a product of GP likelihoods:

p(Y|X, θ) =
D∏

d=1
p(Y:,d|X, θ) =

D∏
d=1

N (Y:,d|0, Kθ) (7.4)

= (2π)− DN
2 |Kθ|−

D
2 exp

(
−1

2tr(YTK−1
θ Y)

)
, (7.5)

where θ are the kernel parameters and Kθ is the Gram matrix kθ(X, X).
Typically, the GP-LVM is used for dimensionality reduction or visualization, and

the latent coordinates are set by maximizing (7.5). In that setting, the Gaussian prior
density on x is essentially a regularizer which keeps the latent coordinates from spreading
arbitrarily far apart. One can also approximately integrate out X, which is the approach
taken in this chapter.

7.2 The infinite warped mixture model

This section defines the infinite warped mixture model (iWMM). Like the GP-LVM,
the iWMM assumes a smooth nonlinear mapping from a latent density to an observed
density. The only difference is that the iWMM assumes that the latent density is an

7.3 Inference 99

Latent space p(x) Observed space p(y)

f(x)→

Figure 7.3: A sample from the iWMM prior. Left: In the latent space, a mixture
distribution is sampled from a Dirichlet process mixture of Gaussians. Right: The
latent mixture is smoothly warped to produce a set of non-Gaussian manifolds in the
observed space.

infinite Gaussian mixture model (iGMM) (Rasmussen, 2000):

p(x) =
∞∑

c=1
λc N (x|µc, R−1

c) (7.6)

where λc, µc and Rc denote the mixture weight, mean, and precision matrix of the cth

mixture component.
The iWMM can be seen as a generalization of either the GP-LVM or the iGMM: The

iWMM with a single fixed spherical Gaussian density on the latent coordinates p(x)
corresponds to the GP-LVM, while the iWMM with fixed mapping y = x and Q = D

corresponds to the iGMM.
If the clusters being modeled do not happen to have Gaussian shapes, a flexible

model of cluster shapes is required to correctly estimate the number of clusters. For
example, a mixture of Gaussians fit to a single non-Gaussian cluster (such as one that
is curved or heavy-tailed) will report that the data contains many Gaussian clusters.

7.3 Inference

As discussed in section 1.1.3, one of the main advantages of GP priors is that, given
inputs X, outputs Y and kernel parameters θ, one can analytically integrate over func-

100 Warped Mixture Models

tions mapping X to Y. However, inference becomes more difficult when one introduces
uncertainty about the kernel parameters or the input locations X. This section outlines
how to compute approximate posterior distributions over all parameters in the iWMM
given only a set of observations Y. Further details can be found in appendix E.

We first place conjugate priors on the parameters of the Gaussian mixture compo-
nents, allowing analytic integration over latent cluster shapes, given the assignments of
points to clusters. The only remaining variables to infer are the latent points X, the
cluster assignments z, and the kernel parameters θ. We can obtain samples from their
posterior p(X, z, θ|Y) by iterating two steps:

1. Given a sample of the latent points X, sample the discrete cluster memberships z
using collapsed Gibbs sampling, integrating out the iGMM parameters (E.9).

2. Given the cluster assignments z, sample the continuous latent coordinates X and
kernel parameters θ using Hamiltonian Monte Carlo (HMC) (MacKay, 2003, chap-
ter 30). The relevant equations are given by equations (E.11) to (E.14).

The complexity of each iteration of HMC is dominated by the O(N3) computation
of K−1. This complexity could be improved by making use of an inducing-point approx-
imation (Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006).

Posterior predictive density

One disadvantage of the GP-LVM is that its predictive density has no closed form,
and the iWMM inherits this problem. To approximate the predictive density, we first
sample latent points, then sample warpings of those points into the observed space. The
Gaussian noise added to each observation by the WN kernel component means that each
sample adds a Gaussian to the Monte Carlo estimate of the predictive density. Details
can be found in appendix E. This procedure was used to generate the plots of posterior
density in figures 7.3, 7.4 and 7.6.

7.4 Related work

The literature on manifold learning, clustering and dimensionality reduction is extensive.
This section highlights some of the most relevant related work.

7.4 Related work 101

Extensions of the GP-LVM

The GP-LVM has been used effectively in a wide variety of applications (Lawrence,
2004; Lawrence and Urtasun, 2009; Salzmann et al., 2008). The latent positions X in
the GP-LVM are typically obtained by maximum a posteriori estimation or variational
Bayesian inference (Titsias and Lawrence, 2010), placing a single fixed spherical Gaussian
prior on x.

A regularized extension of the GP-LVM that allows estimation of the dimension of
the latent space was introduced by Geiger et al. (2009), in which the latent variables and
their intrinsic dimensionality were simultaneously optimized. The iWMM can also infer
the intrinsic dimensionality of nonlinear manifolds: the Gaussian covariance parameters
for each latent cluster allow the variance of irrelevant dimensions to become small. The
marginal likelihood of the latent Gaussian mixture will favor using as few dimensions
as possible to describe each cluster. Because each latent cluster has a different set of
parameters, each cluster can have a different effective dimension in the observed space,
as demonstrated in figure 7.4(c).

Nickisch and Rasmussen (2010) considered several modifications of the GP-LVM
which model the latent density using a mixture of Gaussians centered around the latent
points. They approximated the observed density p(y) by a second mixture of Gaussians,
obtained by moment-matching the density obtained by warping each latent Gaussian
into the observed space. Because their model was not generative, training was done
by maximizing a leave-some-out predictive density. This method had poor predictive
performance compared to simple baselines.

Related linear models

The iWMM can also be viewed as a generalization of the mixture of probabilistic prin-
ciple component analyzers (Tipping and Bishop, 1999), or the mixture of factor analyz-
ers (Ghahramani and Beal, 2000), where the linear mapping is replaced by a draw from
a GP, and the number of components is infinite.

Non-probabilistic methods

There exist non-probabilistic clustering methods which can find clusters with complex
shapes, such as spectral clustering (Ng et al., 2002) and nonlinear manifold cluster-
ing (Cao and Haralick, 2006; Elhamifar and Vidal, 2011). Spectral clustering finds
clusters by first forming a similarity graph, then finding a low-dimensional latent rep-

102 Warped Mixture Models

resentation using the graph, and finally clustering the latent coordinates via k-means.
The performance of spectral clustering depends on parameters which are usually set
manually, such as the number of clusters, the number of neighbors, and the variance pa-
rameter used for constructing the similarity graph. The iWMM infers such parameters
automatically, and has no need to construct a similarity graph.

The kernel Gaussian mixture model (Wang et al., 2003) can also find non-Gaussian
shaped clusters. This model estimates a GMM in the implicit infinite-dimensional fea-
ture space defined by the kernel mapping of the observed space. However, the kernel
parameters must be set by cross-validation. In contrast, the iWMM infers the mapping
function such that the latent coordinates will be well-modeled by a mixture of Gaussians.

Nonparametric cluster shapes

To the best of our knowledge, the only other Bayesian clustering method with nonpara-
metric cluster shapes is that of Rodríguez and Walker (2012), who for one-dimensional
data introduce a nonparametric model of unimodal clusters, where each cluster’s density
function strictly decreases away from its mode.

Deep Gaussian processes

An elegant way to construct a GP-LVM having a more structured latent density p(x) is
to use a second GP-LVM to model the prior density of the latent coordinates X. This
latent GP-LVM can have a third GP-LVM modeling its latent density, etc. This model
class was considered by Damianou and Lawrence (2013), who also tested to what extent
each layer’s latent representation grouped together points having the same label. They
found that when modeling MNIST hand-written digits, nearest-neighbour classification
performed best in the 4th layer of a 5-layer-deep nested GP-LVM, suggesting that the
latent density might have been implicitly forming clusters at that layer.

7.5 Experimental results

7.5.1 Synthetic datasets

Figure 7.4 demonstrates the proposed model on four synthetic datasets. None of these
datasets can be appropriately clustered by a Gaussian mixture model (GMM). For
example, consider the 2-curve data shown in figure 7.4(a), where 100 data points lie in
each of two curved lines in a two-dimensional observed space. A GMM having only two

7.5 Experimental results 103

Observed space

↑ ↑ ↑ ↑

Latent space
(a) 2-curve (b) 3-semi (c) 2-circle (d) Pinwheel

Figure 7.4: Top row: Observed unlabeled data points (black), and cluster densities
inferred by the iWMM (colors). Bottom row: Latent coordinates and Gaussian compo-
nents from a single sample from the posterior. Each circle plotted in the latent space
corresponds to a datapoint in the observed space.

components cannot separate the two curved lines, while a GMM with many components
could separate the two lines only by breaking each line into many clusters. In contrast,
the iWMM separates the two non-Gaussian clusters in the observed space, representing
them using two Gaussian-shaped clusters in the latent space. Figure 7.4(b) shows a
similar dataset having three clusters.

Figure 7.4(c) shows an interesting manifold learning challenge: a dataset consisting
of two concentric circles. The outer circle is modeled in the latent space of the iWMM by
a Gaussian with one effective degree of freedom. This narrow Gaussian is fit to the outer
circle in the observed space by bending its two ends until they cross over. In contrast,
the sampler fails to discover the 1D topology of the inner circle, modeling it with a 2D
manifold instead. This example demonstrates that each cluster in the iWMM can have
a different effective dimension.

Figure 7.4(d) shows a five-armed variant of the pinwheel dataset of Adams and
Ghahramani (2009), generated by warping a mixture of Gaussians into a spiral. This
generative process closely matches the assumptions of the iWMM. Unsurprisingly, the
iWMM is able to recover an analogous latent structure, and its predictive density follows

104 Warped Mixture Models

the observed data manifolds.

7.5.2 Clustering face images

We also examined the iWMM’s ability to model images without extensive pre-processing.
We constructed a dataset consisting of 50 greyscale 32x32 pixel images of two individuals
from the UMIST faces dataset (Graham and Allinson, 1998). Each of the two series of
images show a different person turning his head to the right.

Figure 7.5: A sample from the 2-dimensional latent space of the iWMM when model-
ing a series of face images. Images are rendered at their latent 2D coordinates. The
iWMM reports that the data consists of two separate manifolds, both approximately
one-dimensional, which both share the same head-turning structure.

Figure 7.5 shows a sample from the posterior over latent coordinates and density,
with each image rendered at its location in the latent space. The observed space has
32 × 32 = 1024 dimensions. The model has recovered three interpretable features of the
dataset: First, that there are two distinct faces. Second, that each set of images lies
approximately along a smooth one-dimensional manifold. Third, that the two manifolds
share roughly the same structure: the front-facing images of both individuals lie close
to one another, as do the side-facing images.

7.5 Experimental results 105

7.5.3 Density estimation

(a) iWMM (b) GP-LVM

Figure 7.6: Left: Posterior density inferred by the iWMM in the observed space, on the
2-curve data. Right: Posterior density inferred by an iWMM restricted to have only one
cluster, a model equivalent to a fully-Bayesian GP-LVM.

Figure 7.6(a) shows the posterior density in the observed space inferred by the iWMM
on the 2-curve data, computed using 1000 samples from the Markov chain. The iWMM
correctly recovered the separation of the density into two unconnected manifolds.

This result can be compared to the density manifold recovered by the fully-Bayesian
GP-LVM, equivalent to a special case of the iWMM having only a single cluster. Fig-
ure 7.6(b) shows that the GP-LVM places significant density connecting the two end of
the clusters, since it must reproduce the observed density manifold by warping a single
Gaussian.

7.5.4 Mixing

An interesting side-effect of learning the number of latent clusters is that this added
flexibility can help the sampler to escape local minima. Figure 7.7 shows samples of
the latent coordinates and clusters of the iWMM over a single run of a Markov chain
modeling the 2-curve data. Figure 7.7(a) shows the latent coordinates initialized at
the observed coordinates, starting with one latent component. After 500 iterations, each
curved line was modeled by two components. After 1800 iterations, the left curved line
was modeled by a single component. After 3000 iterations, the right curved line was

106 Warped Mixture Models

(a) Initialization (b) Iteration 500 (c) Iteration 1800 (d) Iteration 3000
Figure 7.7: Latent coordinates and densities of the iWMM, plotted throughout one run
of a Markov chain.

also modeled by a single component, and the dataset was appropriately clustered. This
configuration was relatively stable, and a similar state was found at the 5000th iteration.

7.5.5 Visualization

Next, we briefly investigate the utility of the iWMM for low-dimensional visualization
of data. Figure 7.8(a) shows the latent coordinates obtained by averaging over 1000

(a) iWMM (b) iWMM (C = 1)
Figure 7.8: Latent coordinates of the 2-curve data, estimated by two different methods.

samples from the posterior of the iWMM. The estimated latent coordinates are clearly
separated, forming two straight lines. This result is an example of the iWMM recovering
the original topology of the data before it was warped to produce observations.

For comparison, figure 7.8(b) shows the latent coordinates estimated by the fully-
Bayesian GP-LVM, in which case the latent coordinates lie in two sections of a single
straight line.

7.5 Experimental results 107

7.5.6 Clustering performance

We more formally evaluated the density estimation and clustering performance of the
proposed model using four real datasets: iris, glass, wine and vowel, obtained from the
LIBSVM multi-class datasets (Chang and Lin, 2011), in addition to the four synthetic
datasets shown above: 2-curve, 3-semi, 2-circle and pinwheel (Adams and Ghahramani,
2009). The statistics of these datasets are summarized in table 7.1.

Table 7.1: Statistics of the datasets used for evaluation.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

dataset size: N 100 300 100 250 150 214 178 528
dimension: D 2 2 2 2 4 9 13 10

num. clusters: C 2 3 2 5 3 7 3 11

For each experiment, we show the results of ten-fold cross-validation. Results in bold
are not significantly different from the best performing method in each column according
to a paired t-test.

Table 7.2: Average Rand index for evaluating clustering performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

iGMM 0.52 0.79 0.83 0.81 0.78 0.60 0.72 0.76
iWMM(Q=2) 0.86 0.99 0.89 0.94 0.81 0.65 0.65 0.50
iWMM(Q=D) 0.86 0.99 0.89 0.94 0.77 0.62 0.77 0.76

Table 7.2 compares the clustering performance of the iWMM with the iGMM, quan-
tified by the Rand index (Rand, 1971), which measures the correspondence between
inferred cluster labels and true cluster labels. Since the manifold on which the observed
data lies can be at most D-dimensional, we set the latent dimension Q equal to the
observed dimension D. We also included the Q = 2 case in an attempt to characterize
how much modeling power is lost by forcing the latent representation to be visualizable.

These experiments were designed to measure the extent to which nonparametric
cluster shapes help to estimate meaningful clusters. To eliminate any differences due to
different inference procedures, we used identical code for the iGMM and iWMM, the only
difference being that the warping function was set to the identity y = x. Both variants
of the iWMM usually outperformed the iGMM on this measure.

108 Warped Mixture Models

7.5.7 Density estimation

Next, we compared the iWMM in terms of predictive density against kernel density
estimation (KDE), the iGMM, and the fully-Bayesian GP-LVM. For KDE, the kernel
width was estimated by maximizing the leave-one-out density. Table 7.3 lists average
test log likelihoods.

Table 7.3: Average test log-likelihoods for evaluating density estimation performance.
2-curve 3-semi 2-circle Pinwheel Iris Glass Wine Vowel

KDE −2.47 −0.38 −1.92 −1.47 −1.87 1.26 −2.73 6.06
iGMM −3.28 −2.26 −2.21 −2.12 −1.91 3.00 −1.87 −0.67
GP-LVM(Q=2) −1.02 −0.36 −0.78 −0.78 −1.91 5.70 −1.95 6.04
GP-LVM(Q=D) −1.02 −0.36 −0.78 −0.78 −1.86 5.59 −2.89 −0.29
iWMM(Q=2) −0.90 −0.18 −1.02 −0.79 −1.88 5.76 −1.96 5.91
iWMM(Q=D) −0.90 −0.18 −1.02 −0.79 −1.71 5.70 −3.14 −0.35

The iWMM usually achieved higher test likelihoods than the KDE and the iGMM.
The GP-LVM performed competitively with the iWMM, although it never significantly
outperformed the corresponding iWMM having the same latent dimension.

The sometimes large differences between performance in the D = 2 case and the
D = Q case of these two methods may be attributed to the fact that when the observed
dimension is high, many samples are required from the latent distribution in order to
produce accurate estimates of the posterior predictive density at the test locations. This
difficulty might be resolved by using a warping with back-constraints (Lawrence, 2006),
which would allow a more direct evaluation of the density at a given point in the observed
space.

Source code

Code to reproduce all the above figures and experiments is available at
http://www.github.com/duvenaud/warped-mixtures.

7.6 Conclusions

This chapter introduced a simple generative model of non-Gaussian density manifolds
which can infer nonparametric cluster shapes, low-dimensional representations of varying
dimension per cluster, and density estimates which smoothly follow the contours of each

http://www.github.com/duvenaud/warped-mixtures

7.7 Future work 109

cluster. We also introduced a sampler for this model which integrates out both the
cluster parameters and the warping function exactly at each step.

Non-probabilistic methods such as spectral clustering can also produce nonparamet-
ric cluster shapes, but usually lack principled methods other than cross-validation for
setting kernel parameters, the number of clusters, and the implicit dimension of the
learned manifolds. This chapter showed that using a fully generative model allows these
model choices to be determined automatically.

7.7 Future work

More sophisticated latent density models

The Dirichlet process mixture of Gaussians in the latent space of the iWMM could eas-
ily be replaced by a more sophisticated density model, such as a hierarchical Dirichlet
process (Teh et al., 2006), or a Dirichlet diffusion tree (Neal, 2003). Another straight-
forward extension would be to make inference more scalable by using sparse Gaussian
processes (Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2006)
or more advanced Hamiltonian Monte Carlo methods (Zhang and Sutton, 2011).

A finite cluster count model

Miller and Harrison (2013) note that the Dirichlet process assumes infinitely many clus-
ters, and that estimates of the number of clusters in a dataset based on Bayesian in-
ference are inconsistent under this model. They propose a consistent alternative which
still allows efficient Gibbs sampling, called the mixture of finite mixtures. Replacing
the Dirichlet process with a mixture of finite mixtures could improve the consistency
properties of the iWMM.

Semi-supervised learning

A straightforward extension of the iWMM would be a semi-supervised version of the
model. The iWMM could allow label propagation along regions of high density in the
latent space, even if the individual points in those regions are stretched far apart along
low-dimensional manifolds in the observed space. Another natural extension would be
to allow a separate warping for each cluster, producing a mixture of warped Gaussians,
rather than a warped mixture of Gaussians.

110 Warped Mixture Models

Learning the topology of data manifolds

Some datasets naturally live on manifolds which are not simply-connected. For example,
motion capture data or video of a person walking in a circle can be said to live on a
torus, with one coordinate specifying the phase of the person’s walking cycle, and another
specifying how far around the circle they are.

As shown in section 2.8, using structured kernels to specify the warping of a latent
space gives rise to interesting topologies on the observed density manifold. If a suitable
method for computing the marginal likelihood of a GP-LVM is available, an automatic
search similar to the one described in chapter 3 may be able to automatically discover
the topology of the data manifold.

Chapter 8

Discussion

This chapter summarizes the contributions of this thesis, articulates some of the ques-
tions raised by this work, and relates the kernel-based model-building procedure of
chapters 2 to 4 to the larger project of automating statistics and machine learning.

8.1 Summary of contributions

The main contribution of this thesis was to develop a way to automate the construction
of structured, interpretable nonparametric regression models using Gaussian processes.
This was done in several parts: First, chapter 2 presented a systematic overview of
kernel construction techniques, and examined the resulting GP priors. Next, chapter 3
showed the viability of a search over an open-ended space of kernels, and showed that the
corresponding GP models could be automatically decomposed into diverse parts allowing
visualization of the structure found in the data. Chapter 4 showed that sometimes parts
of kernels can be described modularly, allowing automatically written text to be included
in detailed reports describing GP models. An example report is included in appendix D.
Together, these chapters demonstrate a proof-of-concept of what could be called an
“automatic statistician” capable of the performing some of the model construction and
analysis currently performed by experts.

The second half of this thesis examined several extensions of Gaussian processes, all
of which enabled the automatic determination of model choices that were previously
set by trial and error or cross-validation. Chapter 5 characterized and visualized deep
Gaussian processes, related them to existing deep neural networks, and derived novel
deep kernels. Chapter 6 investigated additive GPs, and showed that they have the same
covariance as a GP using dropout. Chapter 7 extended the GP latent variable model

112 Discussion

into a Bayesian clustering model which automatically infers the nonparametric shape of
each cluster, as well as the number of clusters.

8.2 Structured versus unstructured models

One question left unanswered by this thesis is: when to prefer the structured, kernel-
based models described in chapters 2 to 4 and 6 to the relatively unstructured deep GP
models described in chapter 5? This section considers some advantages and disadvan-
tages of the two approaches.

• Difficulty of optimization. The discrete nature of the space of composite kernel
structures can be seen as both a blessing and a curse. Certainly, a mixed discrete-
and-continuous search space requires more complex optimization procedures than
the continuous-only optimization possible in deep GPs.

However, the discrete nature of the space of composite kernels offers the possibility
of learning heuristics to suggest which types of structure to add, based on features
of the dataset, or previous model fits. For example, finding periodic structure or
growing variance in the residuals suggests adding periodic or linear components
to the kernel, respectively. It is not clear whether such heuristics could easily be
constructed for optimizing the variational parameters of a deep GP.

• Long-range extrapolation. Another open question is whether the inductive
bias of deep GPs can be made to allow the sorts of long-range extrapolation shown
in chapters 2 and 3. As an example, consider the problem of extrapolating a
periodic function. A deep GP could learn a latent representation similar to that
of the periodic kernel, projecting into a basis equivalent to [sin(x), cos(x)] in the
first hidden layer. However, to extrapolate a periodic function, the sin and cos
functions would have to repeat beyond the input range of the training data, which
would not happen if each layer assumed only local smoothness.

One obvious possibility is to marry the two approaches, building deep GPs with
structured kernels. However, we may lose some of the advantages of interpretability
by this approach, and inference would become more difficult.

Another point to consider is that, in high dimensions, the distinction between inter-
polation and extrapolation becomes less meaningful. If the training and test data
both live on a low-dimensional manifold, then learning a suitable representation
of that manifold may be sufficient for obtaining high predictive accuracy.

8.3 Approaches to automating model construction 113

• Ease of interpretation. Historically, the statistics community has put more
emphasis on the interpretability and meaning of models than the machine learn-
ing community, which has focused more on predictive performance. To begin to
automate the practice of statistics, developing model-description procedures for
powerful open-ended model classes seems to be a necessary step.

At first glance, automatic model description may seem to require a decomposi-
tion of the model being described into discrete components, as in the additive
decomposition demonstrated in chapters 2 to 4.

On the other hand, most probabilistic models allow a form of summarization of
high-dimensional structure through sampling from the posterior. For the specific
case of deep GPs, Damianou and Lawrence (2013) showed that these models allow
summarization through examining the dimension of each latent layer, visualizing
latent coordinates, and examining how the predictive distribution changes as one
moves in the latent space. Perhaps more sophisticated procedures could also allow
intelligible text-based descriptions of such models.

The warped mixture model of chapter 7 represents a compromise between these two
approaches, combining a discrete clustering model with an unstructured warping func-
tion. However, the explicit clustering model may by unnecessary: the results of Dami-
anou and Lawrence (2013) suggest that clustering can be automatically (but implicitly)
accomplished by a sufficiently deep, unstructured GP.

8.3 Approaches to automating model construction

This thesis is a small part of a larger push to automate the practice of model building
and inference. Broadly speaking, this problem is being attacked from two directions.

From the top-down, the probabilistic programming community is developing auto-
matic inference engines for extremely broad classes of models (Goodman et al., 2008;
Koller et al., 1997; Mansinghka et al., 2014; Milch et al., 2007; Stan Development Team,
2014; Wood et al., 2014) such as the class of all computable distributions (Li and Vitányi,
1997; Solomonoff, 1964). As discussed in section 3.1, model construction procedures
can usually be seen as a search through an open-ended model class. Exhaustive search
strategies have been constructed for the space of computable distributions (Hutter, 2002;
Levin, 1973; Schmidhuber, 2002), but they remain impractically slow.

114 Discussion

An alternative, bottom-up, approach is to design procedures which extend and com-
bine existing model classes for which relatively efficient inference algorithms are already
known. The language of models proposed in chapter 3 is an example of this bottom-
up approach. Another example is Grosse (2014), who built an open-ended language of
matrix decomposition models and a corresponding compositional language of relatively
efficient approximate inference algorithms. Similarly, Steinruecken (2014) showed how
to compose inference algorithms for sequence models. These approaches have the advan-
tage that inference is usually feasible for any model in the language. However, extending
these languages may require developing new inference algorithms.

If sufficiently powerful building-blocks are composed, the line between the top-
down and bottom-up approaches becomes blurred. For example, deep generative mod-
els (Adams et al., 2010; Bengio et al., 2013; Damianou and Lawrence, 2013; Rippel
and Adams, 2013; Salakhutdinov and Hinton, 2009) could be considered an example
of the bottom-up approach, since they compose individual model “layers” to produce
more powerful models. However, large neural nets can capture enough different types
of structure that they could also be seen as an example of the universalist, top-down
approach.

8.4 Conclusion

It seems clear that one way or another, large parts of the existing practice of model-
building will eventually be automated. However, it remains to be seen which of the above
model-building approaches will be most useful. I hope that this thesis will contribute
to our understanding of the strengths and weaknesses of these different approaches, and
towards the use of more powerful model classes by practitioners in other fields.

Appendix A

Gaussian Conditionals

A standard result shows how to condition on a subset of dimensions yB of a vector y
having a multivariate Gaussian distribution. If

y =
 yA

yB

 ∼ N

 µA

µB

 ,

 ΣAA ΣAB

ΣBA ΣBB

 (A.1)

then

yA|yB ∼ N
(
µA + ΣABΣ−1

BB (xB − µB) , ΣAA − ΣABΣ−1
BBΣBA

)
. (A.2)

This result can be used in the context of Gaussian process regression, where yB =
[f(x1), f(x2), . . . , f(xN)] represents a set of function values observed at some subset of
locations [x1, x2, . . . , xN], while yA = [f(x1⋆), f(x2⋆), . . . , f(xN⋆)] represents test points
whose predictive distribution we’d like to know. In this case, the necessary covariance
matrices are given by:

ΣAA = k(X⋆, X⋆) (A.3)
ΣAB = k(X⋆, X) (A.4)
ΣBA = k(X, X⋆) (A.5)
ΣBB = k(X, X) (A.6)

and similarly for the mean vectors.

Appendix B

Kernel Definitions

This appendix gives the formulas for all one-dimensional base kernels used in the thesis.
Each of these formulas is multiplied by a scale factor σ2

f , which we omit for clarity.

C(x, x′) = 1 (B.1)

SE(x, x′) = exp
(

−(x − x′)2

2ℓ2

)
(B.2)

Per(x, x′) = exp
(

− 2
ℓ2 sin2

(
π

x − x′

p

))
(B.3)

Lin(x, x′) = (x − c)(x′ − c) (B.4)

RQ(x, x′) =
(

1 + (x − x′)2

2αℓ2

)−α

(B.5)

cos(x, x′) = cos
(

2π(x − x′)
p

)
(B.6)

WN(x, x′) = δ(x − x′) (B.7)
CP(k1, k2)(x, x′) = σ(x)k1(x, x′)σ(x′) + (1 − σ(x))k2(x, x′)(1 − σ(x′)) (B.8)

σ(x, x′) = σ(x)σ(x′) (B.9)
σ̄(x, x′) = (1 − σ(x))(1 − σ(x′)) (B.10)

where δx,x′ is the Kronecker delta function, {c, ℓ, p, α} represent kernel parameters, and
σ(x) = 1/1+exp(−x).

Equations (B.2) to (B.4) are plotted in figure 2.1, and equations (B.5) to (B.7) are
plotted in figure 3.1. Draws from GP priors with changepoint kernels are shown in
figure 2.9.

117

The zero-mean periodic kernel

James Lloyd (personal communication) showed that the standard periodic kernel due to
MacKay (1998) can be decomposed into a sum of a periodic and a constant component.
He derived the equivalent periodic kernel without any constant component:

ZMPer(x, x′) = σ2
f

exp
(

1
ℓ2 cos 2π (x−x′)

p

)
− I0

(
1
ℓ2

)
exp

(
1
ℓ2

)
− I0

(
1
ℓ2

) (B.11)

where I0 is the modified Bessel function of the first kind of order zero.
He further showed that its limit as the lengthscale grows is the cosine kernel:

lim
ℓ→∞

ZMPer(x, x′) = cos
(

2π(x − x′)
p

)
. (B.12)

Separating out the constant component allows us to express negative prior covariance,
as well as increasing the interpretability of the resulting models. This covariance function
is included in the GPML software package (Rasmussen and Nickisch, 2010), and its source
can be viewed at gaussianprocess.org/gpml/code/matlab/cov/covPeriodicNoDC.m.

gaussianprocess.org/gpml/code/matlab/cov/covPeriodicNoDC.m

Appendix C

Search Operators

The model construction phase of ABCD starts with the noise kernel, WN. New kernel
expressions are generated by applying search operators to the current kernel, which
replace some part of the existing kernel expression with a new kernel expression.

The search used in the multidimensional regression experiments in sections 3.8.4
and 6.6 used only the following search operators:

S → S + B (C.1)
S → S × B (C.2)
B → B′ (C.3)

where S represents any kernel sub-expression and B is any base kernel within a kernel
expression. These search operators represent addition, multiplication and replacement.
When the multiplication operator is applied to a sub-expression which includes a sum
of sub-expressions, parentheses () are introduced. For instance, if rule (C.2) is applied
to the sub-expression k1 + k2, the resulting expression is (k1 + k2)×B.

Afterwards, we added several more search operators in order to speed up the search.
This expanded set of operators was used in the experiments in sections 3.6 and 3.8.2
and chapter 4. These new operators do not change the set of possible models.

To accommodate changepoints and changewindows, we introduced the following ad-

119

ditional operators to our search:

S → CP(S, S) (C.4)
S → CW(S, S) (C.5)
S → CW(S, C) (C.6)
S → CW(C, S) (C.7)

where C is the constant kernel. The last two operators result in a kernel only applying
outside, or within, a certain region.

To allow the search to simplify existing expressions, we introduced the following
operators:

S → B (C.8)
S + S ′ → S (C.9)
S × S ′ → S (C.10)

where S ′ represents any other kernel expression. We also introduced the operator

S → S × (B + C) (C.11)

Which allows a new base kernel to be added along with the constant kernel, for cases
when multiplying by a base kernel by itself would be overly restrictive.

Appendix D

Example Automatically Generated
Report

The following pages of this appendix contain an automatically-generated report, run on
a dataset measuring annual solar irradiation data from 1610 to 2011. This dataset was
previously analyzed by Lean et al. (1995).

The structure search was run using the ABCD-interpretable variant, with base kernels
SE, Lin, C, Per, σ, and WN.

Other example reports can be found at http://www.mlg.eng.cam.ac.uk/Lloyd/abcdoutput/,
including analyses of wheat prices, temperature records, call centre volumes, radio in-
terference, gas production, unemployment, number of births, and wages over time.

http://www.mlg.eng.cam.ac.uk/Lloyd/abcdoutput/

121

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1600 1700 1800 1900 2000 2100
1360

1360.5

1361

1361.5

1362
Full model posterior with extrapolations

1600 1700 1800 1900 2000 2100
1359.5

1360

1360.5

1361

1361.5

1362

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified nine additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 8 additive components explain 99.2% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.
• A constant. This function applies from 1644 until 1713.
• A smooth function. This function applies until 1644 and from 1719 onwards.
• An approximately periodic function with a period of 10.8 years. This function applies until

1644 and from 1719 onwards.
• A rapidly varying smooth function. This function applies until 1644 and from 1719 on-

wards.
• Uncorrelated noise.
• A rapidly varying smooth function with marginal standard deviation increasing linearly

away from 1843. This function applies from 1751 onwards.
• A rapidly varying smooth function. This function applies until 1644 and from 1719 until

1751.
• A constant. This function applies from 1713 until 1719.

122 Example Automatically Generated Report

R2 (%) ∆R2 (%) Residual R2 (%) Cross validated MAE Reduction in MAE (%)
- - - - 1360.65 -
1 0.0 0.0 0.0 0.33 100.0
2 35.3 35.3 35.3 0.23 29.4
3 72.5 37.2 57.5 0.18 20.7
4 92.3 19.9 72.2 0.15 16.4
5 97.8 5.5 71.4 0.15 0.4
6 97.8 0.0 0.2 0.15 0.0
7 98.4 0.5 24.8 0.15 -0.0
8 99.2 0.8 50.7 0.15 -0.0
9 100.0 0.8 100.0 0.15 -0.0

Table 1: Summary statistics for cumulative additive fits to the data. The residual coefficient of
determination (R2) values are computed using the residuals from the previous fit as the target values;
this measures how much of the residual variance is explained by each new component. The mean
absolute error (MAE) is calculated using 10 fold cross validation with a contiguous block design;
this measures the ability of the model to interpolate and extrapolate over moderate distances. The
model is fit using the full data so the MAE values cannot be used reliably as an estimate of out-of-
sample predictive performance.

2 Detailed discussion of additive components

2.1 Component 1 : A constant

This component is constant.

This component explains 0.0% of the total variance. The addition of this component reduces the
cross validated MAE by 100.0% from 1360.6 to 0.3.

Posterior of component 1

1650 1700 1750 1800 1850 1900 1950 2000
1360.5

1360.6

1360.7

1360.8

1360.9

1361
Sum of components up to component 1

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 2: Posterior of component 1 (left) and the posterior of the cumulative sum of components
with data (right)

123

2.2 Component 2 : A constant. This function applies from 1644 until 1713

This component is constant. This component applies from 1644 until 1713.

This component explains 35.3% of the residual variance; this increases the total variance explained
from 0.0% to 35.3%. The addition of this component reduces the cross validated MAE by 29.42%
from 0.33 to 0.23.

Posterior of component 2

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Sum of components up to component 2

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 3: Posterior of component 2 (left) and the posterior of the cumulative sum of components
with data (right)

2.3 Component 3 : A smooth function. This function applies until 1644 and from 1719
onwards

This component is a smooth function with a typical lengthscale of 21.9 years. This component
applies until 1644 and from 1719 onwards.

This component explains 57.5% of the residual variance; this increases the total variance explained
from 35.3% to 72.5%. The addition of this component reduces the cross validated MAE by 20.66%
from 0.23 to 0.18.

Posterior of component 3

1650 1700 1750 1800 1850 1900 1950 2000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Sum of components up to component 3

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 4: Posterior of component 3 (left) and the posterior of the cumulative sum of components
with data (right)

124 Example Automatically Generated Report

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This
function applies until 1644 and from 1719 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape
of the function varies smoothly with a typical lengthscale of 33.2 years. The shape of the function
within each period has a typical lengthscale of 12.6 years. This component applies until 1644 and
from 1719 onwards.

This component explains 72.2% of the residual variance; this increases the total variance explained
from 72.5% to 92.3%. The addition of this component reduces the cross validated MAE by 16.42%
from 0.18 to 0.15.

Posterior of component 4

1650 1700 1750 1800 1850 1900 1950 2000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Sum of components up to component 4

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 5: Posterior of component 4 (left) and the posterior of the cumulative sum of components
with data (right)

2.5 Component 5 : A rapidly varying smooth function. This function applies until 1644 and
from 1719 onwards

This function is a rapidly varying but smooth function with a typical lengthscale of 1.2 years. This
component applies until 1644 and from 1719 onwards.

This component explains 71.4% of the residual variance; this increases the total variance explained
from 92.3% to 97.8%. The addition of this component reduces the cross validated MAE by 0.41%
from 0.15 to 0.15.

Posterior of component 5

1650 1700 1750 1800 1850 1900 1950 2000
−0.4

−0.2

0

0.2

0.4

0.6
Sum of components up to component 5

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 6: Posterior of component 5 (left) and the posterior of the cumulative sum of components
with data (right)

125

2.6 Component 6 : Uncorrelated noise

This component models uncorrelated noise.

This component explains 0.2% of the residual variance; this increases the total variance explained
from 97.8% to 97.8%. The addition of this component reduces the cross validated MAE by 0.00%
from 0.15 to 0.15. This component explains residual variance but does not improve MAE which
suggests that this component describes very short term patterns, uncorrelated noise or is an artefact
of the model or search procedure.

Posterior of component 6

1650 1700 1750 1800 1850 1900 1950 2000
−8

−6

−4

−2

0

2

4

6

8
x 10

−3 Sum of components up to component 6

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 7: Posterior of component 6 (left) and the posterior of the cumulative sum of components
with data (right)

2.7 Component 7 : A rapidly varying smooth function with marginal standard deviation
increasing linearly away from 1843. This function applies from 1751 onwards

This function is a rapidly varying but smooth function with a typical lengthscale of 3.1 months. The
marginal standard deviation of the function increases linearly away from 1843. This component
applies from 1751 onwards.

This component explains 24.8% of the residual variance; this increases the total variance explained
from 97.8% to 98.4%. The addition of this component increases the cross validated MAE by 0.00%
from 0.15 to 0.15. This component explains residual variance but does not improve MAE which
suggests that this component describes very short term patterns, uncorrelated noise or is an artefact
of the model or search procedure.

Posterior of component 7

1650 1700 1750 1800 1850 1900 1950 2000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Sum of components up to component 7

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 8: Posterior of component 7 (left) and the posterior of the cumulative sum of components
with data (right)

126 Example Automatically Generated Report

2.8 Component 8 : A rapidly varying smooth function. This function applies until 1644 and
from 1719 until 1751

This function is a rapidly varying but smooth function with a typical lengthscale of 3.1 months. This
component applies until 1644 and from 1719 until 1751.

This component explains 50.7% of the residual variance; this increases the total variance explained
from 98.4% to 99.2%. The addition of this component increases the cross validated MAE by 0.00%
from 0.15 to 0.15. This component explains residual variance but does not improve MAE which
suggests that this component describes very short term patterns, uncorrelated noise or is an artefact
of the model or search procedure.

Posterior of component 8

1650 1700 1750 1800 1850 1900 1950 2000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Sum of components up to component 8

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 9: Posterior of component 8 (left) and the posterior of the cumulative sum of components
with data (right)

2.9 Component 9 : A constant. This function applies from 1713 until 1719

This component is constant. This component applies from 1713 until 1719.

This component explains 100.0% of the residual variance; this increases the total variance explained
from 99.2% to 100.0%. The addition of this component increases the cross validated MAE by
0.01% from 0.15 to 0.15. This component explains residual variance but does not improve MAE
which suggests that this component describes very short term patterns, uncorrelated noise or is an
artefact of the model or search procedure.

Posterior of component 9

1650 1700 1750 1800 1850 1900 1950 2000
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
Sum of components up to component 9

1650 1700 1750 1800 1850 1900 1950 2000
1360

1360.5

1361

1361.5

1362

Figure 10: Posterior of component 9 (left) and the posterior of the cumulative sum of components
with data (right)

127

3 Extrapolation

Summaries of the posterior distribution of the full model are shown in figure 11. The plot on the left
displays the mean of the posterior together with pointwise variance. The plot on the right displays
three random samples from the posterior.

Full model posterior with extrapolations

1600 1700 1800 1900 2000 2100
1359.5

1360

1360.5

1361

1361.5

1362
Random samples from the full model posterior

1600 1700 1800 1900 2000 2100
1359

1359.5

1360

1360.5

1361

1361.5

1362

Figure 11: Full model posterior. Mean and pointwise variance (left) and three random samples
(right)

Appendix E

Inference in the Warped Mixture
Model

Detailed definition of model

The iWMM assumes that the latent density is an infinite mixture of Gaussians:

p(x) =
∞∑

c=1
λc N (x|µc, R−1

c) (E.1)

where λc, µc and Rc is the mixture weight, mean, and precision matrix of the cth mixture
component. We place a conjugate Gaussian-Wishart priors on the Gaussian parameters
{µc, Rc}:

p(µc, Rc) = N (µc|u, (rRc)−1)W(Rc|S−1, ν), (E.2)

where u is the mean of µc, r is the relative precision of µc, S−1 is the scale matrix for Rc,
and ν is the number of degrees of freedom for Rc. The Wishart distribution is defined
as:

W(R|S−1, ν) = 1
G

|R|
ν−Q−1

2 exp
(

−1
2tr(SR)

)
, (E.3)

where G is the normalizing constant.
Because we use conjugate Gaussian-Wishart priors for the parameters of the Gaussian

mixture components, we can analytically integrate out those parameters given the as-
signments of points to components. Let zn be the assignment of the nth point. The prior
probability of latent coordinates X given latent cluster assignments z = (z1, z2, . . . , zN)

129

factorizes over clusters, and can be obtained in closed-form by integrating out the Gaus-
sian parameters {µc, Rc} to give:

p(X|z, S, ν, r) =
∞∏

c=1
π− NcQ

2
rQ/2 |S|ν/2

r
Q/2
c |Sc|νc/2 ×

Q∏
q=1

Γ
(

νc+1−q
2

)
Γ
(

ν+1−q
2

) , (E.4)

where Nc is the number of data points assigned to the cth component, Γ(·) is the Gamma
function, and

rc = r + Nc, νc = ν + Nc, uc =
ru +

∑
n:zn=c

xn

r + Nc

, (E.5)

and Sc = S +
∑

n:zn=c

xnxT
n + ruuT − rcucuT

c , (E.6)

are the posterior Gaussian-Wishart parameters of the cth component (Murphy, 2007).
To model the cluster assignments, we use a Dirichlet process (MacEachern and

Müller, 1998) with concentration parameter η. Under a Dirichlet process prior, the
probability of observing a particular cluster assignment z depends only on the partition
induced, and is given by the Chinese restaurant process:

p(z|η) = Γ(η)ηC

Γ(η + N)

C∏
c=1

Γ(Nc) (E.7)

where C is the number of components for which Nc > 0, and N is the total number of
datapoints.

The joint distribution of observed coordinates, latent coordinates, and cluster assign-
ments is given by

p(Y, X, z|θ, S, ν, u, r, η) = p(Y|X, θ)p(X|z, S, ν, u, r)p(z|η), (E.8)

where the factors in the right hand side can be calculated by equations (7.5), (E.4) and
(E.7), respectively.

Details of inference

After analytically integrating out the parameters of the Gaussian mixture components,
the only remaining variables to infer are the latent points X, the cluster assignments

130 Inference in the Warped Mixture Model

z, and the kernel parameters θ. We’ll estimate the posterior over these parameters
using Markov chain Monte Carlo. In particular, we’ll alternate between collapsed Gibbs
sampling of each row of z, and Hamiltonian Monte Carlo sampling of X and θ.

First, we explain collapsed Gibbs sampling for the cluster assignments z. Given a
sample of X, p(z|X, S, ν, u, r, η) does not depend on Y. This lets us resample cluster
assignments, integrating out the iGMM likelihood in closed form. Given the current state
of all but one latent component zn, a new value for zn is sampled with the following
probability:

p(zn = c|X, z\n, S, ν, u, r, η) ∝

Nc\n · p(xn|Xc\n, S, ν, u, r) existing components
η · p(xn|S, ν, u, r) a new component

(E.9)

where Xc = {xn|zn = c} is the set of latent coordinates assigned to the cth component,
and \n represents the value or set when excluding the nth data point. We can analytically
calculate p(xn|Xc\n, S, ν, u, r) as follows:

p(xn|Xc\n, S, ν, u, r) = π−
Nc\nQ

2
r

Q/2
c\n

∣∣∣Sc\n

∣∣∣νc\n/2

r
′Q/2
c\n

∣∣∣S′
c\n

∣∣∣ν′
c\n

/2 ×
Q∏

d=1

Γ
(

ν′
c\n

+1−d

2

)
Γ
(

νc\n+1−d

2

) , (E.10)

where r′
c, ν ′

c, u′
c and S′

c represent the posterior on Gaussian-Wishart parameters of the
cth component when the nth data point has been assigned to it. We can efficiently
calculate the determinant

∣∣∣S′
c\n

∣∣∣ using the rank-one Cholesky update. A special case of
equation (E.10) gives the likelihood for a new component, p(xn|S, ν, u, r).

Gradients for Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) sampling of X from posterior p(X|z, Y, θ, S, ν, u, r),
requires computing the gradient of the log-unnormalized-posterior with respect to X:

∂

∂X
[

log p(Y|X, θ) + log p(X|z, S, ν, u, r)
]

(E.11)

The first term of gradient (E.11) can be calculated by

∂ log p(Y|X, θ)
∂X

= ∂ log p(Y|X, θ)
∂K

∂K
∂X

=
[
−1

2DK−1 + 1
2K−1YYT K−1

] [
∂K
∂X

]
, (E.12)

131

where for an SE + WN kernel with the same lengthscale ℓ on all dimensions,

∂k(xn, xm)
∂xn

= −
σ2

f

ℓ2 exp
(

− 1
2ℓ2 (xn − xm)T(xn − xm)

)
(xn − xm). (E.13)

The second term of (E.11) is given by

∂ log p(X|z, S, ν, u, r)
∂xn

= −νznS−1
zn

(xn − uzn). (E.14)

We also infer kernel parameters θ via HMC, using the gradient of the log unnormalized
posterior with respect to the kernel parameters, using an improper uniform prior.

Posterior predictive density

In the GP-LVM, the predictive density of at test point y⋆ is usually computed by finding
the point x⋆ which has the highest probability of being mapped to y⋆, then using the
density of p(x⋆) and the Jacobian of the warping at that point to approximate the
density at y⋆. When inference is done this way, approximating the predictive density
only requires solving a single optimization for each y⋆.

For our model, we use approximate integration to estimate p(y⋆). This is done for two
reasons: First, multiple latent points (possibly from different clusters) can map to the
same observed point, meaning the standard method can underestimate p(y⋆). Second,
because we do not optimize the latent coordinates of training points, but instead sample
them, we would need to optimize each p(x⋆) separately for each sample in the Markov
chain. One advantage of our method is that it gives estimates for all p(y⋆) at once.
However, it may not be as accurate in very high observed dimensions, when the volume
to sample over is relatively large.

The posterior density in the observed space given the training data is

p(y⋆|Y) =
∫∫

p(y⋆, x⋆, X|Y)dx⋆dX

=
∫∫

p(y⋆|x⋆, X, Y)p(x⋆|X, Y)p(X|Y)dx⋆dX. (E.15)

We first approximate p(X|Y) using samples from the Gibbs and Hamiltonian Monte
Carlo chain. We then approximate p(x⋆|X, Y) by sampling points from the posterior
density in the latent space and warping them, using the following procedure:

1. Draw a latent cluster assignment z⋆ ∼ Mult
(

N1
N+η

, N2
N+η

, · · · , NC

N+η
, η

N+η

)

132 Inference in the Warped Mixture Model

2. Draw a latent cluster precision matrix R⋆ ∼ W(S−1
z⋆

, νz⋆)

3. Draw a latent cluster mean µ⋆ ∼ N (uz⋆ , (rz⋆R⋆)−1)

4. Draw latent coordinates x⋆ ∼ N (µ⋆, R−1
⋆)

5. For each observed dimension d = 1, 2, . . . , D,
draw observed coordinates y⋆

d ∼ N (kT
⋆ K−1Y:,d, k(x⋆, x⋆) − kT

⋆ K−1k⋆)

If z⋆ is assigned to a new component in step 1, the prior Gaussian-Wishart distribution
(E.2) is used for sampling in steps 2 and 3. The density drawn from in step 5 is the
predictive distribution of a GP, where k⋆ = [k(x⋆, x1), k(x⋆, x2), · · · , k(x⋆, xN)]T and
Y:,d represents the dth column of Y.

Each step of this sampling procedure draws from the exact conditional distribution,
so the Monte Carlo estimate of the conditional predictive density p(y⋆|X, Y) will con-
verge to the true marginal distribution as the number of samples increases. Since the
observations y⋆ are conditionally normally distributed, each one adds a smooth contri-
bution to the empirical Monte Carlo estimate of the posterior density, as opposed to a
collection of point masses.

Source code

A reference implementation of the above algorithms is available at
http://www.github.com/duvenaud/warped-mixtures.

http://www.github.com/duvenaud/warped-mixtures

References

Ryan P. Adams and Zoubin Ghahramani. Archipelago: Nonparametric Bayesian semi-
supervised learning. In Proceedings of the 26th International Conference on Machine
Learning, pages 1–8. ACM, 2009. (pages 103 and 107)

Ryan P. Adams and David J. C. MacKay. Bayesian online changepoint detection. arXiv
preprint arXiv:0710.3742, 2007. (page 42)

Ryan P. Adams, Hanna M. Wallach, and Zoubin Ghahramani. Learning the structure
of deep sparse graphical models. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, 2010. (pages 78 and 114)

Mark A. Armstrong, Gérard Iooss, and Daniel D. Joseph. Groups and symmetry.
Springer, 1988. (page 23)

Francis R. Bach. High-dimensional non-linear variable selection through hierarchical
kernel learning. arXiv preprint arXiv:0909.0844, 2009. (pages 89, 92, and 93)

Francis R. Bach, Gert R.G. Lanckriet, and Michael I. Jordan. Multiple kernel learn-
ing, conic duality, and the SMO algorithm. In Proceedings of the 21st International
Conference on Machine learning, 2004. (pages 42 and 44)

Kevin Bache and Moshe Lichman. UCI machine learning repository, 2013. URL http:
//archive.ics.uci.edu/ml. (page 92)

Pierre Baldi and Peter J. Sadowski. Understanding dropout. In Advances in Neural
Information Processing Systems, pages 2814–2822, 2013. (page 87)

Andrei Barbu, Alexander Bridge, Zachary Burchill, Dan Coroian, Sven Dickinson, Sanja
Fidler, Aaron Michaux, Sam Mussman, Siddharth Narayanaswamy, Dhaval Salvi, Lara
Schmidt, Jiangnan Shangguan, Jeffrey M. Siskind, Jarrell Waggoner, Song Wang,
Jinlian Wei, Yifan Yin, and Zhiqi Zhang. Video in sentences out. In Conference on
Uncertainty in Artificial Intelligence, 2012. (page 57)

Richard Bellman. Dynamic programming and Lagrange multipliers. Proceedings of
the National Academy of Sciences of the United States of America, 42(10):767, 1956.

(pages 13 and 86)

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–
166, 1994. (page 79)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

134 References

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. The curse of highly variable
functions for local kernel machines. Advances in Neural Information Processing Sys-
tems, 18:107–114, 2006. ISSN 1049-5258. (pages 75 and 86)

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising
auto-encoders as generative models. In Advances in Neural Information Processing
Systems, pages 899–907, 2013. (page 114)

Wu Bing, Zhang Wen-qiong, Chen Ling, and Liang Jia-hong. A GP-based kernel
construction and optimization method for RVM. In International Conference on
Computer and Automation Engineering (ICCAE), volume 4, pages 419–423, 2010.

(page 43)

Salomon Bochner. Lectures on Fourier integrals, volume 42. Princeton University Press,
1959. (pages 21 and 42)

Edwin V. Bonilla, Kian Ming Adam Chai, and Christopher K. I. Williams. Multi-task
Gaussian process prediction. In Advances in Neural Information Processing Systems,
2007. (page 29)

George E.P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time series analysis:
forecasting and control. John Wiley & Sons, 1970. (pages 39 and 45)

Wenbo Cao and Robert Haralick. Nonlinear manifold clustering by dimensionality. In
International Conference on Pattern Recognition (ICPR), volume 1, pages 920–924.
IEEE, 2006. (page 101)

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27, 2011.

(page 107)

Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances
in Neural Information Processing Systems, pages 342–350, 2009. (pages 75 and 79)

Robert M. Corless, Gaston H. Gonnet, David E. G. Hare, David J. Jeffrey, and Donald E.
Knuth. On the Lambert W function. Advances in Computational Mathematics, 5(1):
329–359, 1996. (page 76)

Corinna Cortes and Vladimir N. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995. (page 17)

Andreas Damianou and Neil D. Lawrence. Deep Gaussian processes. In Artificial Intel-
ligence and Statistics, pages 207–215, 2013. (pages 59, 77, 102, 113, and 114)

Eyal Dechter, Jon Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. Bootstrap
learning via modular concept discovery. In Proceedings of the Twenty-Third interna-
tional joint conference on Artificial Intelligence, pages 1302–1309. AAAI Press, 2013.

(page 44)

Laura Diosan, Alexandrina Rogozan, and Jean-Pierre Pecuchet. Evolving kernel func-
tions for SVMs by genetic programming. In Machine Learning and Applications, 2007,
pages 19–24. IEEE, 2007. (page 43)

References 135

Nicolas Durrande, David Ginsbourger, and Olivier Roustant. Additive kernels for Gaus-
sian process modeling. arXiv preprint arXiv:1103.4023, 2011. (page 89)

Nicolas Durrande, James Hensman, Magnus Rattray, and Neil D. Lawrence. Gaussian
process models for periodicity detection. arXiv preprint arXiv:1303.7090, 2013.

(page 57)

David Duvenaud, Hannes Nickisch, and Carl E. Rasmussen. Additive Gaussian pro-
cesses. In Advances in Neural Information Processing Systems 24, pages 226–234,
Granada, Spain, 2011. (page 81)

David Duvenaud, James Robert Lloyd, Roger B. Grosse, Joshua B. Tenenbaum, and
Zoubin Ghahramani. Structure discovery in nonparametric regression through compo-
sitional kernel search. In Proceedings of the 30th International Conference on Machine
Learning, 2013. (page 31)

David Duvenaud, Oren Rippel, Ryan P. Adams, and Zoubin Ghahramani. Avoiding
pathologies in very deep networks. In 17th International Conference on Artificial
Intelligence and Statistics, Reykjavik, Iceland, April 2014. (page 60)

Daniel Eaton and Kevin Murphy. Bayesian structure learning using dynamic program-
ming and MCMC. In Conference on Uncertainty in Artificial Intelligence, 2007.

(page 32)

Ehsan Elhamifar and René Vidal. Sparse manifold clustering and embedding. In Ad-
vances in Neural Information Processing Systems, pages 55–63, 2011. (page 101)

Emily B. Fox and David B. Dunson. Multiresolution Gaussian processes. In Advances
in Neural Information Processing Systems 25. MIT Press, 2013. (page 44)

Nir Friedman and Daphne Koller. Being Bayesian about network structure: A Bayesian
approach to structure discovery in Bayesian networks. Machine Learning, 50:95–126,
2003. (page 32)

M. Ganesalingam and Timonthy W. Gowers. A fully automatic problem solver with
human-style output. arXiv preprint arXiv:1309.4501, 2013. (page 57)

Roman Garnett, Michael A. Osborne, Steven Reece, Alex Rogers, and Stephen J.
Roberts. Sequential Bayesian prediction in the presence of changepoints and faults.
The Computer Journal, 53(9):1430–1446, 2010. (pages 34, 42, and 44)

Andreas Geiger, Raquel Urtasun, and Trevor Darrell. Rank priors for continuous non-
linear dimensionality reduction. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 880–887. IEEE, 2009. (page 101)

Andrew Gelman. Why waste time philosophizing?, 2013. URL http://andrewgelman.
com/2013/02/11/why-waste-time-philosophizing/. (page 32)

Andrew Gelman and Cosma R. Shalizi. Philosophy and the practice of Bayesian statis-
tics. British Journal of Mathematical and Statistical Psychology, 2012. (page 32)

http://andrewgelman.com/2013/02/11/why-waste-time-philosophizing/
http://andrewgelman.com/2013/02/11/why-waste-time-philosophizing/

136 References

Robert Gens and Pedro Domingos. Learning the structure of sum-product networks. In
Proceedings of the 30th International Conference on Machine learning, 2013.

(page 80)

Zoubin Ghahramani and M.J. Beal. Variational inference for Bayesian mixtures of factor
analysers. Advances in Neural Information Processing Systems, 12:449–455, 2000.

(page 101)

Elad Gilboa, Yunus Saatçi, and John Cunningham. Scaling multidimensional inference
for structured Gaussian processes. In Proceedings of the 30th International Conference
on Machine Learning, 2013. (page 89)

David Ginsbourger, Xavier Bay, Olivier Roustant, and Laurent Carraro. Argumentwise
invariant kernels for the approximation of invariant functions. In Annales de la Faculté
de Sciences de Toulouse, 2012. (page 23)

David Ginsbourger, Olivier Roustant, and Nicolas Durrande. Invariances of ran-
dom fields paths, with applications in Gaussian process regression. arXiv preprint
arXiv:1308.1359 [math.ST], August 2013. (pages 23 and 24)

Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. Journal of
Machine Learning Research, 12:2211–2268, 2011. (pages 34, 42, and 44)

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, K. Bonawitz, and Joshua B.
Tenenbaum. Church: A language for generative models. In Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence, pages 220–229, 2008. (page 113)

Noah D. Goodman, Tomer D. Ullman, and Joshua B. Tenenbaum. Learning a theory of
causality. Psychological review, 118(1):110, 2011. (page 13)

Daniel B Graham and Nigel M Allinson. Characterizing virtual eigensignatures for
general purpose face recognition. Face Recognition: From Theory to Applications,
163:446–456, 1998. (page 104)

Roger B. Grosse. Model Selection in Compositional Spaces. PhD thesis, Massachusetts
Institute of Technology, 2014. (page 114)

Roger B. Grosse, Ruslan Salakhutdinov, William T. Freeman, and Joshua B. Tenen-
baum. Exploiting compositionality to explore a large space of model structures. In
Uncertainty in Artificial Intelligence, 2012. (pages 32 and 43)

Chong Gu. Smoothing spline ANOVA models. Springer Verlag, 2002. ISBN 0387953531.
(page 41)

Trevor J. Hastie and Robert J. Tibshirani. Generalized additive models. Chapman &
Hall/CRC, 1990. (pages 16, 41, and 82)

James Hensman, Nicolo Fusi, and Neil D. Lawrence. Gaussian processes for big data.
arXiv preprint arXiv:1309.6835, 2013. (page 5)

James Hensman, Andreas Damianou, and Neil D. Lawrence. Deep Gaussian processes
for large datasets. In Artificial Intelligence and Statistics Late-breaking Posters, 2014a.

(page 59)

References 137

James Hensman, Nicolo Fusi, Ricardo Andrade, Nicolas Durrande, Alan Saul, Max
Zwiessele, and Neil D. Lawrence. GPy: A Gaussian process framework in Python,
2014b. https://github.com/SheffieldML/GPy. (page 5)

Michiel Hermans and Benjamin Schrauwen. Recurrent kernel machines: Computing with
infinite echo state networks. Neural Computation, 24(1):104–133, 2012. (page 79)

Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012. (page 87)

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997. (page 79)

Marcus Hutter. The fastest and shortest algorithm for all well-defined problems. Interna-
tional Journal of Foundations of Computer Science, 13(03):431–443, 2002. (page 113)

Rob J. Hyndman. Time series data library, accessed July 2013. URL http://data.is/
TSDLdemo. (page 44)

Tomoharu Iwata, David Duvenaud, and Zoubin Ghahramani. Warped mixtures for non-
parametric cluster shapes. In 29th Conference on Uncertainty in Artificial Intelligence,
Bellevue, Washington, July 2013. (page 96)

Edwin T. Jaynes. Highly informative priors. In Proceedings of the Second International
Meeting on Bayesian Statistics, 1985. (page 31)

Cari G. Kaufman and Stephan R. Sain. Bayesian functional ANOVA modeling using
Gaussian process prior distributions. Bayesian Analysis, 5(1):123–150, 2010.

(page 89)

Charles Kemp and Joshua B. Tenenbaum. The discovery of structural form. Proceedings
of the National Academy of Sciences, 105(31):10687–10692, 2008. (page 43)

Edward D. Klenske, Melanie N. Zeilinger, Bernhard Schölkopf, and Philipp Hennig. Non-
parametric dynamics estimation for time periodic systems. In 51st Annual Allerton
Conference on Communication, Control, and Computing, pages 486–493, Oct 2013.

(page 41)

Daphne Koller, David McAllester, and Avi Pfeffer. Effective Bayesian inference for
stochastic programs. In Association for the Advancement of Artificial Intelligence
(AAAI), 1997. (page 113)

Imre Risi Kondor. Group theoretical methods in machine learning. PhD thesis, Columbia
University, 2008. (pages 23 and 26)

Gabriel Kronberger and Michael Kommenda. Evolution of covariance functions for Gaus-
sian process regression using genetic programming. arXiv preprint arXiv:1305.3794,
2013. (page 43)

Neil D. Lawrence. Gaussian process latent variable models for visualisation of high
dimensional data. Advances in Neural Information Processing Systems, pages 329–
336, 2004. (pages 96 and 101)

https://github.com/SheffieldML/GPy
http://data.is/TSDLdemo
http://data.is/TSDLdemo

138 References

Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian
process latent variable models. Journal of Machine Learning Research, 6:1783–1816,
2005. (page 27)

Neil D. Lawrence. Local distance preservation in the GP-LVM through back constraints.
In Proceedings of the 23rd International Conference on Machine Learning, pages 513–
520, 2006. (page 108)

Neil D. Lawrence and Andrew J. Moore. Hierarchical Gaussian process latent variable
models. In Proceedings of the 24th International Conference on Machine learning,
pages 481–488, 2007. (page 77)

Neil D. Lawrence and Raquel Urtasun. Non-linear matrix factorization with Gaussian
processes. In Proceedings of the 26th International Conference on Machine Learning,
pages 601–608, 2009. (page 101)

Miguel Lázaro-Gredilla, Joaquin Quiñonero-Candela, Carl E. Rasmussen, and Aníbal R.
Figueiras-Vidal. Sparse spectrum Gaussian process regression. Journal of Machine
Learning Research, 99:1865–1881, 2010. (pages 34 and 42)

Judith Lean, Juerg Beer, and Raymond Bradley. Reconstruction of solar irradiance
since 1610: Implications for climate change. Geophysical Research Letters, 22(23):
3195–3198, 1995. (pages 54 and 120)

Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361, 1995. (page 26)

Honglak Lee, Chaitanya Ekanadham, and Andrew Ng. Sparse deep belief net model for
visual area v2. In Advances in Neural Information Processing Systems, pages 873–880,
2007. (page 80)

Doug Lerner and Dan Asimov. The Sudanese Möbius band. In SIGGRAPH Electronic
Theatre, 1984. (pages 28 and 29)

Leonid A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973. (page 113)

Ming Li and Paul M. B. Vitányi. An introduction to Kolmogorov complexity and its
applications. Springer, 1997. (page 113)

Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical
Bayesian approach. In Proceedings of the 27th International Conference on Machine
Learning, pages 639–646, 2010. (page 44)

Douglas A. Lind, William G. Marchal, and Samuel Adam Wathen. Basic statistics for
business and economics. McGraw-Hill/Irwin Boston, 2006. (pages 34 and 44)

James Robert Lloyd. GEFCom2012 hierarchical load forecasting: Gradient boosting
machines and Gaussian processes. International Journal of Forecasting, 2013.

(page 41)

References 139

James Robert Lloyd, David Duvenaud, Roger B. Grosse, Joshua B. Tenenbaum, and
Zoubin Ghahramani. Automatic construction and natural-language description of
nonparametric regression models. In Association for the Advancement of Artificial
Intelligence (AAAI), 2014. (pages 31, 43, 48, and 56)

Ian G. Macdonald. Symmetric functions and Hall polynomials. Oxford University Press,
USA, 1998. ISBN 0198504500. (page 84)

Steven N. MacEachern and Peter Müller. Estimating mixture of Dirichlet process
models. Journal of Computational and Graphical Statistics, pages 223–238, 1998.

(page 129)

David J. C. MacKay. Bayesian methods for adaptive models. PhD thesis, California
Institute of Technology, 1992. (page 3)

David J. C. MacKay. Introduction to Gaussian processes. NATO ASI Series F Computer
and Systems Sciences, 168:133–166, 1998. (pages 25 and 117)

David J. C. MacKay. Information theory, inference, and learning algorithms. Cambridge
University press, 2003. (pages 3 and 100)

Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order
probabilistic programming platform with programmable inference. arXiv preprint
arXiv:1404.0099, 2014. (page 113)

James Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning, pages 735–742, 2010. (page 80)

John H. R. Maunsell and David C. van Essen. The connections of the middle temporal
visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey.
Journal of neuroscience, 3(12):2563–2586, 1983. (page 72)

James Mercer. Functions of positive and negative type, and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society of Lon-
don. Series A, Containing Papers of a Mathematical or Physical Character, pages
415–446, 1909. (page 21)

Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal of
Machine Learning Research, 7:2651–2667, 2006. (page 12)

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey
Kolobov. BLOG: Probabilistic models with unknown objects. Statistical relational
learning, page 373, 2007. (page 113)

Jeffrey W. Miller and Matthew T. Harrison. A simple example of Dirichlet process mix-
ture inconsistency for the number of components. In Advances in Neural Information
Processing Systems 26, pages 199–206. Curran Associates, Inc., 2013. (page 109)

Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s theorem, feature maps, and
smoothing. In Learning theory, pages 154–168. Springer, 2006. (page 21)

140 References

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In
Uncertainty in Artificial Intelligence, volume 17, pages 362–369, 2001. (page 92)

@ML_Hipster. “. . . essentially, all models are wrong, but yours are stupid too.” –
G.E.P. Box in a less than magnanimous mood., 2013. URL https://twitter.com/ML_
Hipster/status/394577463990181888. (page 1)

Grégoire Montavon, Mikio L. Braun, and Klaus-Robert Müller. Layer-wise analysis of
deep networks with Gaussian kernels. Advances in Neural Information Processing
Systems, 23:1678–1686, 2010. (page 79)

Kevin P. Murphy. Conjugate Bayesian analysis of the Gaussian distribution. Technical
report, Computer Science Department, University of British Columbia, 2007.

(page 129)

Radford M. Neal. Bayesian learning for neural networks. PhD thesis, University of
Toronto, 1995. (pages 17, 61, 69, 77, and 79)

Radford M. Neal. Density modeling and clustering using Dirichlet diffusion trees.
Bayesian Statistics, 7:619–629, 2003. (page 109)

John Ashworth Nelder and Robert W.M. Wedderburn. Generalized linear models.
Journal of the Royal Statistical Society. Series A (General), 135(3):370–384, 1972.

(page 82)

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. Advances in Neural Information Processing Systems, 2:849–856, 2002.

(page 101)

Hannes Nickisch and Carl E. Rasmussen. Gaussian mixture modeling with Gaussian
process latent variable models. Pattern Recognition, pages 272–282, 2010. (page 101)

Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of
computation, 35(151):773–782, 1980. (page 92)

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding the exploding
gradient problem. arXiv preprint arXiv:1211.5063, 2012. (page 79)

José C. Pinheiro and Douglas M. Bates. Unconstrained parametrizations for variance-
covariance matrices. Statistics and Computing, 6(3):289–296, 1996. (page 29)

Tony A. Plate. Accuracy versus interpretability in flexible modeling: Implementing
a tradeoff using Gaussian process models. Behaviormetrika, 26:29–50, 1999. ISSN
0385-7417. (pages 34, 41, and 89)

Daniel Preotiuc-Pietro and Trevor Cohn. A temporal model of text periodicities us-
ing Gaussian processes. In Conference on Empirical Methods on Natural Language
Processing, pages 977–988. ACL, 2013. (page 41)

Joaquin Quiñonero-Candela and Carl E. Rasmussen. A unifying view of sparse ap-
proximate Gaussian process regression. Journal of Machine Learning Research, 6:
1939–1959, 2005. (pages 5, 100, and 109)

https://twitter.com/ML_Hipster/status/394577463990181888
https://twitter.com/ML_Hipster/status/394577463990181888

References 141

Herschel Rabitz and Ömer F. Aliş. General foundations of high-dimensional model
representations. Journal of Mathematical Chemistry, 25(2-3):197–233, 1999.

(page 91)

William M. Rand. Objective criteria for the evaluation of clustering methods. Journal
of the American Statistical association, pages 846–850, 1971. (page 107)

Carl E. Rasmussen. The infinite Gaussian mixture model. Advances in Neural Informa-
tion Processing Systems, 2000. (page 99)

Carl E. Rasmussen and Zoubin Ghahramani. Occam’s razor. Advances in Neural Infor-
mation Processing Systems, pages 294–300, 2001. (pages 3 and 37)

Carl E. Rasmussen and Hannes Nickisch. Gaussian processes for machine learning
(GPML) toolbox. Journal of Machine Learning Research, 11:3011–3015, December
2010. (pages 5, 30, 47, and 117)

Carl E. Rasmussen and Christopher K.I. Williams. Gaussian Processes for Machine
Learning, volume 38. The MIT Press, Cambridge, MA, USA, 2006.

(pages 1, 5, 38, and 40)

Miles A. Reid and Balázs Szendrői. Geometry and topology. Cambridge University Press,
2005. (page 28)

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann
Dauphin, and Xavier Glorot. Higher order contractive auto-encoder. In Machine
Learning and Knowledge Discovery in Databases, pages 645–660. Springer, 2011a.

(page 67)

Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Con-
tractive auto-encoders: Explicit invariance during feature extraction. In Proceedings
of the 28th International Conference on Machine Learning, pages 833–840, 2011b.

(page 68)

Oren Rippel and Ryan P. Adams. High-dimensional probability estimation with deep
density models. arXiv preprint arXiv:1302.5125, 2013. (pages 78 and 114)

Carlos E. Rodríguez and Stephen G. Walker. Univariate Bayesian nonparametric mixture
modeling with unimodal kernels. Statistics and Computing, pages 1–15, 2012.

(page 102)

Frank Rosenblatt. Principles of neurodynamics: Perceptrons and the theory of brain
mechanisms. Brain Mechanisms, pages 555–559, 1962. (page 60)

David Ruppert, Matthew P. Wand, and Raymond J. Carroll. Semiparametric regression,
volume 12. Cambridge University Press, 2003. (pages 34 and 41)

Yunus Saatçi, Ryan D. Turner, and Carl E. Rasmussen. Gaussian process change point
models. In Proceedings of the 27th International Conference on Machine Learning,
pages 927–934, 2010. (pages 42 and 44)

142 References

Ruslan Salakhutdinov and Geoffrey Hinton. Using deep belief nets to learn covariance
kernels for Gaussian processes. Advances in Neural information processing systems,
20:1249–1256, 2008. (page 42)

Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep boltzmann machines. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 448–455, 2009.

(page 114)

Mathieu Salzmann, Raquel Urtasun, and Pascal Fua. Local deformation models for
monocular 3D shape recovery. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–8, 2008. (page 101)

Andrew Saxe, Pang W. Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and An-
drew Y. Ng. On random weights and unsupervised feature learning. In Proceedings
of the 28th International Conference on Machine Learning, pages 1089–1096, 2011.

(page 79)

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Dynamics of learning in
deep linear neural networks. In NIPS Workshop on Deep Learning, 2013. (page 79)

Jürgen Schmidhuber. The speed prior: a new simplicity measure yielding near-optimal
computable predictions. In Computational Learning Theory, pages 216–228. Springer,
2002. (page 113)

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, 2009. ISSN 1095-9203. doi: 10.1126/science.1165893.

(page 43)

Michael Schmidt and Hod Lipson. Eureqa [software], accessed February 2013. URL
http://www.eureqa.com. (pages 43 and 44)

Gideon Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):
461–464, 1978. (page 37)

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-
inputs. Advances in Neural Information Processing Systems, 2006.

(pages 5, 100, and 109)

Edward Snelson, Carl E. Rasmussen, and Zoubin Ghahramani. Warped Gaussian pro-
cesses. In Advances in Neural Information Processing Systems, pages 337–344, 2004.

(page 58)

Ercan Solak, Roderick Murray-Smith, William E. Leithead, Douglas J. Leith, and Carl E.
Rasmussen. Derivative observations in Gaussian process models of dynamic systems.
In Advances in Neural Information Processing Systems, 2003. (page 66)

Ray J. Solomonoff. A formal theory of inductive inference. Part I. Information and
control, 7(1):1–22, 1964. (page 113)

Nitish Srivastava. Improving neural networks with dropout. Master’s thesis, University
of Toronto, 2013. (page 87)

http://www.eureqa.com

References 143

Stan Development Team. Stan: A C++ library for probability and sampling, version
2.2, 2014. URL http://mc-stan.org/. (page 113)

Christian Steinruecken. Lossless Data Compression. PhD thesis, Cavendish Laboratory,
University of Cambridge, 2014. (pages 43 and 114)

Mark O. Stitson, Alex Gammerman, Vladimir Vapnik, Volodya Vovk, Chris Watkins,
and Jason Weston. Support vector regression with ANOVA decomposition kernels.
Advances in kernel methods: Support vector learning, pages 285–292, 1999. (page 91)

Pieter Tans and Ralph Keeling. Monthly mean atmospheric carbon dioxide at the Mauna
Loa Observatory, Hawaii, accessed January 2012. URL www.esrl.noaa.gov/gmd/ccgg/
trends/. (page 38)

Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical
Dirichlet processes. Journal of the American Statistical Association, 101(476):1566–
1581, 2006. (page 109)

Michael E. Tipping and Christopher M. Bishop. Mixtures of probabilistic principal
component analyzers. Neural computation, 11(2):443–482, 1999. (page 101)

Michalis Titsias and Neil D. Lawrence. Bayesian Gaussian process latent variable model.
International Conference on Artificial Intelligence and Statistics, 2010. (page 101)

Ljupčo Todorovski and Sašo Džeroski. Declarative bias in equation discovery. In Pro-
ceedings of the International Conference on Machine Learning, pages 376–384, 1997.

(page 43)

Jarno Vanhatalo, Jaakko Riihimäki, Jouni Hartikainen, Pasi Jylänki, Ville Tolvanen,
and Aki Vehtari. GPstuff: Bayesian modeling with Gaussian processes. Journal of
Machine Learning Research, 14(1):1175–1179, 2013. (page 5)

Vladimir N. Vapnik. Statistical learning theory, volume 2. Wiley New York, 1998.
(page 91)

Grace Wahba. Spline models for observational data. Society for Industrial Mathematics,
1990. ISBN 0898712440. (pages 41 and 91)

Chunyi Wang and Radford M. Neal. Gaussian process regression with heteroscedastic
or non-gaussian residuals. arXiv preprint arXiv:1212.6246, 2012. (page 78)

Jingdong Wang, Jianguo Lee, and Changshui Zhang. Kernel trick embedded Gaussian
mixture model. In Algorithmic Learning Theory, pages 159–174. Springer, 2003.

(page 102)

Sida Wang and Christopher Manning. Fast dropout training. In Proceedings of the 30th
International Conference on Machine Learning, pages 118–126, 2013. (page 87)

Takashi Washio, Hiroshi Motoda, and Yuji Niwa. Discovering admissible model equa-
tions from observed data based on scale-types and identity constraints. In Interna-
tional Joint Conference On Artificial Intelligence, volume 16, pages 772–779, 1999.

(page 43)

http://mc-stan.org/
www.esrl.noaa.gov/gmd/ccgg/trends/
www.esrl.noaa.gov/gmd/ccgg/trends/

144 References

Wikimedia Commons. Stereographic projection of a Sudanese Möbius band, 2005. URL
http://commons.wikimedia.org/wiki/File:MobiusSnail2B.png. (page 28)

Andrew G. Wilson and Ryan P. Adams. Gaussian process kernels for pattern discovery
and extrapolation. In Proceedings of the 30th International Conference on Machine
Learning, pages 1067–1075, 2013. (pages 34, 42, and 44)

Andrew G. Wilson, David A. Knowles, and Zoubin Ghahramani. Gaussian process
regression networks. In Proceedings of the 29th International Conference on Machine
Learning, pages 599–606, 2012. (page 78)

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to
probabilistic programming inference. In Proceedings of the 17th International confer-
ence on Artificial Intelligence and Statistics, 2014. (page 113)

I-Cheng Yeh. Modeling of strength of high-performance concrete using artificial neural
networks. Cement and Concrete research, 28(12):1797–1808, 1998. (page 16)

Yichuan Zhang and Charles A. Sutton. Quasi-Newton methods for Markov chain Monte
Carlo. Advances in Neural Information Processing Systems, pages 2393–2401, 2011.

(page 109)

http://commons.wikimedia.org/wiki/File:MobiusSnail2B.png

	Contents
	List of Figures
	List of Tables
	Notation
	1 Introduction
	1.1 Gaussian process models
	1.1.1 Model selection
	1.1.2 Prediction
	1.1.3 Useful properties of Gaussian processes
	1.1.4 Limitations of Gaussian processes

	1.2 Outline and contributions of thesis

	2 Expressing Structure with Kernels
	2.1 Definition
	2.2 A few basic kernels
	2.3 Combining kernels
	2.3.1 Notation
	2.3.2 Combining properties through multiplication
	2.3.3 Building multi-dimensional models

	2.4 Modeling sums of functions
	2.4.1 Modeling noise
	2.4.2 Additivity across multiple dimensions
	2.4.3 Extrapolation through additivity
	2.4.4 Example: An additive model of concrete strength
	2.4.5 Posterior variance of additive components

	2.5 Changepoints
	2.5.1 Multiplication by a known function

	2.6 Feature representation of kernels
	2.6.1 Relation to linear regression
	2.6.2 Feature-space view of combining kernels

	2.7 Expressing symmetries and invariances
	2.7.1 Three recipes for invariant priors
	2.7.2 Example: Periodicity
	2.7.3 Example: Symmetry about zero
	2.7.4 Example: Translation invariance in images

	2.8 Generating topological manifolds
	2.8.1 Möbius strips

	2.9 Kernels on categorical variables
	2.10 Multiple outputs
	2.11 Building a kernel in practice

	3 Automatic Model Construction
	3.1 Ingredients of an automatic statistician
	3.2 A language of regression models
	3.3 A model search procedure
	3.4 A model comparison procedure
	3.5 A model description procedure
	3.6 Structure discovery in time series
	3.6.1 Mauna Loa atmospheric CO2
	3.6.2 Airline passenger counts

	3.7 Related work
	3.8 Experiments
	3.8.1 Interpretability versus accuracy
	3.8.2 Predictive accuracy on time series
	3.8.3 Multi-dimensional prediction
	3.8.4 Structure recovery on synthetic data

	3.9 Conclusion

	4 Automatic Model Description
	4.1 Generating descriptions of composite kernels
	4.1.1 Simplification rules
	4.1.2 Describing each part of a product of kernels
	4.1.3 Combining descriptions into noun phrases
	4.1.4 Worked example

	4.2 Example descriptions
	4.2.1 Summarizing 400 years of solar activity
	4.2.2 Describing changing noise levels

	4.3 Related work
	4.4 Limitations of this approach
	4.5 Conclusions

	5 Deep Gaussian Processes
	5.1 Relating deep neural networks to deep GPs
	5.1.1 Definition of deep GPs
	5.1.2 Single-hidden-layer models
	5.1.3 Multiple hidden layers
	5.1.4 Two network architectures equivalent to deep GPs

	5.2 Characterizing deep Gaussian process priors
	5.2.1 One-dimensional asymptotics
	5.2.2 Distribution of the Jacobian

	5.3 Formalizing a pathology
	5.4 Fixing the pathology
	5.5 Deep kernels
	5.5.1 Infinitely deep kernels
	5.5.2 When are deep kernels useful models?

	5.6 Related work
	5.7 Conclusions

	6 Additive Gaussian Processes
	6.1 Different types of multivariate additive structure
	6.2 Defining additive kernels
	6.2.1 Weighting different orders of interaction
	6.2.2 Efficiently evaluating additive kernels

	6.3 Additive models allow non-local interactions
	6.4 Dropout in Gaussian processes
	6.4.1 Dropout on infinitely-wide hidden layers has no effect
	6.4.2 Dropout on inputs gives additive covariance

	6.5 Related work
	6.6 Regression and classification experiments
	6.6.1 Datasets
	6.6.2 Results

	6.7 Conclusions

	7 Warped Mixture Models
	7.1 The Gaussian process latent variable model
	7.2 The infinite warped mixture model
	7.3 Inference
	7.4 Related work
	7.5 Experimental results
	7.5.1 Synthetic datasets
	7.5.2 Clustering face images
	7.5.3 Density estimation
	7.5.4 Mixing
	7.5.5 Visualization
	7.5.6 Clustering performance
	7.5.7 Density estimation

	7.6 Conclusions
	7.7 Future work

	8 Discussion
	8.1 Summary of contributions
	8.2 Structured versus unstructured models
	8.3 Approaches to automating model construction
	8.4 Conclusion

	Appendix A Gaussian Conditionals
	Appendix B Kernel Definitions
	Appendix C Search Operators
	Appendix D Example Automatically Generated Report
	Appendix E Inference in the Warped Mixture Model
	References

