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Preface

NF is an unpopular system, and no wonder. However,
the criticism usually made of it 1s ideological rather
than mathematical - it is said that NF has no standard
model. This goes back to a misleading remark of Rosser
and Wang [k1] where they also point out that in IF
there are classes of Russell-Whitehezd ordinals without
least members, which proves conclusively that Russell-
Whitehead ordinals are not entirely suitable objects
with which to conduct ordinal arithmetic in NF, It does
not seem to establish much else, A "standard model" is
a second-order, alias platonistic, notion, and nobody
would recognise one if they saw 1t any more than anyone
will ever know what the power of the continuum is
(whatever that means). It seems rather unfair to ignore
NEF on philosophical grounds when philosophical
considerations play so little part in modern, technical,
set theory. *

And the technical reasons for studying NI are
good: it continually reminds us of the arbitrariness
of mathematics and 1s good practice for formally-
minded logicians. With NF @ -incompleteness is an
everyday fact of life, not a remote theoretical event

on the boundaries of the system as it is in ZF, There



are no easy appeals to AC,

NF is said to be counterintuitive, but what does
this add up to? 'Intuition' after 2ll, is just the
name we give to our way of thinking about our subject -
and that is at least as much a result of what we have
been taught as of what we were born with (if anything)
What mathematicians actually mean (or ought to mean)
when they say NF is counterintuitive is that it is not
what they are used to. This is not leading up %o a
grand plea that NF is in any way better, or to use WF
as the set theory: notoriously it makes no difference
whatever to group theorists, analysts, number theorists
topologists etc what set theory they use. No
mathematician ever uses set theory because 1t is useful
— it isn't: he/she uses it because it is fun. And NF
is just as much fun as ZF

* * ¥ * * * * * * * * * *

Chapter 1 is devoted to the cardinal arithmetic
of NF, The two main ftheorems concern consequences of
Rosser's Axiom of counting ("Axcount" here) and the
curious hehaviour of lurge cardinals with respect to
exponentiation.

Chapter 2 is concerned with the model theory of
NF and the consistency problem in particular. The two

main approaches to it (Scott [42] and Specker [¢5] )



are synthesised and a number of partial results
obtained in the direction of Con(NF) - e.g., the
consistency of EZ?ST - ambiguity. Also a new product
construction is introduced, a hybrid between possible
world semantics and wltraproducts which can be used

to give consistency results for certain intuitionist .
subsystems of NF with the existence of fixed points
for a number of inhomogeneous functions.

Chapter 3 discusses speculatively some natursal
possible ways of enriching NF and examines some
consequences of each of the proposals,

The bibliography lists all material on XF known
to me whether it is referred to in the body of the
thesis or not. A separate bibliography contains other
technical literature not directly related to NF bui
referred to here.

All results are original unless otherwise stated,
at any rate, all but one of the proofs are new (Boffa
produced a nicer proof of a result of mine which appears
here), Prior proofs of results are acknowledged whan
known to me, Results quoted but without references
arise from the activities of the Séminaire Henefiste.

1 would like to thank here those peonle whose

comments have not been acknowledged in the text,
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Professor D.S.Scott especially, who, by finding a

igtake in an a2lleged proof of mine of ~ Con(NF)
made this thesis possible. I would like %o thank
the other members of the Séminaire Hénéfiste in
Belgium for their helpful comments, and also the
other members of the Cambridge Logic Seminar.

The Science Research Council kept me Tfor one

year of my researches, and my parents for the other

two: I am deeply grateful to them.

— - — — -— — — — — — — — — f—

% There are some further rude comments in this

vein in Lake [2!]

I would like to thank Dr. A.R.D. Mathias, my
supervisor, for going through the final version
of this dissertation with me and suggesiing a number

of improvements and spotting a number of mistakes.
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Chapter O

Definition 0.4

Definition 0,2

Definition 0.8

Definition O.4

Definition 0.5

Definition 0,6

Definition 0,7

Definition 0.8

Definition 0,9

Definition 0,10

Definition O, 11

Vo= e {xgizxax ]

A= {xixéx }

Jx o= art {x}
This gives rise by recursion to HFrx o,
Also to ("x ={ ¢yt yeEx}

flx =af (ry)( <y,x € f) when f is a
variable ranging over functions., This
notation will also be used when f 1is a
constant for a class abstract by a mild
abuse of notation,
c{yiyex}
X =3¢ { v : v is the same size as x|
X is a cardinal
Xy =45 set of functions from x into y
NC =,¢ {X:xeV}
No'< when < is a wellordering is the
set of 211 R orderisomorphic to < ‘
NO =4 { Wo'< : < is a wellordering }
BElements of N0 are ordinals
card'a for o & NO is the cardinal of
any X such that some wellordering <
of ¥ 15 B &

- 1 -
WC =g4p { card'a : o« & NO }



Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

Definition

0, 12
0.1%

0.14

0.15

0.16

.17
0.18

.19
0, 20

0.21

)22
Qw3

oH

(HX _—

= af 'x  (Wote that 2% is

not defined for o £ Y

a< 4, B for a, B € NC is to be read

X E oAy e B, D, Jmap from y onto =x.
RIS where R and S are relations is )
{{x,y>: @z)(z,y> € 8 a {x,2> € R)}
Beth numbers  l'a = .

Cij+ j 8 = égn ) ;jn is ;%n'égb

'a is the last member of ¢'a

when ¢'a is finite, (see below)

pla = 4o { B : @)=, ')

When a is a cardinal, a + 1 =35

{x: (Wyex)(x-{y}ea)l

0 =g, 18} (d.ea, A)

Mo =, (({xENC:0c¢ xa(vn)( me x, D
.m+ 1 e x)}

SM = : p'a ¢ Nn} This set was

af { o :
first characterised by Specker [44]
and the initials are intended to
recall "SpeckerlMenge".

can(x) =40 X =T%

stecan(z) = 4. «|x exists., Here ¢ is

the class abstract, the singleton

function, as in definition 0,1



The predicates stcan( ) and can( ) will both be
applied to cardinals and ordinals by an abuse of
notation to mean that the underlying sets are can
or stcan. -
Definition 0.24 When R is a relation RUSC'R =af
{ =), {y}>: <x,y>e R}
When R is a wellordering and No'R = «, I shall
often write To to be No'RUSC'R, This is a
sufficiently mild abuse of definition 0.12 not
to cause any confusion, ‘
Definition 0,25 “x =3, { ¥y i ¥y £ % }
Definition 0,26 Q'a (for a & HC) =4¢ least B € W
such -that B \;é 5
Detisditieon U.27 F,is a'least' operator on wellfounded
structures.
Definition 0,28 X Cr ¥ = 4» Fwex)(WwelNn A
X -wgy)
Definition 0.29 When & is an n-place relation (X)?
is an abbreviation for ré(x1 ...Xn)7
Definition 0,30 If R is a relation J'R =4,
{ &xyy ¢ x=R"Y
Although NP is a2 set theory I shall sometimes
in an informal fashion use the notation " %(...)" to
do duty for the class of all x such that (,...) when

o i |
(...) is unstratified. %§(...)7 is a class notation



for relational abstraction
Definition 0.3
Axcount = g (¥n € ¥n)( n = Tn) (Rosser [39])
Axcount_ = 4p (vn € Wn)( n < Tn)
Axcount, = . (Vn & Tn)( n> Tn)
NFC is NF + Axcount.

Except where otherwise stated, ordered pairs are

Quine ordered pairs as in 271,

Definition 0.32 W =g { « e NC ¢ ¢'a e n +1 !
(written this way it looks as though " N 7 is the
result of a definition scheme. It is rather just

a shorter way of writing ' Y'n 7 if we have
defined Y'n to be { o« ENC : ¢'a €En + 1 }. This

makes sense of quantification over the N which will

be necessary later on. )



aleph in Wonderland, or the cardinal arithmetic of NF

The main content of this chapter is the proof of the arrows in the
cdiagram on p.ll. Lowever, there arv a number of preparatory lemmas and
remarks ihat need to be got out of tne way first.

hen « is a cardinal, T '®¢ 1is tc be tne tree generated by of as follows;
o= b ixed ), {KRsd i we ¢PNGY A pe YYD

We shall need a rank function cdefined on these trees, £ and we shall
need to show that @ is wellfounded. In ZF it is trivial to define a rank
function on wellfounded structures. It is possible in NF too, though this
is not obvious, as NO i1s a set and s0 we must eliminate the possibility that
T'® 1is s0 big that we run out of ordinals, We want to define a function
P from T into §O such that PP =sup JP¥ ¥ 1 2V ;{ZS and p1f =1
iff ~ @¥)(p = 23.). Such a function we can readily construct by
recursion. Call it £,. fu = (alflg“- is stratified with =, B having the
same Eype. That is, fjl is a set. lie can define Pa, PB T f)nﬁ-llo( =
F:n'mxfor each concrete n. It is easy to verify that each f)n behaves
like a rank functiion.

if !Ol isﬂfot defined for some Tk because we run out of ordinals this
implies that NO <, (?'x). This is not obviously impossible. But if
KDM is undefined for some T&K because we run out of ordinals we have similarly
NO < (4T‘T%K)- Now f:'T%x is a subset of Tq Tqﬁz

"NC so we infer ﬁ% =,

This implies TNO < , T° V  and therefore
oTNO o oHF but
THG < 2INO 55
O < T4V and 10 < TOV

This is impossible, for we can prove by induction on the alephs that if
o is an aleph then T%<=-g{ P e NO : card‘ﬁ==0<} « Now if Eﬁ < TBV, §5 is
T%x for some aleph & which is not the last aleph (as«x < fﬁ). 50 N0 would
have to be the same size as some initial segment of itself bounded by an
oraeinal which is not the last initial oraeinal, which is impossible. 4his
establishes that at any rate f34 is defined everywhere as long as T 'o is
always wellfounded. 71his is what we have to show next. From now on 1 shall
write "p ' " instead of ”(34"3‘M n (Even tlmmgnPL{L does not exist as
e set of ordered pairs, this functional notation does not lead to abuses) We
shall need a theorem of Sierpinski's

Proposition 1.0 éq @

(V¥ e NC)(Z2 exists, D« N Ly & 2 )



Sierpinski's theorem is provable in ZF without any use
of choice. This works in KF as well, but I shall
reproduce the proof translated into NF because there are
complexities such as the additional premisses required
which prevent the provability from being obvious.
Proof: -
Fix x € . The idea is to code wellorderings

of subsets of x by the sets of their initial segments.
The set of initial segments of a wellordering of a
subset of x is a subset of p'xz. Thus 7

T { R : R wellorders a subset of x } < ;ET;
The object on the left hand side is alsc the cardinal of

{ {R} : R wellorders a subset of x }

and we can project this many-one down onto
{ B e NO : card'B < &'a } by sending {R} to the ordinal
of which it is a subset, Now { 8 ¢ HO 2 card'p < K'a }

; 2 : .
is of power T°&'a so this gives

2
T a (o] (03
2
PR <, po'x = 2° =172 if 2° exists.
2&
Assuming this, we have HN'a< 4 2
. o7
S0 TR'ae < 4 T22
! i
1 m
and 2T'r‘\ o« < 2.[.2
-0
If 22 exists, we can rewrite this last line as
X
o § o
2T ) as T22



e |
but anyway T R'a < 2T Rla

o
so THa< T22 2
2
SO Ntg < 22
Lemma 1.1 (ve € NC)( C'a has no subtree without endpoints)

Proof. Suppose not, and that « is a counterexample,
with [a] a subtree without endpoints of T'a. Define [d) to
ve {Be la]l : a= S™1g }, Consider the function
f:n+— inf(}("[(x]n). Tet 7 be the least aleph in
the range of f and n, the least n such that f'n = =,
Then © = X'f for some B € [cx]n . But, as [a] is
perfect, B = 222 for some Y E (fa]n ;. 3 end QY < KX'B
by Proposition 1.0 so f'n + 3 < f'g, contradicting
wellfoundedness of the alephs.

Temma 1.2 (i) p‘i[,‘a =Tp'a

(ii) a < ?\} . (o'Ta =1p'a

Proof:

When a € <"V T is an isomorphism between

C'a and L 'Ta so we can prove (ii) by an easy induction

induction on rank. When a £ "V T sends 'a onto

o subset of T 'Ta which will be proper if FB & oy Y (
oTB _ Tg) as T will then be in C'Ta but B £ 'a.

Then the rank of the tree T"/C'a will be Tp'a but as it

may be only z subtree of A 'Ta, 0 'Ta may well be bigger.



Trees of cardinals enable one to give short proofs of
results in cardinal arithmetic which can otherwise be
guite hard to show, e.g.

Proposition 1.3

(1) a = 2™

.. a infinite
. o' T
(ii) Ta = 2.2, a infinite

(11i) @x)( x<c"™WAp'z =7)

( (i) is a footnote in Specker [+4] and is a corollary of
a result in Boffa [2] and (iii) was proved independently
by Henson [151])

Proof:
(i) compare P'Ta and p'Tga. T{fTa =1p‘T2a but

-
ot & _ 1y g0 P'Ta 21§T2a + 1 = TP‘Ta + 1, Hown £ Tn + 1

2

for any ordinal n so p'Ta >p'Ta + 1 so, as p'Ta =

sup {p 'B + 1 : 2P =~ Dy } there must be a B such that

25 = L A!o'ﬁ >~p'T2a so the tree of Ta branches, This

can never happen if a is finite so the conclusion follows.
(11) p'2®>p'a+1 and p'Ta =Tp'c because

ag-:;:_'dﬁf. So Tp‘a},p‘cx + 1 so Tp'a>p 'Tae because

n# Tn + 1 so the tree branches as before so o is

infinite as before,

(111) Apply (i) to get p £ <“"v 2P = vy,

3 is ("x for some x, and any such x satisfies (iii)



The ranking function also enables us to relate the
complexity of ©'a to the size of a, If we define
ranlk as is customary in ZF, as a function sending
endpoints to O and sending x %o sup{ @'y +1 ¢ ¥
precedes‘x} we can prove the following

Remark 1.4

.

o) o' linit. D . TR'a ZagP,a)

The % is there to make the remark stratified.
Proof is then by a trivial induction on rank,

We shall need the following observations:.

Lemna 1.5

(v) o = Ta.D, a £ ft‘%
Proof
(i) Ve first show by induction on n that
;jn'a:SZ:]n'ﬁ. Tor n = 1 we are given it by the
antecedent. Assume it holds for n = k, to prove it
holds for n = k¥ + 1 we need only Y 2 By ot 2Y:g 26
which is trivial., Now let n be such that ;Dn'ﬁ =

a3 B Then J_'e < ;blt'ﬁ‘ So the function



£ 2,8 ~— 2 'a form<n is a ! -1 map from ¢'p
into o'a, (Note that we can still prove (i) if we
weaken the premiss to o < 4 B A 2%  exists)

(ii) We prove by induction on n that f]Tn'Ta =
T;ﬂn'a as long as the powers exist, So if ;]ult'a
is '« then A Sl = Sqy'Ta.  But this cardinal

is € "V and so is not :jult.Ta‘ Thus there is at

least one more cardinal in @'Ta so ¢'Ta > T¢'a + 1,

(1ii) Corollary of (i) and Proposition 1.0

=

bl i 53 1 ,_,“—: .t
(iv) Proof as in (ii), only ;jult a =V so T:]ultla" v

so T must send ¢'a onto precisely ¢'Ta - {;Bult'Ta}

(v) Corollary of (iv) Suppose « e TV A o = Ta

then ¢'Ta = Tg'a + 1 = To'Ta + 1 which contradicts
+he fact that for no ordinal n is n = Tn + 1.
The diagram on the following page constitutes

Theoren 1.6

10



(e NOYK Zy Tot)

(e WO ZTor ) (#n e TV (22, T)
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(Dotted arrows are coajecturad)



The following arrows are nontrivial
(Vn)( B £A) -~ Q'sM & SM
(vn)( BOT'T £AN) -~ QU & T
Proof:

Took at inf(N"SM) (resp. inf(R" 'V ) There
can be no last n such that Ha € BH)( LX'a = inf & "3M)
(resp., (Ha € E’ﬂ’t'?)(&{‘a = inf 5{ﬂf@}$) otherwise by
Proposition 1.0 the number of nonempty E (resp. HYWﬁjﬁ)
is finite. So arbitrarily late N (resp WAY'V) contain
cardinals vhose alephs are minimal, So, by lemms 1.5
(), o¢'inf L"SM (resp.?‘inf}l"@@) must be arbitrarily
large.

(W)@ < Te. D, o ¢ SM| - s 4 s
Proof:

ook at inf (SMNWC), Call it B. Assume the antecedent.

P o T e TP

Then TP < B so TR # SM so T"3M ‘% 3M. The conclusion
tells us that being & member of SM is not a satisfactory
criterion for heing a large cardinal.
(W &« < Ta, D, @ £ SM ) ~ QUsM ¢ si
Proof:
Take infR"-'V ., Oall it B, @ < TR because 7'V is
closed under T, so B £ SM.
(#)a < Ta.D. a g SH) - TVAUC = N
Proof:

Reductio ad absurdum, Assume the antecedent. Let B be

12



inf T'TAYC. Then T e {'TNWC as both 'V and WC
are closed under T, BSo, by minimality of B, B < TR
so B £ SM, and a fortiori 8 £ f['? contradicting
assumption,
%%o ¢ SM, - N, exists,

Proof:

If X, # SM, then 7 exists for all finite n, 8o,
by Sierpinski's theorem, }{nAexists for all n., Now
WG # Nhij{?{n_: n € Nn} otherwise WC would be closed
under T, which it isn't., So there must be more
alephs, the first of which will be ¥w.

Vo e WC)( «>Ta) = T'TAWC = A
Proof:
Suppose the consequent is false, Let Y be the
least aleph in ’E'?. Then TY & ff*% so Y < TY by
minimality, so, by the antecedent, Y = IY, contradicting

Lemma 1.5 (v),

13
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Assume Axcoun't?/. Then either
(1) £'vN¥C = A

or (ii) OVNWC £ A

In case (ii) argue: let o De (}La ET_‘\_—JFQWC) Then
« < Ta by minimality and lemma 1.5 (v), « =N\6 for
some B. Either this B is infinite, in which case &
exists, or it is finite, in which case the inference
B < TR will contradict Axcountz, S0

Azcoun‘ca e D Nw exists v @'?nwc . (#*%)

The technigque behind (*#%) is to find some
sentence o which implies the existence of some ordinal
g < Tf., Then we throw in Pmcourlt> to show that f must
be infinite and infer Axcount}. = Hw exists v~0 .
Unfortunately there are not all +hat many 9. The hope
is, however, that eventuzally we will be able to find
enough such o for the conjunciion of their negations

t

to imply '&, exists . Then we will have  Axcounty
==

* (\Qw exists,

14



(Va e NC)( « >, Ta) trivially implies Azcount , as
=
>, is > when restricted to the integers.
(Vo € T'V)( a > ,Ta) =~ Axcount_
g

Proof:

This is in two steps. (i) ZILet n & Nn be such

that (Ba € ’C'\zfﬂﬁ)(Ta <, o). We have

-

-—n+ 1. And, by Ta <, @ we have ¢'Ta Zg¢'a =n

(note to lemma 1.5 (i)) whence n< Tn + 1 and n < Tn.
(ii) Now we use (Va € TN ( a > Ta) to
show that all n € Nn satisfy the hypothesis of (i).

Suppose there is a last n svch that < VAT £ A

Tix it. Pick @ € T 'VNH. We have ¢'Te = Tn + 1
and ™n + 1 < Tn by maximality of n, But this is not
possible if « >, Ta so there is no last n, s0

(Wn e W) T'VAN £ A ).

Now,putting (i) and (ii) together we infer
Axcountg , and combining both with the statement at
the top of this page proves (Va e NC)(a > Ta) -
Axcount.

A close look at the proof will persuade the

reader that (Vo € HC){ o =, Te) is stronger than is

o \ o Ta -
necessary to infer Axcount., 27 =4 2 or qu'a Sy
:]‘q'Trx would do just as well for any n. Even
;Jn'a = Dm”i’a for any m, n., - at the cost of a more

complicated proof, would give s AXGOU’T'IT.S,

15
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T"SM ¢ SM
{'SH ¥ SM

> oM £ NC - Nn

Proof:
NC - Nn is closed under T,and N'e is infinite
when a is, so if SM is not closed under T and & it

must be distinct from NC - Nn.

SM £ NC - Nn = &N £ SH
Proof:

R =L is trivial, TFor L - R observe that if
there is an infinéte a ¢ SM we must have, by Sierpinski's
theorem,%{o-< 222 whence }@O £ SM.
f“Sin(JC)-\\$ NC - Nn is infinite
KC ¢ Wwe -7

Proof:
By contraposition. If HC - Nn is finite, then

HC is the unicn of a finite set and a countable set and

16
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will therefore e countable, So it is wellorderad
and cantorian, contradicting the hypotheses.
(Hote that the weaker hypothesis ~stcan(lC) is

already a theorem of NF,)

Axcount_ - (Vai( o < T, D, a ¢ SM )
Proof:
By reductio ad absurdum., o < To gives us
;fz > o'Ta and anyway we have ¢'Ta > 5&7& + 4

which gives ¢'a > T¢'a which contradicts Axcount_

As 2 corollary of this we have

steen(a). D, a £ 5M, because either (i) a is finite,
in which case « £ S¥, or (ii) a is infinite, in
which case we infer Axcount and a fortiori Axcounqg

which we can then use to prove a« ¢ SM as above,

I remarked earlier that we can prove p'Ta =
Tp'a only for a £ 0, because it might be that some
@ € @ dis of rank O but that Ta is of huge rank because,

TB, ¢ £ 2P pecause 8 € @, Tor such a B

a2lthough Ta = 2
we have B € @ TB ¢ 2. We may ask: can we actuslly
show that this happens? If it does, for which n can
we find B such that 3 e ¢ TB € N ? I{ turns out that
assuming either that cardinals behave "very well" or

that they behave "very badly", give us the same answer,

essentially that for all standard integers n there is

17
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o & 0 with Tw ¢ W. We can also prove that 1f T"SM # Sk then (3xe 0)(Tx ¢ SM)

but that is less significant.
Theorem 1.7 (i)
En)( H=A ). D . (¢n e Nn)(stcan(n) 2 (F«e& O0)(x & K))

Proof:
We assume the hypothesis and prove the contrapositive of the conclusion.

write ()N for sup(p'"N). Assume the antecedent. Then {)N-z k - n where

k is the last m such that M+ A . k%> Tk, Suppose every « € N is< cd”V.
Look at sup(P" Y puE), A5 & < E'_’T‘;’ e - TPLDL IrO(To( we infer sup(p“ TTuR) =
ok -n) so Pg= k-1 T(k-mn) '
Tk - 1 # k -n
n-1 = k - Tk
50 n is not strongly cantorian., So if we assume that n was strongly
cantorizn we can infer that not every« &€ N 1s ZZ:V, S0 u@(él@ for some
X & N.
We get a similar result on assumption of "good" behaviour on the

part of NC:
Theorem 1.7 (ii)
Axcount ¢ D (Wn » 0)(Fr e 0)(Tx & W)

Proof:
Notice first that Axcount < D &§n)( XK#A ). For
suppose Axcountg and that n_ is the last n such vhat HN#A. Then 3x & B
(o]
guch that CP'TW is of power > Tn_ which is greater than n_ Ly Axcount
o} o] s
S0 n, was not least. how we assume Axcount g and make & nonce ceiinition
on alephs:
F(p) 1fi_ . (i-fr_x_)(soa e B)( RS ) . B
Note that -~ F( “ThU). Otherwise trivially TRO < TV ana HO is Téﬂ

for some <&, which we have seen earlier is impossible (p 5). we shall need

axcountg D WRI(psS Tp. 2. 1(B))
Proof:
We prove by induction on n that for all n there is m > n such
shiak Tum Qﬁim ANBPS A 5, a5 long as BSTRp . For n=0 it is trivial,
Now if Pgx and o« & NN T'W then B Tp < Ix

because B < V.
which is in 'V N TR+ 4 anc by Axcount ¢ fm+ 1 > n.

e maEDrEE



Now set

K= @V(~FR))

By the above we have k> Tw 50 let A = { B € 8SM: ks §1 . Because
~ P(x) there is a maximal n such that K meets A but because- F(Tk) there is
no maximal N which meets TUA which is { Pe SM : TK<RY - 0. Now
Gefine D) jiWto be U (PN @), Then T ., 1€ 0 and 0 3 .0
meets arbitrarily late N, which proves the theorem.

This question is interesting not merely for its
own sake, but also for the possibilities it raises of coding
subsets of Nn with large cardinals. For example, we might well speculate
what the following class might turn out to bes (Of course this phase of the
discussion would have to be conducted in ML) %(Hm)(Tmb(& ). It may be
that by judiciously picking & we can code in this highly unstratified
way subsets of Nn whose existence is not otherwise provable by more ncrmal
7ZF-type methods. Of course we would probably not be able to prove sethood
theorems for them,

The foregoing results enable us to show that many further weaker
forms of the axiom of choice fail in NFC than can be shown tc fail in NF,
We shall see later that the first aleph &K for which ~ ACx (if there is one)
will satisfy « £ Tx and is therefore nct otherwise obviously pathological.
Wwe can prove worse than this, however:

Theorem 1.8 (NFC)

(¥n e in) (¥ e WC)( Tﬁ{t_:—!n&x)
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Lemms 1,9 (NF)
e Ul (o) & (e

a = "V o = "V

Proof of lemma:

Tl

suppose 9'f has n members, the n™" of which is >

("V, Then ¢'Tf has > Tn + 1 members, Let X be the
n* pmember of o' B and then TX is the Tnth member of

m3z e
©'TB and the Tn + 1st is 2% which is p'x. Now

("W E D, "W p'x so we are done,
Proof of theorem:

Tla)

suppose per contra that U —
a > "V
contained an aleph, Let a be the least such, By
lemma 1.9 and minimality of o we have a < Ta, which
contradicts o € SM in the presence of Axcount,
Comparability of cardinals fails quite early on,
even in NF
Theorem 1. 10 (NFC)
() (a & Ra = QR'Ta)
Proof:
Pick ¢ € T'V such that N'a is inf( & ® T V)
We have also N'a < KR'Ta (intuitively this mesns that
N 'a is small) but @ £ R'a otherwise « is an aleph
which is impossible as « E’C'%.

The prime ideal theorem is probably the strongest

consequence of AC that has not yet been refuted, If we
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could find an equivalent of it in the language of
cardinal arithmetic we could probably attack it by
methods resembling those above,

One open problem in the theory of cardinals in
F is the possible range of relationships between
o and Ta., We know that quite often o = Ta (e.g.
when o = ?QO ) and that sometimes o > Ta ( e.g.
when « = V) The two other possibilities of a < Ta
and a £ Ta £ o are not known to be realised, As
we have seen, the assumption (va)( a =, Ta) entails
Axcount and is therefore unprovable in IF, The same
is not as yet known to hold for the weaker version
e £ Wn)( o £ Ta)
Theorem 1,11

Fa £ ¥n)(a < Ta) A (HC - Hn is finite), D .~ Axcount
Proof:
Pick a infinite, a < Ta, Then { B & NC - n

B<a } is a proper subset of { B e NC - in : B < Ta}
and by NC - Hn is finite is smaller and finite so
(3n & )( n < Tn) contradicting Axcount >0

If we are loocking for an o incomparable with Ta
the best hunting ground is probably 7,
Theorem 1,12

Axcount _ A NG - Wa finite,D, (Ju € ¢ V( Te ¢ a & Ta)
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Lemma 1,13
e £ Tn)( a & Ta) A NC - ln is finite. 2 .
(3o minimal in "C‘ﬁ")(‘fa & a £ Ta)

Proof of lemma:

As NC - Nn is finite there is o minimal in 'V,
By minimality of a and closure of f"i,:r under T we
inferTa & o«. Also since B = TR.D. B £ TC'V we have
a # Ta, And o < Te is ruled out by the hypothesis, so
o« and Ta are incomparable,
Putting the proof of lemma 1.13% and {theorem 1,11
together we obtain a proof of theorem 1.12.
Consideration of =tﬁ$ can help us with questions
like (ga)(a £ Ta AR'a =R'Ta) ?
Theorem 1.14
@a)( a £ Ta Ao =X'T%) v Fa)le < Ta)
Proof:

Look at inf(é{"'f'ﬁ) or B for short. As before we
have B < TR so either B < TR in which case we have the
right hand disjunct, or p = T8 in which case pick some
@« € 'V such that 8 = KR'¢, Then a« # Ta but C'a = B
and K'To = TN'a = TR = B so we have the left hand
disjunct,

Theorem 1,15

Axcount ;f‘D. S{w exists v (3a3(mzcan(5<‘2a)A can( ™ 'q))
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Proof:
Let Y be inf(KR"TTV). Then Y < TY. Now either

Y < TY in which case Axcount > - A, é%kjexists, or

Y = TY, In this second case we argue: lef n, be the

least n such thatGheﬂJﬂifT§X§& = T) Fix such an «a.

Note that ¢'Ta = Tno + 1 so, by minimality of n,,
My < TnO + 1, whence L < Tno. Axcount > implies
that n, is strongly cantorian, as it implies that
n, =Tn, , and if m<n_ such that m # Tm then
either Tm > m or T(no - m) >-(nO - m) both of which
contradict Axcount _ . Now look at ¢'a., It is L
strongly cantorian, snd so also will { <B,§Q'B> : B e @'a}}
be. We want (PB e o'a)(~can(H'B)), Although this
is defined by an unstratified expression we can use
the fact that stean(¢'a) to locate it., In these
circumstances it is evident that we have functions
T and g such that ‘
(B, R'B>F‘£ ({p, Qpd) = {mp, TR'B)  so
glt : g, Q'g> (g, T N '8> The B we want is the
last B such that the second component of g|f '<<ﬁ,§{'ﬁ>
is equal to the second component of (;B,E{’ﬁ>,and
this condition is stratified., There must be a last
such as ~can(%@T§). This gives us a B such that

can(K'B) A a.can(§<'25).
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It is well known that any nonstandard model of
arithmetic must contain a copy of the rationzls,
I shall show below that if Axcount fails we can
find a definable subclass of Nn of the crder type
of the rationals.

Iet n be a difference number if it is m - Tm

for some m € Nn, m > Tm or Pm -~ m for m € In,
m < Tm, We shall need the following

Lemma 1,16 (Ym.c NaJ¥p e Na)  m ¢ Tm a stean(p) — P“m—Tm”

Proof:
n=m=T, Let p be strongly cantorian,

The p < m. we have

m = m, (mod p)
Tm

Tm

W

; (mod Tp) but p = Tp and m, = Tm, so subtract:

m-Tmn = O (mod p) but p was an arbitrary strongly

]

cantorian integer, so the lemma follows., Then to prove
Theorem 1,17 (NP + ~Axcount)

3 subeclass of Nn isomorphic %o the "true" rationals
we argue as follows: Pick any difference number n,
Then if m,, M, are strongly cantorian integers n - m,
is an integer, and the class of all integers i
obtained in this way from n is obviously a cecpy of
the 'actual' rationals.

The proof of lemma 1.16 uses the fact that any

integer earlier then = strongly cantorian one is
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also cantorian (indeed strongly cantorian) Ve may ask
if any integer earlier than a cantorian integer is
cantorian (with ‘ordinal' instead of 'integer' this is
Yenson's axiom CS [15]) This guestion turns out to
be -related to one also asked by Specker, namely,
are Axcount > and Axcount:s equivalent ?
Remark 1.18

(vn € In)Er > n)( m = Tn);D; Azcoxm’c;:—: Azcount_
Proodf:

Pick n # ™n  (if there is one - if there is not
then Axcount holds and there is nothing to prove) and
m=Tm, m>mn, Then if n> Tn, n - n must be smaller
than m - Tn = T(m - n). Mubtatis mutandis for n < Tn,
Bither way, if one of the weaker forms of Axcount

fails, so must the other, on this hypothesis.

As well as cantorian and strongly cantorian there
is a family of properties closely related to the latter
and of approximetely equal strength. stcan(x), we
remember, is defined to hold iff (Tx exists, If o
is a function which has values n types higher than
its arguments for some n > 1, we must consider the
collection of its fixed points (if any) and the
guestion of whether or not it is a set. For example,
suppose {x:zxz={y:xey } )} is a nonempty set,

cz2ll it A, we show easily enough that c2rA exists, but
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does this prove stcan(4)? In general, if o is a
function whose values are n types higher than its
arguments the set & (if it is a set) of fixed points
(if any) will have the property that (4 exists,
because the function sending (™'x to o'x will be
definable by a stratified condition and so will exist,
but for x € A, 9p'x = x, so this function is precisely
1A, Does this imply stcan(A)? Probably for no n
is this provable (though we can show by elementary
arithmetic that if cmrA and (FFA exist and m and n
are coprime then stcan(A) - there are parallels here
with the axiom scheme Amb™ to be introduced in
chapter 2.84 ). However, we have an analogue of

(¥x)(X ¢ Wn A stean(x) .D. stcan(&'X))
namely

(wx)(X £ Nn A Plx exists . D, stcan( K '%))
Proof: As before, cnry exists for any finite y, so
M m: m<p ) exists for all p € I, so T°[ I
exists; then we prove by induction on Nn that this
relation is the identity. So (Wp e ¥n)( p = T%p).
Now if p > Tp, Tp > T°p > T7p > ...T%p (mutatis
mutandis for <) so (¢¥p € Im){(p = Tp)., Besically
this is the proof that the existence of an infinite

strongly cantorian set is equivalent to Azcount: to
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prove the sentence above read '

of cardinality <

' ' for 'finite' and the proof goes through, i,e.,
when we can wellorder everything, the existence of
Mlx is not merely implied by stcan(x) but is actually

equivalent to it, for each n. HNote that this is a

theorem scheme, as we cannot quantify over the n.

It is an open problem in ZF whether or not there
is an uncountable regular cardinal, This cuestion is
open in NF too, but because of the existence cf
pathological cardinals in NF there is a remote chance
that these foreign methods might make the problem
easier to solve, A related, but more difficult problem
is "Is there an uncountable weak inaccessible in NEF?"
As we shall see later, this would enable us to prove
con(ZF), The hope arises from the various definable
pathological alephs, At the moment is is open whether
or not WC - Nn is regular (or even limit - that would
imply 'NC - ¥n is infinite' which is open).
inf(WC A SM)Y, infR" 7'V, and inf Q"SK  could all
turn out to have suitable closure properties, and it is
relatively easy to show that the first of these is

oa

1imit., ( o < 227 when ¢ e UG so o £ SM.D. ot £ Sm)

In the absence of Axcount we do not know how to prove
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even that inf(WCN SM) is uncountable, We could try
proving that it is of uncountable cofinality if we
could show A: a + B € BM, D, o € 3M v B ¢ 8M, as this
would mean that NC - SH - Nn was an ideasl in

{mwe - Wi s S§> . 1f it turns out to be an ideal and,
say, an a~complete ideal, then the cofinality of
inf(WCN SH) would be at least a, However we still lack
even A, Other alephs which could have useful closure
properties are (Fa e Wo) (2% # wc)g’there is one such,
(whith 18 oPeh) and (Fa)('”ACa).
(ACa is "Bvery set of size a has a selection set" In
this case o is assumed to be an aleph) If there is one
such it satisfies a < Ta because AC, .D. AC, (If

we seek a selection set for a set x of power c, we use
AcTa to get a selection set for { ("y ¢! y e x } which
is of power Ta and then take its sumset.) Also
(Fa)(ﬁ~ACa) is obviously regular,

There is no shortage of other copen problems:
there is no positive consistency result yet for any
consequence of AC., Nobody has yet refuted the Prime
Ideal theorem. It is not known whether or not can(NC)
or NC € WC or whether or not NO is z beth number,
Specker has asked what partition properties 7 has, but
still lists as open problem number 1 to prove that

NC = In is infinite,
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The curious behaviour of the axiom of choice mentioned
in the last paragraph but one is one of the hangovers
of the Theory of Types in NF, that objects of higher
type code more information than corresponding objects
of lower type, We can "code" in Ta enough information
for ACTa to imply AOa but not vice versa, despite the
fact that Ta is usually no bigger than «. Similarly,
it is easy to define an ordered pair of x and y two
types higher than x or y but very difficult to define
one the same type as x and y, This is possible in

NF only because of the axiom of infinity and does not
work in HFU, To define an ordered pair one type lower
is impossible, as otherwise f : x - {<xz,A>} sends

V into ¢"V contradicting Cantor's theorem,

This trade—-off between stratification and information
is probably of great importance but its significance is
not well understood, If we wish to construct a model
for Z in NF + }<O £ SM the obvious way to do it is %o

take V or, at least, Nn, p'ln, pz‘Nh..... That

W+ !
way we pick canonical sets of the right size, but the
process cannot be described in a stratified way. The
other way would be to take the (by hypothesis) infinite
@'}{O, pick one set from each cardinal, label them

appropriately and then define an e-relation in the
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obvious way. This is stratified all right, but it
needs AC,. (As we shall see later, NF +§40 ¢ SM does
easily prove con(Z) but by a completely different
method). One would like to say that AC, expedites

the proof by giving more 'information' about @'}QO

and even to say, perhaps, that AC fails because it
gives "too much" information. In one sense, of course,
this is trivially true: what we are in need of is a
notion of set-theoretical information that makes formal

sense of these intuitions.
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Chapter 2 -

The Consistency problem for NF

§4 Introduction and definitions

The reader is assumed familiar with the Simple
Theory of types (herecinafter 1PST')  and with the fact
that TST can be expressed indifferently as a many-sorted
theory or as a one-sorted theory with type predicates, It
is usually discussed here in the latter form. LR
vefers to the Theory of Negative types, which is like
TST except in having its types indexed by Z rather than
0y, Like TST, TWT when discussed here will be in its
one-sorsed guise. Unless otherwise stated, both theories

are assumed to be axiomatised without choice or infinity.

Definition 2.0

If 14 is a model of TST, M* is the result of
relabelling all types in M with indices one lowver. Thus
M* has a type ~1 as well. Mi is M¥ with this extra
type cut off, If M is a model of THT then M* is defined
analagcuely. M and NE are the results of applying
the respasctive above operations n times to M,
Depfipition 2.1

If ¢ is an expression in the language of type

theory theap” is the result of raising all type indices



in ¢ by one, Similarly @n is the result of applying the
* operation n times to ¢. When the variable of lowest
type in ¢ is of type O I shall often write ¢ as ¢, and @2
as Q-

As a result of these two definitions above we have
M* k ¢ iff Mk m* Throughout +this chapter I shall be
mainly concerned with finding M k= TST or ¥ & TNT with
the property that M has an automorphism (if M E TNT ) or
an endomorphism (if M | TST ) that sends the objects of
type n onto the objects of type n + 1. Such an auto-
(endo-) morphism will be referred to as a isau (type-
shifting automorphism). For M k TST it is evident that
M posesses a tsau iff M is isomorphic to MY,
Definition 2.2

When ¢ is a stratified expression we say that o

is (n,m)-stratifiable when the following happens; o
is stratified if we can assign every variable in ¢ an
integer as follows: pick a variable at random and give all
its occurrences the same integer. Then, whenever we sece
'y € y' and x has been assigned n, y must be assigned n+1
at 2ll its occurrences. We may assume that such trivial
relettering as is necessary has been carried out. This
process may end without all variables having been assigned

an integer., If it does, start again on the remainder of

32



the formula., The number of times we have to go through
this process in order to assign every variable an integer
is the m in ' (n,m)-stratifiable', and the number of
integers we eventually use is the n. Clearly when ¢ is
(n,m)-stratifiable with m > 1 there are many nontrivially
distinct stratification assignments for ¢, some of which may
may use more types than others., We shall need a canonical
one. If ¢ is (n,m)-stratifiable we see that the variables
in ¢ are divided into m disjoint batches each of which can
be given a stratification assignment independently of the
others, The canonical assignment we want is that which
assigns to each variable at each stage the lowest integer
which is compatible with the rules. This has the advantage
of ensuring that we use the smallest possible number of
integers in forming the stratification assignment. We
can now make
Definition 2.3

If ¢ is a stratified expression of the language of
set theory, ¢' is the result of giving every variable in
¢ an index as in a stratification assignment and then
incorporating the indices as type predicates. LBy AT %
has been given the index n, conjoin 'Tn(x)' to every atomic

proposition mentioning x.
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The starting point for all subsequent work on the model
theory of NF was Specker's theorem [45], [w&], It is
stated here in a rather more generalised form than in [&5],
[#6]: Specker's theorem is in fact Corollary 2.6.
Metatheorem 2,4
Let 5 be a theory with primitives =, e. Then define
Sg as follows: It has primitive predicates =, ¢, Tr( ) for

each r < n and the axioms

Axiom scheme 1 Tr(X)A sl R W I Tr i 1(y)
" 1t re ]
2 Tr(X)A y=%'x.2. T, 1(y)
Axiom 3 X E V.. a'% & a'y

Axiom scheme 4a (vx)3!y)( v

I

n'x) (where x is of type

< n)
b (vy)3!x)( y = n'z) (where y is of type
> 0)
" " 5 "  for ¢ an axiom of 8, where ¢ is

defined as follows: write out ¢ in primitive notation,
replace every occurrence of x e y7 by Ty(x)a I5(ylAax e o'y
Then S and Si are equiconsistent.
Proof;
If 82 is consistert obviously S is consistent
because Sﬁ L- @“ whenever S li ® by induction on the rules

of inference so any contradiction in S can be reproduced

. n
in Sﬂ.
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For the converse, let {V, &€, => be a model for S, Then
construct a model for Sﬁ as follows: let the universe of
the model be VX {r:r<n} , the " € " relation will be
Kz, r> & <y, r+ 1> iff x e y. Tr(X) will be defined
to hold iff the second component of x is r. Equality will be
defined as in the model for S, It is trivial to verify that
this is a model for Sﬁ.

Q: B. D,

Now let S be a theory with primitive predicates =, ¢
all of whose axioms are stratified, Define Sﬁ as follows:
It has primitive predicates e, =, T _( ) for r < n and the
axioms

(y)

Axiom scheme % Tr(x)A xey.0. T, o
2 @' for ¢ an axiom of S
3 g=g9* forallp
Yetatheorem 2.5
Si and Sﬂ + 1 are equiconsistent for n ;>no
where n_  is the least m s.t. every axiom of S is (m, k) -
stratifiable (note that Sz is not defined otherwise)
Proof:
(i)  Con(s2) - con(s} * 1)
For this we need to show that we can eliminate all

occurrences of m from mﬂ, in fact, that Si - o = o' for

n >-n0. This we do as follows: if the variable y in mn is
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assigred k in the stratification assignment then whenever

! 1 k+1qz

we have v € t'z ' we replace this by nk'y E T
to which it is eguivalent by virtue of Axiom 3, And we
replace all occurrences of ' To(y) Ty ' Tk(nk'y)t That

way y occurs in the amended mﬁ only as nk'y. So we can

now replace all occurrences of ‘ﬂk'y‘by a new variable w,
This is a trivial relettering and cannot alter the truth-
value of the sentence. We can do this simultaneously for
all variables in @Eand the result is easily seen to be ¢',
so sf=s? sosit! =82 * T us st ana

S™  are equiconsistent by Metatheorem 2.4 so (i) follows.

T

For (ii) Con (S% + 1) - Con (SE) we argue: If
8t * 1 is consistent it has a saturated model M, Then
Mj is a model for S?. Also M with its top type chopped
off is a model for Si. Both these structures are saturated,
They are elementarily equivalent in view of the axiom
scheme ¢ =¢* so they are isomorphic, Pick an isomorphism
Y. Y must send the type O of Mi onte the type O of the
truncated version of M but that means it is an isomorphism
from type n of M onto type n + 1 of M. Then it is trivial

to verify that Y satisfies the = - axioms in the

definition of Sg from which we infer that N F Sﬁ

whence follows (ii).
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Corollary 2.6 (Specker [u5], [«6])

NF is equiconsistent with TST plus the axiom scheme

%(fpﬁcp*)
Froof:

A11 axioms of NF are stratified so NFY is precisely
TST plus the axiom scheme X (p=¢*) Q. B I,

The proof given here, élthough short, is highly
nonconstructive,  One would expect that there would bhe a
proof-theoretic demonstration of the same result,

M, Crabbé has exhibited one such, (unpublished, but see
[é])
Corollary 2.7 T

Every stratified theorem of any consistent theory with
only stratified axioms has & proof which contains no
unstratified expressions.

Proof

Suppose not and that ¢ is a counterexample. Then

' is independent of S5 and so Sy U {~¢'} is consistent
so by Metatheorems 2.4 and 2.5 SU {~o¢} is consistent.
(Again, Crabbé has a proof-theoretic demonstration of

this for NF).

+ For the special case of NF this is implicit in

Orey [22].
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Now if we apply Metatheorem 2,4 to unstratified extensions
of NF we see that any such system is equivalent to TST
plus = number of axioms governing the behaviour of the
tsau m, one for each unstratified axiom in the extension,
T+ is reasonably clear that if M L: TST pesesses even
one tsauv it must posess a lot, as any permutation Y of
the set of objects of type O in M can be extended to an
automorphism of the whole model by setting Y'z = Y"x for
x of type > O, Then, since the relative product of an
avtomorphism and endomorphism is another endomorphism,

Y must generate a new tsau, Let M =(V, e, =) be a
model of NF, ILet R(M) be the model obtained from M as
in the proof of Metatheorem 2,4 Let Y be a permutation
of M which is in M. Then Y extends to an auwtomorphism
of R(M) since it trivially gives a permutation of the J
objects of type O and any such can be extended to an
automorphism of R(I) as indicated above, If m is the
canonical tsau m : (%, n)—><x, n + 1> then w|Y is
obviously another tsau so we can construct another

model of NF by reversing the process, but using the new
tsau in place of the old, setting M' =

<TO’ =, ER(M)]YRLM)> . Ty is a copy of V coded in
ordered pairs. If we decode M' from this we see that it

is isomorphic to {V, =, e|Y). This boils down to the
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fact that if we have a model {V, =, €y of NF we can form
a new one with the same universe by reading 'x € Y'y'
instead of 'x € y' tﬁroughout. The rewritten version of
the axiom of extensionality will be verified as Y is 1 - 1,
and the rewritten axiom scheme of abstraction will be
verifed because all the rewritten versions of axioms

are equivalent to other old axioms. It we write a set
abstract instead of the unexpanded term Y we can control
the results we get. In this case the expression inside
the set abstract must be stratified of course. The

proof that {V, =, e|Y> |= IF when Y is a definable
permutation is due to Scott [42] (as is the idea of using
permutations in the first place) who used them to show
the consistency and independence of (&@x)( x = {x} )
modulo NF, This sentence is highly unstratified, as of
course it must be: it is only unstratifed sentences
whose truth we can affect by manipulating the tsaus.
(3x)( x = {x} ) corresponds to the following condition
on m: (3x)( TO(X)z\n'x = {x} ) . Scott only considered
permutations which were definable by stratified
expressions in NF, and in these cases the relative
consistency proof can be carried out in NF. Henson [16]
pointed out that the permutation method could be used

on any stratified extension of NF., If the need arose,
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we could prove that for ény stratified theory 5 whatever,
wvhen M = (V, €y k£ S and R(M) = \

<<Vx fn} : n<my, {, ny <y, nf1>>: xey ), =,
{ <<x, n>, {x, n+1>>: n<ma X € v}> k Sﬁ that the
model got from R(M) by having {x, n).&, n+1P) n<m A
x eV } ] YR(M) instead of the canonical tsau is
also a model of Sﬁ wvhen Y is a permutation of V but
there seems little call for anything this general at the
moment,

We could also extend the theorems of this section in
various ways to set theories with classes by adding an
axiom scheme of class existence at each type to the type
theory where %(@)exists if ¢ contains occurrences of =
but is still stratified ( in the extended sense where one
adds to the algorithm for finding out whether or not a
formula is stratified the rule that n'y is always one type
higher than y) This may later be used to attack ML but

at the moment it is the consistency problem for NF which

is more pressing.
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§2. Permutations.

For the purposes of this section the reader is

assumed familiar with the presentation in Scott [42].

When we write out @ﬁ in primitive notation it does not look
very much like ¢ in primitive notation except when ¢ is
very simple because if ¢ is, say, 3-stratifiable and x

is a variable of type 2 x might sometimes appear as x

and sometimes as n'x. It would be nice if we had new
permutation My Ty Tpeens such that T is the identity

2

n, is m and that ¢" is equivalent to ¢ with x (if it is

]
of type n) replaced by nn‘x throughout, and similarly for
other variables in ¢. It is simple to see that the
condition we want on this sequence of derived permutations
is that (Vy)(¥x)(x € 'y = n 'x € ﬂn+1'y). This enables
us to define the sequence of n by recursion on n (notice
that this recursion is taking place in the metalanguage,
as it has to, since it is not stratified) A little
computation will verify that the definition we want is

T4 4 = ar (j'nn)lﬂ or, equivalently

ey = ge (g

It is now simple to verify that if ¢(x, y) is stratified

with x and y of types n and m respectively, then mn is
equivalent to ¢(nn'x, nm‘y) The = were devised by

Henson [16]
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If x is a transitive set x £ p'x, s0 X €.2T§. We would
like the converse to be true, that is, if a« € NC satisfies
v4 £;2Ta then o« has a transitive member. For any given cardinal
¢ we can prove this consistent.
Let ¢( ) be a stratified expression such that NF =
(3x) (p(x)) A (¥x)( g(x) D.x € NC A x g.ETX). Then there
is a permutation model in which the unique cardinal such that
¢ contains a transitive member.
Proof:
Let @ be the cardinal such that ¢, and let x € a
be such that x N p'x = /A . We must prove that we can find
such a set x for any cardinal a. This involves close attention
to the structure of Quine ordered pairs. Let us define
=g L W:0EwW }
Y 'x =df<; ~Nn)u{n+1:n€x}
Y2“x=df(x—Nn)U{n+1 :n€x} {0}
&, ¥ =3¢ Yi"x UYLy This is the standard
definition of Quine ordered pairs. Finally define
| =qr X % o} = {vy"x:x€X }
We want to show that p“X1 is disjoint from X1. Let y
be a subset of X,. y is {v,"x: x€X } for some subset Y
of X. If y is also a member of X, y must be (w,&> for
some Wo (W0 = Y,"w so0 0 g2 y by definition of Y,.
If x € X, O € =z, 71'0 =0 s0 0 € Y1"x. So if y is a
2

subset of X1 we infer that O €7 y. BSo X1 is disjoint from
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its poWer set. Clearly this property will be inherited
by any subset of qu As X.1 is of the same power as the
universe we can find sets of any desired size that are
disjoint from their power sets.

To return to the main proof. We have X € a such
that x O p'x = . By hypothesis there is a bijection
f from x onto a subset of p'x. We can suppose that x
itself is not in the range of £. Define a permutation
n by n'z = £'z for z € x. n'z = f'z for x € f"x and 7'z
_ 7 otherwise., In the permutation model X is transitive.

(vy)(y e x Dy €x)"

Gy)( (B2)(y€znzt x) Dy € x)™

§y)( Fz)(y € n'z A 2 € n'x)D y € n'x)

By construction of m we have n'x = x and n'z 1is a
subset of x whenever z is 2 member of X
Unfortunately there does not seem to be enough

structure on the cardinals for us to perform this
construction simultaneously on all cardinals and thereby
prove the consistence modulo NF of

(Wa € NO)(a < 27% D (Fx € o) (Vx =x))

However we can do something like it in the finite

case., Order the finite sets of integers by setting
x <y iffge the sup of x = y is less than the sup of

y - x. Let f be the function that enumerates this sequence.
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Define m by ®%'n = £'n, n'f'n =1 for n € Nn and 8'n =n
otherwise. We want m" {m : m<mn }2 p'{m:m<n}
for { m : m <n } to be transitive in the permutation

model and for this it is sufficient that n <12Tn -1

+ 1,
so we have
Con(NF) -
Con(iF + (¥n € F)(n < 2™ " 1+ 1 D (Bx € n)(Ux £x)))
The following observations put great restrictions
on the applicability of the permutation method to
consistency questions in NF
Metatheorem 2.2..1

BEvery sentence in the nth order theory of relational

types is invariant, for each n.

Sketch of proof:

I shall only give a sketch as the idea is very
simple and the execution very laborious. The crucial
fact is that if x is a permutation and « is a relational
type then (%'x) 'a = « for n sufficiently large. (This
theorem also applies to cardinal arithmetic and if «
is & cardinal n > 2 is enough to ensure that (i™'x)'a
= a,) From now on let us fix n to be some integer which
is sufficiently large., It then follows that if Y is
a set of (sets of..)k relational types then (3™ + kﬂx)“ﬁf

= Y, Relational types are fixed because they are closed
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under isomorphism and (3%'x)'e is (3% 7 1'X)"cr which
is the set of relatiogs isomorphic under (3% ~ i) to
things in «, in other words, « (n big enough, of course).
Let us now take a simple unstratified example in cardinal
arithmetic to see how we can show gll such expressions
“;nvarlant
(3a)(a€NC}\<:c>Ta;\ a;ﬁ‘I‘asﬁa)
~For n sufficiently large thls is equivalent to

Ha)( nn'(xlﬁ NC A ﬁn+2'ot = 1 'n:n"a AT o £ T‘nn'oc & T ta)

Now reletter m 'a as a. The expression becomes
(Ha)(a € NC A (7 x)®m) e > 1% A (3M'n) e £ Ta £ (370) ')

Sinéé this /is trué for n“large enough, we can pick
n to be the n which satisfies the condition on the
precedingdéége, S0

Qm“wufwwa=uMHMm?a

and our sentence becomes

L]

(3&)(a6NC;\a>Ta,\ﬁa7ﬁTa7fa

]

which is what we‘started wlth

If we‘encounter difficulties in proving some

4

desirable expression ¢ we can always at least try (if_
it is unstratifled) to use some permutatlon to prove
it éon51stent that is, try to prove (]n)(@ ). The:
same may apply again, inviting us_to consider the

sequence @, (SE)(QK), (56)(Cin)(¢ﬂ)6) ... and so on,
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Each member of the sequence implies all later ones and
if we can prove one, however late, all the earlier ones
are consistent. The burden of the result below is that
this process gets us nowhere.
Metatheorem 2.7Z.2Z

For a1l 9, (gn)(n is a permutation and @ﬁ) is
invariant.

Proof:

To obtain mn replace every occurrence of 'x € y' in
¢ by 'x € w'y'. To obtain (tpn)5 replace every occurrence
of 'x € y' in ¢ by'(x € ﬁ'y)é' which is equivalent to
6n'x E (6n " 1“11)]6n . 1'y. In ! (—_‘g’n)(q)n,\ n is a

)

permutation "(n is a permutation)é" is "8 T

n + 10
is a permutation" for n big enough so, as we are
binding ® with a quantifier we can reletter this as
" én'x g u[én N 1‘y. Now, by the result so far, every
variable has at least 5n in front of it so we can
reletter them all, getting x € n|(j™'8)'y. So far
we have established that in order to obtain

(gn)(n is a permutation A @n)é we replace every
occurrence of 'x €y ' ing by ' x € n|(3%'8)'y and
bind the m with 3 . Now n|(jn'6) is a permutation of
V iff = is so we can simplify again, getting 'x € n'y’

and the & has disappeared. This saves us the bother

of developing a theory of iterated permutations.
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§.3 Combinatorics

One might be forgiven for expecting that if we start
with M a model of TST and take the set of M" for n € Z
and then form an ultraproduct modulo a nonprincipal
wltrafilter on Z (or, mutatis mutandis, the set of M for
n ew ) that we would get a model in which all types are
elementarily equivalent as the fact that the ultrafilter
is nonprincipal would ensure that the ultraproduct is
moderately impartial over its factors, and Mnkzm iff
ML=¢H; Of course this can never tell us anything new, as
Toé's theorem determines the behaviour of ulitraproducts
too thoroughly, and, if it worked at all, it would give
us a consistency proof not only of NF but also of NF + AC
as well.

However, this approach is not totally sterile, as
the axiom scheme we are trying to prove the consistency of
is not finitely axiomatisable. We would like M =
njgipME /1L to be a2 model in which all types are elem
-entarily eguivalent, i.e.,

A: MEg, iff (Fn)(M¥Fe)
Wow M ko  iff {m:¥" }:cpc}e%
irf {m: ¥ kg )e U
{
{

and 3 k:mn iff m oz MO L:mn} e U

m: M L:@m % b e U
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S0 A.is equivalent %o ‘
{m:M]:cpm}e?,(,‘;E (‘V“n)({m:}ﬁl:q)n+m}e%)
The néarest we can get to this at the moment is when U is either
Ramsey, or what Hindmen [53] calls an "almost downward
translation invariant" ultrafilter. This second is an
ultrafilter satisfying . _
xeWeDe {ne {n-~mimex ) e} e

and for Y such an ultrafilter we have ‘

{m:Ml:cpm}E?,{,.:).{n:{m:M!: } el) e 2

In fact we have replaced 'Y n' by 'on a set in ' and

P+

satisfied the weaker‘version of" the implication from
left to right, In the case where U is Ramsey then for
each ¢ (3X e WU)(V n,m e X)( M Lz@nEiQm) (by using the
pertition properties of Ramsey ultrafilters). Now we can
use the fact that if U is Ramsey, B =, ; mtfo then

Ix' el X' Z¢ X for every X e F,to get

G eUNVe)Eyc, X Nvnmey M ME 0, =0, )
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§ 4. Subschenes of typical ambiguity.

There are at least three natural ways of weak-
ening the axiom scheme :%3(@55 Q*) of typical
gnbiguity, viz.: |

(1) Cutting down on the set of ¢ for which
we assert (p=g )

(ii) Amending '9=0¢ ' to 'o és@n' for
gsome n > 1

(iii) Restricting the axiom scheme to an
initial segment of the theory.

The motivetion ig to find possibly weaker schemes
whose consistency may be provable. In (i) it is
obvious how the weakness comes about. (ii) is in
fact a special case of (i) (though I shell not
discuss it as such) because @ Ea@n is equivalent by
propositional logic to Y=Y* where Y is
(0= (o= Uﬁ?&ngmn'1)))) . The motivation for
(iii) is that we can then non-trivially ask the
question 'Is this subscheme finitely axiomatisable?’
Eowever, if we do not, at the same time, restrict
ihe scheme on the lines of (i) or (ii) the answer
will still be no, because, by a result of Grishin (9 ]
we only need the axiom scheme of typical ambiguity

restricted to the first five types in order to get
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something equiconsistent with NF, and any initial
segment of T8T plus finitely many instances of
the axiom scheme of typicel ambiguity can be proved
consistent in NF, (Orey [22]) However, if
ambiguity for E:%PC sentences should turn out to be
finitely axiomatisable when restricted in this way
to some initial segment then we can prove it
consistent in NF, It is of course a trivial
corollary of Orey's result that the full scheme is
not finitely axiomatisable when restricted along
these lines so any subscheme which is nust be
strictly weaker, (ii) is not on the face of it a
very serious weakening: true, I see no way of
proving %‘(qn = ¢*) from Ecp:(q" = ¢") with n > 1
but %(cp = ¢") does suffice to refute AC for any
n, and therefore generates all the pathological
consequences of the axiom scheme at present known.
I shall use the following notation;
Definition 2.8  Amb"(M[ I is the axiom
scheme of typical ambiguity restricted to sentences
¢ of the form Y = Y® with Y ¢ T, where no ¢ contains
variables of type > m. When n =1, = set of all
expressions, or m =&, they will be omitted. Thus
)

Ambn(ﬁ?) below is just @:?%lz(@ =g
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In what follows;§?§, Tfi, é&i' refer to the classi-—
ficafion_of formulae in the Levy [55] hierarchy for
theory S.‘zngO, T[ﬁPC,[XiPC refer to the ordinary
hierarchy on the lower predicate calculus.
The follcwing six observations complement
each other,
Metatheorem 2.9
(i) For a1l n, TST  Amd™AZST) b ~Ac
(ii) In TST, all expressions are éﬁ.gST
(1iii) mT8T } Amb(A?ST)
(iv)  Con(TST) - Con(TST + Amb(=5°"))
(v)  sop®@2%) b oamp®
(vi)  ambPET0T) | AmbT)
Proof:

(v) follows from (ii). To prove (ii), take
any expression ¢, Assume without loss of generality
that all its quantifiers have been brought to the front
so it is T (Q1Xn)(Q2ym)(...)(é(xn, vo,...) 7 where n,
Iy «a e 2re the 4types of x, ¥, Restrict each Qi to

m 4+ 1

some arbitrary wvariable x thus (Qixm g ¥ * 1).

¢ is then equivalent to both of the following

(V,Xn+1ym+1'“=)( Xn+1=v. ym+‘£ v

n+1 - T om+-1tt

Pl e ™ T MG g 7B T W 8 7 sl

and G 7 L yo LI " Vo 4 4 & N L

LY AL SN

A e A(Q1Xn £ X WLy &3
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g | m Lo L : — 13T )
oo (X5 ¥ yeuue)e Now T x = Vi—v 11 is 7] { and we can oring

all quantifiers to the front by the usual devices of the lower predicate

5 1ST T3T . TST
calculus, so ¢ 1is 2> > M 1 5 = [} 5 .
This proof, due to Boffa, is an improvement on my original version:
this applies also to the proof of Metatheorem 2.11

(4

Ambn(aa) proves ~AC
Proof
Define SMn Ty sM at type n
A, =gp inf( SMn)

o(n is defined if we have AC. We shall want:

(1) Iy = &p 5 1
(2) TUsSM, = SM

IVn n4+ 1

Proof of (2) Let« e $M and et B Dbe the last mewber of ¢'o . then P >

3;;: so TR > g“vﬁ, 30, as in Chapter 1, ¢§EP has 1 or 2 members,

Thus iif¢ﬁ has k wme:ubers, <PE& has 4k +1 or Tk + 2 mewbers, and conversely,
k is finite 1ff Tk + 1 and Tk + 2 are so T« & SMna—l'
< ; , Y
Proof of (1) xn_* 1 \~Tdh follows from (2). Iftﬂn 5 7R T“n then T
xn'contraq1ct1ng minimality of ﬁn. This is because Tah w4 & S%1+

.<
n+ 1
1 B
the converse of the argument in the proof of (2) above, as ﬁh + 1 < Tc&n.
S50 °<n4-l=T°<n' B
Notice that '=(¢'ﬁ) and "(¢'Tp) must have different residues mod 3.
We can express this in TST since @'TP is T"c$'§ plus one or two more members.
fhis will aprly to show that :ﬂp'd,n and =7b'a\n w3 have different residues
mod 3. DhNow :(cb'an) = i (mod 3) " is a sentence in TST for each
concrete i and n, so, by applying Amb to the cases i=0, 1, 2 we can coumpel
"((b'dh) and (d)kan % l) to have the same residues mod 3 contradicting the
above. For this we use the following instances of Amb:
'"(¢ k(n} = 1 (med 3). = . (¢'d‘n,+ l) = i (mod 3) for each i <3
This is a reproduction of Specker's proof of ~AC in TST with Amb. If
we wish to reproduce the proof in TST with Amb™ instead we definecxn and
SMn as before and infer
“¢'p and = G'TR  have different residues mod 3
0P ana 7 D T B ot e e B

- L = {3

‘@ib - - oo ¢ T]'E LA " e " e e 8 PP - & & " e - & w 9

- e o

TR ex THITUR ssin K ws i s mm e oo s 50

3 i [ 3 iy -

and then, for i1 < 3m " = &Pdﬂ) = 1 (mod 3m) " is a sentence of TST. e
then apply Amb™ to compel :((b'dn) and =(qﬂo<n & m) to have the same
residues mod 3m and so derive a contradiction, on an analogy with Amb above
using

pl

: ' = i -— = . . -
@w=y) = 1 (mod 3m) = (@', . ) = i (mod 3u) for each i< B,

£,



(iii)  Tet M be a model of TST. Define h: M - ¥
by h'x = {x} for T,(x) and h'z = h"x otherwise.

The range of h is transitive and clearly X E Y.

h'x e h"y = h'y so h is N ;§§ ~elementary, So
if 9 is a A éST expression with one free variable
we have

(Ix)(p(x)). = . @h'z)(e*(h'x))
whence
Fx)(e(x)). 2. (3x)(¢*(x))
so > 1TST sentences generalise upwards, so || 1TST
sentences generalise downwards, so /\ ?ST sentences
are absolute,

To prove (iv) we continue this line of argument :

: 3
M E o =9¢* as long as ¢ is Z.]7" so g can change
truth-value at most once - i,e., {n: K | B = cpn+1}
is cofinite. UNow take 2 shifting ultraproduct, 4

IV w® /14 for 1 nonprincipal. That will
o ST
satisfy Amb(Sj )

(vi) Assume Amb™(S) ?ST) Let P, be Z?ST then
by Ambﬂ(Z?ST) we have ¢ = ¢ . 3But as ¢ is iy
we have anyway P02 @ 29 D @3 «s.. S0 vWe have
P D Py Py D Py 80 9y 2 O

So. ¢y = 94+ Dut o was an

arbitrary Z‘# ST expression.
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Metatheorem 2, (O
In INT, Amb™(5 "'} is not finitely
axiomatisable,
Proof:

Suppose 1t were, and that it were equiv-
alent to some sentence p. We have easily M |
A7) irr W b oAm(ST)
Thus if M k ~ ¢, for all n, M k ~ g so

T
n <

so M L: Q= @*

CﬁMn/I{ E ~ ¢ contradicting (1 ) above.
Unfortunately this does not tell us that

Ambn(2£$ST) is not finitely axiomatisable in TST

as in that case we have o jj@* but not the converse,

m
as b (ST

might hold on a terminal segment
. " N —TI8T
of M, $till less does it tell us that Amb™ (T3 ) T
is not finitely axiomatisable for any k, which is
the case that we really want. Crabbé's recent

resuls that any meodel of TST in which all types

are actually infinite satisfies Amb((2,n)-strat)

(1,e.,, embiguity for sentences which are (2,n)-
stratifiable) has as a corollary that Amb((2,n)-strat)
is not finitely axiomatisable either, as the

property cf being actually infinite is not finitely
axiomatisable, (though it does show that Amb(
(2,n)-strat) can be given an axiomatisation in which

gl1] variables are of type O,
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Hote that the proof of Metatheorem 2.9 (ii) above
can be extended to give
HMetatheorenm 2,11

In NF, every expression is AR
I am endebted to Maurice Boffa for pointing this out
to me: I had originally proved it only for stratified
expressions.

Ad 2.9 (iii), (iv) above: one uses in these
two the fact that if ¢ is 2| then TST | ¢ = o*,
Hote that the converse does not hold, for if ‘@n'
is 'there is a nonprincipal ultrafilter on Vn"then
737 |- 0D Py 4 but ¢  is definitely ﬂ.gsm.

The natural way to construct models of TNT
is to start with some M E TST and then form
T Mnﬁlt for some nonprincipal “1/.. Any model thus

constructed will satisfy Amb($2;°7).  Question: can

we find M f INT that does not satisfy Amb(sTo0)?
That is the end of the easy proofs. A

glance through the proofs of 2.4 (iii) and (iv) will

show that it all followed from the existence of a

[}EST -~ elementary embedding from M — M* whose

restriction to initial segments of the model could be

discussed inside the model. Thus one can show that

maoam
M L:ECTSL sentences generalise upwards and then
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Ml/@t b A-Il'lb(21 Ty, In general, a A LPC -

i, <no
-—\LPC o IPC)

(resp. >, - N —elementary embeddlng from

) o < LPC LPC
1 - M* will show that M E S Ty ooy (resp. :Z'n+1)

sentences generalise upwards whence M = Amb(ﬂxLPC)

(resp. Amb(A Y o 1_<:h§LJﬁLL E Ambsz LPC

n+1
I iPC)(resp Amb(jfﬁi?

'[n+1 This seems the
obvious way to produce stronger results on ambiguity.
However there are great difficulties. To prove
Amb(ESLPC) consistent on the above plan we would
want M L= TST such that for some h all of whose
initial segments were in M

Mok Wx)( m(g) = ﬁthx)) for ¢ E ZSiPC and at each
type. For n sufficiently large this would have
extremely powerful conseguences, If h preserves
enough structure to send sets of ordinals to sets of
ordinals then the restriction of h to the ordinals
in type k would not be onto the ordinsls of type

k + 1, otherwise this would give Purali-Forti's
paradox, but i% must send I ”< %t type k to

No'éb at type k + 1, so there muot be a first
ordinal moved (for this we need that all initial
segments of h are coded in M) and any such ordinal
mast be measurable, So, for scome finite n, proving
the relative consistency of Amb(ESiPC) would need

feeding measurables into the construction,
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B T e

Tf we could get them out again, having once put
them in, by sonme construction which gave us, for
every n
amp(ZEF0) - @n)(hrMowE N E %) (o)
@*(h7x)) for each ¢ sS)iPO and at each type, with
k < n bubt increasing with n)
we would have the staggering corollary that
Con(HWF) - Con(TST + 3 measurable)
The first or@inal o is measurable because
{ x Sseg'a ¢ @ & h'x} is a normal uquéfilter on segg
«. Now this is going to depend on b %eing one
type higher than x. If we start with Ambn(jaipc)
with n > 1 the construction of such an h would not
give us a neasurable as we cannot construct the
normal uvlitrafilter on a, SO the subscheme Amb™
could well turn out to be weaker than the full
scheme even though it too is enough to prove ~ AC,
There is faint light at the end of the tunnel:
it hzs been & puzzle for some time that AC should
£5il in NF. We understand the proof of course, bub
nobody can explain how it comes to be there. However,
if, given Amb(Zl?fC) we could weave aJEjiPC—
elementary embedding from M - ¥ ( k < n and

increasing with n) then Amb would give us a
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collection of arbitrarily good embeddings from

M into M*....2nd we know, that in ZF, a non-
trivial elementary embedding from the universe
into itself contradicts AC (Kunen [54]) . Perhaps

a similar argument is waiting to be discovered here.
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§.5 Honclassical models

These results are probably best possible when we
do not put strong conditions on our models. However,
if wo are prepared to look at nonclassical systems
we can still get results by this shifting ultra-
product method. Intuitively one might expect it to
be easier to find models for intuitionistic versions
of NF than for NF tout court, for in proving Con(NF)
we seek an M [ TST such that M E @ﬂéﬁ Op o4 g *
This is egquivalent to M %:((@n+1AﬂJ¢n} 5
("“@ﬂ + 1 N @n)). In the classical case this is
highly nontrivial., However, in the intuitionistic
case they are not equivalent, If M is a prime
intuitionistic model M )3 ((cpn & 1Arv@n) v

(~o v )) is guite plausible, for otherwise, by
+ m

n+ 1"
primeness, M L (@nA-ﬂamn + 1) or M L:(@n LN «,@n)
cither of which is unlikely, as T8T o  iff TST |

O 4 1 for n sufficiently large and TNT - Pn iff
TNT L—@n 4 1 anyvay. I would conjecture that NF
weakened by deleting all axioms containing 'v' and

substituting intuitionistic for classical predicate

logic is equiconsistent with TST + Ax Inf, The
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consistency of a related but weaker system is proved
below by a modification of the shifting ultraproduct
method. I shall develop the technigque in some
generality before applying it to type theory.

I+ is well known that 70é's Theorem applies only
to reduced products which are reduced modulo an
ultrafilter, as some of the induction steps in the
proof depend on the filter in question being maximal,
Sometimes this is rather a pity as a reduced product
modulo a proper non-maximal ultrafilter can have
desirable modeltheoretic properties not available to
any ultraproduct, I shall here outline a method of
getting the best of both worlds at the cost of
having an intuitionistic satisfaction relation on the
model instead of = classical one,

Suppose we have a family of models of‘set
theory with primitives € and = { Ay : i el } then
we can define a Kripke model whose 'possible worlds'
are nonprincipal filters on I. (This is less
natural but more typographically convenient than
taking reduced products modulo those filters to be the
possible worlds).

TLet F, F' be filters over I and let f, g be

elements of the direct product Ti { A, 2 de I}, Ve
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can define _
FEkE feg Aff (L iZ'iEgt )]sl
Pk f=g iffg, {i:f'i=g'i}eF
and the recursions for molecular formulae are as usual

(e.g, Fitting [51] p 45)

FE~o0 iff,, (VE'R2PF)( F' E o)

Fk ovd iffdfFl=cval=6

FE garbd iff. FE o A FEGS

Tk o-256 B e (wF' 2F)( F' E 9.2, F' k &)
FE @x)(ox))iff,, (GO F k olf)

P E @x)ox)iffy, (WE)WF 2F)( F' k o(f))

Lastly, we set
ko iff,, WEI(F ko ).
Let | Ai : 1 el } bea family of models of set theory
and let F be a collection of nonprincipal filters on I
satisfying WF)Wx)( FeFax ¢ F Al -xgF,: D
: @F', " 2T)( x e P'A I -xeF'AF' P AP e PR))

then we can make the definition
Definition 2,12 (1) F, for NF \

(11) T {4, + i eI} /Pis the
Eripke model described above with its satisfaction
relation.

. b
We can now prove a version of Fosg's theorem for

these 'intuitionistic ultraproducts'.
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letatheoren 2, (3

Let @ be an expression built up from atomic sentences
using only — , A ,~, and the two quantifiers, Then
WFem(F ko .=, {1 T A o } e F)

Proof:

By induction on the composition by gquantifiers
and connectives, When ¢ is atomic the proof is
provided by the definitions. V¥e have five cases to
congider in the proof by induction,

(A) ¢ is of the form M A Y7 and the theorem holds
for 6 and Y. F L@
iff T RE&AY
iff T k6 and F kY

irf {1 :4, k6 ) eFand {1:4h EY]}ek
iff {1 :4; EOAY }eF
iff{i:Ai}:qa}eF

(~) @ is of the form "~&7 and the theorem holds
Tor 6, 7 11: o)
iff F E~6
P2 Rk 8
iff {1 ¢ 4, L &} eP (by use of the

5|

iff (v
condition on F on the preceding page).

(F) o is of the form T(3x) (Y(x))' and the theoren

holds for Y(x).
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F ko
iff F ok (3x)(v(x))
iff @) F l=v(£)) _
iff B0 {1:4 F v(£'i) }eF
= {i:4 BE@DORE) JeT

For the converse, given { i : A, E@x)(Y(x)) } e F

1T s,

3 '-
1'e T8y Py setting £'i to be some x

we construct f €
such that Ai {: Y(x) when there is one and an arbitrary
element otherwise, Then { i : Ai 11-—- Y(£'i) } € F, so
F EY(£) soF E 3x)(v(x))
(=) ¢ is of the form T & = Y 7 and the theorem
holds for & angd Y.
F L:qo
iff FE &6 -Y _
iff (VE' 2F)N(F' k6.D. F' kY ) |
igf (WP 2P {4 4; F6}e® O, {1:4, kEY)er)
iff (YF'2F)( { it 4, E6 =Y } e B)
iff {i:4, E6~Y}erF
(¢) ¢ is of the form " (V=)( Y(x)) ™ and the theorem
holds for Y(x).
F ko
iff F ok (yx)(v(x))
iff (WE)WE' 2F)( F' kY(£))
iff (VO)(WE' 2F)( {1 : 4, Eov(£'i) } e 7 )
it (v£)( {1 : 4 k v(£'1)} e P)
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iff {1i:A B W(Y&) ) eF
( I am endebted to Professor 5., Feferman for pointing
out to me that this theorem holds for '-' and 'yY' as
well, I originally asserted it only for 3, ~ and A .)
Corollary 2. &
For expressions ¢ not containing 'v',
iTJIAi//Flchiff {i:Ailch}sFO
Proof immediate from above,
Theorem 2, &
When all Ai are identical and FO is the filter of
cofinite subsets of I any permutation of I gives rise
to an automorphism of AI/‘F
Proof: ;
Let 6 be any permutation of I and m the auto-
morphism of P'T induced by &, As a trivial conseguence g
of the definitions we have, for all f, g € AI and for
all F e P I
Fkfeg 4iff n"F kfl|6 e g6
Frf=g iffa'F k7t

6 =gl6
So we prove by induction on the composition by quantifiers
and connectives that
F Eo(X) iff n'F k£ (x]8)
We now want

/e b o(F) it AN/ P £ o(£T8)
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we argue at /P E o(F)

iff  (YFPRF)(F k() )

iff (Va'F D ' F ) nw"F Ee(£78))
but if FO is the filter of cofinite subsets of I then
TE"FD = FO and any F =2 Fo is n"G1 and UTI"G'g for some
G1 and G2 so this is equivalent to

WFE2F )T E 9(£76))
which is of course AI//E‘ E o(£76)
We can now apply the method of Theorem 2.I15 to get a
model W of intuitionistic type theory such that ME g
iff ¥ k ¢*
Theorem 2. 16
If M k IND and F_ is the filter of cofinite ‘

0 e i} e B/ E t
satisfies M ko iff MW ko* i

subsets of * + 0 then M =

Proof: Es
The permutation & of the integers that we want
is defined by 6: nr— n + 1, Vrite £¥ for f£|s,
After the manner of theorem 2,4 we prove E f ¢ g
iff E £* e g%, similarly for = . So as far as 'e!
and '=' are concerned * is an automorphism, For the
type predicates we have F, = Tn(f) iff ¥ |=

o f*). So we then get by induction on composition

n+1(

65



by quantifiers and connectives ko(F) iffk o*(£76)
whence the theorem,

When we have a model for TNT with 2 tsau one's
reaction is to divide out immediately to obtain a model
for NF. However, as the model here is an intuitionistiec

one the proof of Specker's corollary does not £o through.

S0, rather than divide out ‘q% ﬁAEé@‘by * we divide out
Lé

instead the submodel M defined as follows
- . - - i - il 2
Definition 2.17 K =,. { £ : (3n)( FoF T, (0)
The objects in M are much better behaved - for example we
see easily that for any f in M we have F FTO(f) iff
o oh . il
(Vn)(FO t:Tn(f J) aLE Wn)Wr)( F !:Tnkfn)) where il is an
abbreviation of *n'f L It i1s easy to check that Metatheorenm
‘ . T ¢ Jhes
2.13 holds for M as for ngiﬁ4t %’%
We are now set to divide out by .,
Definition 2,18
it ® is an expression in toe language of set theory
T . -
let @(L%*) be the result of restrieting 211 hound
variables in ¢ to T, and writing ' x € y* ' instead of

'x ey Further, write ' B/ ko ' instead of

' I:(P( H/«)

Metatheorenm 2, 19

If ¢ is (2,n)-stratifiable then for 21l F ¢ F
n

F ok go(M/*>(x, Yy ee.) iff F E o' (2%, 4%, ...)

o
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where the n and m .., are the number of asterisks
attached to x and y ... and correspond to the type
of x, ¥y, ... in o,

Proof':

When ¢ is (2,n)-stratifiable and does not
contain guantifiers over objects of type 2 there is
nothing to prove, Now if it does, we have two cases
to consider:

(1) ¢ is 3x)(6(x)) x of type 2 in 0

P L qD(IPH/%'%)

iff F B (3x)( 6(M/*)(x) A To(x)) (Now by induction
hyp. F ké(H/*')(x) iff F E&6'(x*) and F =T (x) iff
F E D, (z*) anyway.)

irf @Gx) F £ ™) (x) A T {x)

iff (3x) F E &'(x*) A T, (x*)

iff (3x*) F k 6'(X*)ﬁ»T1(X*)

iff (3z) P k &'(z) A T,(z)

iff FE (32)(6'(z))

iff F E g
(ii) ¢ is of the form (Yx)(6(x))
Pk o)

iff P E (Wx)( T (x) - 6B/ (x))
it [ xeE' 2F[F B o1 (x). 0. 7ok 6 )y))

which by induction hyp. is equivalent +o
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(x)F' 2F)(EF' E 2,(x*).D. F' k 6'(x"))
Wx*)(YF' =F)(F' | T, (x*). 2. F' k 8'(x*))
now reletter x* as z
(F2) (VP 2F)(F' k 7,(2). 2. F' k 6'(2)
FE Wz)( 2,(z) - 6'(2))
F E o'
In the induction step for all other connectives
there is nothing to prove,
Metatheorem 2.20
If ¢ is built up from (2,n)-stratifiable sentences
by means of the two quantifiers, conjunction, disjunction
and has no ' v ' inside the scope of a universal

guantifier, and is stratified, then

sz(mv*)(x, ¥y «ee)  Aiff E o'( X%, ¥0, ...) where
n and m are as above,
Proof:
By induction on the composition by quantifiers
and connectives. Consider them in turn:
(V) ZLet 9 be of the form"(¥x)(6(x)) where 767

does not contain v !'. We have

L gO(M/*)

ifr b (V1 (x) - 6EA)x))
by Fos's theorem this is equivalent to

{n:1® kb (T (x) - 6®A)(x) } e 7

9]
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iff vx {n:M E T (x'n) - é(M/*)(x'n)} = B,
Abbreviate this sentence to A, We sha2ll want it to be
be equivalent to the sentence B:

v {n:1M |=To(x'n)} e Fy x e
{n:Mu I:cS(MA)(X'n)} e F

A = B is trivial, For the converse we use the fact
that x is standard and that therefore { n : M |=To(x'n)}
is finite or cofinite. BSuppose B were true and
A false. If A is false, M-k T, (x'n) must hold
infinitely often, so { n : M* ‘:To(x'n)} is infinite
and therefore cocfinite, As B is to be true, we infer
that { n : MO L: B(M/*)(x'n) } is cofinike too, and
therefore in FO. But if a, b are cofinite subsets
of 3 so is a=b (-a u b) so A must have been true,
so A iff B. Ve must now look closely at B, We see
it is equivalent to

ok oo (x) D 7,k s®Mx) e

F E 0 (x") D P,k &8'(x") i

FoE 2 (x") DEFPE 6'(x") (teke the
quantifier to the front) iff
(WF') FET_(x%) o F' k&' (x™) (close) iff
(vz) WEYWE')(F kT, (x%) D F' k 6'(x%) Now
substitute F/F', This step can be reversed because,
as x is standard, F ’:Tn(xn) iff B! l:Tn(Xn) for

all F, F!
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yxVvF P ET (x7).2. F £ & (x™)
Fook () (1) - 6 (x"))
o'
When ¢ is of the form ro(gx)( &(x)) "
l= CP(M/*)
e B 0~ 88w
I+ x is of type n in & we shall want to substitute
T (x”‘) ' for ' T (X) As before we can do this,
iff Ax kT (x) A 6(M/*)(x)
iff 3[x E T (Xn) A 6Gm/*)(x) which by induction
nypothesis 1is equivalent to
IJx k Tn(xn) A 6'(£?) reletter
3z E Tn(z) A &'(z)
E @z (1 (2) A 6'(2))
E oo
When ¢ is of the form 'H v

= ‘P(H‘/*)
iff bk B(M/ﬂ v 5 (/%)

L

e = 6(}1/*) or E ﬂ(m/*)

L
iff k& or E w'
iff E o
When the main connective in ¢ 18 ' A ' the proof
1

ig exactly the same as for ' v ' reading ' A ' £oF

t v ' throughout.
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Definition 2.2)

If o is stratified, contains no occurrence of
''v ' and is built up from (2,n)-stratifiable
sentences by means of the two guantifiers and

conjunction then ¢ 1s permissible.

Metatheorem 2,27

If ¢ is permissible, then MW/ = @(xj, s, X3'i')
iff {n: M2 E o x,'n+ky, x,'n+k,, x3'n+k3.....)} e P,
where k, is the type of x; in o'

Proof: This is an immediate corollary of the
preceding metatheoremn,

We can now set about identifying the unstratified
¢ such that M/ E ¢. The easiest case is when ¢
arises from a stratified expression & with two free
variables x and y, with v one type higher than x., If
6(x, y) is permissible we have
WAk k o(x, y) iff K k 6(x, v)

(for ease of notation I am considering only the case whe
where X 18 of type U in &) How substituting x for y we
get BAk E 6(x, x) iff m E &(x, x¥) 3By
results above the RHS is equivalent to { n : Mtk
6(x'n, x'n+1) } € F,. If & is a relation such that
there is an infinite &-chain inVMo this shows easily
that E/* kE © has a fixed point. In particular,

MA has Quine atoms, since these are fixed points for ¢ .

1



Tyt

Metatheoremn 2,22 explains why we can only prove
Vietatheorem 2,2¢ for this apparently rather
restricted collection of formulze, as Metatheorenm
5 22 has the following corollary
Corollary 2.23

If ¢ is a permissible expression with two free
variables one one type higher than the other, such
that there is an infinite p-chain in M then T /%
L ¢ has a fixed point.

Proof above.

(note that if we are seriously using this to
get consistency results we can assule My to be
saturated in which case we need only require that
M_ hes arbitrarily long finite @—chains)

That this cannot werk for arbitrary ¢ was shown
by Boffa and Crabbé} who, in response to my
conjecture that if NF is consistent it remains SO
on adjoining, for each ¢ with two free variables
one one type higheT than the other where @ has an
infinite g-chain in ML, a fixed point for g, produced
the following counterexample. ILet o(x, y) read
(v = {x}An ) (x £ WD) v (@w)(x = fwiay = {x, 0, 1}

Plainly there is no fixed point for this o.
This explains why we cannot prove lletatheorem 2. 18

~or sentences containing ' ¥ ' ( or '~ ' applied to
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formulae that are not (2-n)-stratifiable, as even if

1

we write the ' ... v ——= ' in ¢ as R\( cer A ————)'

contradiction still ensues.
Low the restricted nature of metatheorems 2,20

and 2,22 makes life rather difficult when we wish to
deal with ordered pairs in H/x. This easiest way out
of this is to start with a model MO of TST + AC + Ax
Inf in which ordered pairs are taken as primitive,
with the following axioms,

") ) (2 (x) aT (7). D@2 (T (2) z= (x, 7))
"w2)( T,(2). D.@0E( T (2) AT (Paz = <x, 7> ))

Then we can define ordered pairs in . ll, ME/’F
s 1< {y
and M in the obvious way. When we have done this,
z = {(x, y» is (1,n)-stratifiable rather than (4,n)
stratifiable and is quite manageable.

With ordered pairs taken as primitives in this

way, expressions such as X is a permutation of V'

'x is a wellorder X 1s an eguivalence relation '

become (2,n)-stratifiable. Indeed, some uses of the J function
(definition 0.30) arez desfinable by a permissible

expression thus;

y=4dJd'Xx Ay is a permutation of V ' becomes
(Va) (3b)( <a,b) € ya (yw)(w e a = (Pu)(u,wde x . >
u e b)) A xis a permutation of V A ¥y is a perm—

utation of V.

Clearly smv M k TST will have an infinite J-chain
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so any M/ will have a fixed point for J. It is
easy to check that any permutation of V which is a
Tixed point for J will be an automorphism. (Though
we will probably not be able to prove in M/ that
these fixed points will be automorphisms Indeed
there will be a lot of these objects which are
'really' automorphisms and we can characierise the
group of them quite adequately by looking at what
they arise from: it is isomorphic to the group

of type-preserving automorphisms of terminal segments
of M, or which is the same thing, the direct limit

of Gn for n <w, where Gn is the group of permutations
of the objects of type n.

- .Axcount fails in KA . We can establish
this easily by noting that "x is finite and not the
same size as y" is permissible, and then constructing
a8 function whose wvalue is pointwise finite and
increasing in size, Clearly any such f is finite(mb&)
and noncantorian(MA*). Note, however, that this

construction, although it sinks Axcount does not

S’
apparently sink Axcount>. To be precise, if we

=
construct f e MA which is of power n at type n
(considered as an element of the direct product) we

show easily that f is larger-ﬁﬁé) than ("f(MAJ. We

can do this because there is an increasing W -
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sequence of finite cardinals, but, at least in the presence of AC,,, no
infinite descending sequence of finite cardinals (we need to read "finite"
as "dedekind finite" to make finitude a permissible predicate) which we
would need to refute Axcountz,vby this method. This concurs with the
experience of ch.l., that Axcount, is much weaker and more difficult to
refute than Axcount ¢ . The present considerations suggest that Axcount;
is in some obscure way tied up with ACy, in a fashion that Axcountg¢ is not.
It would be nice to see this emerge in a more formal manner.

The system for which M/, provides us with a consistency proof is thus
slightly more than a nonclassical subsystem of NF. Let us call it M,

Then the axioms of M are

(i) All sentences ¢ such that ¢ is the result of deleting all type
indices from an expression Y of TNT where (a) Y is a theorem and (b) Y is
built up from 2-stratifiable expressions by means of =, A ,~, 3, and ¥.

(1i) All sentences of the form "(3x)(@(x, x))' where ¢ is the result
of deleting all type indices from an expression 'Y(x, y)" of INT which
satisfies (b) above, such that y is one type higher than x in Y(x, y) and
we can show in the metalanguage for TNT that there 1s an infinite chain
(x,t n €w) such that ¥n Y(x_, x  , ;). All this is embedded in
intuitionisfic predicate calculus. M thus extends intuitionistic NF2.

The usual proof that the consistency of an intuitionistic system
implies the consistency of the corresponding classical system (e.g. [57])
does not work here as it depends on constructing an inner model by recursion
on € which is of course not poesible in the Quine systems.

Lastly it is evident that a similar construction can be made for any
stratified theory and with similar results. e.g., if str(4F) is that
subtheory of ZF whose axioms are the stratified theorems of Z4F and strp(ZF)
that subtheory of str(ZF) whose axioms are permissible then we have
Con(str(ZF)) = Zon(strp(ZF) + Every permissible type-raising operation with
an w—chain in str(ZF) has a fixed point. Amusing ﬁhaugh this is, it is
still a long way from a proof of Con(str(ZF) + (@x)(x = p'x)) which would

give us a proof of Con(NF) and tis does not look too implausible.
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Chapter 3

Ways of strengthening NF

Prom the point of view of the classical set theorist
NF is an unsétisfactory system in & number of ways. The
failure of AC is one, the jack of Axcount another. We
are in need of ways of strengthening NF in ways which
are both mathematically natural and will admit, sooner
or later, of some sort of consistency proof, whether of
o formal nature (as of ZFC relative to ZF) or of the
nature of appealing to the fact that the new axiom does °
not essentially change the way in which the system
behaves but merely makes it larger (as of ZFI relative
to ZF). THenson has proposed an axion which he calls 'C3':
wA11l wellordered cantorian sets are strongly cantorian'.
Most of the Séminaire Héneéfiste are uneasy about this
axiom, Henson gives it a nice formulation which brings
out its analogy with Axcount, but the two are hardly
comparable, as Axcount merely requires good behaviour on
the part of finite sets, which leaves us with the hope
that any 'normal' system strong enough to prove the
consistency of NF might also prove con(HWFC). CS on the
other hand compels quite large cardinals to be strongly
cantorian, and a2t the same time compels sets which are

not obviously large to nave partitions of guite large size.
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Tor let a be a cardinal of strongly cantorian rank.
Then ﬁ)"{ B : B - o} must be cofinal inp'e. As &
consequence if « is a regular strongly cantorian
initial ordinal, we have Card'a < 4 =(7'V)  (es 7
is of > stcan rank). Rosser's proposal, AC . . (i.e.,

the axiom of choice for wellordered sets of cantorian

sets) is open to the objection that it implies ~ ACuws

(3a e WC)( a <Ta )y (Proof: let a De (FB)("JACB),
(we have o # Ta otherwise AC, and « < Ta because ACp,
—-Aca)

T feel thet too much attention has been given
to trying to find axioms that entail good behaviour
on the part of small sets, which is to say, to getting
amall sets to behave as though they were in ZF and not
in NF, and that we would be more likely to bring out
the peculiar virtues of NF by adding new axioms on all
cets. e.g., 1 would argue for the prime ideal theorem
as a new axiom over AC_ .~ and for (Wae NC)( a >+ Ta)
in preference %0 0s. It is especially important to
extend the Quine systems in a uniform way such as this
if they are going %o continue to be of the tentative
interest to category theorists that they are at the
moment : the whole point about the appeal they make

to category theorists 1s that they are, in their
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unvarnished forms, impartial between large and small
sets. TFor more on the Quine systems and category theory
see Peferman [7)]. Since we are stuck with, for example,
the failure of the axiom »f foundation, we may as well
make a virtue of necessity and start adding illfounded
objects with nice properties,

In ZF a lot of the proposed new axioms have the
form of fixed point postulates. The axiom of infinity
itself is equivalent to "Every continuous function on
the ordinals has a fixed point". The existence of
Ramsey cardinals (or weakly compact cardinals) is
equivalent to the existence of a fixed point for the
function £ : a+ (MBI( B - (a}<0)) (or for
the function g 3 a+r (FB)( B - (a)2 ) . Even the
consistency of NF can be expressed as a fixed point
postulate, for let X be the space of isomorphism
types of models of INT with the usual topology., For
M L: TNT, let [M] be the equivalence class of M, Then
the function * defined by [M]* ~ ["] is a homeo-
norphism of M and a fixed point for * is an
equivalence class of models of TST + Amb,

I would like to propose an axiom scheme of this
nature for NF. We saw at the end of the last chapter

that, because of the Boffa-Crabbé counterexample, we
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cannot suppose that arbitrary type-raising operations
have fixed points. However, there is nothing obviously
wrong with the following

Axiom Scheme PF : Let @ be an expression as in the

hypothesis of Metatheorem 2.23. Then ¢ has a fixed point,

A number of the consistency results already
obtained for NF by Scott's permutation methed are of a
form stating that a certain type-raising operation has a
a fixed point: ‘

(@Fx)( = = {x} ) (Scott [42])

(Fx # V) x = p'x) (Henson [16])
and when I suggested the axiom scheme, Hinnion and Pé%ry
proved consistent modulo NF

Ax) x={y:zxey})
(Boffa hzs pointed out that thestype-raising operation
here, f ¢ x=> { y : x € y } has the amusing {and
potentially useful?) property that (Vx,vy)(x ey, =.
f'x € £'y), as does the related operation g i x-—>
{y:x#éy} ). Imnentioned in the preceding chapter

that a fixed point theorem for permissible operations

would give us non-trivial automorphisms of the universe,

We can go into more detall here, Arguing in NF we note
that ifT m is 2 permutation of order n, J'n is a

permutation of order In, ©So 7 = J'n is an auvtomorphism
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of order n = Tn, This implies that any eutomorphism of
V is of cantorian order, Also note that "m is a
permutation of order n" is permissible for each n SO
the proposed scheme would give us a rich structure of
automorphisms of V. The sentence "n is a permutation of
infinite order" does not appear to be permissible, sand
PF does not seem at the moment to imply Azcount, The
question of the existence of these objects has been
raised by others, including Boffa and Hinnion., At the
moment all we can prove about nontrivial automorphisms
of V is the following
Remark 3.1 (i) If X is a set of automorphisms of V.

then stcan(X)

(ii) If 'o(x,y)' is an expression which

defines an automorphism of V, then

(&, olx,y) b (if it exists) is in

the centre of the group of automorphisms.

Proof
(i) is a trivial corcllary of ch 1 p 26
(i1) By elementarity, any definable

object must be sent to itself by any automorphism, and
o fortiori, the same must hold for any definable auto-

morphism.
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Another motivation for PF arises from the possibility
+ of using forcing to
pfove Con(NF), In ZF, whenever we collapse some cardinal
a onto $% say, we take as conditions the finite
sequences of ordinals less than a, If our model is M
we find that the generic collapsing map mee£s every
function in ‘Qa(M). If something similar happens when
we do the rather more complicated collapsing which is
constructing a tsau on top of a model of type theory
we would expect something like
IT f is a type-raising operation, m a tsau,
then TAm £ A which is (Ix)( £'x = n'x). So if we
write 'p(x;y)' for 'y = £'x' we have (@Ex)( olx,n'z)).
Now if we decode this into the language of NF as in the
proof of Metathecrem 2.5 we find that the model
obtained by factoring out by 7 satisfies 3x) (o(x,x)).
The Boffa-Crabb€ counterexample comes to mind at once
cf course to show that it will not really be this simple,

but the idea ig there,

Forcing will give us a very nice proof of Con(NFZ)
(the subsystem of NF whose axioms are precisely the
(2 n) stratifiable axioms of NF) The consistency
of NF, is folklore, but the application of forcing

to it is not.
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Start in a model of ZF satisfying CH, for
si@plicity's sake, Take the set of forcing conditions
to be DRT<GJ~ the set of finite sequences of reals
and let B be the corresponding boolean algebra,

Then we let e be the composition of the canonical
generic map and set inclusion, Then we can establish
easily enough that <p'w, e>> is a model for NF2.
This much is fairly routine - rodghly any boolean
slgebra with as many atoms as elements can be turned
into & model of HF,: what is not routine is that

the model obtained in this way from a generic cocllapse
will also contain Quine atoms ( objects z such that

% = {x})- This (and similar results on fized points of
(2,n)—sfratifiable type~raising operations) will
follow from the combinatorial properties of the

generic map discussed above.

There s at least one type-raising operations
for which a fixed point would give us an inner model
for NF, Tt 5 permissible and therefore covered by
PA. If = is an equivalence relation on V, let ="' be
defired by x='y iff . (30 e 1 =1 J( "% = ya (¥v € x)(

w=f'w ))., Buppose = is a nontrivial fixed point.
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Look at V/=, Let [x] be the equivalence set of x

under =. Then { x ¢ [x] = {x} } is an inner model,

Before we leave the subject of fixed points I
would like to point out that in Str(ZF) (the subtheory
of ZF whose axioms are precisely the stratified axioms
of ZF) which is a theory to which a lot of the results
of Chapter 2 apply, it is enough to find a fixed point
for the power set operation tc get a model for HNF,
and while this is obviously impossible in ZF because
of Cantor's theorem (even without the axiom of
foundation) there seems no reason why it should not be
consistent with respect to Str(ZF)T- I have hopes that
some forcing argument as above, an application of
Scott's permutation method or perhaps even the shifting
ultraproduct method of Chapter 2,§L5 will yield a
consistency proof of PF relative to NF. It does not
seem to imply Axcount so it is not obviously out of
the question, while the natural way in which it arises
whets the appetite.

One of the curious features of the Quine systems
- as indeed of all set theories with universal sets -

is that the failure of aussonderung gives rise to

TPor more on str(ZF) see (4] and [5]
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subclasses of sets which are not themselves sets,
There are obvious parallels here with what happens in
ZF when we construct generic objects in the process
of extending a model which are small enough to be
sets yet are not in the model we started with, Martin's
axiom is an attempt to ensure that the universe of
classical set theory is closed under a subsitantial
number of forcing extensions., Of course it is in the
nature of classical set theory that it can never capture
all of them, but in the Quine set theories there is
nothing to prevent us (apparently!) postulating this as
long as our added generic objects are not reguired to
be gfets., We could add
GC (Axiom of "gemeric closure"): If B is an atomless
c.b.a. then there exists a generic ultrafilter

on B

(GC is of course an axiom Tor a class theory, and so
we must make precise the sense in which B is a complete
b,a. - it has to be complete in the sense that any set
of points in it has a sup and an inf.) This wltrafilter
will not of course be a set in general, and as with B
itself, when we say that it is V - complete we mean
that the inf of any subset of the ultrafilter is in the

ultrafilter.
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One immediate conseguence of GC is that there is a 1 - 1 enumeration
of V against the integers, which achieves an otherwise rather ad hoc
suggesticn of Quine [52] that we add to ML "Every nonempty class
of disjoint sets has a selection class". Boffa has shown (unpublished)
that ML + GC is a conservative extension of ML, thus: Start with a
model  (4,€> of NF. Extend it to a model of ML by letting P'4 be
the collection of classes. 1f A is countable, then, by the Rasiowa-
Sikorski theorem, all the classes whose existence is required by GC
will in fact be present in F'4. Clearly the addition of @C results
in an extension of L which is conservative for sentences not
containing quantifiers over proper classes.

GC is unfortunately inconsistent with another
potentially useful axiom scheme (at least in the bresence of Axcount)
namely the axiom scheme of replacement for strongly cantorian sets.

Rep. Stcan Every image of a strongly cantorian set in a
function is a set.

GC and the axiom scheme of replacement for strongly cantorian sets
are incompatible in the presence of the axiom of counting because
otherwise, by 4xcount, both é{o and é{l are strongly cantorian, and
s0 the generic collapse which GC allows us to Create as a class will
be a set by strong cantorian replacement, Strong cantorian
repiacement is unattractive and unnatural on the grounus acumpraieg
at the peginnin, o1 this chapter, nawely ihat it tiuies up small sets
while saying noening zoout Llg sets, put there is no genying that

it has some nice consequences.
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Mefatheorem 3,2
Con( NF + CS + Rep. Stcan) = Con(ZF)
Proof:

What follows below is an outline of a general
method rather than a specific proof of the above, It
is very close to a method used by Orey [2k]. However
the fuel for his proof is different., The basic tool
I shall use is the G8del F function on the ordinals {5Z].
It is an unsatisfactory construction in some ways, and,
in the form in which G8del produced it, can be applied
only to strongly cantorian ordinals (Hinnion has
shown %hat if R is a wellfounded relation on a strongly
cantorian set then there is a permutation mecdel of NF
where R is isomorphic to the e-relation on a transitive
set) but there is a way round this. Essentially
instead of defining L by recursion on the ordinals
we define a relation B ( & go) on the ordinals by
recursion so that <WO, E>’§? < 1, e (more exactly,
<a, Bl seggo'oc> .%’F<F"seg<o'a, el F"seggo'a> il e
each ordinal a) and this is easily done by mimicing
GBdel's construction. There is a superstition
abroad that this construction cannot be executed in
NF as the ordinals are not 'really' wellfounded.

But a2ll that matters is that the ordinals think

86



they are wellfounded. It is true that if we iterate
the construction up to bad ordinals we get structures
that are not isomorphic to 'really' wellfounded
models of ZF but that does not affect consistency
results.
Order the triples of ordinals <a, B, i> with a, B
e NO, 1 <8 le;;icographically. Let g be the function
NO - NO x WO x{0,1, 2, %, 4, 5, 6, 7, 8 } that
enumerates them. Now define E by recursion as follows:
(Va)( « ¢ 0O)
The recursion step on « splits into 9 cases, depending
on the third member of the triple coced by «
Case 0, o« =¢g'{CB, ¥, 0» for some B, Y
we define (Y6 <a)( 6 E a )
Case 1 a=g'<B, Y, 1> for some B, Y
we define 6 B a, iff G EPB v OEEY
case 2 o =g'<{B, Y, 2> for some B, Y

(Kno, ED)
we define & B a iff GpY)(6 ={p.50A0 B B A T-E ¥)

case 3 a=g'<{B, Y, 3> Zfor some B, Y
we define &6 E a iff 6 L BAO Z Y
case 4 a=g'{B, Y, 4> for some B, Y

(<No, E)
we define & E a iff (ﬂp§)(6 :(pi)f\é ER A KEW

case 5 cxxg‘(B, Y, 5> for some B, Y
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we define 6 E a iff &6 E B A (ﬂp)(<@m4f$0 B EY)
case 6 « =g'{8, Y, 6> for some B, Y. We define
& E a 1iff (3Inc) = ffo, =
UK ERGRY 8B B A
5 Ao, B> & v)
case 7 a = g'<;5, i 7>> for some B, Y. We define
6B a iff (@FnyN( 6 = <ﬁq,§,‘~:§'><NO’ E>/\6 EB A
(&Y TR 5 y)
case 8 a =g'{B, Y, 8> for some B, Y Ve define
. . _ o, B
8B a iff Qqy0( 8 ={m,§,83% "5
(R, $590 P5 1)

It is éasily checked that the definition of 'E'
in each of the eight cases requires us to look only
at earlier ordinals and is therefore a proper
recursive definition. Also that E is a homogeneous

"o E &' we have to give a and

relation (i.e., in
& the same type) We have to ensure that E will be
extensional, This can be done either by removing
ordinals from the domain of E which are duplicates
of earlier ordinals and then collapsing, or by

' in the model in terms of 'E' so that

defining '=
'E', although not necessarily really extensionalj
will behave as though it were.

Linden [56] has shown that when « =EQY is an

initial ordinal F';\’Y =Mq . (FPor definition of
Y
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M see Linden [56]. Also M, = LAV,  is
standard as are (i) L NV, aL: Z when ¢ is a limit
ordinal >w , (i1) I n v, = 2F when « is weakly
inaccessible and > & . Hence the interest in chapter
1 in finding 1limit and weakly inaccessible alephs.

Of course inaccessibility of a is sufficient for

LN Va F: ZF but if the universe is fat enough

LN V§l1k ZF can happen. It is a very remote possib-
ility that NF L (Ga e NO)( seg. 'w, Elseg  'a | 2F)
However NF Féﬁwexists is possibleoand this wguld give
NF | Con(Z). If we are interested only in relative
consistency we might try another tack. To get models
for classical set theories we want basically to fina
initial segments of NO with sufficiently strong
closure properties, If the initial segment is a set
we have an absolute consistency result., However we
can always use inivial segments which are classes
should this look promising. The most suitable is
usually the proper class of stcan ordinals. That is
what I shell use in this case, Since the strongly
cantorian alephs are closed under SucCCessSoOor we now
want merely that they are zlso closed under singular
limits where the cofinal sequences are definable in
the language of <NO,E> where all expressions have

their 'quantifiers' restricted to stecan ordinals.
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What we want is that if ¢ is an expression in the
language of (MO, E) with all its bound variables
restricted to stcan ordinals and & is = stcan ordingl
then A= @fo(ep)" { Y : YE 6 } is & set and is
coded above by a stcan ordinal., We brove easily that
A contains onlyhstcan ordinals, as every ordinal
in { Y : Y E &6 } is cantorian and 9, being an
expression (pace use-mention distinction) in the
language of N0, E) must commute with T (this we
prove by induction on composition with quantifiers
and connectives). Next we use CS to show that
everything in A is therefore stcan, and rep, stcan to
show that A is a set, Now no subset of the proper
class of stcan ordinals can be cofinal in it, otherwise
we Till out the set into an initial segment and we
have the class of stcan ordinals is = set, which would
give us the Burali-Forti paradox. Therefore A is
bounded above by some stean ordinal a, and, since it
is definable, must be coded by some ordinal < o7
(the first initial ordinal > a) which will also be
strongly cantorian,

That completes the rough outline of the proof,
There are other variants of the method - e,g. using
precan ordinals (ordinals B which are less than some

a = Ta). None seem to give results in NF tout court,
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The difference between Orey's method in [2%] and the method here
is that Orey's method is conducted in ML with the use of adaitional
postulates about ordinals instead of NF with additional such postulates,
The ordinals Orey uses are those whose corresponding orderings have noc
subclass without a least member. 7This condition implies strong cantorianness
but probably not conversely. Also the elements of Orey's model are not
ordinals but sets of ordinals. ihe common feature to both Orey's constructioem
and the construction here is the use of GHdels recursive generation of Lia

Some instances of kep. stcan are provable in NF already. 1If ? is an
eXpression with x free, unstratified, but the result 0f substituting x
for y in \P(x, ¥y) which is stratified but inhomogeneous we have

stcan(z). D). { Xe 2z 3 (P(x)} exists
(The set of such ?3 1s a subset of the expressions "Faiblement stratifiden
of Crabbe (6] )

Proof:

Suppose ? (x) 1is the result of substituting x for ¥ in
qJ(X, Y) where y is n types higher than x. By strong cantorianness of Z
there is z one-one map h from z onto cn”z which is Precisely cnrz. Then

= [
we can writeIQ(x) as \F(x, uh'tn'x;‘which is now stratified and we can use
the abstraction scheme to get the subset of g we want.

keplacement for strongly cantorian sets has the agreeable
conseguence noted above, nemely greatly tfacilitating z relative
consistency proof for 4F but is uncesir4ble because of tue Partiality
argument, that it talks preferentialy of small sels not large ones.

Question: Is there a natural impartial extension of wp that proves

Con(ZzF)%
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