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Abstract—Consider two remote nodes having binary sequences
X and Y, respectively. Y is an edited version of X, where the
editing involves random deletions, insertions, and substitutions,
possibly in bursts. The goal is for the node with Y to reconstruct
X with minimal exchange of information over a noiseless link.
The communication is measured in terms of both the total
number of bits exchanged and the number of interactive rounds
of communication.

This paper focuses on the setting where the number of edits
is 0(i55;), where n is the length of X. We first consider the case
where the edits are a mixture of insertions and deletions (indels),
and propose an interactive synchronization algorithm with near-
optimal communication rate and average computational complex-
ity of O(n) arithmetic operations. The algorithm uses interaction
to efficiently split the source sequence into substrings containing
exactly one deletion or insertion. Each of these substrings is
then synchronized using an optimal one-way synchronization
code based on the single-deletion correcting channel codes of
Varshamov and Tenengolts (VT codes).

We then build on this synchronization algorithm in three
different ways. First, it is modified to work with a single round of
interaction. The reduction in the number of rounds comes at the
expense of higher communication, which is quantified. Next, we
present an extension to the practically important case where the
insertions and deletions may occur in (potentially large) bursts.
Finally, we show how to synchronize the sources to within a target
Hamming distance. This feature can be used to differentiate
between substitution and indel edits. In addition to theoretical
performance bounds, we provide several validating simulation
results for the proposed algorithms.

Index Terms—File Synchronization, Two-way interaction,
Deletion edits, Insertion edits, Edit channels, Varshamov-
Tenengolts codes

I. INTRODUCTION

Onsider two remote nodes, say Alice and Bob, having

binary sequences X and Y, respectively. Y is an edited
version of X, where the edits may consists of deletions,
insertions, and substitutions of bits. Neither party knows what
has been edited nor the locations of the edits. The goal
is for Bob to reconstruct Alice’s sequence with minimal
communication between the two. This problem of efficient
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synchronization arises in practical applications such as file
backup (e.g., Dropbox), online file editing, and file sharing.
rsync [1f] is a UNIX utility that can be used to synchronize
two remote files or directories. It uses hashing to determine the
parts where the two files match, and then transmits the parts
that are different. Various forms of the file synchronization
problem have been studied in the literature, see e.g., [2[]-[7].

In this paper, we propose synchronization algorithms and
analyze their performance for the setting where the total
number of edits is small compared to the file size. In particular,
we focus on the case where the number of edits ¢ = o(%),
where n is the length of Alice’s sequence X. From here on,
we will refer to Alice and Bob as the encoder and decoder,
respectively (Fig. [T(a)). We assume that the lengths of X and
Y are known to both the encoder and decoder at the outset.

A natural first question is: what is the minimum communi-
cation required for synchronization? A simple lower bound on
the communication required to synchronize from insertion and
deletion edits can be obtained by assuming that the encoder
knows the locations of the ¢ edits in X. Then, the minimum
number of bits needed to convey the positions of the edits to
the decoder is approximately tlogn (= logn bits to indicate
each position). This is discussed in more detail in Section

When X and Y differ by exactly one deletion or insertion,
there is a simple one-way, zero error algorithm to synchronize
Y to X. This algorithm, based on a family of single-deletion
correcting codes introduced by Varshamov and Tenengolts [8]],
requires log(n + 1) bits to be transmitted from the encoder
to the decoder, which is very close to the lower bound of
logn. However, when X and Y differ by multiple deletions
and insertions, there is no known one-way synchronization
algorithm that is computationally feasible and transmits sig-
nificantly fewer than n bits.

In this work, we insist on realizable (practical) synchroniza-
tion algorithms, and relax the requirement of zero error—we
will only require that the probability of synchronization error
goes to zero polynomially in the problem size n. Specifically,
we develop a fast synchronization algorithm by allowing a
small amount of interaction between the encoder and the
decoder. When the number of edits ¢ = o(g;), the total
number of bits transmitted by this algorithm is within a
constant factor of the communciation lower bound tlogn,
where the constant controls the polynomial rate of decay of
the probability of synchronization error. To highlight the main
ideas and keep the exposition simple, we focus on the case
where X and Y are binary sequences. All the algorithms can
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(a) Synchronization: reconstruct X at the decoder using the message W and the edited version Y as side-information. (b) Channel

coding: transmit message W through a channel that takes input X and outputs edited version Y.

be extended in a straightforward manner to larger discrete
alphabets; this is briefly discussed in Section

We lay down some notation before proceeding. Upper-case
letters are used to denote random variables and random vec-
tors, and lower-case letters for their realizations. log denotes
the logarithm with base 2, and In is the natural logarithm.
The length of X is denoted by n, and the number of edits
is denoted by t. We use Nj_,5 to denote the number of bits
sent from the encoder to the decoder, and No_,; to denote the
number of bits sent by the decoder to the encoder.

Following standard notation, f(n) = o(g(n)) means
lim, o f(n)/g(n) = 0; f(n) = O(g(n)) means f is
asymptotically bounded above by kg(n) for some constant
k>0, and f(n) = O(g(n)) means f(n)/g(n) asymptotically
lies in an interval [k1, ko] for some constants x1, ke > 0.

A. Contributions of the paper

The main contribution is a bi-directional algorithm to
synchronize from an arbitrary combination of insertions and
deletions (referred to hereafter as indels). For the case where
X is a uniform random binary string and Y is obtained
from X via ¢t deletions and insertions whose locations are
uniformly random, the expected number of bits transmitted
by the algorithm from the encoder to the decoder is close
to 4ctlogn, where ¢ > 1.5 is a user-defined constant that
controls the trade-off between the communication required and
probability of synchronization error. The expected number of
bits in the reverse direction is approximately 10¢. Therefore the
total number of bits exchanged between encoder and decoder
is within a constant factor of the lower bound tlogn. The
probability of synchronization error goes to zero as “Z#
The synchronization algorithm has average computational
complexity of O(n) arithmetic operations, with O(logn) bits
of memory.

We then present three extensions:

1) Limited number of rounds: The number of rounds in the
bi-directional synchronization algorithm of is of the order
of logt, where ¢ is the number of indel edits. In practical
applications where the sources may be connected by a
high-latency link, having a large number of interactive
rounds is not feasible — rsync, for example, uses only
one round of interaction. In Section [V| we modify the
algorithm to work with only one complete round of in-
teraction, and analyze the communication required when
Y is generated from X via indel edits at uniformly
random locations. Simulation results show that the single-
round algorithm is very fast and requires significantly less
communication than rsync.

2) Bursty Edits: In practice, edits in files often occur in
(possibly large) bursts. For reasons discussed in Section
the performance of the original algorithm is subop-
timal for bursty indel edits. To address this, we describe
a technique to efficiently synchronize from a single large
burst deletion or insertion. We then use this technique
in the original algorithm to synchronize efficiently when
the edits are a combination of isolated deletions and
insertions and bursts of varying length.

3) Substitution Edits: In Section [VII, we show how the
interactive synchronization algorithm can handle substi-
tution edits in addition to indels. This is done by using
a Hamming-distance estimator as a hash in the original
synchronization algorithm. This lets us synchronize Y to
within a target Hamming distance of X. The remaining
substitution errors can then be corrected using standard
methods based on syndromes of an appropriate linear
error-correcting code.

For general files and edit models, several authors [2]]—[5]]
have proposed file synchronization protocols with commu-
nication complexity bounds of O(t log2 n) or higher, where
t is the edit distance between X and Y. In contrast, the
main focus of this paper is to design practically realizable
synchronization algorithms for binary files with indel edits,
with sharp performance guarantees when the number of edits
t = o(g,5;)- Our main theoretical contributions are for
the interactive synchronization algorithm and its single-round
adaptation, under the assumption that the binary strings and
the locations of the edits are uniformly random. For the case
with bursty edits, we provide a theoretical analysis for the
special case of a single burst of deletions or insertions. For the
practically important case of multiple edits (including bursts
of different lengths), the performance is demonstrated via
several simulation results. Likewise, the effectiveness of the
Hamming-distance estimator when the edits include substitu-
tions is illustrated via simulations.

While the simulations are performed on randomly generated
binary strings, this is the first step towards the larger goal of
designing a practical rate-efficient synchronization tool for ap-
plications such as video. Indeed, a key motivation for this work
was to explore the use of interaction and coding to enhance
VSYNC [9], a recent algorithm for video synchronization.

A preliminary version of the main synchronization algo-
rithm proposed in this paper was presented in the 2010
Allerton conference. The algorithm has subsequently been
used as a building block in other problems including: a)
computationally feasible synchronization in the regime where
the number of edits grows linearly in n [6]], [10], and b)
synchronizing rankings between two remote terminals [[11]].




A brief description of these papers is given at the end of the
subsection below.

B. Related work

When X and Y differ by just substitution edits, the syn-
chronization problem is well-understood: an elegant and rate-
optimal one-way synchronization code can be obtained using
cosets of a linear error-correcting code, see e.g. [12[|-[15].
For general edits, Orlitsky [13] obtained several interesting
bounds on the number of bits needed when the number of
rounds of communication is constrained. In particular, a three-
message algorithm that synchronizes from ¢ indel edits with
a near-optimal number of bits was proposed in [13]. This
algorithm is not computationally feasible, but for the special
case where X and Y differ by one edit, [13] described a
computationally computationally efficient one-way algorithm
based on Varshamov-Tenengolts (VT) codes. This algorithm
is reviewed in Section

Evfimievski [2] and Cormode et al. [3] proposed different
e-error synchronization protocols for which the number of
transmitted bits is ¢ - poly(logn,loge~!) where ¢ is the edit
distance between X and Y, € is the probability of synchro-
nization error, and poly(logn,loge~!) denotes a polynomial
in logn and loge~!. These protocols have computational
complexity that is polynomial in n. Subsequently, Orlitsky
and Viswanathan developed a practical e-error protocol [4]]
which communicates O(tlogn(logn +loge™!)) bits and has
O(nlogn) computational complexity.

Agarwal et al. [5] designed a synchronization algorithm
using the approach of set reconciliation: the idea is to divide
each of X and Y into overlapping substrings and to first
convey the substrings of X which which differ from Y
reconstructing X at the decoder then involves finding a unique
Eulerian cycle in a de Bruijn graph. A computationally feasible
algorithm for the second step that guarantees reconstruction
with high probability is described in [[16]. The communication
is O(tlog®n) bits when X and Y are random i.i.d strings
differing by ¢ edits.

In [10]], Yazdi and Dolecek consider the problem of synchro-
nization when Y is obtained from X by a process that deletes
each bit independently with probability 5. (5 is a small con-
stant, so the number of deletions is ©(n).) The synchronization
algorithm described in Section w for o(g) edits is a key
ingredient of the synchronization protocol proposed in [10].
This protocol transmits a total of O(nflog %) bits and the
probability of synchronization failure falls exponentially in n;
the computational complexity is O(n*3%). The synchroniza-
tion protocol in [[10]] is generalized in [6] to deal with the case
where the alphabet is non-binary and the edits include both
deletions and insertions. The performance of this protocol is
evaluated in [17], and significant gains over rysnc are reported
for the setting where X undergoes a constant rate of i.i.d. edits
to generate Y. In [11], an interactive algorithm based on VT
codes is proposed for the problem of synchronizing rankings
between two remote terminals.

The paper is organised as follows. In Section[[I} we derive a
simple lower bound on the minimum communication required

to synchronize from ¢ indel edits. In Section we describe
how to optimally synchronize from one deletion or insertion.
This technique is a key ingredient of the interactive algorithm
to synchronize from multiple indel edits, which is described
in Section In Sections [V} and we extend the
main synchronization algorithm to work with a single round
of interaction, bursty edits, and substitution edits, respectively.
Section contains the proofs of the main results. Section

concludes the paper.

II. FUNDAMENTAL LIMITS

The goal in this section is to obtain a lower bound on the
minimum number of bits required for synchronization when X
and Y differ by ¢ indel edits, where ¢ = o(n). Though similar
bounds can be found in [13, Section 5], for completeness we
present a bound tailored to the synchronization framework
considered here. We begin with the following fact.

Fact 1. (a) Let Q:(y) denote the number of different sequences
that can be obtained by inserting t bits in length-m sequence
y. Then,

Qi(y) = zt: (m;—t)

=0

)

(b) For any binary sequence vy, let P;(y) denote the number
of different sequences that can be obtained by deleting t bits
from y. Then,

2

Pi(y) > <R(y) o 1>,

t
where R(y) denotes the numbers of runs in y[ﬂ

Part (a) is Lemma 4 in [13]]. Part (b) was proved in [18]
and can be obtained as follows. Consider deleting ¢ bits from
Y by choosing ¢ non-adjacent runs of Y and deleting one
bit from each of them. Each choice of ¢ non-adjacent runs
yields a unique length-n sequence X. The number of ways of
choosing ¢ non-adjacent runs from R(Y") runs is given by the
right side of (2). Note that the number of sequences that can
be obtained by deleting ¢ bits from Y depends on the number
of runs in Y—for example, deleting any ¢ bits from the all-
zero sequence yields the same sequence. The following lemma
shows that a large fraction of sequences in {0, 1} have close
to % runs; this will help us obtain a lower bound on the
number of bits needed to synchronize “typical” Y -sequences
from ¢ insertions.

Lemma 1. For any € € (0, 1), there are at least (1 — €)2™
length-m binary sequences with at least 3 (1 — Ay, o) runs

each, where A, . = ,/% In %

Proof: In Appendix [A] [ |

The following proposition establishes a lower bound on

the number of bits needed for synchronization, and provides

a benchmark to compare the performance of the algorithms
proposed in this paper.

IThe runs of a binary sequence are its alternating blocks of contiguous
zeros and ones.



Proposition 1. Let m denote the length of the decoder’s
sequence Y. Then any synchronization algorithm that is
successful for all length-n X-sequences compatible with Y
satisfies the following.

(a) For m = n — t, the number of bits the encoder must
transmit to synchronize Y to X, denoted by Ny(n,t), satisfies

lim inf 7Nd(n’ )

3)
for t = o(n).

(b) For any € € (0,1), let A, C {0,1}™ be the set of
sequences of length m that have at least 5 (1 — Ap, ) runs,
% In % Then A, has at least (1—¢€)2™
sequences. For m = n+t, the number of bits the encoder must
transmit to synchronize Y € A, ., to X, denoted by N;(n,t),
satisfies

where A, =

v

lim inf L”s) 1. 4)

n—00 t]og ( ; )
for t = o(n).

Remark: Proposition [T] assumes that Y is available a priori
at the encoder, so the lower bound on the communication
required applies to both interactive and non-interactive syn-
chronization algorithms.

Proof: (a): Fact[I] (a) implies that the number of possible
length-n X sequences consistent with any length (n — t)
sequence Y is greater than ("jﬂ). Thus we need the encoder
to send at least log (/) bits, even with perfect knowledge of Y.
To obtain (3), we bound (:}) from below using the following

bounds (Stirling’s approxirﬁation) for the factorial:

1 1
V2rnT2e ™™ <pl<en™2e™™, neN. 5)

(b): For any € > 0, Lemma E] shows that there are at least
(1 — €)2™ length m sequences with at least (1 — A, ()
runs. Part (b) of Fact[l| gives a lower bound on the number of
possible X sequences consistent with Y. Lemma [l| and Fact
together imply that to synchronize any Y € A, ,, where

m = n + t, the encoder needs to send at least
(1 —-Ape)—t+1 .
log (2 ( t7 ) -t > bits,

even with perfect knowledge of Y. Using (3) to bound the
factorials and simplifying yields (@). ]

III. SYNCHRONIZING FROM ONE DELETION/INSERTION

In this section, we describe how to optimally synchronize
from a single deletion or insertion. The one-way synchroniza-
tion algorithm for a single deletion is based on the family
of single-deletion correcting channel codes introduced by
Varshamov and Tenengolts [8] (henceforth abbreviated to VT
codes).

Definition 1. For block length n, and integer a € {0, ... ,n},
the VT code VT, (n) consists of all binary vectors X =

(1, ...,xp) satisfying

Zixi =amod (n+1).

i=1

(6)

For example, the code V'T(4) with block length n = 4 is

4
VTo(4) = {(w1, 22,73, 24) : szl mod 5 =0}
i=1

= {0000, 1001,0110,1111}.

For any a € {0,...,n}, the code VT,(n) can be used to
communicate reliably over an edit channel (Fig. [[(b)) that
introduces at most one deletion in a block of length n.
Levenshtein proposed a simple decoding algorithm [[18]], [[19]
for a VT code, which we reproduce below. Assume that the
channel code VT, (n) is used.

(7

« Suppose that a codeword X € VT, (n) is transmitted, the
channel deletes the bit in position p, and Y is received.
Let there be Ly 0’s and Ly 1’s to the left of the deleted
bit, and Ry 0’s and R; 1’s to the right of the deleted bit
(with p =1+ Lo+ Ly).

o The channel decoder computes the weight of Y given by

wt(Y) = L1 + Ry, and the new checksum ), iy,. If the
deleted bit is 0, the new checksum is smaller than the
checksum of X by an amount R;. If the deleted bit is
1, the new checksum is smaller by an amount p + R; =
1+Log+Li+R = 1+wt(Y)—|—L0.
Define the deficiency D(Y') of the new checksum as the
amount by which it is smaller than the next larger integer
of the form k(n 4 1) + a, for some integer k. Thus, if a
0 was deleted the deficiency D(Y') = Ry, which is less
than wt(Y); if a 1 was deleted D(Y) = 14+ wt(Y) + Lo,
which is greater than wt(Y").

o If the deficiency D(Y') is less than or equal to wt(Y)
the decoder determines that a 0 was deleted, and restores
it just to the left of the rightmost R; 1’s. Otherwise a 1
was deleted and the decoder restores it just to the right
of the leftmost Lq 0’s.

As an example, assume that the code VTj(4) is used and
X =(1,0,0,1) € VTy(4) is transmitted over the channel.

1) If the second bit in X is deleted and Y = (1,0, 1), then
the new checksum is 4, and the deficiency D =5 —4 =
1 < wt(Y) = 2. The decoder inserts a zero just to the
left of D =1 ones from the right to get (1,0,0,1).

2) If the fourth bit in X is deleted and Y = (1,0, 0), then

the new checksum is 1, and the deficiency D = 5 —

1 =4 > wt(Y) = 1. The decoder inserts a one after

D —wt(Y) —1 = 2 zeros from the left to get (1,0,0,1).
Note that in the first case, the zero is restored in the third
position though the original deleted bit may have been the one
in the second position. The VT code implicitly exploits the fact
that a deleted bit can be restored at any position within the
correct run. The decoding algorithm always restores a deleted
zero at the end of the run it belongs to, while a deleted one
is always restored at the beginning of the run.

Several interesting properties of VT codes are discussed
in [[19]. For example, it is known that VTy(n) is the largest
single-deletion correcting code for block lengths n < 9, i.e.,
they are rate-optimal for n < 9 . Further, for each n, VTy(n)
has size at least f—nl which is asymptotically optimal [19,

Corollary 2.3, Theorem 2.5].



A. One-way Synchronization using VT Syndromes

As observed in [[13]], VT codes can be used to synchronize
from a single deletion. In this setting (Fig. 1(a)), the length-
n sequence X is available at the encoder, while the decoder
has Y, obtained by deleting one bit from X. To synchronize,
the encoder sends the checksum of its sequence X modulo
(n+1). The decoder receives this value, say a, and decodes its
sequence Y to a codeword in V' Ty (n). This codeword is equal
to X since VT,(n) is a single-deletion correcting channel
code.

Since a € {0,...,n}, the encoder needs to transmit
log(n + 1) bits. This is asymptotically optimal as the lower
bound of Proposition [I| for ¢ = 1 is logn. We have achieved
synchronization by using the fact that the {0,1}"™ space is
partitioned by the (non-linear) codes V7,(n), 0 < a < n.
This is similar to using cosets of a linear code to perform
Slepian-Wolf coding [12], [[14]. Hence we shall refer to
>, ix; mod (n + 1) as the VT syndrome of X.

If Y was obtained from X by a single insertion, one can use
a similar algorithm to synchronize Y to X. The only difference
is that the decoder now has to use the excess in the checksum
of Y and compare it to its weight. In summary, when the edit
is either a single deletion or insertion, one can synchronize
Y to X with a simple zero-error algorithm that requires the
encoder to transmit log(n + 1) bits. No interaction is needed.

IV. SYNCHRONIZING FROM MULTIPLE DELETIONS AND
INSERTIONS

A. Only Deletions

To illustrate the key ideas, we begin with the special case
where the sequence Y is obtained by deleting d > 1 bits
from X, where d is o(55-). If the number of deletions is
one, we know from Section that Y can be synchronized
using a VT syndrome. The idea for d > 1 is to break
down the synchronization problem into sub-problems, each
containing only a single deletion. This is efficiently achieved
through a divide-and-conquer strategy which uses interactive
communication.

Consider the following example:

X=10011000100101011011001101

Y=10011001001010111100110
®)

where the deleted bits in X are indicated by bold italics. It is
assumed that the number of deletions d = 3 is known to both
the encoder and the decoder at the outset.

o In the first step, the encoder sends a few ‘anchor’ bits
around the center of X (underlined bits in (8)). The
decoder tries to find a match for these anchor bits as
close to the center of Y as possible. Here and in the
remainder of the paper, finding a match for a k-bit
string .S around the center of an [-bit string Y (I > k)
refers to the following: first check if S matches the
central substring of Y, defined as the bits in locations
{lt—%+1],..., |t + %]} If not, check if S matches
a substring of Y located one position to the left/right of
the center, and so on.

o The decoder knows that the anchor bits correspond to
positions 12 to 15 in X, but they align at positions 11
to 14 in Y. Since the alignment position is shifted to the
left by one, the decoder infers that there is one deletion
to the left of the anchor bits and two to the right, and
conveys this information back to the encoder. (Recall
that the lengths of X and Y are known. So the decoder
knows that there are a total of three deletions as we have
assumed that all the edits are deletions.)

e The encoder sends the VT syndrome of the left half of
X, using which the decoder corrects the single deletion
in the left half of Y. The encoder also sends a second set
of anchor bits around the center of the right half of X,
as shown below.

X=10011000100101011011001101

Y=10011001001010111100110

o The decoder tries to find a match for these anchor bits as
close to the center of the right half of Y as possible.
The alignment position will indicate that there is one
remaining deletion to the left of the anchor bits, and one
to the right.

e The encoder sends VT syndromes for the left and right
halves of X,, where X, is the substring consisting of
bits in the right half of X. Using the two sets of VT
syndromes, the decoder corrects the remaining deletions.

The example above can be generalized to a synchronization

algorithm for the case where Y is obtained from X via d
deletions:

e The encoder maintains an unresolved list £y, whose
entries are the yet-to-be-synchronized substrings of X.
The list is initialized to be Lx = {X}. The decoder
maintains a corresponding list Ly, initialized to {Y'}.

¢ In each round, the encoder sends m, anchor bits around
the center of each substring in Ly to the decoder, which
tries to align these bits as close as possible to the center
of the corresponding substring in Ly . If a match is found,
the aligned anchor bits split the substring into two pieces.
For each of these pieces:

— If the number of deletions is zero, the piece has been
synchronized.

— If the number of deletions is one, the decoder re-
quests the VT syndrome of this piece for synchro-
nization.

— If the number of deletions is greater than one, the
decoder puts this piece in Ly. The encoder puts its
corresponding piece in Lx.

If one or more of the anchor bits is among the deletions,
the decoder may not be able to align the anchor bits. In
this case, in the next round the decoder requests another
set of m, anchor bits for the substring; this set is chosen
adjacent to a previously sent set of anchor bits, as close
to the center of the substring as possible. This process
continues until the decoder is able to align a set of anchor
bits for that substring.

o The process continues until Ly (or Lx) is empty.

We now generalize the algorithm to handle a combination

of insertions and deletions.



B. Combination of Insertions and Deletions (Indels)

At the outset, both parties know only the lengths of X and
Y. Note that with indels, this information does not reveal the
total number of edits. For example, if the length of Y is n—1,
we can only infer that the number of deletions exceeds the
number of insertions by one, but not exactly how many edits
occured.

Consider the following example where the transformation
from X to Y is via one deletion and one insertion. The deleted
and inserted bits in X and Y, respectively, are shown in bold
italics.

X=1101100010010100110

9
Y=1101100010010101101 ®

Since both the deletion and the insertion occur in the right
half of X, the anchor bits around the center of X will match
exactly at the center of Y, as shown in (). When there are
both insertions and deletions, the alignment position of the
anchor bits only indicates the number of net deletions in
the substrings to the left and right of the anchor bits. (The
number of net deletions is the number of deletions minus the
number of insertions.) Thus, if the anchor bits indicate that a
substring of X has undergone zero net deletions, we need to
check whether: a) the substring is perfectly synchronized, or
b) the alignment is due to an equal number of deletions and
insertions ¢, for some ¢ > 1. To distinguish between these two
alternatives, a hash comparison is used.

Recall that a k-bit hash function applied to an n-bit binary
string yields a ‘sketch’ or a compressed representation of the
string when k& < n. For example, a simple k-bit hash function
is one that selects bits in randomly chosen positions 41, . . ., ig.
Using such a hash, one could declare equal-length strings A
and B identical if all the k£ hash bits match. Note that every
k-bit hash function with £ < n has a non-zero probability of a
hash collision, i.e., the event where two non-identical length-n
strings A and B hash to the same & bits.

In our synchronization algorithm, whenever the anchor bits
indicate that a substring has undergone zero net deletions, a
hash comparison is performed to check whether the substring
is synchronized. Similarly, if the anchor bits indicate that a
substring has undergone one net deletion (or insertion), we
hypothesize that it is due to a single bit edit and attempt to
synchronize using a VT syndrome. A hash comparison is then
used to then check if the substring is synchronized. If not, we
infer that the one net deletion is due to ¢ deletions and ¢ — 1
insertions for some ¢ > 2; hence further splitting is needed.
The overall algorithm works in a divide-and-conquer fashion,
as described below.

e The encoder maintains an unresolved list £x, whose
entries are the yet-to-be-synchronized substrings of X.
This list is initialized to £x = {X}. The decoder
maintains a corresponding list Ly, initialized to {Y'}.

e In each round, the encoder sends m, anchor bits around
the center of each substring in L£x. The decoder tries to
align these bits as close to the center of the corresponding
substring in Ly as possible. If a match is found, the
aligned anchor bits split the substring into two pieces.

For each of these pieces:

— If the number of net deletions is zero, the decoder
requests mj hash bits from the encoder to check
if the substring has been synchronized. If the hash
bits all agree, it declares the piece synchronized;
otherwise the decoder adds the piece to Ly (and
instructs the decoder to add the corresponding piece
to Lx).

— If the number of net deletions or insertions is one, the
decoder requests the VT syndrome of this piece as
well as my, hash bits to verify synchronization. The
decoder performs VT decoding followed by a hash
comparison. If the hash bits all agree, it declares the
piece synchronized; otherwise the decoder adds the
piece to Ly (and instructs the decoder to add the
corresponding piece to Lx).

— If the number of net deletions or insertions is greater
than one, the decoder adds the piece to Ly (and
instructs the decoder to add the corresponding piece
to Lx).

If one or more of the anchor bits is among the edits, the
decoder may not be able to align the anchor bits. In this
case, in the next round the decoder requests another set
of m, anchor bits for the substring; this set is chosen
adjacent to a previously sent set of anchor bits, as close
to the center of the substring as possible. (This process
continues until the decoder is able to align a set of anchor
bits for that substring.)
o The process continues until Ly (or Lx) is empty.

The pseudocode for the algorithms at the encoder and
decoder is given in the next page. For completeness and ease
of analysis, we add the following rules to the synchronization
procedure.

1) When the decoder receives m, anchor bits to be aligned
within a substring of length [, it searches for a match
within a window of length x+/] around the middle of its
substring, where x > 1 is a constant.

2) If no matches for the anchor bits are found within this
window, the decoder requests an additional set of anchor
bits from a pre-arranged location, chosen as described
above.

3) If multiple matches for the anchor are found within the
window, the decoder chooses the match closest to the
center of the substring.

4) Whenever an anchor needs to be sent for a piece whose
length is less than L(m, + my), the encoder just sends
the piece in full. Here L > 1 is a pre-specified constant.

5) Whenever the total number of bits transmitted in the
course of the algorithm exceeds an (for some pre-
specified o« € (0,1)), we terminate the algorithm and
send the entire X sequence.

Choice of hash function: For our experiments in Section
IV-C| we use the H3 universal class of hash functions, where
the hash function f : {0,1}" — {0,1}" of a 1 X n binary
string x is defined as

flx)=2Q (10)



Algorithm 1 Synchronization Algorithm at the Encoder

Algorithm 2 Synchronization Algorithm at the Decoder

1: The encoder keeps a list Lx of unresolved substrings,
which it initializes to Lx = {X}.
In Round 1:
if length(Y) = n then
Send the hash of X.
else if length(Y) =n £ 1 then
Send both the VT syndrome and the hash of X
else
Send a set of m, anchor bits around the center of X
end if
while £x is non-empty do
Receive from the decoder the instructions I, for all
substrings s € Lx, and do the following for all s € Lx
in a single transmission:
12:  for all substrings s € Lx do

R A A S o

_._.
= 2

13: if I, = “Matched” then

14 Remove s from Lx.

15: else if 7, = “Anchor” then

16: Send m, anchor bits around the center of s; if a

set of anchor bits had already been sent for s in
the previous round, send a new set of m, anchor
bits adjacent to a previously sent set, as close to
the center of s as possible.

17: else if I, = “Split,x,y” then

18: Split s into two pieces s1, S2, using the previously
sent anchor. Put sy, s9 into L x, and remove s from
Lx.

19: if x/y= “Verify” then

20: Apply and send the hash of s1/ss.

21: else if x/y= “VT mode” then

22: Send the VT syndrome and hash for s /ss.

23: else if x/y= “Anchor” then

24: Send anchor bits around the center of s1/s5.

25: end if

26: end if

27:  end for
28: end while

where Q is a binary n x mj, matrix with entries chosen i.i.d.
Bernoulli(%), and the matrix multiplication is over GF(2).
Such a hash function has a hash collision probability of
27™» whenever the compared strings are not identical [20].
We will choose the number of hash bits mj, to be clogn,
where the constant ¢ determines the collision probability n~°.
Computing the my,-bit hash in (I0) involves adding the rows
of Q that correspond to ones in x. This computation requires
O(n) additions, each taking O(logn) bits.

In Section |[VIIL we use a different hash function which
serves as a Hamming distance estimator. Such a hash is
useful when we are only interested in detecting whether the
Hamming distance between the compared strings is greater
than a specified threshold or not.

Computational Complexity: We can estimate the average-
case complexity of the interactive algorithm, assuming a
uniform distribution over the inputs and edit locations. When

the number of edits ¢ = o(1;z;; ), the number of times anchor

1: The decoder keeps an list Ly of unresolved substrings,
which is initialized to Ly = {Y'}. Define Iy to be “Ver-
ify” if length(Y") = n, “VT Mode” if length(Y) = n £ 1,
and “Anchor” otherwise.

2: while Ly is non-empty do

3:  Read the instructions I,,s € Ly, and use them with

the responses from the encoder to decide the new set

of instructions for each substring s € Ly as follows.
for all substrings in s € Ly do
if I, =‘Verify” then
6: Compare the hash of s with that sent by X. If the
hashes match, add instruction “Matched” for s, and
remove s from Ly ; else add instruction “Anchor”
for s and keep in Ly.

AN

7: else if I, =“VT mode” then

8: Use the VT syndrome sent by X to update the
substring by deleting/inserting a single bit from
s. Compare the hashes. If the hashes match, add
instruction “Matched” for s, and remove s from
Ly; else add instruction “Anchor” for s and keep
in ﬁy.

9: else if 7, = “Anchor” then

10: Try to find a substring near the center of s that

matches with that sent by X.
If successful, split s into two pieces, add each
piece to Ly, and remove s from Ly. Add the
combined instruction “Split,x,y”, where “Split” is
the instruction for s and X,y are the instructions
for each of the two pieces of s. Each of x and y
is one of {Verify, VT mode, Anchor}, depending
on whether the number of net deletions/insertions
in the piece is 0,1, or a larger number.
If the anchor bits cannot be aligned, request an
adjacent set of anchor bits for s by adding the
instruction “Anchor”.

11: end if

12:  end for

13:  Send the new set of instructions to the encoder.

14: end while

bits are requested is also 0(1ogn)' The number of anchor bits

mg sent each time is clogn. As discussed above, the hash
computation for a length n string requires O(n) additions,
each involving O(logn) bits. Computing the VT syndrome
for a length n string also requires O(n) arithmetic operations,
each involving O(logn) bits. Each bit of X/Y is involved in
a VT computation and a hash comparison only O(1) times
with high probability. The average computational complexity
of the synchronization algorithm is therefore O(n) arithmetic
operations, with O(logn) bits of memory.

The following theorem characterizes the performance of the
proposed synchronization algorithm when both the original
string X and the positions of the insertions and deletions are
drawn uniformly at random. For clarity, we set the number of
anchor bits m, and the number of hash bits m;, both equal to
clogn. We assume that the clog n-bit hash is generated from




a universal class of hash functions [20], and thus has collision
probability -

ne’

Theorem 1. Let X be a uniformly random length-n binary
sequence. Suppose that Y is obtained from X via d deletions
and i insertions such that the total number of edits t = (d +
i) ~ 0(%), and the positions of the edits are uniformly
random. Let the number of anchor bits and hash bits (sent
each time they are requested) be m, = my = clogn, where
c > 1.5 is a constant.

(a) The probability that the algorithm fails to synchronize
correctly, denoted by P,, satisfies
tlogn 1

ne + n2(e=1)"

(b) Let N1_o(t) and Na_,1(t) denote the number of bits
transmitted by the encoder and the decoder, respectively. Then
for sufficiently large n.:

P, <

ENy2(t) < [(4e+2)t — (3¢ + 1)] logn,
ENQHl(t) < 10(t — 1) + 1.

Remarks:

1) The total communication required for synchronization is
within a constant factor (= 4c + 2) of the fundamental
limit ¢logn, despite the total number of edits being
unknown to either party in the beginning.

2) The constant ¢ can be adjusted to trade-off between the
communication error and the probability of error. In the
proof of the theorem, the condition that ¢ > 1.5 lets
us analyze the effect of ‘bad’ events such as anchor
mismatch in a clean way. We expect that the condition
can be relaxed to ¢ > 1 with a sharper analysis.

The proof of the theorem is given in Section [VIII-A|

C. Experimental Results

Table |I| compares the performance of the algorithm on
uniformly random X sequences with the bounds of Theorem
[[]as the number of edits ¢ is varied. The length of X is fixed at
n = 109, and the edits consist of an equal number of deletions
and insertions in random positions. Therefore the length of Y
is also n = 105. The my,-bit hash is generated from the H3
universal class, described in (10).

From Table [, we observe that the algorithm fails to syn-
chronize reliably when the hash is only 10 bits long. This
is consistent with the fact that the upper bound of Theorem
[[fa) on the error probability exceeds 1 for m; = 10, even
for ¢t = 100 edits. When m, = m;, = 20, there were no
synchronization failures in any of the 1000 trials.

The average number of bits sent in each direction is ob-
served to be slightly less than the bound of Theorem [I|b).
For example, when Y differs from X by 1000 random edits,
the algorithm synchronizes with overall communication that
is less than 10% of the string length n.

1

v
X = 101017...... 001001...... 000001 ......
Piece 1 Piece 2 Piece 3
Y = 10101...... 0011001... 00001......

Fig. 2. X is divided into equal-sized pieces. There is one deletion in
the first piece of X, one insertion in the second piece, one deletion
in the third piece etc. Here the first three bits of each piece serve
as anchor bits. The anchors allow the decoder to split Y into pieces
corresponding to those of X.

V. SYNCHRONIZING WITH A LIMITED NUMBER OF
ROUNDS

Though the synchronization algorithm described in Section
has near-optimal rate and low computational complexity,
the number of rounds of interaction grows as the logarithm
of the number of edits ¢. To see this, recall that the algorithm
uses interaction to isolate ¢ substrings with exactly one inser-
tion/deletion each. In each round, the number of substrings
that X has been divided into can at most double, so at least
logt rounds of interaction are required to isolate ¢ substrings
with one edit each.

In this section, we show how the synchronization algorithm
can be modified to work with only one round of interaction.
The reduction in the number of rounds comes at the expense of
increased communication, which is characterized in Theorem
2] Recall that the main purpose of interaction is to divide
the sequence into substrings with only one deletion/insertion.
These substrings are then synchronized using VT syndromes.
To reduce the number of rounds, the idea is to divide X into
a number of equal-sized pieces such that most of the pieces
are likely to contain either 0 or 1 edit. The encoder then
sends anchor bits, hashes, and VT syndromes for each of these
pieces.

Let the length-n string X be divided into pieces of length
n® bits for a € (0,1). There are n® pieces, where @ =1 — a.
The pieces are denoted by X;, Xo,...,X,a. The algorithm
works as follows.

1) For each piece X, k = 1,...,n%, the encoder sends
anchor bits, a hash, and the VT syndrome of X},. The anchor of
a piece X is a small number of bits indicating the beginning
of Xj. The length m,, of the anchor is O(log n). As illustrated
in Fig. [2] the anchors are used by the decoder to split Y into
pieces corresponding to those of X.

2) The decoder sequentially attempts to synchronize the
pieces. For k = 1,...,n?%, it attempts to align the anchors for
pieces X} and X in order to determine the corresponding
piece in Y, denoted Y. As in the previous algorithm, we try
to align the anchor within a window of size approximately
v/n® around the center, since the length of each piece is n®
bits.

— If the anchor for either X}, or X}, cannot be aligned in
Y, declare the kth piece to be unsynchronized.

— If Y; has length n®, the piece has undergone zero net
edits. The decoder compares the hashes to check if the
piece is synchronized. If the hashes disagree, it is declared



TABLE I
AVERAGE PERFORMANCE OF THE SYNCHRONIZATION ALGORITHM OVER 1000 RANDOM BINARY X SEQUENCES OF LENGTH n = 10°.
THE EDITS CONSIST OF AN EQUAL NUMBER OF DELETIONS AND INSERTIONS IN RANDOM POSITIONS.

No. of edits | m, | Bounds of Thm]l| (% of n) || Observed Values (Avg.) (% of n) | % failed

=my, | E[N1_2] E[No_,1] Ni o | Noyy | Niso+ Noyy trials

100 0.793 0.0991 0.545 | 0.085 0.630 4.7

500 10 3.981 0.4991 2.565 | 0.427 2.992 19

1000 7.968 0.9991 4989 | 0.853 5.842 344

100 1.188 0.0991 0.905 | 0.082 0.987 0

500 20 5.971 0.4991 4338 | 0410 4.748 0

1000 11.1951 0.9991 8.481 | 0.817 9.298 0

unsynchronized. As an example, suppose that the number of edits ¢ = /n.

— If Y}, has length n® —1 or n®+1, the piece has undergone
one net edit. The decoder uses the VT syndrome to
perform VT decoding, and then uses the hashes to check
if the piece is synchronized. If the hashes disagree, it is
declared unsynchronized.

— If the lengths of Y), and X differ by more than 1, the
number of edits is at least two. Declare the piece to be
unsynchronized.

3) The decoder sends the status of each piece (synchro-
nized/unsynchronized) back to the encoder.

4) The encoder sends the unsynchronized pieces to the
decoder in full.

The algorithm thus consists of one complete round of inter-
action, followed by one transmission from the encoder to the
decoder. The following theorem characterizes its performance.

Theorem 2. Suppose that Y is obtained from a uniformly
random length-n binary sequence X via t = n® indel edits,
where b € (0,1) and the locations of the edits are uniformly
random. Let n® be the size of each piece in the single-round
algorithm above, with a € (0,1). Let the number of anchor
bits and hash bits per piece be equal to m, = c,logn and
mp = cp logn, respectively. Then for b < 1—a, the one-round
algorithm has the following properties.

(a) The probability of error, i.e., the probability that the
algorithm fails to synchronize correctly is less than ﬁ

(b) For cq > (14 5), the total number of bits transmitted
by the encoder, denoted Ny_,o satisfies

ENi2 < ((Ca +cp +a)n'"*logn + In2etl
1D
+ 2c4n’ log n) (14 0(1)).

The number of bits transmitted from the decoder to the encoder
is deterministic and equals n'~°.

The proof of the theorem is given in Section

Remarks:

1) As n — oo, the expected communication is minimized
when the exponents of the first two terms in (11)) are balanced.
This happens when

1—a=2a+2b-1.

Therefore the optimal segment parameter a for a given number
of edits n® is 2b. With this value, the total number of bits
transmitted is ©(n(1720)/3 logn).

Then b = 0.5, and the optimal value of a = % With this
choice of a and m, = my = 2logn, the bound of Theorem

(] yields
13 53 L 93 1/2
ENi_2 < 3" logn+§n +4n-/?logn | (1+0(1)).

Further, No_,; = n?/3, and the probability of synchronization
error is bounded by n~%/3,

2) In general, we may not know the number of edits
beforehand. For a given segment size n®, the algorithm can
handle up to n® random edits by communicating o(n) bits.
This is because the algorithm is effective when most blocks
have zero or one edits, which is true when b < a. If the number
of edits is larger than n?, it is cheaper for the encoder to send
the entire X sequence.

3) The original interactive algorithm and the one-round
algorithm represent two extreme points of the trade-off be-
tween the number of rounds and the total communication
rate required for synchronization. It is possible to interpolate
between the two and design an algorithm that uses at most &
rounds of interaction for any constant k.

A. Experimental Results

The single-round algorithm was tested on uniformly random
binary X sequences of length n = 10% and n = 107. Each
piece of X was chosen to be 1000 bits long. Therefore X was
divided into 1000 pieces for n = 10%, and 10000 pieces for
n = 107, corresponding to section parameter values a = 0.5
and a = 0.429, respectively.

Y was obtained from X via t = 500 edits, with an equal
number of deletions and insertions. Table [II| shows the average
performance over 1000 trials as m, and my, are varied, with
mg = myp. We observe that (with m, = m, = 20) we
have reliable synchronization from ¢ = 500 edits with a
communication rate of 14.2% and 5.2% for n = 109, and
n = 107, respectively. In comparison, Table [[| shows that the
multi-round algorithm needs a rate of only 4.75% for n = 10°
for synchronizing from the the same number of edits. This
difference in the communication required for synchronization
reflects the cost of allowing only one round of interaction.

Table [II] also lists the number of pieces that need to be sent
in full by the encoder in the second step. These are the pieces
that either contain more than one edit, or contain an edit in
one of the anchor bits. Observe that the fraction of pieces that



TABLE I

AVERAGE PERFORMANCE OF THE SINGLE-ROUND ALGORITHM OVER 1000 SEQUENCES FOR DIFFERENT VALUES OF mg, = my,

. NUMBER

OF EDITS = 500 (d = 7 = 250).

Mg Ni_o (% of n) Ny + Na_y1 (% of n) | No. of pieces sent in full % failed trials
=my | n=10° [ n =107 | n=10° n = 10" n = 10° n = 107 n=10° [ n=107
10 12.099 3.1279 12.199 3.2279 91.022 13.120 2.5 0.3
15 13.124 4.1189 13.224 4.2189 91.276 12.215 0.2 0

20 14.147 5.1172 14.247 5.2172 91.499 12.050 0 0
25 15.192 6.1177 15.292 6.2177 91.957 12.096 0 0
30 16.237 7.1178 16.337 7.2178 92.404 12.104 0 0

TABLE III

AVERAGE PERFORMANCE OF THE SINGLE-ROUND ALGORITHM OVER 1000 SEQUENCES AS THE NUMBER OF EDITS IS VARIED. THE
NUMBER OF ANCHOR AND HASH BITS IS FIXED AT m, = my, = 20.

Number of Bound of Thm/2{ for Average observed Average no. of pieces
edits EN; 9+ Noy1(% of n) | Nio+ Noy1 (% of n) sent in full
n = 10° n =107 n = 10° n =107 n=10% n=10"
20 5.197 5.1049 5.116 5.0969 0.192 0.02
50 5.422 5.1180 5.222 5.0980 1.2520 0.125
100 5.997 5.1417 5.559 5.1012 4.6270 0.445
300 10.797 5.2617 8.853 5.1409 37.563 4414
500 19.597 54217 14.247 5.2172 91.4990 12.05

remain unsynchronized at the end of the first step is around
9.1% for n = 10°, and only 0.13% for n = 107. This is
because the ¢ = 500 edits are uniformly distributed across
1000 pieces in the first case, while the edits are distributed
across 10,000 pieces in the second case. Therefore, the bits
sent in the second step of the algorithm form the dominant
portion of Nj_,o for n = 106, while the bits sent in the first
step dominate N;_,5 for n = 107.

Table [[II] compares the observed performance of the single-
round algorithm with the upper bound of Theorem [2| as the
number of edits is varied, with the number of hash and
anchor bits per piece fixed to be 20. The edits consist of an
equal number of deletions and insertions. As in the previous
experiment, X is divided into pieces of 1000 bits each.
Observe that the total number of bits sent begins to grow with
the number of edits only when the number of edits is large
enough for Vy_,o to have a significant contribution from the
pieces sent in the second step.

We also compared the performance of the single-round algo-
rithm to rsync, which also uses only one round of interaction.
For X and Y differing by 500 random edits, the amount of
data required required to be sent by rsync (on average) was
133% of the file size for both n = 10% and n = 107. Since the
communication required by rsync is greater than the file size
in both cases, sending X in full is the better option, which is
invoked by most implementations of rsync.

In rsync, Y is split into pieces and hashes for each piece are
sent to the encoder. Pieces for which a match is not found are
then sent in full with assembly instructions. When the edits are
uniformly spread across the file, only a few pieces of ¥ will
have a match in X, thereby causing rsync to send a large part
of X (along with assembly instructions) in the second step.
Thus rsync saves bandwidth only when the edits are restricted
to a few small parts of a large file rather than being spread
throughout the file.

VI. SYNCHRONIZING FROM BURSTY EDITS

Burst deletions and insertions can be a major source of
mis-synchronization in practical applications as editing often
involves modifying chunks of a file rather than isolated bits.
Recall that the algorithm described in Section [[V] seeks to di-
vide the original string into pieces with one insertion/deletion
each, and uses VT syndromes to synchronize each piece. It is
shown in Section that the expected number of times
that anchor bits are requested is approximately 2¢ when the
locations of the ¢ edits are uniformly random. However, when
there is a burst of deletions or insertions, attempting to isolate
substring with exactly one edit is inefficient, and the number
of bits sent by the algorithm in each direction grows by a
factor of logn.

In this section, we first describe a method to efficiently syn-
chronize from a single burst (of either deletions or insertions)
of known length, and then generalize the algorithm of Section
to efficiently handle multiple burst edits of varying lengths.

A. Single Burst

Suppose that Y is obtained from the length-n string X by
deleting or inserting a single burst of B bits. We allow B to
be a function of n, e.g. B = \/n, or even B = an for some
small v > 0. A lower bound on the number of bits required
for synchronization can be obtained by assuming the encoder
knows the exact location of the burst deletion. Then it has to
send two pieces of information to the decoder: a) the location
of the starting position of the burst, and b) the actual bits
that were deleted. Thus the number of bits required, denoted

Npurst(B), can be bounded from below as
Npurst(B) > B + logn, (12)

The goal is to develop a synchronization algorithm whose
performance is close to the lower bound of (I2). Let us



divide each of X and Y into B substrings as follows. For
k=1,...,B, the substrings X* and Y* are defined as

X¥ = (T, Btk T2B4ks - - 1)

(13)
vk = (Yks YB+k> Y2B+k» - - -)-

Consider the following example where X undergoes a burst
deletion of B = 3 bits (shown in red italics):

X =100171100100011, Y = 10100100011. (14)

The three substrings formed according to (I3) with B = 3 are

X' =17001, X%2=07001, X?3=o0110,

f 15
Yl =1001, Y?=0001, Y?=110. (13)

Observe that each of the substrings X* undergoes exactly
one deletion to yield Y*. Whenever we have a single burst
deletion (insertion) of B bits, and divide X and Y into B
substrings as in (T3), X* and Y'* differ by exactly one deletion
(insertion) for £k = 1,..., B. Moreover, the positions of the
single bit deletions in the B substrings {X"*}2_, are highly
correlated. In particular, if the deletion in substring X' is at
position j, then the deletion in the other substrings is either at
position j or j — 1. In the example (T4), the second bit of X1
and X2, and the first bit of X3 are deleted. More generally,
the following property can be verified.

Burst-Edit Property: Let Y be obtained from X through a
single burst deletion (insertion) of length B, and let substrings
X* be defined as in (T3) for k = 1,..., B. Then if p;, denotes
the position of the deletion (insertion) in substring X k. we
have:

Pk > Pr+1, fork=1,...,(B—1), and p; < pp+1.

In other words, the position of the edit is non-increasing and
can decrease at most once as we enumerate the substrings X"
from k =1to k = B.

This property suggests a synchronization algorithm of the
following form:

1) The encoder sends the VT syndrome of substring X!.
(Requires log(1 + n/B) bits.)

2) The decoder synchronizes Y! to X!, and sends the
position j of the edit back to the encoder. (Requires
log(n/B) bits.)

3) For k = 2,..., B, the encoder sends the bits in positions
(j — 1) and j of X*. (Requires 2(B — 1) bits.)

The decoder reconstructs each X* by inserting/deleting
the received bits in positions (j — 1) and j of Y'*.

In the second step above, we have implicitly assumed
that by correcting the single deletion/insertion in Y!, the
decoder can determine the exact position of the deletion in X*.
However, this may not always be possible. This is because the
VT code always inserts a deleted bit (or removes an inserted
bit) either at the beginning or the end of the run containing
it. In the example in (T3), after synchronizing Y* to X!, the
decoder can only conclude that a bit was deleted in X! in
either the first or second position.

To address this issue, we modify the first two steps as
follows. In the first step, the encoder sends the VT syndromes

of both the first and last substrings, i.e., of X L and XB.
Suppose that the single edit in X! occurred in the run spanning
positions j; to l;, and the edit in X B occurred in the run
spanning positions jp to lp. Then, the burst-edit property
implies that in the final step, the encoder only needs to send
the bits in positions j* to [* of each substring X*, where

JF=max{j1 — 1,jp}, 1" =min{ly,lp+1}. (16)

We note that for any substring X*, j* is the first possible
location of the edit, and [* is the last possible location of
the edit. The final algorithm for exact synchronization from a
single burst deletion/insertion is summarized as follows.

Single Burst Algorithm:

1) The encoder sends the VT syndrome of substrings X!

and XB. (Requires 21og(1 + n/B) bits.)

2) The decoder synchronizes Y!to X!, and YB to XB. For
each of the two substrings, the decoder sends back the
index of the run containing the edit. (Requires 2log(n/B)
bits.)

3) For k = 2,..., B —2, the encoder sends bits in positions
j* through I* of X*. (Requires (I* —j*+1)(B —2) bits.)
The decoder reconstructs each X* by inserting/deleting
the received bits in positions j* through I* of Y*.

We note that the algorithm does not make any errors. The
following theorem shows that when X is a uniformly random
sequence, the expected number of bits required to synchronize
is within a small factor of the lower bound in (12).

Theorem 3. Let X be a uniformly random binary sequence
of length n. Let Y be obtained via a single burst of deletions
(or insertions) of length B, with the starting location of the
burst being uniformly random. Then for sufficiently large n,
the expected number of bits sent by the encoder in the single
burst algorithm satisfies

EN12 >2log(l4+n/B) + (2— £)(B —2)
EN1_2 <2log(1+n/B) + 3(B — 2).

The expected number of bits sent by the decoder is
2log(n/(2B)).

The proof of the Theorem is given in Section [VIII-C

B. Multiple Bursts

We can now modify the original synchronization algorithm
to handle multiple edits, some of which occur in isolation
and others in bursts of varying lengths. The idea is to use
the anchor bits together with interaction to identify pieces
of the string with either one deletion/insertion or one burst
deletion/insertion. Since a burst consists of a number of
adjacent deletions/insertions, it can be detected by examining
the offset indicated by the anchor bits. In particular, if the
offset for a particular piece of the string is a large value B
that is unchanged after a few rounds, we hypothesize a burst
edit of length B. This is because the isolated edits are likely
to be spread across X, causing the offset to change within a
few rounds.

We include the following “guess-and-check” mechanism in
the original synchronization algorithm: When the number of



TABLE IV
PERFORMANCE OF SINGLE-BURST ALGORITHM OVER 1000
TRIALS
Length Thm. E]upper Avg. N1 | Avg. N1
of burst | bound on EN;_,5 | for n = 10% | for n = 107
102 294 290 264.4
103 2994 2680 2632
10% 29994 26110 26270
10° 299994 257000 260200
TABLE V

PERFORMANCE OF THE ALGORITHM ON A COMBINATION OF
MULTIPLE BURSTS AND ISOLATED EDITS. THE LENGTH OF X IS

n = 105,

No. of No. of Avg. Avg. | Avg. N9
bursts | isolated edits | Ni_o | No_sq + No_yq

3 10 2139.1 | 242.6 2381.7

3 15 2488.6 | 290.8 2779.4

4 10 2623.6 | 296.9 2920.5

4 15 2956.2 | 346.8 3303.0

5 10 3100.8 | 347.2 3448.0

5 15 3436.3 | 400.6 3836.9

5 50 5889.7 | 756.3 6646.0

net deletions (or insertions) in a substring is greater than a
specified threshold By, and does not change after a certain
number of rounds (say Tp,rst), we hypothesize that a burst
deletion (or insertion) has occurred, and invoke the single
burst algorithm of Section In other words, we correct
the substring assuming a burst occurred and then use hashing
to verify the results of the correction. If the hashes agree,
we declare that the substring has been synchronized correctly,
otherwise we infer that the deletions (or insertions) did not
occur in a burst, and continue to split the substring. The value
of Tyyrst can be adjusted to trade-off between the number of
rounds and the amount of total communication.

C. Experimental Results

Case 1: Single Bursts. The single-burst algorithm was tested
on uniformly random X sequences of length n = 10® and n =
107 with a single burst of deletions introduced at a random
position. Table shows the average number of bits (over
1000 trials) transmitted from the encoder to the decoder for
various burst lengths.

Case 2: Multiple bursts and isolated edits. The algorithm
of Section was tested on a combination of isolated edits
and multiple bursts of varying length. Starting with uniformly
random binary X sequences of length n = 10°, Y was
generated via a few burst edits followed by a few isolated
edits. The length of each burst was a random integer chosen
uniformly in the interval [80, 200]. Each isolated/burst edit was
equally likely to be deletion or an insertion, and the locations
of the edits were randomly chosen. Table |V|shows the average
performance over 1000 trials with m, = mj = 20 bits. We set
Tyurst = 2: whenever there the offset of a piece is unchanged
and large (> 50) for two consecutive rounds, the burst mode
is invoked. We observe that the algorithm synchronizes from a
combination of 50 isolated edits and 5 burst edits with lengths

uniformly distributed in [80,200] with a communication rate
smaller than 1%. This indicates that having prior information
about the nature of the edits—an upper bound on the size of
the bursts, for example—can lead to significant savings in the
communication required for synchronization.

VII. CORRECTING SUBSTITUTION EDITS

In many practical applications, the edits are a combination
of substitutions, deletions, and insertions. The goal in this
section is to equip the synchronization algorithm of Section
to handle substitution errors in addition to deletions and
insertions. The approach is to first correct a large fraction of
the deletions and insertions so that the decoder has a length-n
sequence X that is within a target Hamming distance dy of
X. Perfect synchronization can then be achieved by sending
the syndrome of X with respect to a linear error-correcting
code (e.g. Reed-Solomon or LDPC code) that can correct d
substitution errors [12]-[14].

Since synchronizing two equal-length sequences with Ham-
ming distance bounded by dj is a well-understood problem,
we focus here on the first step, i.e., the task of synchronizing
Y to within a target Hamming distance of X. For this,
we use locality-sensitive hashing, where the probability of
hash collision is related to the distance between the two
strings being compared. We use the sketching technique of
Kushilevitz et al. [21]] to obtain a Hamming distance estimator
which will serve as a locality-sensitive hash. In Section
this hash is used in the interactive algorithm of Section [[V|to
synchronize Y to within a target Hamming distance of X.

A. Estimating the Hamming Distance

Suppose Alice and Bob have length-n binary sequences x
and y, respectively. Alice sends mj, < n bits in order for Bob
to estimate the Hamming distance dy (z,y) between x and y.

Define the hash function g : {0,1}" — {0,1}™" as
g(x) =2zR (17)

where R is a binary n X mj matrix with entries chosen i.i.d
Bernoulli(5% ), and the matrix multiplication is over GF(2).
is a constant that controls the accuracy of the distance estimate,
and will be specified later. Define the function Z as

Z(z,y) = g(x) ®g(y)
where @ denotes modulo-two addition. Let
Z(.T, y) = (Zl(xa y)? ZQ(Z', y)a R} Z’Vﬂh (Jj, y))

Zi(z,y) is the indicator function 1y, (z)4n,(y)y for i =
1,...,mpy. We have

(18)

P(Zi(x,y)=1) =P (ZfﬂlRli ® Zleli = 1)
=1 =1
19)
=P| > R;=1

Lz 7y

where the summations denote modulo-two addition. Since the
matrix entries {R;;} are ii.d. Bernoulli(5%), it is easily seen



(e.g., via induction over the summands in the (19)) that

1 du (z,y)
P%mwﬁﬁmé(k@—ﬂH )(M
2 n
for i = 1,...,my,. Further, for any pair (z,y), the random

variables Z;(z,y) are i.i.d. Bernoulli with the distribution
given in (20). This because the random matrix entries {R;;}
are iid. for 1 < ¢ < my and 1 < ! < n. The empirical
average of the entries of Z(z,y), given by

- 1

me7%;&ww @1)
has expected value equal to the right side of (20). For large
myp, Z will concentrate around its expected value, and can
hence be used to estimate the Hamming distance. Inverting
@]), we obtain the Hamming distance estimator

. In(1-22) e Z 11 (1_ K"
dn(oy) =4 womm HZ<3(1=(1-3)7)
n otherwise
(22)
We note that a related but different sketching technique for

estimating the Hamming distance was used in [3]].

Proposition 2. Consider any pair of sequences x,y € {0,1}"
with Hamming distance dg (x,y). Let p be as defined in (20).
For § € (0,1 —p), the following bounds hold for the Hamming
distance estimator in (22)).

d d 26 24?2
n n k(1—=2p) k(1 —2p)?
—2mp, 62
<e , (23)
d 2
n n k(1=2p) k(1 —2p)?
< e72mnd®, (24)
Proof. In Appendix [B]
Using the approximation
du (z,y)
(1—2p) = <1 — g) RS exp(—r0y - (25)

for large n in and (24), Proposition [2] implies that for
smAall values of 4, the (normalized) Hamming distance estimate
Ldy(z,y) lies in the interval

2.2 exp (nw) 5

n

n K

(26)

with probability at least 1 — 2e=2mnd” (The constant 2.2 in
can be replaced by any number greater than 2.)

In the synchronization algorithm, we will use the distance
estimator to resolve questions of the form “is the distance
Ldp(x,y) is less than dy?”. The parameter r used to define
the hashing matrix in can be fixed using (26) as a guide.
Setting k = 1/dy implies that that the estimated distance
%JH(f, y) lies in the interval

1
~du(a,y) £ 22exp (L) a5 @)

with probability at least 1 — 2e=2™4%", For example, if the
actual distance ~dy (x,y) = do, the bound in becomes

dH(x7y)
n

do(1—56) < < do(1 + 56). (28)

B. Synchronizing Y to within a target Hamming distance of
X

We use the Hamming distance estimator as a hash in the
synchronization algorithm of Section The idea is to fix
a constant dy € (0,1), and declare synchronization between
two substrings whenever the normalized Hamming distance
estimate between them is less than dy. The parameter x used
to define the hash function A in is set equal to 1/dy.

The synchronization algorithm of Section [[V-B]is modified
as follows. Whenever a hash is requested by the decoder, the
encoder sends g(x). The decoder computes Z = g(z) ® g(y)
and dg(z,y) as in (ZI). (Here, = and y denote the equal-
length sequences at the encoder and decoder, which are to
be compared.) If the normalized dy (z,y) is less than do,
declare synchronization; else put this piece in Ly (and corre-
spondingly in Lx). The rest of the synchronization algorithm
remains the same.

After the final step, the encoder may estimate the Hamming
distance between X and the synchronized version of Y
using another hash ¢(y). Perfect synchronization can then be
achieved by using the syndromes of a linear code of appropri-
ate rate. We note that the distance estimator can also be used
in the algorithms described in Sections |V| (limited rounds) and
(multiple bursty edits) to achieve synchronization within
a target Hamming distance.

Besides isolating the substitution edits, we note that a
distance-sensitive hash also saves communication whenever a
deletion and insertion occur close to one another giving rise
to equal-length substrings with small normalized Hamming
distance between them.

C. Experimental Results

Table compares the performance of the synchronization
algorithm with the Hamming distance estimator hash for uni-
formly randomly X of length n = 10°. To clearly understand
the effect of substitution edits, Y was generated from X via
10 deletions, 10 insertions, and 100 substitutions at randomly
chosen locations. The number of anchor bits was fixed to be
mg = 10, while the number of bits used for the hash/distance
estimator was varied as m;, = 10, 20, 40. The table shows the
average performance over 1000 trials.

The parameter of the distance estimator was set to be kK =
50, and we declare synchronization between two substrings
if the estimated (normalized) Hamming distance is less than
dy = 0.02. Table also shows the performance using a
standard universal hash H3, described in . In each case,
if the length of the two strings being compared was less than
mp, the encoder sends its string in full to the decoder. This is
the reason the H3 hash is able to synchronize exactly even in
the presence of substitution errors.



TABLE VI
AVERAGE PERFORMANCE OF THE SYNCHRONIZATION ALGORITHM WITH THE DISTANCE ESTIMATOR HASH. LENGTH OF X 1s n = 10°.
Y WAS GENERATED VIA 10 DELETIONS, 10 INSERTIONS, AND 100 SUBSTITUTIONS.

Hash | Hash | Initial (norm.) | Final (norm.) | Avg. N9 | Avg. Nao_1 | Avg Ni_0 + No_yy
length | type | Hamm. Dist. | Hamm. Dist. | (% of n) (% of n) (% of n)
10 H; 0.3667 6.17 x 1074 2.937 0.5710 3.508
dy 0.3667 2.35 x 1072 0.208 0.0291 0.237
20 H; 0.3622 0 4.436 0.5314 4.968
dy 0.3622 2.2 x 1073 0.446 0.0423 0.488
40 H; 0.3653 0 7.413 0.5302 7.943
dyg 0.3653 3.47 x 1074 0.798 0.0466 0.845

VIII. PROOFS
A. Proof of Theorem ]|

We first prove part (b) of the theorem.

(b) (Expected communication required): When there are d
deletions and 7 insertions (¢ = d + i), the total number of bits
transmitted by the encoder to the decoder can be expressed as

N1_>2(d,2) :Na(d72)+Nh(dvl)+Nv(daz)a (29)

where N, N;, and N, represent the number of bits sent for
anchors, hashes, and VT syndromes, respectively. First, we
will prove by induction that the expected total number of
anchor bits can be bounded as

EN,(d,i) < 2(d + i — 1)mg. (30)

The bound (30) holds for (d =1,i =0) and (d = 0,7 = 1)
since the encoder will start by sending the VT syndrome and
a hash for X if the length of Y is (n & 1). No anchor bits are
required in this case. For d + ¢ > 1, we have the following
contributions to EN,(d,):

1) If the length of Y differs from X by more than one, m,
anchor bits are sent in the first round.

2) When the decoder correctly matches the first set of anchor
bits, the probability of j deletions (out of d) and k
insertions (out of ¢) occurring to the left of the anchor is

# (f) (i) This is because the locations of the edits are

uniformly distributed, hence each edit is equally likely

to be to the left or to the right of the anchor. Therefore,
when an unique match is found for the anchor bits, the
expected number of additional anchor bits required in

future rounds is

d i )
>N <f) (,i) (EN(j, k) + ENo(d — j,i — k).
§=0 k=0
3) Anchor Edited: The decoder may fail to find a match
for the set of anchor bits within the window of x+/n
bits due to one of the m, anchor bits undergoing an
edit. Here x > 0 is a generic constant, whose exact
value is not important. Since the probability of a given
bit being edited is %, the probability of at least one of
the anchor bits being edited is bounded by mT“t Since
the decoder requests additional sets of anchor bits until it
has identified a match, the expected number of additional

1
9d+1

anchor bits required in this case is bounded by

mgt Mg 3
n (ma) + 3Mmg ...

2

t) (2ma) + (m“t

n n

mat/n 2mgt
YR ma )
(1 —mgt/n)? n
where the last inequality holds because tmT“ —0asn—
oo as t = o(n/logn) and m, = clogn.

4) Unbalanced Edits: The decoder may fail to find a match
for the set of anchor bits (within the window of kv/n
bits) if there are significantly more deletions/insertions
on one side of the anchor than the other. More precisely,
if the number of deletions and insertions to the left of the
anchor in X are denoted by J and K, respectively, the
anchor in Y will lie outside a window of k+/n (centred
at (n —d+1)/2) only if

=My,

(d;Z) > Ky/n.

Since the locations of the edits are uniformly random, the
probability of the event above can be bounded via a large
deviations argument.

(J - K) -

€2y

Lemma 2. Let J, K denote the number of deletions and
insertions, respectively, to the left of the anchor in X.
Then, for any r > 0, the following holds for sufficiently

large n:
P <‘(JK) - @ > m/ﬁ) <n7".
Proof: See Appendix [C] [ |

Using the naive upper bound of n for the extra bits
required when the event in occurs, Lemma [2| implies
that the expected number of extra bits required due to
this event is bounded by n~ ("1 for sufficiently large n,
where 7 is a constant that can be chosen arbitrarily large.
5) An incorrect unique match for the anchor bits occurs
when the anchor bits match with an independent substring
of length m, within the window of k+/n bits and either
one of the following occurs: a) there has been an edit in
at least one of the true anchor bits, or b) the true set of
anchor bits lies outside the window.
Using the arguments in points 3) and 4) above for these
events, the probability of an incorrect unique match is



bounded by
kyv/n [ tmg -1\ _ stma/n _, tmg
2Ma ( n o — om, _’inC*l/2

for some x’ > 0 since r > 0 can be chosen to be a large
positive constant. Bounding the extra bits required in the
event of an incorrect unique match by n, the expected
number of additional bits due to this event is at most
K'tmyg

tmyg
' n= ne—1/2 = 0(1)’

K nc+1/2 ’

since ¢ > 1.5 and t = o(n/logn).
6) Multiple matches for the anchor: The probability of
having at least one independent substring of length m,
within the window of k./n matching the anchor bits is
Qf}c{fn. Bounding the number of additional bits required
in this case by n, the expected number of extra bits due

to multiple matches for the anchor is bounded by
SV

9clogn - ne—1.5

= 0(1)7
since ¢ > 1.5.

Adding all the above contributions, the expected number of
anchor bits required can be bounded as

E[N,(d,i)] < mq + Zd: Z 20% (j) <;€> (EN.(j, k)

§=0 k=0
2tmy,

+ENy(d—j,i —k)) + ma + o(1).
(32)

Expanding the RHS, we obtain

2EN,(d, i)

. 2tm,, 1
E[NG(CL’L)] S meg (1 + o ) + W

d—1i—1

+ J; 2 (j) (;) (EN,(j, k) + EN.(d — j,i — k)) N
+ ;(ENQ(Q k) +EN,(d,i —k)) (;)

d
+ Z(IENa(j, 0) +EN,(d — j,7)) (j) +0(1).

Assume towards induction that EN, (j, k) < 2(j+k—1)m,
for all j, k such that j + &k < (d +4 — 1). Using this in (33),
we obtain

(1 —27“H=IEN, (d,q)

oy 20d 40— 2)m, [ < (i
<mg (14 22a) 4 STFT (kz>
k=1
d d d—11i—1 d i
£OELO0] o
=1 N mk= M
g (14 22
2(d+1i—2)m,

(20 429 — 24+ (29 - 2)(2" — 2)) + o(1).
(34)

9d+i

Ford+i > 1, implies that
me (14 220)
1 — 2—(d+i-1)
< 2(d+i—1)mq,

EN,(d, i) < +2(d+i—2)mg +o(1)

(33)

where the last inequality holds for large enough n because
mq = clogn and t = o(n/logn), hence 2%« — 0 asn — oo
This establishes (30).

To upper bound the expected values of N, and NV,,, we note
that a hash is requested whenever the anchor bits indicate
an offset of zero or one, and a VT syndrome is requested
whenever the anchor bits indicate an offset of one. Therefore
the number of times hashes (and VT syndromes) are requested
by the decoder is bounded above by the number of times
anchor bits are sent. Hence

EN,(d,i) < E [%} M+ mn < 2(d+ i — Lymy + my,.

(36)
The additional m;, in the bound is to account for the fact that
hashes and VT syndromes are sent in the beginning if the
length of Y is either n,n — 1, or n + 1. Similarly,

EN,(d,i) < (E [%} + 1) logn < (2(d+i—1)+1)log n.

(37
Combining (30, (36), and and substituting m, = my, =
clogn gives the upper bound on ENj_,o(d, ).

To bound N5_,;, we first note that the information sent
by the decoder back to the encoder consists of responses to
anchor bits and hash bits. Each time the decoder receives a set
of anchor bits, its response is either: a) Send additional anchor
bits (i.e., no match found), or b) the instruction “Split, x,y”,
where each of x,y are the instructions for the pieces on either
side of the anchor. Recall that x, y can take one of three values:
Verify, VT mode, or Anchor. Thus each time anchor-bits are
sent, the decoder has to respond with one of 1 +3 x 3 = 10
possible options, which requires four bits. Each time a hash
is sent, the decoder needs to send back a one bit response (to
indicate whether synchronized or not). Therefore the expected
number of bits sent by the decoder is
EN, EN,

+1.—2 <10(d+i—1)+1. (38)
meg mp

EN2_>1(d, Z) <4-

This completes the proof of part (b).

(a) (Probability of error): An synchronization failure occurs
if and only if two non-identical substrings are erroneously
declared ‘synchronized’ by a hash comparison. Denoting the
event of synchronization failure by £, we write

P. = P(&) < P(E|F)P(F) + PEIFF), (39

where F denotes the event that at least one of the anchors was
matched erroneously.

First consider the second term P(£|F¢). As there are a
total of ¢ edits and no anchor mismatches, in any step there
can be at most ¢ substrings that are potential sources of error.
Since any substring is sub-divided by an anchor at most log n
times, a union bound yields

tl
P(& | F°) < tlogn - P(hash collision) = ogn7
nc

(40)



where the last equality is due to the fact that a hash of length
clogn drawn from a universal family of hash functions has
collision probability n~¢ [20].

Next, we compute P(F). The probability of an anchor

. . . . ka/n/2F
mismatch in a piece of length n/2% is = :C/ because we

search for a match within a window of size x+/n/2*. Since
there are at most 2¥ unsynchronized pieces of length n/2F,

where k =0,1,..., (logn) — 1, we have
(logn) 1 (logn)—1
Z ok m/n/Q K ok/2 < 3K .
T k=0 O

(4D
Finally, P(€| F) is bounded as follows, noting that number of
times anchor bits are requested is at most n/m.

P(E]F)

=(number of times anchor bits are requested)
x P(hash collision)
n 1

< =
clogn n¢

(42)
Substituting (@0), @I), and @2) in (B9) completes the proof.

B. Proof of Theorem

(a) A piece remains unsynchronized at the end of the
algorithm only if is there is a hash collision in one of the
pieces, i.e., the hashes at the encoder and decoder agree despite
their versions of the piece being different. With ¢ logn hash
bits, the probability of this event is n~ " for each piece. Taking
a union bound over the n® pieces yields the result.

(b) In the first step, the number of bits sent by the encoder
is deterministic: for each of the n® pieces, it sends m, anchor
bits, my, hash bits, and log(n® + 1) bits for the VT syndrome.
The total number of bits sent by the encoder in the first step
is therefore

N1(32 = (cqlogn + ¢ logn + log(n® + 1)) n (43)

For each piece, the decoder sends 1 bit back to the encoder
to indicate whether the piece was synchronized or not. Thus
the number of bits sent by the decoder is n®.

The number of bits sent by the encoder in the final step is

N1(22 = n“(number of pieces declared

(44)
unsynchronized after first step).

A sufficient condition for a piece to be declared synchronized
after the first step is that it contains zero or one edits and the
anchors on either side of the piece are aligned by the decoder
in the correct position. (In addition, there may be some pieces
declared synchronized due to a wrong anchor match followed
by a hash collision, but we only want an upper bound for the
number of bits sent in the final step.)

Since the locations of the edits are uniformly random, the
probability of a piece containing none of the n® edits is

nb
p0:<1_n) )
n

(45)

and the probability of a piece undergoing exactly 1 edit is

nb\ no no n’-1
n= (V)5 0-5)
1/ n n

If the anchors for each of the n® pieces were aligned by the
decoder in the correct positions, then the expected number
of unsynchronized pieces after the first round would be
(1 — po — p1)n® We now argue that the expected number
of unsynchronized pieces after the first round is bounded by

" b 2 a/2
[1_p0<1_mn _2n )
n nca

(46)

(47)

A piece with zero edits remains unsynchronized after the first
round only if one of the following occurs: a) the anchor at
the end of the piece was either mismatched or failed to be
matched due to an edit in the anchor, or b) there were multiple
matches for one of the anchors at either end of the piece.
Since the locations of the n® edits are uniformly random, the
probability of an anchor undergoing an edit is m,n®/n. The
probability of multiple matches for an anchor of length m, =
calogn in a window of size v/n® is \/n%/nc. Using the
union bound for the two anchors at either end of the piece
yields a bound of 21/n%/n for the probability of the event
b). Hence the probability of a piece with zero edits remaining
unsynchronized after the first round is (1 2"u/z)

b
_ Mgen
n nca

By a similar argument, the probability that a piece with

one edit remains unsynchronized after the first round is (1 —
b a/2

et — % — 2 ), with the term 72 being the probability

of the single edit being in one of the mg anchor positions.
Thus @7) holds.

For sufficiently large n, the term py + p; can be bounded
from below as follows.

ne n® nb—a
potpr=(1—— 1+ ——
n 1—n—2
- pb-a b—a
_nd n
—((1- —“") 14+
(( n ) <+1_na)

e (1=t — a2 (14007
777,b76’)(1 _ nb72a)(1 + nbfd)'

In (8), (a) is obtained using the Taylor expansion of (1 +
x)'/* near z = 0. (b) holds because for large enough n

(1- %n‘a —n2%) > (1 - %n_a)

n—&
() e

Using the lower bound (@8) for po+p; in (7)), the expected
number of bits sent by the encoder in the final step can be

(48)

®
> exp(

(49)

and fora > b




bounded as follows.

" b ) a/2

ENZ, < {1— <1—mn" o )
( Ma  mgn® 2n“/2>} i a
pr(l— n®-n

*(1+0(1))
@)1 4 =@y (1 n—(Qszb))]n
*(1+0(1))
<[1—(1-n"@0 4 Ip=2@-0 _
(L4001 = = Ca)]n 4 2mn®(1 + o(1))
:2 ni—2(a— b)_|_na (a—b) —|—O( 1-3(a— b))
+2man’(1 + o(1)) = (%n1—2(a—b) n zmanb> (1 + o(1)).
(51)

In the chain above, (a) holds because c, > 14 5; (b) is
obtained by using the lower bound for pg + p1, and the
upper bounds p; < n%n®/n and (py + p1) < 1; for (c) we
have used the inequality

@
(1 —po — p1)n+ prman® + (po + p1)man

(b)
< [1—exp(
+ manb + mgn

(”) n—3@=b
gn )

$2 3

>1—x+?—% for x > 0,

and the fact that p; < n®/n. Combining with
completes the proof.

C. Proof of Theorem

In the first step, the encoder sends the VT syndrome of
substrings X! and X 2, which require log(1+n/B) bits each.
Thus Nj_, equals the sum of 2log(1l + n/B) and the bits
transmitted by the encoder in the second step. Recall that the
latter is given by (j* —I* + 1)(B — 2), with j*,1* defined in
(L6).

The lower bound is obtained by considering the ideal case
where the single edits in both X' and X? occur in runs of
length one, i.e., j;1 =[j, and jp = lp. In this case, there are
two possibilities:

1) The starting position of the burst edit in X is of the form
aB + 1 for some integer a > 0, in which case the edit will
be in the (a + 1)th bit of all substrings Xk 1< k< B. The
encoder then only needs to send 1 bit/substring in the final
step.

2) The starting position of the burst edit in X is of the form
aB + q for 2 < ¢ < B, then jp = j; — 1, i.e., the position of
the edit in X? is one less than the position in X'. Here two
bits/substring are needed in the final step.

As the starting position of the burst is uniformly random,
the average number of bits per substring in the ideal case is

1 1+|1 ! 2=2 1

B B B B

Hence the expected number of bits sent in the ﬁnal step for
substrings X2, ..., X®~1 is lower bounded by (2—%)(B—2).
To obtain an upper bound on (j* — I* + 1), we start by

(52)

observing that
(" =j") <h—ji+1, (53)

which follows directly from (I6). Note that (I; — j; + 1) and
(I — jp + 1) are the lengths of the runs containing the edit
in X' and X B, respectively. Denoting these by R; and Rp,
(53)) can be written as

(I* —5°) < min{R;, Rp}.

(l*_]*) SZB_jB+17

(54)

Since the binary string X is assumed to be uniformly random,
the bits in each substring are i.i.d Bernoulli(}). R; and Rp
are i.i.d, and their distribution is that of a run-length given
that one of the bits in the run was deleted. This distribution
is related to the inspection paradox and it can be shown [22]]
that as n grows large, the probability mass function converges
to

P(Ri=r)=PRp=r)=r-2"0FD =12 .. (55
Therefore, for r > 1,
P(min{R;,Rp} >r)=P(Ry >r) - P(Rgp > ) 56)

= (27" (1+7)%(1 4 o(1)).

The expected number of bits required per substring in the final
step can be bounded by using (36) in (54):

E[l* — j* 4+ 1] < Emin{Ry, R} + 1
=14> 471471 +0(1) =1+ 2(1+0(1)).

r>1

(57
Thus for sufficiently large n, [EN;_,5 can be bounded as
ENy_o=2log(l+n/B)+E[l* —j*+1|(B —2)

<2log(l+n/B)+3(B-2). (58)

To compute E[N5_,1], recall that the decoder sends the
index of the run containing the edit in the first and last
substrings. Each of these substrings is a binary string of length
n/B drawn uniformly at random. Hence the expected number
of runs in each substring is n/(2B), and the expected number
of bits required to indicate the index of a run in each string

is log(55)-
IX. DISCUSSION

The interactive algorithm (and its single-round adaptation)
can be extended to synchronize strings over non-binary dis-
crete alphabets—strings of ASCII characters, for example—
that differ by o(y5;;;) indel edits. This is done by replacing
the binary VT code with a g-ary VT code [23]], where ¢ is
the alphabet size. The performance of the synchronization
algorithm for a g-ary alphabet is discussed in [6]], and the
simulation results reported in [17] demonstrate significant
communication savings over rsync.

We now discuss some directions for future work. The multi-
round algorithm of Section and the one-round algorithm
of Section [V| represent two extreme points of the trade-off
between the number of rounds and the total communication
required for synchronization. In general, one could have an al-
gorithm which takes up to r rounds, where r is a user-specified



number. Designing such an algorithm, and determining the
trade-off between r and the total communication required is
an interesting open question.

The simulation results in Section |VI|show that a guess-and-
check approach is effective when there are multiple bursty
indel edits. An important open problem is to obtain theoretical
bounds on the expected communication of the algorithm
when there are multiple bursts of varying length. Investigating
the performance of the synchronization algorithm for non-
binary strings with bursty edits is another problem of practical
significance.

When the edits are a combination of indels and substitu-
tions, Table shows that synchronizing to within a small
Hamming distance requires very little communication as long
as the number of indel edits is small. A complete system
for perfect synchronization could first invoke the synchro-
nization algorithm with a distance estimator hash, and then
use LDPC syndromes as an “outer code” to achieve perfect
synchronization. If the normalized Hamming distance at the
end of the first step is p, an ideal syndrome-based algorithm
would need nH(p) bits in the second step to achieve exact
synchronization. (H> is the binary entropy function.) For the
example in Table [VI| with n = 10% and 40 hash bits, the final
normalized distance p is less than 3.5 x 10~%, which implies
that fewer than 0.46% additional bits are required for perfect
synchronization. Building such a complete synchronization
system, and integrating the techniques presented here into
practical applications such as video synchronization is part
of future work.

APPENDIX
A. Proof of Lemma

Consider a length m binary sequence Z = (Z1,...,Zy)
where the Z; are i.i.d. Bernoulli(1/2) bits. For i = 2,...,m
define random variable U; as follows: U; = 1 if Z; # Z;_
and U; = 0 otherwise. Then the number of runs in Z can be
expressed as 1 +Us + Us +...+ U,,. Note that U; are i.i.d.
Bernoulli(1/2) bits due to the assumption on the distribution
of Z. Hence

P(Z has fewer than (1 — ) runs)
=PUs+ ...+ Up < F(1-0)—1)

(%) o~ (M3+1)?/2(m=1) _ ,—(m—-1)62/2

(59)

In (39), (a) is obtained using Hoeffding’s inequality [24] for
i.i.d. Bernoulli random variables.

Now set e~ (m=18*/2 — ¢ o that § = —2_-Ini. Let As
be the set of length m binary sequences with at least % (1—0)
runs, and let A§ denote its complement. Then from (59) we
have

e=eMTDE2 5 NT Py = 3T 27 = | Agl2T

2€A§ z€A§
(60)

It follows that |AS| < 2™¢, or |As| > 2™ (1 — €). Thus we
have constructed a set A5 with at least 2™ (1 — €) sequences,
each having at least % (1 — ) runs.

B. Proof of Proposition [2]

_ The estimator ciH(x,y)i is a strictly increasing function of
Z. Therefore the event {Z > p + d} is equivalent to

{C?H(x,y) > WM} )

In(1 — k/n) ©D

Using 20) to write dy (z,y) = %, we have

In(1 —2(p+9)) In(1 —26/(1 —2p))

In(1 - k/n) In(1 — k/n)

26 n 262 n
-2 r T T_2p2r
where the inequality is obtained using Taylor’s theorem for
In(1 — x). -

Similarly, the event {Z < p — ¢} is equivalent to

A In(1—2(p—56
it < BRI

As before, the RHS can be written as

In(1—-2(p—90)) In(1+26/(1 —2p))
In(1 —x/n) du(y) + In(1 — k/n)
200 n

202 n
T—2)r (-2

Noting that Z is the empirical average of mj, i.i.d Bernoulli
random variables with mean p, the result is obtained by using
Hoeffding’s inequality [24] to bound the probability of the
events {Z > p+d} and {Z < p — &}, which are equivalent
to the events in (6I) and (63), respectively.

(62)

2 dH(x7y) +

(63)

(64)

< dH(xvy) -

C. Proof of Lemma 2]
Using the triangle inequality, we have

P(’(J—K)—(d;i) >m/ﬁ><P<’J—;l‘>ﬁ\2/ﬁ)
+P(‘K; >H\2/ﬁ)

(65)

The random variable .J, which is the number of deletions in
the left half of X, can be expressed as a sum of d indicator
random variables as

J=U+...+ Uy, (66)

where for 1 < ¢ < d, U, = 1 if the /th deletion occurred in
the left half of X, and U, = 0 otherwise. Since the locations
of the deletions are uniformly random, P(U;, = 1) = P(Uy, =
0) = % Using Hoeffding’s inequality [24], we have for any
€ >0,

d d d
P(‘J—2‘>de>:P<;Ug—2

< 2exp(—2de?).

> de)
(67)

Substituting € = "2, we obtain

2d

d KA/T0 K2n




Using a similar argument for insertions, it follows that

7 KT K2n
Pl|I—= 2 —— .

Since t = d + ¢ = o(n/logn), for sufficiently large n the
exponents in (68) and (69) satisfy
K*n 2

> ] Kl’n,> ]
—_— Tologn —_— To logn
2 ologn, % 0logmn,

for any constant g > 0. For any r > 0, we can choose r(
large enough so that the RHS of (68) and (69) are each less
than %n’r. Using these bounds in (63) completes the proof.

(69)

(70)
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