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In this paper embedded strong discontinuities are used to model discrete cracking in materials like concrete.
In the approach followed a discontinuous displacement fieldis considered and the deformation is localized
at a surface of zero width. Both a damage law and a plasticity law are adopted to describe the constitutive
relation between tractions and displacement jumps at the discontinuity surface. An algorithm is introduced to
enforce the continuity of the crack path, permitting a clearidentification of the discontinuities in the mesh. Both
mode I and mixed mode cracking have been considered and the importance of the shear tractions on the global
behaviour of a structure is assessed. With the formulation adopted it is concluded that: i) realistic crack patterns
are obtained, similar to those found in experiments and ii) the dissipation of energy can be objectively found
irrespective of the mesh that is used.

1 INTRODUCTION

The finite element method has been used in the past to
simulate strain-softening in the continuum. Consider-
able research has been done in order to overcome the
mesh dependence found with non-regularized mod-
els. Non-local and gradient models are representatives
of this work. In these formulations damage occurs
within bands of finite width, set by an internal length
scale parameter, which is considered a material prop-
erty. As a consequence, strong discontinuities, which
correspond to localized surfaces or cracks, can not be
explicitly represented in these models. On the other
hand, the discrete approach has been used to simulate
localized softening through the use of a cohesive for-
mulation. This formulation has the advantage of be-
ing independent of the mesh with respect to the dis-
sipation of energy if the crack path is aligned with
the mesh. Since discontinuities are modelled by in-
terfaces inserted along element boundaries, the mesh
has to be either aligneda priori or during a calcula-
tion. The general case for which the crack path is not
known presents an additional difficulty for this formu-
lation which has been dealt with in two ways: i) the
finite element mesh is redefined in each step in order
to align the interfaces with the directions of the crack
path predicted by the model (Carpinteri et al. 1989);
ii) the properties of the correct crack path are pro-
jected on the finite element mesh in such a way that

both the energy dissipation and the crack patterns are
accurately predicted (Alfaiate et al. 1997). Although
both approximations have been successful in repro-
ducing the localized softening behaviour of quasi-
brittle materials like concrete, numerical difficulties
are encountered, such as: i) the remeshing procedures
lead to distorted meshes and an increased bandwidth
of the stiffness matrix; ii) a large number of interfaces
have to be present in the finite element mesh (and
consequently a large number of degrees of freedom)
from the beginning of the calculations if the latter ap-
proach is adopted since, in this case, no remeshing
procedures are considered. A more promising method
seems to consist of a mixed formulation in which the
dissipation of energy can be objectively found with
respect to the mesh, whereas continuum elements can
still be used to reproduce softening. Such a formu-
lation is presented here in which discrete cracking is
modelled through the consideration of strong discon-
tinuities embedded in finite elements. Several exam-
ples of this formulation can be found in recent lit-
erature where two different approaches have being
followed: i) a strong discontinuity is approximated
as a limit case of a weak discontinuity through the
definition of a bandwidth parameter which tends to
zero (Oliver et al. 1999) and ii) a real strong discon-
tinuity is simulated considering a discontinuous dis-
placement field (Wells and Sluys 2001). In this paper
the latter concept is redressed. In particular, special at-
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tention will be paid to: i) the enforcement of the con-
tinuity of the crack path, for which a new algorithm
is introduced and ii) the effect of shear tractions at
the discontinuities on the global structural behaviour.
Examples of mode I and mixed mode cracking evolu-
tion are presented. The effect of shear stresses on the
global structural response of a single-edge notched
(SEN) beam is analyzed with different constitutive
models. The results are obtained with structured and
unstructured meshes and compare favorably with the
experimental data.

2 KINEMATICS OF A STRONG DISCONTINU-
ITY

A strong discontinuity is characterized by a jump on
the displacement field, localized at a surface. Con-
sider a domainΩ, with boundary∂Ω where a discon-
tinuity surfaceΓd is supposed to exist. The displace-
ment field contains a regular part onΩ, û, and an ir-
regular part corresponding to the displacement jump,[[u℄℄, localized at the discontinuity surfaceΓd:

u(x) = û(x)+HΓd[[u(x)℄℄ (1)

whereHΓd is the Heaviside function at the disconti-
nuity Γd,

HΓd =�
1 if x 2 Ω+
0 otherwise (2)

The corresponding infinitesimal strain field is:

εεε =∇∇∇su =∇∇∇sû+HΓd (∇∇∇s[[u℄℄)+(∇∇∇HΓd 
 [[u℄℄)s=∇∇∇sû+HΓd (∇∇∇s[[u℄℄)| {z }
bounded

+δΓd ([[u℄℄
n)s| {z }
unbounded

(3)
where(�)s refers to the symmetric part of(�), andδΓd
is the Dirac delta-function along surfaceΓd.

Here, similar to the work presented in (Armero and
Garikipati 1996; Wells and Sluys 2001), no regular-
ization is performed on the irregular part of the strain
field.

3 MATERIAL MODELS
The bulk behaviour is modeled by means of a linear-
elastic constitutive relation. Two different models are
used for the discontinuity: a damage law and a plas-
ticity law. It is assumed that cracking always initi-
ates according to a mode I criterion, when the max-
imum principal stress reaches the tensile strength of
the materialft . Crack evolution is modelled accord-
ing to mixed mode fracture allowing shear stresses to
develop along the crack faces of the discontinuity, due
to aggregate interlocking and/or shear fracture.

3.1 DAMAGE MODEL
The model considered in this section was first intro-
duced in (Wells and Sluys 2001) for three dimen-

sional problems. Here, a two dimensional version of
the model is presented. A loading function is defined
as:

f (wn;κ) = wn�κ (4)

wherewn is the normal component to the crack sur-
face, of the displacement jump at the discontinu-
ity surfaceΓd. The internal variableκ is taken as
the maximum normal relative displacement reached(κ = max(wn), κ̇� 0). Directionn is aligned with the
direction of the maximum principal stress. Iff > 0
loading takes place(κ̇ > 0), whereas if f < 0 clos-
ing of the crack occurs and damage does not grow(κ̇ = 0). An exponential softening law is adopted for
the relation between the normal traction component
tn and the normal relative displacement between the
crack faces (normal jump), given by

tn = ft0exp

�� ft0
GF

κ
�

(5)

whereGF is the fracture energy andft0 is the ini-
tial tensile strength of the material. The shear traction
componentts is related to the sliding relative displace-
ment along crack faces (shear jumpws) according to
a relation independent of eq. (5), given by:

ts= Ds0exp(hsκ)ws; (6)

whereDs0 is the initial shear stiffness at crack initia-
tion, hs is given by

hs = ln(Dsκ=Ds0) (7)

andDsκ is the shear stiffness which is adopted for an
advanced state of damage (κ 0). Since relations (5)
and (6) are independent, the model introduces non-
isotropic damage in the traction space; as a conse-
quence, it is possible to enforce mode I crack evo-
lution since the shear tractions can be made equal to
zero simply by imposingDs0 = 0. The incremental
constitutive relation in matrix form is given by,�

ṫn
ṫs

�= "� f 2
t0

GF
exp

�� ft0
GF

κ
�

0

hsDs0exp(hsκ)ws Ds0exp(hsκ)#�ẇn
ẇs

� :
(8)

The secant stiffness matrix is used for unloading,
which is given by

Dunloading= "
ft0
κ exp

�� ft0
GF

κ
�

0

0 Ds0exp(hsκ)# : (9)

If a crack fully closes, i.e.,wn = 0, a very large value
for theelasticstiffness is assumed in order to prevent
overlapping of the crack faces.
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Figure 1: Adopted yield surfacef , the tensile capf1
and Mohr-Coulomb friction lawf2.

3.2 PLASTICITY MODEL
In this model, a limit surface is defined in the traction
spaceftn; tsg such that both tensile mode I cracking
and a modified friction Coulomb envelope are taken
into account. In fig. 1 the adopted yield surface is
shown. It is given by

f = t2
s � ft � f 2

t +2ctanφ ft �c2

f 2
t

t2
n�c2�1+ tan2 φ

�+(tn+ tanφc)2 = 0

(10)

whereφ is the internal friction angle,c is the cohe-
sion andft is the tensile strength. In fig. 1, two other
limit surfaces are also presented which envelope the
surfacef adopted. The first, denoted asf1, is a tensile
cap and the second envelope surfacef2 is the Mohr-
Coulomb friction law. Two energies associated with
fracture are defined as material properties: the frac-
ture energyGF and the energyGII

F , defined in mode II
or shear cracking, given by the area below the shear
stress-sliding displacement curve obtained in the ab-
sence of a normal confining load. Thus, inGII

F both
the dissipation of energy due to friction (aggregate in-
terlocking) and due to shear fracture are taken into
account. Both the tensile strengthft and the cohesion
c are functions of an internal scalar variableκ accord-
ing to the exponential laws:

ft = ft0exp

�� ft0
GF

κ
�

(11)

c= c0exp

�� c0

GII
F

κs

�
(12)

where ft0 is the initial tensile strength andc0 is the
initial cohesion value (forκ = 0). An isotropic soft-
ening criterion is adopted such that:

κ = κn = wp
n + c0GF

ft0GII
F

wp
s (13)

κs = κn
ft0GII

F

c0GF
(14)

wherewp
n andwp

s are equal to the plastic normal and
sliding displacement jumps, respectively. Generally, a
non-associative flow rule is adopted, such that

ẇp = λ̇
∂g
∂t
; (15)

whereλ is the plastic multiplier. The direction of plas-
tic flow is normal to a plastic potential assumed to be
a function of the tractions,g= g(t). Let ψ be the dila-
tancy angle which is considered fixed iftn < 0. In the
compressive zone of the traction space,g is given by

g= jtsj+ tn tanψ�c; (16)

whereas, for the particular case of pure mode I crack-
ing (ts = 0), the flow rule becomes associative andg
is given by

g= f1 = tn� ft : (17)

The derivatives of the plastic potential with respect to
the traction components vary continuously between
tensile and compressive tractions in mixed mode frac-
ture, assuring a smooth transition for the direction of
plastic flow (Alfaiate et al. 2001). A backward-Euler
return mapping algorithm is used and the consistent
tangent traction-displacement jump relationship, in
matrix form, is given by:

ṫ = 24H� H∂g
∂t

∂ f
∂t

T
H

∂ f
∂t

T
H∂g

∂t �h

35 ẇ; (18)

whereh is the plastic modulus and

H = �
I+∆λDel

Γd

∂2g
∂t2

��1

Del
Γd
: (19)

At crack initiation, the elastic part has to be assumed
such that, for brittle cracking and according to Rank-
ine’s criterion, the following conditions are met:

tn = σI = ft

ts = 0

wel
n = ft

Del
nn

wp
n = 0

wel
s = wp

s = 0: (20)

Similarly to the damage model, a penalty formula-
tion is used to prevent overlapping of crack faces. As
a consequence, the diagonal elastic stiffness compo-
nentsDel

nn andDel
ss are given very high values.
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4 NUMERICAL IMPLEMENTATION
The finite element discretisation is based on constant
strain triangles. For each element, crossed by a dis-
continuity, an internal node is defined where the lo-
calized constitutive relation is applied. The two de-
grees of freedom of this internal node correspond to
the jump displacement components at the discontinu-
ity. As a consequence, the jump displacement field is
assumed to be of the same order as the strain field, i.e.,
a constant displacement jump is assumed at the dis-
continuity over the entire element. This leads to non-
continuous displacement jumps at the discontinuities
across the boundary of the elements. However, since
the tractions at the discontinuity are directly related to
the correspondent displacement field (see section 3),
the lack of continuity of the traction field across el-
ement boundaries is in agreement with the lack of
continuity of the stress field across the same bound-
aries. Incrementally, the traction continuity condition
is given by:� ld

Ω

Z
Ω

σ̇σσ �ndΩ+Z
Γd

ṫdΓ = 0 (21)

whereṫ is the incremental traction vector obtained at
the discontinuityΓd, n is the normal to the disconti-
nuity, σ̇σσ is the incremental stress tensor andld is the
length of the discontinuityΓd. Equation (21) is equiv-
alent to:

1
ld

Z
Γd

ṫdΓ� 1
Ω

Z
Ω

σ̇σσ �ndΩ = 0 (22)

which shows that traction continuity is enforced in an
averaged sense. However, as previously stated, since
constant stresses and tractions are assumed over both
the lengthld and the domainΩ, equations (21) and
(22) also enforce traction continuity locally, within
an element. Moreover, it can also be seen from equa-
tion (22) that the formulation does not depend upon
the length of the discontinuitiesld. Note however, that
the relative position of the discontinuities with respect
to the elements is taken into account due to the en-
forcement of crack path continuity, as shown below.

Each time a new crack is initiated a check is carried
out for the existence of crack tips in the neighbour-
hood, on the element sides. The following cases are
considered (Alfaiate et al. 2001):

1. if there is no crack tip at the element sides evalu-
ate the position of the new crack tips (two) such
that the crack path passes through the centroid of
the element (see fig. 2 a);

2. if there is one crack tip at one element side, eval-
uate the position of the new crack tip on the op-
posite element boundary (see fig. 2 b);

Figure 2: Enforcing crack path continuity.

3. if there are two crack tips connect them to one
another (see fig. 2 c), but preserve the direction
of the normal evaluated for future calculations.

For each crack, the information regarding the coor-
dinates of the crack tips as well as the nodes delim-
iting the side of the element where it lies is stored:
(i) first temporarily during the convergence procedure
and (ii) definitively only when a converged solution is
found. This is due to the fact that, during the iterative
process, it may happen that a fictitious crack which
was initiated at a previous iteration is no longer active
at the present iteration and has to be removed from
the active set together with all hypothetical discon-
tinuities ahead of it. Finally, due to jumps in the ap-
proximated stress field, it may happen that new cracks
do not always tend to initiate at existing crack tips.
In order to prevent such improbable situation, new
crack paths are allowed to initiate only outside the
neighbourhood of existing crack tips. This neighbour-
hood is defined by a radius of influence centred at
the crack tip. A value related to the aggregate size is
proposed since it seems physically realistic. In fact,
it is expected that, at least, one aggregate must lie in
the neighbourhood of an existing crack tip, preventing
new cracks to initiate at this vicinity. In the analysis
performed this radius is taken equal to four times the
element size, which is of the order of the maximum
aggregate size.

For each finite element, the principle of virtual
work leads to: Z

Ωe

BTσσσdΩ = fext (23)

whereBT contains the derivatives of the shape func-
tions andfext is the nodal force vector. For updat-
ing the stresses, the kinematically constructed inter-
polation matrixG is used, such that (Wells and Sluys
2001):

σ̇σσ = D(B+Gẇ) (24)
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where, for a plane stress or strain state, matrixG is
given by:

G = 26666664δΓdn1� ∂ϕ(x)
∂x1

0

0 δΓdn2� ∂ϕ(x)
∂x2

0 0

δΓdn2� ∂ϕ(x)
∂x2

δΓdn1� ∂ϕ(x)
∂x1

37777775 : (25)

In eq. (25),ϕ(x) is the shape function corresponding
to noden towards which the normal at the discon-
tinutity is pointed at (see fig. 2). Thus, depending on
the relative position of the discontinuity inside the el-
ement, a specific noden is chosen leading to a dif-
ferentG matrix. Since the enforcement of crack path
continuity influences this relative position, it also in-
fluences matrixG and the stress update.

Taking into account the traction continuity condi-
tion, and the principle of virtual work, the weak for-
mulation leads, after linearisation, to a set of equa-
tions in which the incremental jumpsdw can be
solved by static condensation. In the end, it is possible
to write (Wells and Sluys 2001):

Kconda = dfext (26)

where Kcon is the condensed incremental stiffness
matrix andda are the incremental nodal displace-
ments. According to (26) only the standard degrees
of freedom are taken into account when solving the
system of equations.

5 NUMERICAL RESULTS
In this section, the numerical results obtained for
two different tests are presented: a tension test and
a single-edge notched beam. Both tests are examples
of quasi-brittle mode I and mixed mode fracture.

5.1 TENSILE TESTS
The tension tests have been performed for double-
edge notched specimens as shown in fig. 3.
Experimental tests were performed in mortar and
8mm concrete specimens with this geometry (Shi
et al. 2000). The off-set values adopted experimen-
tally were 0, 5, 10 and 15 mm, symmetric with respect
to the horizontal centre axis of the specimen. The
specimen was glued directly to the loading platens.

In the simulations presented here, only the 8 mm
concrete and notch off-set values of 5mm and 15 mm
are considered. The bottom edge is fixed and the top
edge is fixed in the horizontal direction in order to
simulate the gluing to the loading platens. A vertical
displacement is imposed at the top edge of the spec-
imen (see fig.4). The load displacement responses,
both experimental and numerical, relate the average

Figure 3: Double-edge notched specimen.

Figure 4: Non-continuous crack path.

load with the average displacement values measured
at the top of the specimen. The material properties
adopted are: Young modulusE = 24GPa; Poisson’s
ratio ν = 0:2; tensile strengthft = 2:0 MPa; frac-
ture energyGF = 0:059N=mm. The material model
adopted is the pure mode I version of the damage
model. In this test a nearly homogeneous stress state
is obtained in the central zone between the notches.
This is why several cracks tend to initiate simultane-
ously in the finite element analysis. In fig. 4 the crack
pattern obtained in a structured mesh is presented. In
this result, which corresponds to the 15 mm notch off-
set test, no path continuity is enforced. Since all the
discontinuities are forced to evolve through the cen-
troid of the elements, the experimental crack paths
can not accurately be reproduced and a chaotic crack
pattern is found. In fig. 5a, the same mesh is used but
path continuity is enforced. In figs. 5b an unstructured
mesh is shown. It is interesting to see that, in both
cases, the two cracks avoid each other at the centre,
as was observed experimentally (Shi et al. 2000).

The same analysis is performed with the 5 mm off-
set notch specimen. In fig. 6a the crack pattern ob-
tained with a structured mesh is presented, whereas
in fig. 6b the crack pattern obtained with an unstruc-
tured mesh is shown. From figs. 6a and 6b it can be
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Figure 5: 15 mm offset: continuous crack paths.

Figure 6: 5 mm off-set notches: continuous crack
paths.

seen that, unlike the 15 mm test, the two cracks tend
to reach each other near the centre, which was also
observed experimentally.

In fig. 7 the load displacement curves obtained for
the 15 mm test, both experimentally and numerically,
are presented.

5.2 SHEAR TESTS
The single-edge notched (SEN) beam, experimentally
tested by Schlangen (Schlangen 1993; Schlangen and

Figure 7: 15 mm notch off-set: load displacement
curves.

Figure 8: Single-edge notched beam: dimensions and
boundary conditions.

van Mier 1993), is analyzed (see fig.8). The arc length
method is used to enforce a monotonic increasing
of the sliding at the notch (crack mouth sliding dis-
placement, CMSD), which was the control parameter
also adopted experimentally. The material properties
adopted are (Wells and Sluys 2001): Young modulus
E = 35GPa; Poisson’s ratioν = 0:15; tensile strength
ft = 2:8 MPa; fracture energyGF = 0:1 N=mm. In
these numerical tests the following constitutive mod-
els are adopted:

1. a pure mode I model based on the damage model;

2. a mixed mode model based on the damage model;
two different tests with this model have been car-
ried out, taking into account different values for
the initial shear stiffness:

(a) Ds0 = 100N=mm3;

(b) Ds0 = 1000N=mm3.

In both cases the shear stiffness adopted for an
advanced state of damage (κ � 0) is Dsκ =
10�6 N=mm3.

3. A mixed mode model based on the plasticity
model; two different tests are performed in which
the following material parameters for the cohesion
(c0), mode II fracture energy (GII

F ), elastic stiff-
ness (Del

nn = Del
ss) and internal friction angle (φ) are

adopted:

(a) c0 = ft0; GII
F = GF ; Del

nn = Del
ss= 103 N=mm3;

tanφ = 0:75;

(b) c0 = 2� ft0; GII
F = 2�GF ;

Del
nn = Del

ss= 103 N=mm3; tanφ = 0:75;

An unstructured mesh is used (see fig.9). First the
mode I model is used. One main crack path is ob-
tained as shown in fig.9. In fig.10 the deformed mesh
obtained from the mode I test is presented. As can be
seen from fig. 9, the enforcement of crack path conti-
nuity results in a curved crack such as the one found
experimentally (Schlangen and van Mier 1993). In
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Figure 9: Mode I - single crack path.

Figure 10: Deformed mesh.

fig. 11 the load-displacement (P-CMSD) curves ob-
tained with both the damage (solid lines) and the plas-
ticity models (dashed lines) are presented. In these
figures the experimental result from (Schlangen 1993)
is also shown in bold. From the observation of fig. 11
two main conclusions can be drawn:

1. the experimental peak load is slightly smaller than
the numerical peak loads;

2. the experimental response is more ductile than the
numerical response.

Regarding the descending branches of the load-
CMSD curve, the differences found are related to
the modelling of the shear tractions in the fictitious
cracks. As already concluded in Alfaiate and Pires

Figure 11: Load CMSD curves obtained with mode I
model.

Figure 12: Shear tractions at the notch.

(1999), if higher values of the shear tractions are al-
lowed in the fictitious cracks, the more ductile the de-
scending branch becomes. In order to clarify this ob-
servation, in fig. 12 the evolution of the shear trac-
tions (τ) at the fictitious crack which first opens, i.e.,
at the notch, is plotted against the crack mouth slid-
ing displacement CMSD. From fig. 11 it can be con-
cluded that the non-isotropic damage model, which
allows for the increase of the shear tractions dur-
ing the softening behaviour, leads to a more ductile
softening branch, which is closer to the experimental
curve. A similar conclusion was also drawn in Alfa-
iate and Pires (1999), where a discrete approach was
adopted. As can be seen from fig. 12, the shear trac-
tionsτ obtained with the plasticity model are always
small during the analysis. Nevertheless, the greatest
values of the shear tractions are found with the dam-
age model, for which the shear tractions tend to de-
crease only after a value of the CMSD close to 0:1mm
is reached. The peak loads numerically obtained also
depend on the softening criterion adopted: the small-
est values are found with the the plasticity model,
whereas the highest values are obtained with the dam-
age model. This is due to the fact that both the normal
and sliding jump components at the discontinuity are
taken into account in the softening law of the plas-
ticity model (see equation (13)), whereas, in the non-
isotropic damage model, only the normal jump com-
ponent is considered (see equation (4)). As a conse-
quence, softening increases faster with the plasticity
model than with the damage model, which explains
the differences found in the peak loads (Alfaiate et al.
2001).
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6 CONCLUSIONS
Embedded strong discontinuities are used to model
discrete cracking in materials like concrete. An algo-
rithm is introduced to enforce the continuity of the
crack path, permitting a clear identification of the dis-
continuities in the mesh. First, double-edge notched
specimens are analyzed under tension. The influence
of the notch offset on the crack patterns is studied.
Both structured and unstructured meshes are used.
With the enforcement of crack path continuity, it is
found that two cracks, each initiating at a different
notch, develop towards the centre of the specimen.
Depending on the notch offset, these cracks either
meet or avoid each other, as observed experimentally.
Next, a single-edge notched (SEN) beam is analyzed.
Both mode I and mixed mode cracking have been con-
sidered in order to assess the importance of the shear
tractions on the global behaviour of the structure. It
is found that, if higher values of the shear tractions
are allowed at the fictitious cracks, the more ductile
the descending branch of the load-displacement curve
becomes. However, in the examples studied, the shear
tractions do not significantly influence the peak load.
Instead, the peak load depends on the type of crite-
rion adopted for the evolution of softening: it is ver-
ified that the isotropic softening criterion, adopted in
the plasticity model, leads to a smaller peak load than
the non-isotropic softening criterion used in the dam-
age model. Finally, as general conclusions, it is found
that:

1) the results obtained do not depend on the mesh,
neither from the size nor from the orientation of
the finite elements;

2) crack path continuity allows for the formation of
realistic crack patterns similar to those found in
experiments, even if reasonably coarse meshes are
used and

3) the formulation adopted allows for the correct dis-
sipation of energy leading to he formation of a
mechanism in all the examples studied.
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