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Abstract Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears
to have varied during Neogene times. It has been suggested that this variation is moderated by transient
behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time.
Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be
affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary
accumulations (Bj€orn, Gardar, Eirik, and Hatton Drifts). Prominent reflections were mapped and calibrated
using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to
reconstruct solid sedimentation rates. Bj€orn Drift began to accumulate in late Miocene times. Its average
sedimentation rate decreased at �2.5 Ma and increased again at �0.75 Ma. In contrast, Eirik Drift started to
accumulate in early Miocene times. Its average sedimentation rate increased at �5.5 Ma and decreased at
�2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Compo-
nent Water overflow, and the variation of Icelandic plume temperature independently obtained from the
geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably
caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When
the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is
modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the
potential link between mantle convective processes and ocean circulation.

1. Introduction

At important oceanic gateways such as the Greenland-Iceland-Scotland Ridge, pathways and intensities of
oceanic bottom currents are influenced by bathymetric configuration. In turn, this configuration is modu-
lated by changes in dynamic support beneath subsiding lithospheric plates [e.g., Vogt, 1972; Poore et al.,
2006]. At the present day, warm, saline surface water of the North Atlantic Current flows into the Norwegian
Sea [Mauritzen, 1996]. This surface water eventually cools, sinks, and returns southward as Norwegian Sea
Deep Water [Hansen and Østerhus, 2000]. Deep water mixes with shallower water as it crosses the Iceland-
Faroe Ridge and the Faroe Bank Channel. It then forms Iceland-Scotland Overflow Water (ISOW), which has
a flux of 3.4 Sverdrups (1 Sv 5 13106 m3s21) and represents a precursor of North Atlantic Deep Water
(NADW; Figure 1a).

Cold deep water also flows through the Denmark Strait, delivering 3 Sv of Denmark Strait Overflow Water
(DSOW) into the Irminger Basin [Hansen and Østerhus, 2000]. Production of this deep flow is an important
component of the Atlantic Meridional Overturning Circulation (AMOC) [Broecker and Denton, 1989]. Sup-
pression of NADW formation during glacial periods was associated with extensive sea ice cover over regions
where deep waters form in the Norwegian Sea [e.g., Kellogg, 1980; Boyle and Keigwin, 1982]. Input of saline
Mediterranean Outflow Water could also affect formation of these deep water masses [Reid, 1979; Kh�elifi
et al., 2009].

In Neogene times, vertical motions at this oceanic gateway may have moderated flux of ISOW into the
North Atlantic Ocean [Wright and Miller, 1996; Poore et al., 2006, 2011]. Following a suggestion by Wright
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Figure 1. Bathymetry and gravity of north Atlantic Ocean showing location of JC50 seismic reflection survey. (a) Thick solid lines 5 JC50
seismic profiles (bold portions shown in Figures 2–4); thin solid lines 5 seismic data used for well-ties; numbered circles 5 drilling locations;
labeled dashed lines 5 deep-water currents and their rates [Hansen and Østerhus, 2000; Olsen et al., 2008]; DS 5 Denmark Strait;
IFR 5 Iceland-Faroe Ridge; FBC 5 Faroe Bank Channel; WTR 5 Wyville Thomson Ridge; LDW 5 Lower Deep Water; BFZ 5 Bight Fracture
Zone; RR 5 Reykjanes Ridge; and CGFZ 5 Charlie-Gibbs Fracture Zone. (b) Light gray shading 5 contourite drift deposits [Faugères et al.,
1999]; dark gray shading 5 areas of present-day drift sedimentation identified using 3.5 kHz acoustic profiles [Bianchi and McCave, 2000].
(c) High-pass (< 250 km) free-air gravity anomaly map [Sandwell et al., 2014]. Labeled bold lines 5 location of later figures; numbered
arrows 5 VSRs [Parnell-Turner et al., 2014].
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and Miller [1996], Poore et al. [2006] demonstrated that there is a negative correlation between percentage
of northern Component Water (%NCW) and vertical motion of the Greenland-Iceland-Scotland Ridge during
Neogene times. For example, there is an increase in %NCW overflow between 6 and 2 Ma, when regional
dynamic uplift provided by the Icelandic plume was weakest [Poore et al., 2011]. These observations can be
used to establish a connection between varying deep-water current strength and changes in dynamic sup-
port beneath the lithospheric plate. There is growing evidence that dynamic support of this region is related
to transient activity of the Icelandic plume, which appears to have waxed and waned over the last 55 Ma
[Jones et al., 2002; Parkin and White, 2008; Parnell-Turner et al., 2014]. Here, we test the hypothesis that spa-
tial and temporal accumulation of sedimentary drifts in the North Atlantic Ocean is moderated by transient
support of the Iceland mantle plume.

1.1. Sedimentary Drifts
Drift deposits are conspicuous products of currents associated with deep-water overflow (Figure 1b) [Stow
and Holbrook, 1984; McCave and Tucholke, 1986]. Sediment is carried by deep-water currents into the Ice-
land Basin where it is deposited by ISOW as two elongate sedimentary bodies, Bj€orn and Gardar Drifts, on
the eastern flank of the Reykjanes Ridge [Egloff and Johnson, 1979; Johnson and Schneider, 1969]. Hatton
Drift is deposited by Lower Deep Water and ISOW flowing northward along the western side of Rockall Pla-
teau [Ruddiman, 1972; McCave et al., 1980; McCartney, 1992]. Further west, Eirik Drift is deposited by the
Western Boundary Under Current (WBUC 5 ISOW 1 DSOW) along the continental slope near the southern
tip of Greenland at Cape Farewell (Figure 1b) [Hunter et al., 2007; M€uller-Michaelis et al., 2013; M€uller-
Michaelis and Uenzelmann-Neben, 2014]. All of these deposits are typical examples of mounded, or
elongate-mounded drifts whose elongation and progradation depends upon the interaction between
bathymetric slope and curvature, current intensity, and thermohaline circulation [Laberg et al., 2005;
Rebesco and Camerlenghi, 2008].

Thus contourite drift bodies indirectly record changes in deep-water currents and so can be used as a
proxy for changes in oceanic circulation [Wold, 1994; McCave and Hall, 2006]. Variations in current activity
and in sedimentary supply govern accumulation rate of a given drift, which in turn is the dominant exter-
nal control for development of its stratigraphic architecture. Internally, drifts have subparallel, weak reflec-
tions, which change gradationally between seismic facies and record lateral migration of the sedimentary
body [Faugères et al., 1999; Nielsen et al., 2008; Koenitz et al., 2008]. Depositional units are usually lenticular
with convex-upward geometries that are not parallel to the accumulation surface generated by a preced-
ing erosional event [Faugères et al., 1999]. Hence mappable seismic reflections represent periods when
sediment supply and/or composition has changed or when nondeposition or erosion has taken place.
These events permit a given drift to be subdivided into discrete, mappable units [Cunningham et al.,
2002].

1.2. Northern Component Water and Dynamic Support
Poore et al. [2006] assembled a global inventory of d13C measurements from benthic foraminifera that can
be used to characterize isotopic gradients between NCW, Southern Ocean Water, and Pacific Ocean Water.
Elevation changes at the Denmark Strait and at the Iceland-Faroe Ridge appear to modulate flux of NCW
into the Southern Ocean. When dynamic support of the Icelandic plume decreases, these gateways subside
and a greater volume of deep water flows into the Irminger and Iceland Basins. When dynamic support
increases, the gateways shoal and deep-water export is reduced. Poore et al. [2006] argued that reasonable
estimates of %NCW can only be made post 12 Ma when d13C patterns for the three water masses diverge.
This divergence is probably associated with submergence of the Denmark Strait and Iceland-Faroe Ridge.
The most robust estimate of %NCW is between 7.5 and the present day.

The inferred variation of %NCW can be tested using an independent record of convective dynamic support
from the North Atlantic Ocean that is obtained by analyzing the diachronous pattern of V-shaped ridges
(VSRs) which straddle the Reykjanes Ridge (Figure 1c) [Vogt, 1971; Jones et al., 2002; Poore et al., 2009; Par-
nell-Turner et al., 2014]. VSR morphology reflects bathymetric changes which in turn are caused by crustal
thickness variations of 62 km. It is generally accepted that they are generated by thermal anomalies that
flow radially away from the center of the Iceland mantle plume [Smallwood and White, 1998]. Along the
Reykjanes Ridge itself, crustal thickness measurements and the geochemical composition of dredged
basaltic samples can be accounted for by potential temperature anomalies of Tp5625�C beneath the
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cooling lithospheric plate [Murton
et al., 2002; Poore et al., 2011; Jones
et al., 2014]. Thermal anomalies prob-
ably occur within an asthenospheric
layer which is 150 6 50 km thick, gen-
erating bathymetric anomalies of sev-
eral hundred meters [Delorey et al.,
2007; Parnell-Turner et al., 2013]. In
this way, the bathymetric configura-
tion of oceanic gateways such as the
Denmark Strait and the Iceland-Faroe
Ridge can be modified [Wright and
Miller, 1996; Poore et al., 2006].

Parnell-Turner et al. [2014] established a
revised chronology of plume potential
temperature for the last 55 Ma. They
show that temperature fluctuations
occur every 3–8 Ma over distances of
1000 km. This record is an important,
albeit indirect, proxy for the evolving
bathymetric configuration of the Den-
mark Strait and Iceland-Faroe Ridge.

2. Seismic Reflection Profiles

Regional seismic reflection profiles
were acquired across the Iceland and
Irminger Basins on RRS James Cook
during July–August 2010 (Figure 1).
Acoustic energy was generated using
a single generator-injector (GI) airgun
with a volume of 5.82 l (generator and
injector pulses 5 4.1 and 1.72 L,
respectively) and a frequency band-
width of 10–400 Hz. The airgun was
towed at a depth of 5.5 m behind the

vessel, which travelled at 2 m s21. It was primed with compressed air at a pressure of 20.7 MPa and fired
every 15 s (�40 m). Reflected acoustic energy was recorded along a 1.6 km long streamer towed at 7 m
depth that consisted of 132 groups of hydrophones at intervals of 12.5 m. Distance from the airgun to the
first group (i.e., near-trace offset) was 163 m and the sampling interval of recorded signals was 1 ms. A
standard processing sequence was used. Shot point gathers were converted into common midpoint (CMP)
gathers spaced every 6.25 m. Prior to stacking, root-mean-square velocities were picked every 100 CMPs
(i.e., every 625 m). A 12 Hz high-pass filter with a roll-off of 24 dB per octave was applied after stacking.
Images were migrated using a post stack frequency-wave number (i.e., f-k) algorithm with a constant veloc-
ity of 1.5 km s21 [Stolt, 1978]. The resultant 21-fold stacked image has a vertical and horizontal resolution of
10–20 m.

Portions of the two principal flow lines, profiles 1 and 2, that traverse the Iceland Basin are shown in Figures
2 and 3 (complete profiles are shown in supporting information Figure S1). Bj€orn and Gardar Drifts are visi-
ble on both profiles. The relationship between bathymetry, crustal structure, and depositional loci is evi-
dent. On profile 1, the western edge of Bj€orn Drift is bounded by a prominent VSR at a range of 270 km
where a channel has been carved (Figure 2b). This drift is underlain by several smaller VSRs. As a result, this
composite drift has been compartmentalized into a series of subdrifts, each of which is bounded along its
eastern edge by a small channel. On profile 2, a more coherent Bj€orn Drift is perched between two VSRs at
a range of 720–790 km (Figure 3b). It is separated from Gardar Drift by a 100 km wide trough.

Figure 2. Portion of profile 1 (see Figure 1 for location). (a) Uninterpreted time-
migrated image. (b) Interpretation. Yellow shading and gray lines 5 sedimentary
strata; dotted lines 5 major drift deposits; solid line 5 sediment-basement inter-
face; numbered red circles/lines 5 V-shaped ridges; and m 5 water-bottom multi-
ple reflection. Inset boxes shown in Figures 7b and 9a. Reduced amplitudes near
multiple energy caused by window size used for automatic gain control.
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The crest of the prominent Gardar Drift is identifiable at a range of 60 km on profile 1 and at a range
900 km on profile 2 (Figures 2 and 3, respectively). This drift grew on top of an irregular sediment-basement
interface which has several mappable VSRs. Its deeper portion indicates that it too was originally compart-
mentalized between VSRs. Its shallower portion has a simpler geometry. On profile 2, a channel marks the
eastern edge of this drift at a range of 945 km (Figure 3). Hatton Bank occurs at the eastern end of profile 2
where bathymetry shoals from 2500 m to 600 m over a distance of less than 100 km. Hatton Drift is posi-
tioned on the western slope of Hatton Bank and extends 30 km eastward of Maury Channel at a range of
1210–1240 km (Figure 3b and supporting information Figure S2).

Eirik Drift, which is plastered onto the East Greenland margin, is imaged by a composite profile (Figure 4). It
thickens from north to south and is distributed over many hundreds of kilometers. This drift is visible on
profile 1 where it lies on top of an older pile of sediments sitting on a smooth sediment-basement interface
(Figure 4a). On profile 2, the eastern edge of a thinner and less extensive Eirik Drift is bounded by a promi-
nent channel (Figure 4c and supporting information Figure S3). The connecting profile 1b reveals filled tur-
bidity current channels cut into an older pile of sediments (Figures 4b and supporting information S4).

Figure 3. Portion of profile 2 (see Figure 1 for location). (a) Uninterpreted time-migrated image, showing location of ODP Leg 105 Site 984 (b) Interpretation. Yellow shading and gray
lines 5 sedimentary strata; dotted lines 5 major drift deposits; black line 5 sediment-basement interface; numbered red circles/lines 5 V-shaped ridges; MC 5 Maury Channel; and
m 5 water-bottom multiple reflection. Inset boxes shown in shown in Figures 7a, 9d, and S2.
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3. Bj€orn Drift

Bj€orn Drift was deposited as a result of deep-water current flow along the eastward-dipping bathymetric
slope adjacent to the Reykjanes Ridge (Figure 1b). Bj€orn and Gardar Drifts are probably positioned on the
western side of several strands of ISOW. These drifts are separated from one another by a 200–300 m deep
trough which is �100 km wide on profile 2 (Figure 3) [Davies and Laughton, 1972; McCave and Tucholke,
1986]. The crest of Bj€orn Drift can be tracked for 300 km, parallel to the trend of the Reykjanes Ridge. The
thickest deposits along profiles 1 and 2 sit on top of 12.8 and 13.5 Myr old oceanic basement at ranges of
738 and 254 km (Figures 2 and 3, respectively). Drilling of Bj€orn Drift at Site 114 of Deep Sea Drilling Pro-
gram (DSDP) Leg 12 recovered Pleistocene and Pliocene terrigenous clayey silts [Davies and Laughton,
1972]. At Site 984 of Ocean Drilling Program (ODP) Leg 162, Pliocene fine-grained terrigenous sediments
have been recovered [Shipboard Scientific Party, 1996a].

3.1. Calibration
Site 984 is located on the western side of the Iceland Basin in a water depth of 1650 m, �12 km south of
profile 2 (Figure 1a). Here, a 458 m-long continuous sequence of sedimentary core was recovered [Jansen
and Raymo, 1996]. These sediments are dominated by fine-grained terrigenous grains, of Holocene to Plio-
cene (0–3 Ma) age, yielding linear sediment accumulation rates of 100–160 m Ma21.

In order to assign chronostratigraphic ages to mapped seismic horizons on profile 2, a synthetic seismo-
gram was calculated for Site 984 (Figure 5). First, discrete sonic and density measurements from core sam-
ples (0–87 mbsf) were combined with edited sonic and bulk density logs (87–478 mbsf) to calculate a
reflection coefficient series (Figures 5a–5c). Note that the discrete core measurements are noisier with larger
uncertainties. Second, a source signature was estimated by stacking the direct arrival (i.e., acoustic energy
that travels horizontally from the source along the streamer) from 200 shots centered at a range of 750 km
on profile 2 (Figure 5d). These shots were filtered using a high-pass Butterworth filter with a cutoff fre-
quency of 12 Hz and slope of 24 dB/octave that successfully attenuated low-frequency noise. Finally, a syn-
thetic seismogram was calculated by convolving the estimated source signature with this reflection
coefficient series with the aid of a 1.5 dimensional algorithm generously provided by Schlumberger Limited
[Schuler et al., 2014]. This invariant-embedded reflectivity algorithm is based upon an elastic model that
computes the plane-wave response of a set of stacked layers for a point source [Kennett, 1983].

Figure 4. Portions of profiles 1, 1b, and 2, covering part of Eirik Drift (see Figure 1 for location). (a)–(c) Uninterpreted time-migrated images. (d)–(f) Geologic interpretations. Yellow shad-
ing and gray lines 5 sedimentary strata; dotted lines 5 major drift deposits; black line 5 sediment-basement interface; and m 5 water-bottom multiple reflection.
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Figure 5.
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Profile 2 and Site 984 are connected by profile EW9302-4 acquired in 1996 during Cruise EW-9302 (Figure
1c) [Shipboard Scientific Party, 1996b]. The synthetic seismogram for Site 984 can be compared with portions
of seismic reflection data from EW9302-4 and profile 2 in Figures 5f and 5g. Following the nomenclature of
Shipboard Scientific Party [1996a], we identify three correlatable horizons. First, a bright reflection, R2, occurs
at 0.15 s two-way travel time beneath the sea bed and below a series of weaker reflections. Second, R3
occurs at 0.25 s and has a series of distinctive positive reflections just above it and a series of five positive,
but weak, reflections below it. Finally, a bright and positive reflection, R4, occurs at 0.45 s and corresponds
to a sharp increase in velocity (> 2 km s21). This layer occurs within the interval 378–383 mbsf and is identi-
fiable on profile 2. R5 at> 0.6 s was not encountered at Site 984. Nevertheless, its prominent negative polar-
ity is recognizable. There is a minor (0.03 s) discrepancy for R2 when synthetic seismogram and profile 2 are
compared. This discrepancy has several possible causes. First, well and seismic profiles are 12 km apart and
stratal thickness variation may occur. Figure 6 shows the relationship between profile 2, EW9302-4 and Site
984 where thinning of the R2–R3 interval is evident. Second, the synthetic seismogram is noisy in the vicin-
ity of R2 which hampers its identification.

3.2. Stratigraphic Framework
Our calibration strategy permits Bj€orn Drift to be subdivided into five stratigraphic units, BJ-I to BJ-V (Figures 6
and 7 and Table 1). Reflective horizons down to R5 are subparallel with the seafloor. Beneath R5, a series of
angular unconformities occur. R2 defines the base of unit BJ-I, and is the first prominent reflection beneath the
seabed. Unit BJ-I appears to consist of �12 horizons which are subparallel with the seabed and which appear to
onlap R2 at a range of 255 km on profile 1 (Figure 7n). Unit BJ-II occurs between R2 and R3 and is characterized
by closely spaced, conformable reflections which are a little brighter toward the top of this unit (see Figure 5).
Unit BJ-III between R3 and R4 consists of �15 closely spaced, weaker reflections which in places are consider-
ably disturbed by folding and faulting (e.g., at ranges 220–230 km on profile 1; Figure 7j). An erosional surface
disrupts R4 within the western portion of Bj€orn Drift at a range of 730 km on profile 2, making identification of
the base of Unit BJ-III difficult (Figure 7i). The top of Unit BJ-IV is delineated by R4 and consists of weak, lower
frequency, reflections that either onlap or downlap the underlying unit. The base of Unit BJ-IV is marked by R5,
which is slightly deeper than the maximum penetrated depth at Site 984. The lowermost unit, BJ-IV, consists of
a number of erosional surfaces disturbed by folding and faulting, which occur between R5 and top basement. It
is difficult to map with confidence conformable reflections across Bj€orn Drift within this unit on either profile.

Chronostratigraphic ages of the four most prominent reflections identified within the sediment pile on both
the well log and on the seismic profiles were determined using core recovered from Site 984. A combina-
tion of magnetic polarity events and calcareous nannofossil biostratigraphy from four boreholes at Site 984
were reported by Shipboard Scientific Party [1996a]. This information suggests that these sediments were
deposited during Plio-Pleistocene times (� 3 Ma). Magnetic anomaly picks were also used to estimate the
age of oceanic basement. The base of the sedimentary pile is �13:5 Ma beneath the thickest part of Bj€orn
Drift on profile 2 and �12.8 Ma on profile 1.

3.3. Drift Structure and Composition
The uppermost unit of Bj€orn Drift comprises �100 m of laterally continuous, conformable reflections (Figure 7).
Deposition of Bj€orn Drift is largely continuous, uninterrupted by erosional episodes. This continuity aids correla-
tion between profiles 1 and 2, and supports the assumption that these correlatable reflections are coeval.
Unconformities toward the base of Bj€orn Drift can be identified which have onlapping relationships above and

Figure 5. Calibration between boreholes and seismic profiles (a)–(g) Site 984; (h)–(m) Site 646. (a) P-wave velocity, Vp, as function of depth
determined from core measurements (dots: depth <85 m) and from sonic velocity log (line: >89 m). (b) Gravimetric wet bulk density, q,
from core measurements (dots: <119 m) and from wireline log (line: depth >119 m). (c) Reflection coefficient, R, calculated from Vp and q.
(d) Source wavelet from seismic reflection experiment as function of two-way travel time. (e) Synthetic seismogram calculated by convolv-
ing source wavelet with reflection coefficient series using Schlumberger’s PWTIM algorithm [Schuler et al., 2014]. (f) 16 seismic traces from
profile EW9302-4 coincident with Site 984. (g) 40 seismic traces from profile 2 located at range 750 km. Colored boxes identify horizons fol-
lowing nomenclature of Shipboard Scientific Party [1996a]. (h) P-wave velocity, Vp, as function of depth determined from sonic velocity log
[Srivastava et al., 1987]. (i) Reflection coefficient, R, calculated from Vp, assuming constant density. (j) Synthetic seismogram, which is a one-
dimensional convolution using a 25 Hz zero-phase Ricker wavelet, including internal multiples [Srivastava et al., 1987]. (k) Portion of seismic
line AWI-4, coincident with Site 646 [M€uller-Michaelis et al., 2013]. (l) 40 seismic traces from profile 1, at range of 957 km (Figure 11a). (m)
40 seismic traces from profile 1, at range of 918 km (Figure 11a). Colored boxes/dashed lines identify horizons following nomenclature of
Arthur et al. [1989] and M€uller-Michaelis et al. [2013]. S 5 seabed; B 5 basement.
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erosional truncations below. In contrast to the continuous and nonerosive regime within these upper units, a
more disrupted pattern of sedimentation is evident toward the base of the drift. This pattern is consistent with
variable bottom current position and strength over rougher bathymetry. Pervasive normal faulting rarely shows
stratigraphic growth generally dies out toward the seabed.

While a continuous sedimentary pile occurs on profile 2, Bj€orn Drift divides into two discrete bodies separated
by a basement high on profile 1 (Figure 7). Seismic reflections identified on profile 2 and calibrated with Site
984, have been correlated with the western portion of profile 1 (Figures 7c and 7d). These reflections can then
be correlated eastward where R1–R5 are visible on either side of the prominent basement high which repre-
sents the crest of a VSR (Figures 7d–7h) [see Parnell-Turner et al., 2014 for further details). Reflections within
Bj€orn Drift on profile 2 and on the western portion of profile 1 are laterally continuous and have a uniform fre-
quency content. This pattern of disrupted reflections is suggestive of an erosive environment to the east of the
basement high. In contrast, these currents may have a more stable locus within the trough further west. This
confinement probably gave rise to more continuous strata on profile 2 and at the western end of profile 1.

The crest of the Bj€orn Drift has migrated westward with time. The locus of maximum thickness can be used
to infer how rapidly migration has taken place (Figure 7i). On profile 2, deposition migrated in a step-wise
fashion during deposition of Units BJ-III to Unit BJ-I. During deposition of Unit BJ-III between 2.6 and 2.15
Ma, the drift stepped westward by �7 km. While Unit BJ-II was deposited between 2.15 and 0.5 Ma, the drift
only migrated by 1 km. Between 0.5 Ma and the present day, the drift migrated westward by 2.8 km. Given
a half-spreading rate of 1 cm yr– 1, we expect that the position of the drift gradually shifted 5 km eastward
with respect to the crest of the Reykjanes Ridge [Searle et al., 1998].

4. Gardar Drift

Gardar Drift sits in the middle of the Iceland Basin, where it forms an asymmetric ridge that extends over
1000 km from the Iceland Rise in the northeast to the Charlie-Gibbs Fracture Zone in the southwest
(Figure 1b). This drift is penetrated by boreholes at Sites 115, 611, and 983. It consists of nannofossil ooze

Figure 6. Stratigraphic correlation of Bj€orn Drift between profile 2, profile EW9302-4 and Site 984 (see Figure 1 for location). (a) Portions of
data from profiles 2 and EW9302-4. Vertical black line at range 747 km 5 intersection between profiles. (b) Interpreted version. Yellow/
green/orange/blue lines 5 R2/R3/R4/R5 stratigraphic horizons following naming convention of Shipboard Scientific Party [1996a]; gray
lines 5 faults; and black line 5 sediment-basement interface. See also Table 1.
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and terrestrial clastic deposits [Shipboard Scientific Party et al., 1972; Ruddiman et al., 1987; Shipboard Scien-
tific Party, 1996b]. Deposition is thought to have started in late Miocene times. At Site 983 of ODP Leg 162,
fine-grained terrigenous Pliocene sediments were recovered. At Site 115 of DSDP Leg 12 (Figure 1a),

Figure 7. Stratigraphic correlation and accumulation of Bj€orn Drift on profiles 1 and 2 (located on Figure 1). (a) Portion of profile 2. Dashed line 5 projected location of Site 984. (b) Por-
tion of profile 1. (c)–(h) Strips from profiles 1 and 2 used to correlate horizons identified at Site 984. (i–p) Interpreted versions. Yellow/green/orange/blue lines 5 R2/R3/R4/R5 stratigraphic
horizons; Black circles/lines 5 locus of maximal sediment thickness used in accumulation rate and drift migration estimates.
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hyaloclastic sandstone, probably derived from Iceland, was recovered. Near-bottom studies show that the
mud wave field on this drift was built by deposition from a 300 m thick nepheloid layer (Figure 1b) [McCave
et al., 1980; Bianchi and McCave, 2000]. These studies also conclude that fine-grained sediment is carried
onto the drift by an eastern strand of the major ISOW flow. The ultimate source of this sediment is probably
material eroded from the slope east of Reykjanes Ridge and from the South Iceland Rise [McCave et al.,
1980].

Profile EW9302-3 intersects Site 983 and profile 1, permitting correlation of reflections across the drift
(Figure 8). On profiles 1 and 2, the entire drift is imaged down to the top of oceanic basement which formed
at 28 Ma (Figure 9). The sediment-basement interface is marked by a bright reflection, demonstrating that
this drift is �1.2 km thick. Five internal reflections identified by Shipboard Scientific Party [1996b] can be
mapped on EW9302-3 and on profiles 1 and 2. On profile 1, the seismic character of Gardar Drift is obscured
by normal faulting. At depth, the rugged oceanic basement is disrupted by fracture zone faults with throws
of at least 10–25 m (Figures 1c and supporting information S5a).

Thicknesses of drift units were estimated by converting two-way travel times into depth using the average
velocity of each unit documented in Table 1. These velocities are based upon information from sites 983 and
984. The youngest unit of the drift is 100 m thick on each profile and is characterized by laterally continuous
reflections (Figure 9). The next unit is 200 m thick at the center of profile 1 and up to 450 m thick on profile 2.
This unit thins westward and lies unconformably over two packages of older sediments which are truncated
by erosional surfaces (Figure supporting information S5c). A third unit is 200 m thick on profile 1 and up to
750 m thick on profile 2. On profile 1, this unit is acoustically opaque but on profile 2 it is characterized by
bright reflections which thicken eastward. At the eastern end of profile 2, this unit rests on oceanic basement.
The lowest portion of the sedimentary pile consists of subparallel reflections which onlap basement. This unit
is displaced by numerous basement-penetrating normal faults. However, only a small number of these faults
cut through the entire section: most of them clearly terminate within the sedimentary pile. Few faults manifest
stratigraphic growth, which suggests that this normal faulting post dates drift deposition.

4.1. Migrating Channels and Sedimentary Waves
At a range of 925 km on profile 2, the eastern end of Gardar Drift is bounded by a distinctive channel that
can be mapped from the sea bed to 3.75 s TWTT (Figure 9c). This channel is 20–30 km wide and, assuming
that it runs perpendicular to the profile, has migrated 10–20 km westward in the last 1.25 Ma (i.e., since R3).
A westward migration of 0.8–1.6 cm/yr is broadly consistent with the half spreading rate of the lithospheric
plate (1.25 cm/yr). The base of this channel sits between two basement highs, which suggest that these
highs guided pathways of deep water flow during the early stages of drift growth.

Table 1. Ages, Interval Velocities and Solid Accumulation Rates for Bj€orn, Gardar and Eirik Driftsa

Maximal thickness, m

Seismic unit Basal reflection Age range, Ma Vint m s21 Profile 2 Profile 1 east Profile 1 west
Solid acc.

rate, m Ma21

Bj€orn Drift
BJ-I R2 0.00–0.47 1540 119 158 79 100 6 34
BJ-II R3 0.47–2.15 1560 111 179 73 31 6 15
BJ-III R4 2.15–2.63 1630 170 165 179 163 6 2
BJ-IV R5 2.63–3.70 1760 155 220 268 100 6 26
Gardar Drift
GA-II R2 0.00–1.00 1570 - - - -
GA-Ill R3 1.00–1.25 1600 - - - -
Eirik Drift
SUI-a Al 0.0–0.8 1540 - - 70 31
SUI-b A2 0.8–1.4 1600 - - 40 25
SUI-c R1 1.4–2.5 1650 - - 120 43
SUII EU 2.5–4.5 1700 - - 253 56
SUIII-a R2 4.5–5.6 1800 - - 156 70
SUIII-b R3/R4 5.6–7.5 2000 - - 197 55
SUIV-a R5 8.1–11.0 2300 - - 273 55
SUIV-b A3 11.0–18.0 2400 - - 295 27

aNomenclature from Shipboard Scientific Party [1996a,b], Arthur et al. [1989], and M€uller-Michaelis et al. [2013]. Errors are 61r.
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We expect mudwave generation to occur during the decreasing stage of the flow for flow velocities of u �
0.3 m s21 [McCave and Tucholke, 1986; Flood, 1988; Roberts and Kidd, 1979; Manley and Caress, 1994; Howe,
1996]. West of the channel, a series of asymmetric sinusoidal waves are visible at, and just below, the sea
bed (Figures 9c, 10, and supporting information S5e). The wavelength and amplitude of these waves
decrease in the upslope direction. Larger waves have a peak-to-trough amplitudes of 25 m and profile-
parallel wavelengths of 1 km. On the upper slopes, smaller waves occur with amplitudes of 10 m and wave-
lengths of 600 m. Both geometries are consistent with aggradational sedimentary waves generated by tur-
bidity currents. They are less likely to have been generated by soft sedimentary deformation (e.g., creep
folds) [Wynn and Stow, 2002]. Amplitudes of larger mudwaves appear to grow from 10 m at depths of �200
mbsf to 25 m at the seabed (supporting information Figure S5f). An underlying 250 m thick package has
similar wave-like characteristics. Localization of these mudwaves within a zone of turbidity current influence
suggests that they are due to a turbidity current flowing down the channel. There are no mudwaves higher
up slope, where they would be expected if due to thermohaline flow. Thus the channel was probably
carved out by a combination of a strand of ISOW deep-water flow and sporadic turbidity currents.

At the bankfull flow stage (i.e., when levee tops correspond to the upper flow surface) then the difference
in height between levees on each side of this channel can be used to determine the cross-channel slope of

Figure 8. Stratigraphic correlation of Gardar Drift between Site 983, profile EW9302-3 and profile 1 (see Figure 1c for location). (a) Portions
of data from EW9302-3 and profile 1. Vertical black line at 60 km range 5 intersection between profiles. (b) Interpreted version. Yellow/
green/blue/orange/purple lines 5 R2/R3/R4/R5/R6 stratigraphic horizons, following naming convention of Shipboard Scientific Party
[1996b]; gray lines 5 faults; black line 5 sediment-basement interface.
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the current interface (Figure 10) [Komar, 1969]. This slope can be used to estimate flow velocity of the tur-
bidity current contained within the channel. Regional bathymetric maps show that this channel is nearly
straight and oriented north-south. Hence the balance between Coriolis and centrifugal forces arising from
the cross-channel surface slope is given by

Figure 9. Sesimic profiles over Gardar Drift (see Figure 1c for locations). (a) Portion of profile 1. (b) Interpretation. Yellow/green/blue/
orange/purple lines 5 R2/R3/R4/R5/R6 stratigraphic horizons; gray lines 5 faults; black line 5 sediment-basement interface. (c) Portion of
profile 2. (d) Interpretation; pink shaded regions 5 channels.
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where X 5 7.27 3 1025 rad s21 is the
angular velocity of Earth’s rotation, U
is flow velocity, h 5 608N is latitude,
g 5 9.81 m2 s21 is gravitational accel-
eration, qt is density of the turbidity
current, and q 5 1.039 Mg m23 is den-
sity of ambient water for modern
salinity of 34.96 g L21, temper-
ature 5 2.68C and depth 5 2440 m.
DH 5 100 m is the difference in levee
height and W 5 25 km is channel
width [Komar, 1969]. Current flow is
driven by the down-slope component
of the excess density due to sus-
pended sediment, which is balanced
by bottom and upper interfacial drags
[Middleton, 1966]. In steady state, this
force balance can be expressed as

qt2q
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� �
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U2
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where h 5 140 m is flow thickness, sin b 5 2 3 1023 is an approximation of the along-channel slope, a 5 0.5
is the ratio between drag at the water interface and drag at the bottom of the current, and C0 5 0.003 is the
drag coefficient [Ippen and Harleman, 1952]. By eliminating density terms in equations (1) and (2), we obtain

U5
2XWhsin hsin b
ð11aÞC0DH

: (3)

Our estimate for peak flow velocity is 1.96 m s21. This value corresponds to qt 5 1.045 Mg m– 3, which is
equivalent to a sediment concentration of 10.6 kg m23 consistent with a moderate-sized turbidity current.

5. Eirik Drift

Eirik Drift consists of an elongate, mounded contourite deposit that is plastered along the East Greenland
margin (Figure 1b). The western ends of profiles 1 and 2 traverse this drift at two positions separated by
200 km (Figures 1b and 4). Profile 1b connects these two dip lines (supporting information Figure S4). The
main part of the drift was deposited by the Western Boundary Undercurrent (WBUC) during Pliocene and
Pleistocene times, although deposition may have commenced as long ago as 19 Ma [Srivastava et al., 1987;
Hunter et al., 2007; M€uller-Michaelis et al., 2013; M€uller-Michaelis and Uenzelmann-Neben, 2014]. Our analysis
of this drift builds upon and complements detailed mapping of the main drift body located further to the
south [M€uller-Michaelis et al., 2013; M€uller-Michaelis and Uenzelmann-Neben, 2014].

We note in passing that the existence of a sedimentary accumulation, known as the Snorri or West Rey-
kjanes Drift, has been inferred from several seismic profiles [Egloff and Johnson, 1979; Stow and Holbrook,
1984]. This putative drift occurs in the northeastern quadrant of the Irminger Basin at the foot of the Iceland
Rise (Figure 1b). Although a deep boundary current does flow northeastward along the western flank of the
Reykjanes Ridge, our profiles suggest that this drift does not exist as far south as 628N (supporting informa-
tion Figure S1) [McCartney, 1992]. Instead, Snorri Drift is confined to the foot of the SW Iceland rise, as
shown in Figure 1b.

5.1. Calibration
Site 646 of ODP Leg 105 is located 625 km south of the intersection between profiles 1 and 1b in 3450 m of
water (Figure 1). This borehole recovered 767 m of predominantly fine-grained terrigenous Miocene (8.6 Ma)

Figure 10. Cut-away image of profile 2 with parameters used in turbidity flow
velocity analysis (see Figure 9c for location). U 5 current flow velocity;
DH 5 difference in height between levees; W 5 channel width; and sin b 5 bottom
slope for small b.
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sediments [Srivastava et al., 1987]. The linear sediment accumulation rate for this drilled section is 90 m Ma21.
A synthetic seismogram calculated by Srivastava et al. [1987] was used for calibration (Figure 5j). This seismo-
gram was calculated from a sonic velocity log which spans 205–740 mbsf. A density log was not acquired
and Srivastava et al. [1987] used an unspecified density to calculate acoustic impedance as a function of
depth. The calculated impedance function was then convolved with a 25 Hz zero-phase Ricker wavelet. The
resultant seismogram includes internal multiple waves.

Following M€uller-Michaelis et al. [2013], this synthetic seismogram is correlated to seismic profile AWI-
20090004 (referred to here for convenience as AWI-4; Figure 5k). This profile intersects Site 646, south Cape
Farewell (Figure 1b). We matched prominent reflections on the synthetic seismogram and on profile AWI-4
with profile 1 (Figures 5l and 5m). We acknowledge that this correlation, which is primarily based upon seis-
mic character, is necessarily preliminary since these locations are separated by 625 km. For consistency, the
stratigraphic nomenclature of Srivastava et al. [1987] and M€uller-Michaelis et al. [2013] is used (note that
labeled reflections, for example R1 and R2, do not imply any correlation with similarly labeled reflections on
Bj€orn or Gardar Drifts).

We identified 10 correlatable reflections. A1 and A2 occur at 0.08 and 0.12 s beneath the seabed on both
AWI-4 and profile 1. R1 occurs at 4.02 s on profile 1 and is the first reflection that can be confidently corre-
lated between Site 646, AWI-4 and profile 1. EU is a bright reflection that represents an erosional unconfor-
mity which truncates underlying strata (Figure 11). R2 is the shallowest of a sequence of bright sub-parallel
reflections which occur above an interval of weak reflectivity. R3 and R4 at 4.51 s on profile 1 are subparallel
reflections identified toward the bottom of Site 646 and at 5.48s on AWI-4. R5 is a prominent peak-trough-
peak triplet that marks the top of a zone of bright reflectivity, matching what is seen on AWI-4. At the base
of the stratigraphic pile, A3 is a strong event at 4.92 s on AWI-4 and on profile 1. Finally, a basement reflec-
tion is tentatively identified on both profiles.

5.2. Structure and Stratigraphy
The existence of drift sediments on the continental slope in profiles 1 and 2 suggests that Eirik Drift extends
650 km north of Cape Farewell where it has been studied in greater detail [e.g., Clausen, 1998; Rasmussen
et al., 2003]. On profile 1, the drift has a maximum thickness of �1300 m. At its proximal northern end, Eirik
Drift can be divided into four units (SU-I–SU-IV; Figure 11 and Table 1). The uppermost unit, SU-I, consists of
cycles of conformable, bright reflections that are subparallel to the seabed. SU-I is bounded to the east and
west by a pair of distinctive channels that are 5 and 10 km wide, respectively. These channels are clearly
visible at ranges of 890 and 990 km on profile 1 (Figure 11b). Biostratigraphic constraints at Site 646 suggest
that R1 is 2.5 Ma at the base of SU-I [Arthur et al., 1989].

SU-II consists of a set of subparallel reflections whose amplitudes diminish toward the margin. Asymmetric
mud waves are visible toward the center of this unit at a range 930 km (Figures 11 and 12b). These mud
waves have wavelengths of <1 km and amplitudes of 15–20 m. Their sense of asymmetry indicates up-
slope migration. The base of SU-II is marked by an erosional unconformity, EU, that occurs at �5 s TWTT at
Site 646 where it has been assigned an age of 4.5 Ma (Figure 5m). Beneath unconformity EU, strata are trun-
cated at 980–1100 km along profile 1.

In its upper part, SU-III is distinguished either by weak reflections or by an acoustically transparent layer. A
similar character has been described within the main body of Eirik Drift near Site 646 [Arthur et al., 1989;
Hunter et al., 2007; M€uller-Michaelis et al., 2013; M€uller-Michaelis and Uenzelmann-Neben, 2014]. The base of
SU-III is marked by R3 and R4, which are seen at Site 646. Both reflections can also be identified at 4.51 s on
profiles AWI-4 and 1 (Figure 5m). SU-IV is characterized by a bright reflection, labeled R5, at its base. This
reflection is visible at 4.78 s on Figure 5m.

The seismic character of each unit is summarized in Figure 12. Despite the distance between profile 1 and
Cape Farewell, our summary is in agreement with the analysis of Arthur et al. [1989] from Site 646. For exam-
ple, the generally weaker reflections of SU-IV are overlain by brighter parallel reflections of SU-III which sug-
gests that a similar change in current flow regime occurred at both locations. Other features can be
identified, such as the distinctive acoustically transparent unit between R2 and EU as well as the dipping
reflections, migrating mudwaves, and erosional surfaces of SU-II. A commonality of current-related sedimen-
tary features at Cape Farewell and on profile 1 implies that regional changes in flow regime have affected
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drift accumulation [Clausen, 1998; Hunter et al., 2007; Rasmussen et al., 2003; M€uller-Michaelis et al., 2013;
M€uller-Michaelis and Uenzelmann-Neben, 2014].

6. Solid Sediment Accumulation History

Since porosity varies as a function of depth, it is important to calculate solid sediment accumulation rates
for Bj€orn and Eirik Drifts (i.e., remove the effects of porosity which varies as a function of depth). The solid
sediment accumulation rate is the linear sedimentation rate reduced by porosity. First, a history of maxi-
mum sedimentary thicknesses was selected for each drift using age constraints based upon Sites 984 and
646. We assume that the variation of porosity, /, as a function of depth, z, is described by

Figure 11. Portion of profile 1 which crosses Eirik Drift (see Figure 1c for location). (a) Uninterpreted time-migrated image. (b) Interpreta-
tion. Colored lines 5 interpreted horizons with ages noted; colored intervals 5 stratigraphic units; upper/lower black lines 5 seabed/
basement reflections, respectively; arrows 5 bounding channels.
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/ðzÞ5/�exp ð2z=kÞ (4)

where /� is the initial porosity and k is the compaction decay length. We estimate the optimal values of /�
and k using porosity measurements from Sites 984 and 646 (supporting information Figure S6). At Site 984,
we obtained /� 5 0.62 and k 5 2.4 km and at Site 646 we obtained /� 5 0.66 and k 5 2.1 km. The solid
thickness, zs, is given by

zs5z22z11/�k½exp ð2z2=kÞ2exp ð2z1=kÞ� (5)

where z1 and z2 are depths to top and base of a given layer, respectively. The resultant solid accumulation
rates for both drifts are summarized in Table 1.

7. Discussion

Analysis of contourite drift deposition can be used to test the hypothesis that varying dynamic support beneath
major oceanic gateways has influenced ancient oceanic circulation within the North Atlantic Ocean. There is

Figure 12. Seismic character and paleoceanographic history of Eirik Drift since late Miocene times. (a) Characteristics of major seismic units
[Hunter et al., 2007; M€uller-Michaelis et al., 2013; M€uller-Michaelis and Uenzelmann-Neben, 2014]. (b) Portion of profile 1, major reflections
labeled. Location shown in Figure 11. (c) Solid sedimentation rate calculated from Site 646 and profile 1. (d) Paleoceanographic events. (e)
Thick/dotted lines 5 strong/weak bottom currents [Hunter et al., 2007].
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evidence that thermal perturbations are generated within the conduit that feeds the Icelandic plume [Parnell-
Turner et al., 2014]. These perturbations appear to be advected horizontally beneath the thickening lithospheric
plate, causing transient uplift and subsidence of the Denmark Strait and Iceland-Faroe Ridge (Figure 13a). The his-
tory of dynamic support inferred from V-shaped ridges south of Iceland provides a framework into which we can
place observations of sediment accumulation rates and inferred average current strength over time (Figure 13b).

There is a reasonable correspondence between the record of potential temperature, Tp, which plays a role
in controlling regional dynamic support, and %NCW overflow (Figure 14). Between 6 Ma and 2.5 Ma, the
plume was relatively cool with Tp of �1335�C. During this period, %NCW was elevated which suggests that
both the Denmark Strait and the Iceland-Faroe Ridge were deeper. Between 2.5 and 0.5 Ma, Tp increased to
�1355�C and dynamic support beneath these two oceanic gateways was greater by �200 m. During this
period, %NCW was reduced, which suggests that uplift of both gateways inhibited deep-water flow into the
North Atlantic Ocean. Over the last 0.5 Ma, Tp has decreased and %NCW has increased, consistent with
renewed deep-water overflow. These inferred bathymetric controls are corroborated by the results of fully
coupled oceanic-atmospheric numerical experiments [Robinson et al., 2011].

7.1. Late Miocene–Early Pliocene Times (6.0–2.5 Ma)
A decrease in mantle potential temperature, Tp, and elevated %NCW between 6 and 2.5 Ma was accompa-
nied by rapid accumulation of sediment at both Bj€orn and Eirik Drifts (Figure 14). Accumulation of Bj€orn Drift
has a maximum rate of �160 m Ma21 at �2:5 Ma. Accumulation rates of �60 m Ma21 have been recorded
at Eirik Drift near Cape Farewell [Site 646 and seismic profiles; Srivastava et al., 1987; M€uller-Michaelis and
Uenzelmann-Neben, 2014]. A similar sedimentation rate was estimated 625 km further north on profile 1. This
agreement suggests that the rate of accumulation of Eirik drift is controlled over hundreds of kilometers and
was moderated by deep-water currents. This period of elevated sedimentation rate coincides with deposition
of mud waves which occur within SU-II on profile 1 and at Cape Farewell. These waves are indicative of flow
rates �13 cm s21 (Figure 12) [Flood, 1988]. Changes in benthic foraminiferal assemblages, which coincide
with a bright basal reflection, suggest that more vigorous circulation occurred at this time [Arthur et al., 1989;
Hunter et al., 2007]. In addition to reduced dynamic support beneath the Denmark Strait and the Iceland-
Faroe Ridge, NCW flow may have been intensified under warmer conditions and a more vigorous AMOC
which immediately preceded Pliocene cooling. In this way, locus of NCW formation and its subsequent flow
paths caused Eirik Drift to accumulate along the primary sediment dispersal route which triggered an
increase in drift building rate [M€uller-Michaelis and Uenzelmann-Neben, 2014].

7.2. Northern Hemisphere Glaciation
Onset of Northern Hemisphere Glaciation took place during late Pliocene times (i.e., 3 Ma) [Maslin et al.,
1998; Bartoli et al., 2005]. Progressively increasing amounts of ice-rafted debris and synchronous ice sheet
development in Greenland, Scandinavia, and North America have been documented at 2.72–2.75 Ma

Figure 13. (a) Cartoon showing relationship between Iceland mantle plume and deep-water circulation. Dashed lines 5 deep overflow
water [Hansen and Østerhus, 2000; Olsen et al., 2008]; pink disk/stem 5 idealized extent of Iceland plume and plume head; darker pink
blobs 5 thermal anomalies; DS 5 Denmark Strait; RR 5 Reykjanes Ridge; IFR 5 Iceland-Faroe Ridge; FBC 5 Faroe Bank Channel. (b) Mantle
potential temperature (Tp) at the Denmark Strait calculated from V-shaped ridges for past 55 Ma [Parnell-Turner et al., 2014]. Numbered red
circles/lines 5 sets of V-shaped ridges.
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[Kleiven et al., 2002]. This intensification
corresponds to an increasing trend
within the oxygen isotope record
(Figure 14c) [Lisiecki and Raymo, 2005].
General circulation modeling has sug-
gested that climatic shifts associated
with closure of the Panamanian sea-
way, with termination of a permanent
El Ni~no state, or with regional uplift, do
not account for significant growth of
the Greenland icesheet [Lunt et al.,
2008]. Decreasing atmospheric CO2,
from elevated mid Pliocene values to
lower Quaternary values are conceiv-
ably responsible for significant increase
in Greenland glaciation [Lunt et al.,
2008]. The reasons for this decrease in
atmospheric CO2 are unclear [Bartoli
et al., 2011]. Here, we suggest that
restriction of deep-water flow, caused
by transient uplift of the Denmark
Strait and the Iceland-Faroe Ridge, may
have played some role in reducing the
vigor of AMOC and inhibiting produc-
tion of NCW in late Pliocene times. This
inhibition could have preconditioned a
coupled ocean-climate system, with
full glaciation triggered by variations in
Earth’s orbital cycles along with a
decreasing trend in atmospheric CO2.

7.3. Late Pliocene–Middle
Pleistocene Times (2.5–0.5 Ma)
High values of Tp and decreased %NCW
between 2.5 and 0.5 Ma coincide with
lower accumulation rates of Bj€orn and
Eirik Drifts during this period (Figure 14).
Solid accumulation rates of Bj€orn fell
from over 150 m Ma21 to �50 m Ma21

but accumulation of Eirik Drift decreased
more gradually from 60 m Ma21 to
�30 m Ma21. This trend of decreasing
accumulation rate is recorded at drill

sites and on seismic profiles within both the Iceland and Irminger Basins. Static distribution of depocenters and
absence of stratal truncations on seismic profiles close to Site 646 may indicate shallowing and weakening of
NCW flow [M€uller-Michaelis and Uenzelmann-Neben, 2014]. Upslope drift migration caused by decreasing current
intensity was also noted by Arthur et al. [1989] and by Hunter et al. [2007]. Weakening of the NCW flow may
have been magnified by the effects of Pliocene cooling and of Northern Hemisphere Glaciation [M€uller-Michaelis
and Uenzelmann-Neben, 2014]. Increased sea-ice cover across the Nordic seas could have shifted NCW
production southward, exposing Eirik Drift to a weaker branch of NCW flow [M€uller-Michaelis and Uenzelmann-
Neben, 2014].

7.4. Middle Pleistocene–Holocene Times (<0.5 Ma)
Renewal of %NCW is corroborated by an increase in solid accumulation rate of Bj€orn Drift at Site 984 and
on seismic profiles 1 and 2 (Figure 14d). The average rate is �100 m Ma– 1 over the last 0.5 Ma. At Eirik Drift,

Figure 14. Mantle potential temperature (Tp), northern Component Water over-
flow (%NCW) and drift accumulation through time. Blue bands 5 periods when
Iceland plume was cooler. (a) Black line with error band 5 Tp at Denmark Strait
[Parnell-Turner et al., 2014]. (b) %NCW with error band [Poore et al., 2006]. (c) Gray
points 5 stacked deep-sea oxygen isotope record [Lisiecki and Raymo, 2005;
Zachos et al., 2001]; black line 5 smoothed with 0.5 Ma width Gaussian filter; tri-
angle 5 onset of Northern Hemisphere Glaciation (NHG) [Kleiven et al., 2002]. (d)
Solid sedimentation rate of Eirik Drift. Dotted black line 5 rate from M€uller-
Michaelis and Uenzelmann-Neben [2014]; dashed line 5 rate from profile 1 (Figure
11); thick/dotted blue lines 5 strong/weak bottom currents [Hunter et al., 2007];
(e) Solid sedimentation rate of Bj€orn drift. Black/gray lines 5 rate at ODP Sites 984
and 983, respectively [Jansen and Raymo, 1996]; dashed line 5 rate calculated
from profiles 1 and 2 (Figure 7).
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an alternation of brighter and weaker reflections within the shallowest strata are interpreted as signs of
strengthening bottom current flow during glacial-interglacial cycles, although accumulation rates are uni-
formly low [Hunter et al., 2007].

Evidence for renewed NADW flow in recent times is consistent with a decrease in dynamic support beneath
the Denmark Strait and the Iceland-Faroe Ridge. This decrease is manifest by the present-day location of a
thermal pulse along the Reykjanes Ridge. Parnell-Turner et al. [2013] show that this location occurs at a dis-
tance of �500 km from the center of the Icelandic plume. Assuming a radial planform, this pulse is expected
to lie beneath lithosphere �50–100 km beyond the two oceanic gateways. Consequently, the Denmark
Strait and Iceland-Faroe Ridge are inferred to have gradually subsided over the last 0.5 Ma.

8. Conclusions

Regional seismic reflection profiles that cross the Bj€orn, Gardar, Hatton, and Eirik Drifts are described and
analyzed. Mappable reflections are correlated between profiles and calibrated using borehole data. The
detailed architecture of these contourite drifts suggest that loci and rates of deposition varied through
time. We have reconstructed the history of accumulation rate for Bj€orn and Eirik Drifts. There is a good cor-
relation between variations in dynamic support of the lithosphere, recorded by VSRs straddling the
Reykjanes Ridge, and the accumulation history of Bj€orn and Eirik Drifts [Parnell-Turner et al., 2014]. Periods
of rapid sediment accumulation correspond to periods of reduced dynamic support. These observations
match the history of NCW strength constructed from the isotope record of benthic foraminifera [Poore et al.,
2006]. Our observations can be explained by the interaction between mantle convective circulation and
uplift of the oceanic gateways either side of Iceland. Thermal anomalies, advecting through the conduit of
the Icelandic mantle plume, may have triggered transient uplift of the Denmark Strait and of the Iceland-
Faroe Ridge. This uplift reduces flow of NCW into the North Atlantic Ocean, which in turn controls the rate
and locus of deposition of contourite drift sediment in the Iceland and Irminger Basins. We therefore sug-
gest a causal relationship between mantle convective behavior and processes taking place at the surface.
These processes may have contributed to preconditioning of the climatic system that led to onset of North-
ern Hemisphere Glaciation in late Pliocene times. In this way, deep mantle processes may govern long-term
bathymetric configuration of oceanic basins with implications for deep-water circulation.
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