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In this paper embedded strong discontinuities are used ttehtbscrete cracking in materials like concrete.
In the approach followed a discontinuous displacement flconsidered and the deformation is localized
at a surface of zero width. Both a damage law and a plastiaiwydre adopted to describe the constitutive
relation between tractions and displacement jumps at s@odtinuity surface. An algorithm is introduced to
enforce the continuity of the crack path, permitting a cldantification of the discontinuities in the mesh. Both
mode | and mixed mode cracking have been considered and pogtance of the shear tractions on the global
behaviour of a structure is assessed. With the formulatiopted it is concluded that: i) realistic crack patterns
are obtained, similar to those found in experiments andae)dissipation of energy can be objectively found
irrespective of the mesh that is used.

1 INTRODUCTION both the energy dissipation and the crack patterns are
accurately predicted (Alfaiate et al. 1997). Although
The finite element method has been used in the past feoth approximations have been successful in repro-
simulate strain-softening in the continuum. Considerducing the localized softening behaviour of quasi-
able research has been done in order to overcome tipgittle materials like concrete, numerical difficulties
mesh dependence found with non-regularized modare encountered, such as: i) the remeshing procedures
els. Non-local and gradient models are representativdead to distorted meshes and an increased bandwidth
of this work. In these formulations damage occursof the stiffness matrix; i) a large number of interfaces
within bands of finite width, set by an internal length have to be present in the finite element mesh (and
scale parameter, which is considered a material progsonsequently a large number of degrees of freedom)
erty. As a consequence, strong discontinuities, whiclirom the beginning of the calculations if the latter ap-
correspond to localized surfaces or cracks, can not beroach is adopted since, in this case, no remeshing
explicitly represented in these models. On the otheprocedures are considered. A more promising method
hand, the discrete approach has been used to simulz@gems to consist of a mixed formulation in which the
localized softening through the use of a cohesive fordissipation of energy can be objectively found with
mulation. This formulation has the advantage of be+espect to the mesh, whereas continuum elements can
ing independent of the mesh with respect to the disstill be used to reproduce softening. Such a formu-
sipation of energy if the crack path is aligned with lation is presented here in which discrete cracking is
the mesh. Since discontinuities are modelled by inmodelled through the consideration of strong discon-
terfaces inserted along element boundaries, the megimuities embedded in finite elements. Several exam-
has to be either alignea priori or during a calcula- ples of this formulation can be found in recent lit-
tion. The general case for which the crack path is noerature where two different approaches have being
known presents an additional difficulty for this formu- followed: i) a strong discontinuity is approximated
lation which has been dealt with in two ways: i) the as a limit case of a weak discontinuity through the
finite element mesh is redefined in each step in ordedefinition of a bandwidth parameter which tends to
to align the interfaces with the directions of the crackzero (Oliver et al. 1999) and ii) a real strong discon-
path predicted by the model (Carpinteri et al. 1989)tinuity is simulated considering a discontinuous dis-
ii) the properties of the correct crack path are pro-placement field (Wells and Sluys 2001). In this paper
jected on the finite element mesh in such a way thathe latter concept is redressed. In particular, special at-
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tention will be paid to: i) the enforcement of the con- sional problems. Here, a two dimensional version of
tinuity of the crack path, for which a new algorithm the model is presented. A loading function is defined
is introduced and ii) the effect of shear tractions atas:

the discontinuities on the global structural behaviour. f(Wh,K) = Wn — K (4)
Examples of mode | and mixed mode cracking evolu- _

tion are presented. The effect of shear stresses on tié1€rew, is the normal component to the crack sur-
global structural response of a single-edge notcheffce, of the displacement jump at the discontinu-
(SEN) beam is analyzed with different constitutiveity surfacelq. The internal variable is taken as
models. The results are obtained with structured anéhe maximum normal relative displacement reached

unstructured meshes and compare favorably with thék = Max(wn), kK > 0). Directionn is aligned with the
experimental data. direction of the maximum principal stress. if> 0

loading takes plac¢k > 0), whereas iff < O clos-
2 KINEMATICS OF A STRONG DISCONTINU- ing of the crack occurs and damage does not grow
ITY (k = 0). An exponential softening law is adopted for
the relation between the normal traction component
t, and the normal relative displacement between the
crack faces (normal jump), given by

A strong discontinuity is characterized by a jump on
the displacement field, localized at a surface. Con
sider a domaif2, with boundaryoQ where a discon-
tinuity surfacel 4 is supposed to exist. The displace-
ment field contains a regular part €1 G, and an ir- t = ftoexp<_@K> (5)
regular part corresponding to the displacement jump, G
[u], localized at the discontinuity surfa€g:
R where Gz is the fracture energy anélp is the ini-

u(x) = 0(x) + Hry[u(x)] (1) tial tensile strength of the material. The shear traction
componentsis related to the sliding relative displace-
ment along crack faces (shear jumvg) according to
a relation independent of eq. (5), given by:

where #Hr, is the Heaviside function at the disconti-

nuity g,
1 if Qt
a4, = { if x € @

0 otherwise ts = Dgpexp(hsk) Ws, (6)

The corresponding infinitesimal strain field is:
. whereDgj is the initial shear stiffness at crack initia-

e=0% =%+, (O + @7, ©[U])°  tion heis given by
= 0%+ %4, (Ou]) + 3r, ([u] ©n)°

bounded unbounded

where(-)S refers to the symmetric part ¢f), andéfd andDg is the shear stiffness whic;h is adopted for an

is the Dirac delta-function along surfaEe. advanced state of damage(). Since _relatlons (5)
Here, similar to the work presented in (Armero and@nd (6) are independent, the model introduces non-

Garikipati 1996; Wells and Sluys 2001), no regular-iSOtropic damage in the traction space; as a conse-

ization is performed on the irregular part of the straindU€nce, it is possible to enforce mode | crack evo-
field. lution since the shear tractions can be made equal to

zero simply by imposinds = 0. The incremental
3 MATERIAL MODELS constitutive relation in matrix form is given by,

hs = In (D /Do) (7)

The bulk behaviour is modeled by means of a linear- 2

elastic constitutive relation. Two different models are Jtn| _ | —& exp(—g}q 0 Wi
used for the discontinuity: a damage law and a plas-|ts| heDsexp(hsk)Ws Depexp(hsk) We [
ticity law. It is assumed that cracking always initi- 8)

ates according to a mode | criterion, when the maxrhe secant stiffness matrix is used for unloading,
imum principal stress reaches the tensile strength Qfhich is given by
the materialf;. Crack evolution is modelled accord-

ing to mixed mode fracture allowing shear stresses to fo fo
develop along the crack faces of the discontinuity, due Dunloading= [7 exp —gK) 0 ] ()
to aggregate interlocking and/or shear fracture. (hsk)

3.1 DAMAGE MODEL If a crack fully closes, i.ew, = 0, a very large value
The model considered in this section was first intro-for the elasticstiffness is assumed in order to prevent
duced in (Wells and Sluys 2001) for three dimen-overlapping of the crack faces.
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wherew!, andw! are equal to the plastic normal and
sliding displacement jumps, respectively. Generally, a
non-associative flow rule is adopted, such that

f, (Mohr-Coulomb)

(adopted yield surface . - 09
f, (tensile cap) wP = )\a, (15)

whereA is the plastic multiplier. The direction of plas-
f > G tic flow is normal to a plastic potential assumed to be
a function of the tractiong = g(t). Let Y be the dila-
Figure 1. Adopted yield surfacg, the tensile cad;  tancy angle which is considered fixedif< 0. In the
and Mohr-Coulomb friction lawfz. compressive zone of the traction spagés given by

3.2 PLASTICITY MODEL g=|ts| +thtanP —c, (16)
In this model, a limit surface is defined in the traction
spaceftp,ts} such that both tensile mode | cracking whereas, for the particular case of pure mode | crack-

and a modified friction Coulomb envelope are takening (ts = 0), the flow rule becomes associative and
into account. In fig. 1 the adopted yield surface isis given by

shown. Itis given by g=f1=t,— fi. (17)
fot2_f _ fé + 2ctanef; — Cztz The derivatives of the plastic potential with respect to
Tso f2 n the traction components vary continuously between
(10)  tensile and compressive tractions in mixed mode frac-

2 2 ture, assuring a smooth transition for the direction of
—¢ (1-|-tar12 (p) + (th + tange)” =0 plastic flow (%\Ifaiate et al. 2001). A backward-Euler
where@ is the internal friction angleg is the cohe-  '€turn mapping algorithm is used and the consistent
sion andf; is the tensile strength. In fig. 1, two other tangent traction-displacement jump relationship, in
limit surfaces are also presented which envelope th8atrix form, is given by:
surfacef adopted. The first, denoted &s is a tensile

cap and the second envelope surfégés the Mohr- _ [ Hogof T, -|
Coulomb friction law. Two energies associated with t={H- % W, (18)
fracture are defined as material properties: the frac- [ % H% —hJ

ture energyGr and the energy‘;E, defined in mode I

or shear cracking, given by the area below the shegghereh is the plastic modulus and

stress-sliding displacement curve obtained in the ab-

sence of a normal confining load. Thus,@# both 2 1-1

the dissipation of energy due to friction (aggregate in- H— {| +AADE @] DE' . (19)

terlocking) and due to shear fracture are taken into d ot? d

account. Both the tensile strengfthand the cohesion

c are functions of an internal scalar variaklaccord- At crack initiation, the elastic part has to be assumed

ing to the exponential laws: such that, for brittle cracking and according to Rank-
ine’s criterion, the following conditions are met:

fio
fi="f —— 11
t toeXP< G,:K> (11) ty, =0 =f
Co ts =0
c= %exp(—@@) 12) f
F We = o (20)
where fig is the initial tensile strength ang} is the b n
initial cohesion value (fok = 0). An isotropic soft- wn =0
ening criterion is adopted such that: W —wP=0
e =wh =
CoGr
— ko — WP p
K= Kn=Wn+ el Ws (13) Similarly to the damage model, a penalty formula-

tion is used to prevent overlapping of crack faces. As
fioGH a consequence, the diagonal elastic stiffness compo-
Ks = Kn CoCr (14)  nentsD8! andDEL are given very high values.




4 NUMERICAL IMPLEMENTATION

The finite element discretisation is based on constant
strain triangles. For each element, crossed by a dis-
continuity, an internal node is defined where the lo-
calized constitutive relation is applied. The two de-
grees of freedom of this internal node correspond ta
the jump displacement components at the discontinu
ity. As a consequence, the jJump displacement field is previous crack tip
assumed to be of the same order as the strain field, i.e. T
a constant displacement jump is assumed at the dis
continuity over the entire element. This leads to non-
continuous displacement jumps at the discontinuities
across the boundary of the elements. However, since ©)
the tractions at the discontinuity are directly related to
the correspondent displacement field (see section 3),  Figure 2: Enforcing crack path continuity.
the lack of continuity of the traction field across el-
ement boundaries is in agreement with the lack of 3
continuity of the stress field across the same bound-
aries. Incrementally, the traction continuity condition

is given by:

previous crack tip

crack tip 2

new crack

b)

previous crack tip

. if there are two crack tips connect them to one
another (see fig. 2 c), but preserve the direction
of the normal evaluated for future calculations.

| For each crack, the information regarding the coor-
d [ . ; dinates of the crack tips as well as the nodes delim-
Q /Qo-nd§2+ rdtdl‘ =0 (1) iting the side of the eleement where it lies is stored:
(i) first temporarily during the convergence procedure
wheret is the incremental traction vector obtained atand (ii) definitively only when a converged solution is
the discontinuityl 4, n is the normal to the disconti- found. This is due to the fact that, during the iterative
nuity, @ is the incremental stress tensor dgds the  process, it may happen that a fictitious crack which
length of the discontinuityf 4. Equation (21) is equiv- was initiated at a previous iteration is no longer active

alent to: at the present iteration and has to be removed from
the active set together with all hypothetical discon-
1/ 1/ 6-ndO — 0 (22) tinuities ahead of it. Finally, due to jumps in the ap-

lg /rq QJao proximated stress field, it may happen that new cracks

do not always tend to initiate at existing crack tips.
which shows that traction continuity is enforced in anin order to prevent such improbable situation, new
averaged sense. However, as previously stated, sinegack paths are allowed to initiate only outside the
constant stresses and tractions are assumed over b@isighbourhood of existing crack tips. This neighbour-
the lengthly and the domair2, equations (21) and hood is defined by a radius of influence centred at
(22) also enforce traction continuity locally, within the crack tip. A value related to the aggregate size is
an element. Moreover, it can also be seen from equgroposed since it seems physically realistic. In fact,
tion (22) that the formulation does not depend uporit is expected that, at least, one aggregate must lie in
the length of the discontinuitiég. Note however, that  the neighbourhood of an existing crack tip, preventing
the relative position of the discontinuities with respectnew cracks to initiate at this vicinity. In the analysis
to the elements is taken into account due to the enperformed this radius is taken equal to four times the
forcement of crack path continuity, as shown below. element size, which is of the order of the maximum
Each time a new crack is initiated a check is carriedaggregate size.

out for the existence of crack tips in the neighbour- For each finite element, the principle of virtual
hood, on the element sides. The following cases argork leads to:
considered (Alfaiate et al. 2001):

_ _ _ _ BTodQ = f&* (23)

1. ifthere is no crack tip at the element sides evalu- Qe

ate the position of the new crack tips (two) such

that the crack path passes through the centroid gvhereBT contains the derivatives of the shape func-

the element (see fig. 2 a); tions andf®! is the nodal force vector. For updat-

ing the stresses, the kinematically constructed inter-
2. ifthere is one crack tip at one element side, evalpolation matrixG is used, such that (Wells and Sluys
uate the position of the new crack tip on the op-2001):
posite element boundary (see fig. 2 b); 6 =D(B+Gw) (24)



where, for a plane stress or strain state, ma@iis 60 mm
P

given by: (thickness = 10 mm)
- a —
mm-%E o g
0 6F Ny — 99(x) 3
G= d % | (25) 10 -
0 0 B : IO,S,]O,]Smm
b 0
oo B2 - 240 :
(e
In eq. (25),0(x) is the shape function corresponding ©
to noden towards which the normal at the discon-

the relative position of the discontinuity inside the el-

ement, a specific node is chosen leading to a dif-
ferentG matrix. Since the enforcement of crack path
continuity influences this relative position, it also in-
fluences matridxG and the stress update.

Taking into account the traction continuity condi-
tion, and the principle of virtual work, the weak for-
mulation leads, after linearisation, to a set of equa-
tions in which the incremental jumpdw can be
solved by static condensation. In the end, it is possible
to write (Wells and Sluys 2001):

imposed displacements

Ar4s41

1:
)
=
o
=

»

15 mm

<

notch
RS

Kconda: dfext (26)

where Kon IS the condensed incremental stiffness ‘ L
matrix andda are the incremental nodal displace- Figure 4: Non-continuous crack path.

ments. According to (26) only the standard degrees

of freedom are taken into account when solving thdoad with the average displacement values measured

system of equations. at the top of the specimen. The material properties
adopted are: Young modullis = 24 GPa Poisson’s
5 NUMERICAL RESULTS ratiov = 0.2; tensile strength; = 2.0 MPa; frac-

In this section, the numerical results obtained forture energyGe = 0.059N/mm The material model
two different tests are presented: a tension test anddopted is the pure mode | version of the damage
a single-edge notched beam. Both tests are exampl@sodel. In this test a nearly homogeneous stress state

of quasi-brittle mode | and mixed mode fracture. is obtained in the central zone between the notches.
This is why several cracks tend to initiate simultane-
5.1 TENSILE TESTS ously in the finite element analysis. In fig. 4 the crack

The tension tests have been performed for doublePattern obtained in a structured mesh is presented. In
edge notched Specimens as shown in f|g 3th|S reSUlt, which CoerSanqs tothe 15 mm notch off-
Experimental tests were performed in mortar ancet test, no path continuity is enforced. Since all the
8mm concrete specimens with this geometry (ShAiscontinuities are forced to evolve through the cen-
et al. 2000). The off-set values adopted experimentroid of the elements, the experimental crack paths
tally were 0, 5, 10 and 15 mm, symmetric with respectcan not accurately be reproduced and a chaotic crack
to the horizontal centre axis of the specimen. ThePatternis found. In fig. 5a, the same mesh is used but
specimen was glued directly to the loading platens. Path continuity is enforced. Infigs. 5b an unstructured
In the simulations presented here, On|y the 8 mnfneSh IS Shown. It is |nter¢st|ng to see that, In bOth
concrete and notch off-set values of 5mm and 15 mn$ases, the two cracks avoid each other at the centre,
are considered. The bottom edge is fixed and the tops Was observed experimentally (Shi et al. 2000).
edge is fixed in the horizontal direction in order to The same analysis is performed with the 5 mm off-
simulate the gluing to the loading platens. A verticalset notch specimen. In fig. 6a the crack pattern ob-
displacement is imposed at the top edge of the spedained with a structured mesh is presented, whereas
imen (see fig.4). The load displacement response#, fig. 6b the crack pattern obtained with an unstruc-
both experimental and numerical, relate the averagaured mesh is shown. From figs. 6a and 6b it can be
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Figure 5: 15 mm offset: continuous crack paths.
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Figure 6: 5 mm off-set notches: continuous crack
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Figure 8: Single-edge notched beam: dimensions and
boundary conditions.

van Mier 1993), is analyzed (see fig.8). The arc length
method is used to enforce a monotonic increasing
of the sliding at the notch (crack mouth sliding dis-
placement, CMSD), which was the control parameter
also adopted experimentally. The material properties
adopted are (Wells and Sluys 2001): Young modulus
E = 35GPg Poisson’s ratiw = 0.15; tensile strength

ft = 2.8 MPa; fracture energyGs = 0.1 N/mm In
these numerical tests the following constitutive mod-
els are adopted:

1. apure mode | model based on the damage model;

2. amixed mode model based on the damage model,
two different tests with this model have been car-
ried out, taking into account different values for
the initial shear stiffness:

seen that, unlike the 15 mm test, the two cracks tend
to reach each other near the centre, which was also
observed experimentally.

In fig. 7 the load displacement curves obtained for
the 15 mm test, both experimentally and numerically,
are presented.

5.2 SHEARTESTS 3

The single-edge notched (SEN) beam, experimentally.
tested by Schlangen (Schlangen 1993; Schlangen and

1.3
experimental result
~ structured mesh
Z
X
- unstructured mesh

(a) Dg = 100N/ mn?;
(b) Dgp = 1000N/mrr?.

In both cases the shear stiffness adopted for an
advanced state of damage £ 0) is Dg =
10°% N/mn?.

A mixed mode model based on the plasticity
model; two different tests are performed in which
the following material parameters for the cohesion
(co), mode Il fracture energy(i"F'), elastic stiff-
ness D& = DE) and internal friction angleg) are
adopted:

(@) co = fio; G = Ge; D&, = DEL= 10° N/mnr?;
tang=0.75;

(b) co=2x fio; G = 2x G;
DEl, = DEL = 10° N/mn?; tang = 0.75;

An unstructured mesh is used (see fig.9). First the

0 (mm) 0.12

mode | model is used. One main crack path is ob-
tained as shown in fig.9. In fig.10 the deformed mesh
obtained from the mode I test is presented. As can be
seen from fig. 9, the enforcement of crack path conti-

Figure 7: 15 mm notch off-set: load displacementnuity results in a curved crack such as the one found

curves.

experimentally (Schlangen and van Mier 1993). In
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Figure 12: Shear tractions at the notch.

fig. 11 the load-displacement (P-CMSD) curves ob-
tained with both the damage (solid lines) and the plas(1999), if higher values of the shear tractions are al-
ticity models (dashed lines) are presented. In thes®wed in the fictitious cracks, the more ductile the de-
figures the experimental result from (Schlangen 1993%cending branch becomes. In order to clarify this ob-
is also shown in bold. From the observation of fig. 11servation, in fig. 12 the evolution of the shear trac-
two main conclusions can be drawn: tions () at the fictitious crack which first opens, i.e.,
at the notch, is plotted against the crack mouth slid-
1. the experimental peak load is slightly smaller thaning displacement CMSD. From fig. 11 it can be con-
the numerical peak loads; cluded that the non-isotropic damage model, which
. : . allows for the increase of the shear tractions dur-
2. the expenmental response is more ductile than thﬁ,]g the softening behaviour, leads to a more ductile
numerical response. softening branch, which is closer to the experimental
fLurve. A similar conclusion was also drawn in Alfa-

Regarding the descending branches of the loa . .
CMgSD CSI’VG, the differenges found are related tot€ and Pires (1999), where a discrete approach was

the modelling of the shear tractions in the fictitiousadOptEd' As can be seen from fig. 12, the shear trac-

cracks. As already concluded in Alfaiate and PirediONST ob'galned with the. plasticity model are always
small during the analysis. Nevertheless, the greatest

plasticity values of the shear tractions are found with the dam-
¢=5.6 MPa age model, for which the shear tractions tend to de-
40 crease only after a value of the CMSD close tbiim

is reached. The peak loads numerically obtained also

depend on the softening criterion adopted: the small-

est values are found with the the plasticity model,
damase whereas the hi_ghest values are obtained with the dam-
szl‘(éoo N/mm' age model. This is due to the fact that both the normal

and sliding jump components at the discontinuity are
S / taken into account in the softening law of the plas-
lasticity damage

5:2.8 MPa/ D,~100 N/mm' _ticity m_odel (see equation (13)), Whereas,'in the non-

\ . isotropic damage model, only the normal jump com-
ponent is considered (see equation (4)). As a conse-
guence, softening increases faster with the plasticity
model than with the damage model, which explains
the differences found in the peak loads (Alfaiate et al.
2001).

experimental

P (kN)

mode I

| S (mm) 6.1

Figure 11: Load CMSD curves obtained with mode |
model.
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