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Abstract 
 

 
Characterisation of polar (0001) and non-polar (11-20) ultraviolet nitride 

semiconductors 
 

 
Rio Tse-Yang Chang 

 
 

UV and deep-UV emitters based on AlGaN/AlN heterostructures are very inefficient 

due to the high lattice mismatch of these films with sapphire substrates, leading to 

high dislocation densities. This thesis describes the characterisation of the 

nanostructures of a range of UV structures, including c-plane (polar) AlGaN epilayers 

grown on AlN template, and nonpolar GaN/AlGaN MQWs grown on a-plane GaN 

template. The results are based primarily on transmission electron microscopy (TEM), 

cathodoluminescence in the scanning electron microscope (SEM-CL), high-resolution 

X-ray diffraction (HRXRD) and atomic force microscopy (AFM) measurements. 

 

The structural and optical properties of various types of defect were examined in the 

c-plane AlGaN epilayers. Strain analysis based on in-situ wafer curvature 

measurements was employed to describe the strain relief mechanisms for different 

AlGaN compositions and to correlate the strain to each type of defect observed in the 

epilayers. This is followed by the investigation of AlN template growth optimisation, 

based on the TMA pre-dose on sapphire method to enhance the quality and the 

surface morphology of the template further. The initial growth conditions were shown 

to be critical for the final AlN film morphology. A higher TMA pre-dose has been 

shown to enable a better Al coverage leading to a fully coalesced AlN film at 1 µm 

thickness. An atomically smooth surface of the template was achieved over a large 10 

x 10 µm AFM scale. Finally, the investigation of UV emitters based on nonpolar 

crystal orientations is presented. The SiNx interlayer was able to reduce the threading 

dislocation density but was also found to generate voids with longer SiNx growth 

time. The relationship between voids, threading dislocations, inversion domain 

boundaries and their associated V-defects and the variation in MQW growth rate has 

been discussed in detail. 
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1 
Literature Review 
 

 

1.1 Introduction 

 

High power lighting devices based on InGaN/GaN heterostructures for emission in 

the green and blue regions of the electromagnetic (EM) spectrum already have 

surprisingly high efficiencies. However, UV and deep-UV emitters based on 

AlGaN/AlN heterostructures are very inefficient due to the high lattice mismatch of 

these films with sapphire substrates, leading to high dislocation densities. This must 

be overcome to realise the full potential of these devices. 

 

This thesis investigates the structural and optical properties of growth defects and 

their impact on device performance in UV structures grown by metal organic 

chemical vapour deposition (MOCVD). Electron microscopy techniques such as 

transmission electron microscopy (TEM) and scanning transmission electron 

microscopy with high angle annular dark field (STEM-HAADF) enable the 

microstructural study of the defects originating from plastic deformation of the 

heterostructures. The results obtained are compared to those from other 

characterisation techniques such as cathodoluminescence in the scanning electron 

microscope (SEM-CL), atomic force microscopy (AFM) and X-ray diffraction (XRD) 

to interpret the data.  

 



Chapter 1  2 

 

   

Chapter 1 provides comprehensive background knowledge of the basic materials 

properties, growth and applications of III-nitrides. Problems currently encountered for 

nitride devices grown on the c-plane of sapphire substrates, and for other possible 

crystal orientations, will be defined and discussed, with particular focus on the use of 

Al-containing alloys for UV emitters. Chapter 2 introduces the main characterisation 

techniques that were used in this work. The basic principles, their importance for the 

analysis of III-nitrides and their limitations are described. As the majority of the 

results obtained are TEM-related, TEM sample preparation techniques are also 

described in detail. 

 

Chapters 3 and 4 are results chapters describing the study of a series of c-plane deep-

UV emitting structures: AlGaN epilayers with different aluminium contents grown on 

thick high quality AlN templates. Several types of defect were found in the AlGaN 

materials. The structural and optical properties of the defects were investigated. In 

order to understand the effect of the defects on the quality of the heterostructures, 

strain analysis based on in-situ wafer curvature measurements was employed to 

describe the strain relief mechanisms for different AlGaN compositions and to 

correlate the strain to each type of defect observed in the epilayers. 

 

An atomically smooth template surface is essential for subsequent high quality 

epilayer and multiple quantum wells (MQW) growth. Chapter 5 presents an improved 

growth method based on a trimethylaluminium (TMA) predose to enhance the quality 

and the surface morphology of an Al-polar c-plane AlN template even further. The 

role that nitrogen plays in the initial growth stage before the TMA predose is 

examined.  

 

Chapters 6 and 7 describe the investigation of UV emitters based on nonpolar crystal 

orientations. A series of UV quantum well heterostructures with different GaN 

multiple quantum well thicknesses and AlGaN barrier compositions were grown on 

nonpolar GaN templates of low dislocation density using a SiNx interlayer. The SiNx 

interlayer was able to reduce the threading dislocation density but was also found to 

generate voids with longer SiNx growth time. The relationship between voids, 

threading dislocations, inversion domain boundaries and their associated V-defects 
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and the variation in MQW growth rate is described in this chapter. 

Cathodoluminescence (CL) and photoluminescence (PL) spectra showed the 

influence of thickness fluctuations on the optical properties of the MQWs. Spatially 

resolved monochromatic CL images with corresponding TEM images were used to 

identify the defect-related luminescence, suggesting that there was a correlation 

between the yellow band emissions and the density of partial dislocations. 

 

Chapter 8 reviews the work carried out in this thesis and general conclusions are 

drawn. Suggestions are also made for future work in this field. 

 

 

1.2 Overview of Solid-State-Lighting 

 

Artificial lighting is one of the most significant inventions in human history. It has 

become completely integrated into modern civilization and the world could not 

function properly without it. However, we pay a colossal price to use this resource: 19 

% of total global electricity consumption is used for general illumination [1] and 

unfortunately the conversion of electricity to light is also very inefficient. For 

incandescent light bulbs, only 5 % of the electricity supplied is converted into visible 

light and only 20 % is converted to light by energy-saving compact fluorescent lamps 

[2]. The rising awareness of climate change and our rapidly growing energy 

consumption demand that we research into more efficient ways of producing light. 

 

Solid-state lighting (SSL) is a technology which uses direct bandgap semiconductors 

to directly convert electricity into light. It has already shown enormous potential as a 

more efficient alternative to current artificial lighting and indeed a solid-state device 

emitting infrared light has been achieved with an electrical-to-optical conversion of 

76% external quantum efficiency (EQE) [3]. Current SSL technology consists of three 

broad categories: (i) inorganic light emitting materials such as group III nitrides, (II) 

organic materials that are carbon based compounds and (iii) hybrid organic-inorganic 

materials. All the systems have limits to efficiency for many complex reasons. The 

research projects at the Cambridge Centre for Gallium Nitride are currently focused 
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on producing efficient and robust nitride device materials technology that can be 

employed in areas such as high power lighting and water purification. This requires 

the use of inorganic materials that have higher tolerance to water and heat damage 

than the organic materials. Current research in inorganic materials, in particular the 

group III nitrides (e.g. gallium-, aluminium-, and indium nitride and their ternary 

alloys), has been successfully developed and commercialised for illumination 

purposes. 

 

Light emitting diodes (LEDs) were discovered decades ago when Holonyak and 

Bevacqua demonstrated the first infrared GaAs LED in 1962 [4] and Maruska 

demonstrated the first GaN LED in 1972 [5]. The fabrication of blue LEDs involves 

the use of wide band gap semiconductor materials. There are three candidates: silicon 

carbide (SiC, group IV), zinc selenide (ZnSem group II-VI) and gallium nitride (GaN, 

group III-V). Their energy gaps and lattice constants are shown in figure 1.1. 

 

Silicon carbide has superior thermal conductivity and n-type/p-type doping is 

relatively simple, so it became the first material to be used in commercialised blue 

LEDs. However its indirect bandgap leads to low internal quantum efficiency 

hindering device development. 

Zinc selenide is a material with direct band gap of 2.67 eV [6] under ambient 

conditions. It emits blue light and lattice-matching substrates are available. However, 

the electrical properties of ZnSe are strongly influenced by the presence of impurities, 

native defects and extended defects. These result in a high resistivity when the crystal 

is grown at high temperature, which leads to a low internal quantum efficiency and a 

short device lifetime. 

 

III-nitrides require a high crystal growth temperature of about 1050 °C, much higher 

than the 400 °C used for ZnSe materials. They have a high tolerance to high 

temperatures and their device performance is relatively insensitive to the presence of 

high densities of crystal defects, so a robust device can be produced. Most 

importantly, with its direct band gap of 3.4 eV, GaN is considered the most suitable 

material for developing blue LEDs. Also, as shown in figure 1.1, related nitride 

materials, aluminium nitride (AlN) and indium nitride (InN) have band gap of 6.2 eV 
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and 0.6 eV respectively. By varying the ternary alloying ratio, a complete coverage of 

band gap energy from 0.6 eV to 6.2 eV can be achieved, allowing emissions from red, 

yellow, green, blue and UV light. Therefore group III-V nitrides are excellent 

candidate materials for fabricating LEDs emitting at visible wavelengths. 

 

 
Figure 1.1: Variation of band gap with lattice parameters for various semiconductors. 

Modified from [1] 

 

However, p-type doped GaN was considered very difficult to produce in the early 

days [7] and the lack of a substrate with appropriate lattice constants hindered the 

development of this semiconductor material. The research based on group III-nitride 

remained slow until 1992 when Akasaki [8] announced the first successful p-n 

homojunction GaN LED grown on sapphire. Soon after, Nakamura revealed the first 

blue LED in 1993 [9]. These advances focused more attention into GaN research. 

 

Almost all white LEDs sold today are based on blue GaN/InGaN LEDs coated with a 

yellow phosphor. The mixture of blue and yellow light creates a cool white light, 

however, a warm white light is required for office and home illumination purposes. 

Near-UV LEDs are more efficient than blue LEDs at exciting some phosphors, in 

particular the red phosphors, which are vital for creating the required warm white 

light. For the past five to seven years, these UV emitters have advanced from less than 
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0.1 % external quantum efficiency (EQE) to between 1 % and 10 % depending on the 

emission wavelength [10]. However, the EQE must be higher before UV LEDs can be 

employed successfully as a universal lighting resource or for water purification 

purposes. 

 

1.3 Basics of III-nitride semiconductors 

 

1.3.1 Crystallography 
 

Gallium nitride is a direct bandgap semiconductor. Its large bandgap of 3.4 eV allows 

it to be widely used in optoelectronic, high power and high frequency devices. GaN 

can be deposited onto sapphire, silicon or silicon carbide substrates in thin film form. 

It can be n-doped with silicon (Si) or p-doped with magnesium (Mg). It crystallises 

into the wurtzite (hexagonal) or the zinc blende (cubic) crystal structure, as shown in 

figure 1.2. The wurtzite form is stable under ambient conditions and is easier to grow, 

hence it has been extensively focused on by researchers. 

 

 
Figure 1.2: Atomic arrangement of a: (a) cubic zinc blende and (b) hexagonal 

wurtzite lattice (insets showing a unit cell of the structures). Modified from [11] 

 

Atoms in III-nitrides are arranged as two interpenetrating hexagonal lattices in the 

wurtzite structure. The stacking sequence is …ABABAB… in the [0001] direction, 
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where one layer (either yellow or grey dots) represents gallium or other group III 

atoms (Al or In) and the other layer represents nitrogen atoms. The zinc blende 

structure follows a sequence of …ABCABC… in the [111] direction Bonding in III-

nitrides is partly covalent and partly ionic, due to differences in electronegativities 

between the group III atoms and nitrogen atoms. 

 

The wurtzite unit cell can be described by three lattice vectors a1, a2 and c. The 

former two vectors are the same in length and are separated by an angle of 120°. c is 

perpendicular to the plane generated by a1 and a2. The values of these lattice 

parameters are summarised for all binary nitrides in Table 1.1. 

 

Table 1.1: Lattice parameters of AlN, GaN and InN. [12] 

type a / nm c / nm c/a 

AlN 0.31106 ± 0.00003 0.49795 ± 0.00002 1.6008 ± 0.0002 

GaN 0.31896 ± 0.00003 0.51855 ± 0.00002 1.6258 ± 0.0002 

InN 0.35378 ± 0.00001 0.57033 ± 0.00001 1.6121 ± 0.0001 

 

1.3.2 Polarization 
 

Gallium and nitrogen in the wurtzite crystal structure have different 

electronegativities, resulting in a dipole parallel to the bond between the atoms along 

the c-axis. The partially ionic nature of the bonding within the asymmetric wurtzite 

structure results in a spontaneous polarization (Psp). Thus the c-axis is often termed 

the polar axis; in other words, the [0001] and [000-1] directions are not equivalent 

(figure 1.3). The distinction between the two polarities is important because the 

(0001) and (000-1) surfaces have quite different chemical and physical properties. For 

instance, the N-polar face decomposes more rapidly in hydrogen at high temperature 

than Ga-polar face. This strongly affects the surface morphology of AlN films (see 

chapter 5). 
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Figure 1.3: Illustration of Ga-polar (left) and N-polar (right) wurtzite GaN [13] 

 

In addition to this spontaneous polarization, there is also a piezoelectric polarization 

(Ppz) arising from the strained crystalline wurtzite films (due to lattice mismatch and 

thermal mismatch with the substrate). The magnitude and direction of this 

piezoelectric polarization are directly related to the magnitude and direction of the 

stress in the layers. This polarization has been calculated to be often larger than the 

spontaneous polarization. The combination of these two polarizations can lead to 

detrimental effects on nitride semiconductors as discussed later in section 1.6. 

 

1.3.3 Substrates 
 

The degree of mismatch between substrate and thin film determines the number of 

defects present in the device. These defects are believed to act as non-radiative 

recombination centres and limit device performance. Therefore, choosing a suitable 

substrate is usually the first step in epitaxial growth. The best substrate for GaN-based 

LED should have the same lattice constant as GaN, and hence, is GaN itself. However 

high-quality bulk single crystal GaN substrates (larger than 2” diameter wafer) are not 

cost-effective. This is due to the extremely high vapour pressure of nitrogen (~ 150 

kbar) at the GaN melting point (~ 2400 °C) required in order to prevent 

decomposition and allow bulk crystal growth methods to be used. For this reason 

alternative substrates have to be used: sapphire (Al2O3), silicon carbide (6H-SiC) and 

more recently silicon (Si). Aluminium nitride (AlN) substrates have also lately 
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become more popular for UV emitters. Further detail on UV LEDs will be discussed 

in section 1.5. 

 

Silicon carbide 

Silicon carbide possesses certain advantages. It has a comparable lattice constant and 

thermal expansion coefficient to GaN. It can be doped to achieve electrical 

conductivity to allow back-contacting and thus to simplify the overall device 

structure. However, it is expensive and has yet to be proven cost-effective. 

Furthermore, silicon carbide substrates absorb light at wavelengths below 427 nm and 

therefore have not been widely used in UV LEDs. 

 

Silicon 

The use of silicon substrates has recently gained much attention because large high-

quality silicon wafers are readily available. They are cheap and electrically 

conductive. Silicon processing is already a mature technology which may be 

integrated with III-nitride device processing. However, cracking and bowing can be 

caused due to the large lattice mismatch and the large differences in thermal 

expansion coefficients between GaN on silicon [14]. GaN grown on Si typically has 

very high defect densities and the small band gap of Si absorbs UV and visible light. 

Nevertheless, silicon is a promising alternative substrate material. 

 

Sapphire 

Sapphire is the most commonly used substrate despite its electrically insulating nature 

and the large lattice mismatch (~ 16.3 %). This mismatch is relieved by the formation 

of high densities of threading dislocations (typically 109 to 1011 cm-2), which is one of 

the main factors that decrease device performance (see section 1.3.4). However, 

sapphire substrates are dominating the current LED market owing to several 

advantages: large high quality sapphire substrates are relatively cheap and readily 

available on the market. Sapphire wafers are chemically and thermally stable at high 

growth temperatures and are also transparent to green, blue and UV wavelengths. In 

addition, nucleation layers can be grown on the sapphire substrate acting as a buffer 

layer that reduces the density of threading dislocations in the epilayers (see section 
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1.3.5 for defect reduction techniques). Buffer layers are also used in SiC and Si 

wafers. 

 

Aluminium nitride substrates 

Today, the performance of UV LEDs is fundamentally limited by the high density of 

dislocations caused by the large lattice mismatch between the nitride heterostructures, 

and the non-native substrates such as those discussed earlier. Therefore bulk 

aluminium nitride (AlN) substrates have attracted much attention owing to its close 

matching of lattice parameter and thermal expansion coefficient with AlGaN 

heterostructures typical of UV emitters. With these advantages, AlN is believed to be 

the substrate platform for the next generation of high performance UV optoelectronic 

devices. Several demonstrations of III-nitride devices grown on AlN substrates have 

been reported [15][16][17] and have already shown promising results. However the 

current issues that hinder the large volume production of AlN substrates are the 

relatively high fabrication cost and the difficulty of producing large high-quality bulk 

AlN substrates. In addition, current bulk AlN substrates still exhibit significant UV 

absorption. Nevertheless, high quality AlN substrates are expected to be relatively 

low-cost and readily available for the market in the next three to five years [18]. 

 

1.3.4 Growth 
 

The growth methods for GaN and related materials can be categorised into three 

different types. These include molecular beam epitaxy (MBE), metal-organic 

chemical vapour deposition (MOCVD) and halide vapour phase epitaxy (HVPE). 

Each growth method represents a wide and interesting research focus. 

 

The MBE technique is able to produce high purity thin films but the growth rate is 

low and the process is expensive due to the use of ultra-high vacuum (UHV). The 

metal sources are thermally evaporated and reactive nitrogen is (usually) generated by 

a plasma source, producing molecular beams, which then condense on the substrate 

where they may react with each other and the reaction product is then deposited as a 

thin film. 
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MOCVD and HVPE are both chemical vapour deposition methods for epitaxial 

growth. Films are grown in the reactor on a heated substrate by introducing vapour 

phase precursors. The formation of the epitaxial layers is done by final pyrolysis of 

the chemicals on the substrate surface. MOCVD and HVPE differ in the choices of 

precursors: MOCVD uses metal-organic compounds (trimethylgallium (TMG), 

trimethylaluminium (TMA), or trimethlyindium (TMI) as the Ga, Al and In sources) 

whereas HVPE uses metal-halide precursors (such as GaCl3). In contrast to MBE, this 

growth takes place in the gas phase at moderate pressures (2 to 100 kPa) instead of a 

vacuum, producing a relatively high growth rate ~ 1 µm/h and therefore has become a 

well-established production technology for manufacturing LDs and LEDs. MOCVD 

growth of nitrides is complex, and many different reactions may occur during the 

process. However, the basic reaction to obtain GaN is given as follows: 

 

 

 

Although the design of MOCVD reactors can vary extensively, they all share some 

common features and the major components can be categorised into four subsystems; 

(a) reactants, carrier gas (b) gas handling system (c) reaction chamber and (d) exhaust. 

All the samples studied in this work were grown by Dr Menno Kappers or Dr Clifford 

McAleese in a 6 x 2 inch (capable of growth up to six 2” diameter wafers in a single 

run) Thomas Swan close-coupled showerhead reactor as shown in figure 1.4. The key 

advantage of this setup is that the group III and V precursors are injected via separate 

chambers. Separation of the NH3 from the metal-organic sources ensures that 

undesired gas phase reactions are prevented until the chamber itself. 

 

Ga(CH3)3(g)+ NH3(g)→GaN(s)+3CH4 (g)
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Figure 1.4: Schematic illustration of close-coupled showerhead reactor (courtesy of 

M.Kappers) 

 

Once the species reactions take place at the growing crystal surface (e.g. sapphire, 

which consists of atomically flat terrace regions separated by steps, figure 1.5), the 

adatoms diffuse to more energetically favourable kink sites and are incorporated 

within the crystal lattice. The crystal growth therefore consists of the propagation of 

steps, and the formation of two- and three-dimensional islands. 

 

 
Figure 1.5: Schematic diagram of the growing surface. Adapted from [150]. 

 

The thin film growth may be monitored in-situ by a reflectometer, a pyrometric 

temperature measurement apparatus and by measuring the wafer curvature. 
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Reflectivity is used to assess whether the film is fully coalesced and the period of 

oscillation can be used to calculate the growth rate. A typical reflectivity trace is 

shown in figure 1.6. A lower reflected intensity at the beginning of the growth 

indicates that the film surface is rough and light reflected from the surface is scattered 

in all directions. Once the layer thickens and a smoother surface is obtained, the 

reflectivity intensity becomes higher. Oscillations arise, from the interference between 

the beam reflected from the film-substrate interface and the film surface, as the film 

thickens. The film thickness per period of oscillation, D, is given by D=λ/2n, where n 

is the refractive index of GaN and λ is the incident wavelength. Constructive 

interference corresponds to the peaks when film thickness is an integer number of 

wavelengths. Thus growth rate can be determined from this reflectivity trace. 

 

 
Figure 1.6: Schematic reflectivity trace for a c-plane GaN film showing the different 

phases of film growth (courtesy of E.J. Thrush) 

 

Thermal and lattice mismatch usually lead to stress in the layers, which can cause 

cracking (e.g. for thick GaN on large Si substrates during cooling down of the wafer) 

[19]. Stress management is therefore one of the key factors in obtaining high-quality 

structures. This can be done by in-situ wafer curvature measurements (the EpiCurve 

TT sensor by Laytec is used for this work), which allows tailoring of the growth 

parameters. Strain engineering [20] and subsequent strain analysis can be carried out 

to obtain for additional information by observing defects in nitride heterostructures 

[21] (see chapter 3 for more details). 

 

In III-nitride MOCVD growth, there are three important parameters used to control 

the morphology of the film: temperature, pressure and V/III ratio (molar ratio of the 
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nitrogen containing precursor to the Ga-containing precursor). For instance, three-

dimensional (3D) to 2D growth method [22] is often employed for the growth of low 

defect density templates, where 3D growth (island growth) is promoted initially and 

these three parameters are altered to then encourage 2D growth for subsequent film 

coalescence. Throughout this thesis, polar (0001) c-plane AlN templates were grown 

on (0001) c-plane sapphire, and nonpolar (11-20) a-plane GaN films were grown on 

(1-102) r-plane sapphire. The growth conditions and additional growth steps (e.g. 

interlayers and nucleation layers) for each sample will be described in the 

experimental details of the relevant chapter. 

 

1.3.5 Defects 
 

Dislocations: 

 

It is well known that III-nitride devices grown on highly lattice-mismatched substrates 

have high dislocation densities. These dislocations are termed ‘threading dislocations 

(TDs)’ and can be categorised into three different types: for c-plane GaN, they are ‘a-

type or edge type’ (Burgers vector b = ⅓<11-20>), ‘c-type or screw type’ (b = 

⅓<0001>), and ‘a+c type or mixed type’ (b = ⅓<11-23>) [23]. If dislocations with 

line directions parallel to [0001] are considered, then a, c and a+c type dislocations 

are edge, screw and mixed-type respectively (figure 1.7). If a dislocations line is in 

the (0001) plane, the a-type dislocations with b = ⅓[-1-120] can be pure-screw 

(dislocation line lies parallel to [-1-120]) or pure-edge (dislocation line lies parallel to 

[1-100]) in the two alternative orientations also shown in figure 1.7. This is important 

when analysing the weak beam dark field TEM images as interfacial mismatch strain 

(discussed in detail in chapter 3) can only be relieved when a dislocation line lying in 

the (0001) plane has an edge component, in order to accomodate an extra half plane 

of material. 
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Figure 1.7: Schematic showing different dislocation types in the wurtzite structure. 

For each line direction, Burgers vectors for the edge (e), mixed (m) and screw (s) 

dislocation types are indicated. Adapted from [24] 

 

The models that describe the formation of TDs are controversial. Ning et al. have 

suggested that TDs are formed when GaN islands coalesce during growth [25]. If 

islands coalesced with some degree of tilting (i.e. relative misorientations along 

[0001]), edge dislocations can be created, and similarly coalescence with twisting (i.e. 

relative misorientations in the c-plane) giving rise to screw dislocations, and mixed 

dislocations are created by the combination of tilt and twist. Wu et al. [26] supported 

this island coalescence model with further transmission electron microscopy (TEM) 

studies. However, Narayanan et al. [27] presented evidence against this model, as 

they have shown that edge and mixed TDs were already present in the islands before 

they were fully coalesced. Instead, Narayanan suggested that the TDs were created 

from the defects occurring near the layer/substrate interface. The dissociation of a 

Shockley partial (b = ⅓[-1100]) to another Shockley partial (b = ⅓[0-110]) with a 

basal plane dislocation that is parallel to the substrate interface can thread to the 

surface leading to edge dislocations. On the other hand, the formation of two Frank 

faults (½[0001]) can lead to screw dislocations. This model where TDs do not form at 

coalescence boundaries was also supported by Oliver et al. [28] where AFM was used 

to examine the dislocations on partially coalesced silane treated films [29] and the 

dislocation density at the coalescence boundaries was found to be unchanged relative 

to overall surface dislocation density. 
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Although there are contradictory views on the origin of threading dislocations, it is 

also worth mentioning that the further studies by Narayanan [30] suggested that TD 

generation by island coalescence is still possible under certain growth conditions. 

This model is also supported by Moram et. al. [175] where SEM-CL and AFM 

studies showed that the lateral length scales of the island network, at any stage of film 

coalescence, do not match with the lateral length scales of TD-free regions, 

suggesting that the dislocations in the MOCVD grown GaN on sapphire films are 

generated primarily in the nucleation layer and not by island coalescence. 

 

In addition to Narayanan’s theory, misfit dislocations are also believed to generate 

threading dislocations in III-nitride materials. The lattice mismatch created between 

the substrate and layer interfaces is initially accommodated by elastic strain. Once a 

critical film thickness is reached, more energetically favourable misfit dislocations 

[31] are created to compensate for the differences in the lattice constants. These 

dislocations are categorised as ‘edge-type’ dislocations (i.e. dislocation line is 

perpendicular to its Burgers vector). The Frank and van der Merwe formula [32] was 

proposed in 1962 and attempted to predict the critical thickness. It was done by 

equating the energy contained in the misfit dislocation network with the elastic energy 

contained in a strained layer of a particular thickness. Later in 1974, Matthews and 

Blakeslee [31] reconsidered the theory and obtained a similar formula as van der 

Merwe but allowed consideration of the kinetics of the process. However a recent 

literature survey performed by Holec et al. [33] showed that most of the current 

models for critical thickness predictions were based on isotropic cubic materials (e.g. 

GaAs) and therefore much effort has since been put into developing a theoretical 

model specifically for wurtzite III-nitride materials [34][35][36]. 

 

Stacking faults: 

 

As discussed earlier, perfect dislocations may split into two partial dislocations (with 

b = ⅓<1-100>, b = ½[0001] or b = <2-203>) as this lowers the total energy. They 

must border a two-dimensional defect, typically a stacking fault [37]. For this reason, 

they are generally found terminating stacking faults. 
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There are three types of basal plane stacking faults (BSF) that can separate partial 

dislocations. Stacking faults produced by vacancy agglomeration are termed ‘intrinsic 

I1, I2 and I3 type’ and interstitial agglomeration is termed ‘extrinsic E type’. Prismatic 

stacking faults (PSF) can also be found on {11-20} prismatic planes [38]. 

 

 
Figure 1.8: Schematic (left) shows an intrinsic stacking fault, where a C-bilayer is 

removed (stacking sequence changed from …ABCABC… to …ABCABABC…). 

(right) shows an extrinsic stacking fault, where an extra A-bilayer is inserted (stacking 

sequence changed to …ABCABACABC…). Modified from [37]. 

 

I1 type fault occur with one rotation of the stacking sequence, and are created when 

inserting or removing a basal plane, followed by shear along ⅓<10-10>. I2 type faults 

are created when a perfect dislocation is split into partial dislocations (the occurrence 

of this reaction is determined by the balance of stacking fault energy and the repulsive 

forces between the partial dislocations). I3 type faults also occur, but these are 

essentially a double I1 fault, which subsequently returns the material to its original 

stacking configuration, so they are not bound by any type of dislocation. E type faults 

are created when an extra basal plane is inserted (as shown in figure 1.8). 

 

For nonpolar and semipolar III-nitride films, it has been observed that stacking faults 

and their associated partial dislocations are present in high densities [39]. BSFs may 

act like quantum wells, changing the band structure and affecting the light emission 

[40] (see Chapter 6 for further details). 
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Figure 1.9: Schematic of stacking faults in a-plane GaN grown on r-plane sapphire. 

Adapted from [38]. 

 

 

Effect of defects 

 

It is well known that defects are very detrimental to the performance of most 

semiconductor devices [41]. In general, it has been proven that the higher the 

dislocation densities, the poorer the optoelectronic performance. For instance, a green 

LED made from GaP has a greatly reduced efficiency when the TD density is above ~ 

105 cm-2, and when TD density is above ~ 106 cm-2 there is no light emission at all 

[41]. However for GaN-based LEDs that contain more than 1010 cm-2 TD density, 

high external quantum efficiency (EQE) can still be achieved. Therefore, the effect of 

dislocations in GaN has undergone much debate. 

 

For light emitting diodes, on applying a forward bias, electrons and holes travel 

through the materials and recombine with each other to emit photons. This process is 

called radiative recombination in the LED devices. However, there is also non-

radiative recombination that releases heat energy instead of photons. It decreases the 

internal quantum efficiency of the devices and in addition increases the operating 

temperature via Joule heating which has a deleterious effect for the device. 

 

Rosner et al. [42] and Sugahara et al. [43] suggested that these dislocations were non-

radiative recombination centres by showing lack of light emission from the same TD 

in cathodoluminescence (CL) in conjunction with AFM images and plan-view TEM 

images. The presence of TDs was confirmed in AFM and TEM and they appeared as 
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dark spots in CL measurements, which indicated that they do not luminesce. Further 

studies by Katona et al. [44] have also agreed on the findings by studying CL in 

epitaxial lateral overgrown (ELOG) materials. However, these results do not 

necessarily confirm that dark spots are indeed caused by non-radiative recombination, 

as they could be due to charged dislocations [176]. 

 

Lester et al. suggest that dislocations do not act as non-radiative recombination 

centres [45] because the non-radiative recombination model does not explain the high 

external quantum efficiency only observed in GaN but not in other materials such as 

GaAs. The high EQE was thought to be the result of carrier localisation in quantum 

wells, which was due to the indium clusters observed in TEM. However, this 

explanation was later greatly disputed, as indium clustering is now considered to be 

an artefact produced by beam damage in the TEM [46]. A more recent explanation of 

carrier localisation is the fluctuation in quantum well width, which is also discussed in 

chapter 6. Nevertheless, determining the properties of defects and their effects in 

GaN-based devices is still an on-going investigation and this must first be understood 

in order to develop techniques to eliminate these dislocations efficiently. 

 

1.3.6 Defect reduction methods 
 

Several research groups have developed defect reduction techniques that are 

beneficial for improving III-nitride device performance. This section aims to review 

these techniques, which can be classified into two categories: in-situ and ex-situ 

defect reduction methods, and which have mainly been used for GaN so far. For the 

in-situ methods, defect reduction is accomplished within the growth chamber. This 

involves the nitridation of sapphire substrates, the use of buffer layers and interlayers, 

and the variation of growth conditions. For the ex-situ methods, defect reduction 

requires additional treatments outside the growth chamber, for instance, epitaxial 

lateral overgrowth (ELOG) and pendeoepitaxy (PE). 

 

In-situ defect reduction methods: 
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• Nitridation of the sapphire substrates 

Nitridation involves the exposure of the substrate to NH3 at 1050 °C before epitaxial 

growth. This creates several AlN layers on top of the substrate, which provide a closer 

lattice match to the GaN layer which is subsequently grown, and hence lower the 

dislocation density of that layer [47]. 

 

• Use of buffer layers 

The buffer layer is mostly used to improve the substrate wetting and also to provide 

nucleation sites for the subsequent main growth layers (also known as two-step 

growth). There are two commonly used buffer layers in MOCVD growth: (i) Low 

temperature GaN nucleation layers are grown between 450 °C and 600 °C, typically 

with a thickness between 25 and 35 nm [39]. This layer permits growth of a 

subsequent high quality film, possibly due to the evaporation and re-deposition of 

GaN at higher temperatures, which promotes step flow growth for the high 

temperature layer [30]. (ii) AlN is another successful buffer layer that is grown at 

~600 °C with an optimum thickness between 50 and 100 nm [48]. AlN buffer layers 

also provide nucleation sites for the subsequent GaN layer growth and are able to 

produce lower TD density films. These ‘two-step’ growth methods have now become 

a standard for the growth of GaN on highly mismatched substrates. 

 

• Use of interlayer 

The in-situ deposition of a sub-monolayer quantity of SiNx using silane and ammonia 

has been shown to be effective at dislocation reduction for c-plane GaN [49]. The 

SiNx interlayer does not wet the underlying III-nitride films and acts as a nano-mask 

and blocks the dislocations. Some dislocations that propagate through the gaps 

between SiNx islands in the mask may be bent (see chapter 6) and annihilate with one 

another or terminate at voids (figure 1.10). TD density reduction by two orders of 

magnitude to ~107 cm-2 has been achieved by the use of a relatively thick single SiNx 

interlayer [38] (see also chapter 6). A ScN interlayer has also been shown 

successfully to reduce the TD density down to ~107 cm-2 in c-plane material [38]. The 

Sc metal layer is deposited ex-situ and then annealed in ammonia to form a ScN 

interlayer. The dislocation reduction mechanism is believed to be similar for both 

types of interlayers. 
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Figure 1.10: Cross-sectional TEM image of a sample with SiN interlayer (indicated 

by yellow dotted line) showing a significant reduction in TD density. [38] 

 

• Variation in growth conditions 

It is possible to grow the initial GaN layer with either ‘2D’ or ‘3D’ growth methods. 

2D growth forms flat GaN layer surfaces, which involves using a low temperature 

GaN buffer layer, as mentioned in the previous section. 3D growth involves the 

formation of an islanded morphology. It is worth mentioning that a 3D growth 

method can be considered as an in-situ method of ELOG as GaN grows laterally from 

the island nucleation sites and coalescences to form films with lower TD densities. 

This is due to the dislocations bending at the island facets [50]. The dislocation then 

either meets and annihilates with another one or is terminated by the voids in between 

the coalescence boundaries resulting in dislocation-free regions in the upper part of 

the film. It is also worth mentioning that delayed coalescence time and control of 

island sizes may also influence the TD density. For instance, a lower V/III ratio 

delayed the island coalescence process, permitting more lateral growth of GaN layers 

and further reducing the TD density [51]. Also, larger islands were shown by AFM 

[28] and TEM to have lower TD density. 

 

Ex-situ defect reduction methods 

 

• Epitaxial lateral overgrowth (ELOG) 
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A reduction in the dislocation density from 1010 to 108 cm-2 may improve the optical 

and electrical properties of the device [1]. A major leap forward came at the end of 

1997 when the epitaxial lateral overgrowth technique (ELOG) was developed, which 

greatly reduces the dislocation density. The ELOG template can be patterned with 

SiO2 or SiNx masks on top of previously grown GaN layers. These masks are etched 

into stripes by photolithography, where the stripes are separated by a certain distance, 

allowing the GaN layers to grow through the gaps (termed ‘window’ regions) and 

then grow laterally over the SiO2 or SiNx stripes (termed ‘wing’ regions) until they 

coalesce and form a continuous film (figure 1.11). The dislocations in the preceding 

GaN layer either progress through the window regions or stop beneath the masks. 

Therefore the lateral growth on top of the wing regions can contain very few TDs in 

these areas (2 x 107 cm-2) [177]. The ELOG structure contains regions of both high 

and low densities of dislocations, but has a lower overall dislocation density. 

 

 
Figure 1.11: Schematic of the ELOG process for a nonpolar layer. Adapted from 

[38]. 

 

The quality of the ELOG material is determined by several factors including reactor 

temperature and pressure, the V/III ratio and the carrier gas composition. Controlling 

these variables is a further interesting research topic [52]. 

The general ELOG technique is known as 1-step ELOG where constant growth 

conditions are used. Another technique known as 2-step ELOG can further decrease 

the dislocation density. This is achieved by altering the growth conditions so that 

vertical growth is favoured over lateral growth, which leads to the formation of 

pyramidal stripes. The facets of the pyramid promote the bending of TDs as discussed 

earlier in 3D growth and produce a smaller ‘window’ region, which results in even 
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lower overall dislocation density (5 x 106 cm-2 TD density has been reported at the 

coalescence boundary regions) [50]. Likewise, more reduction steps are possible 

(termed ‘multi-step’ ELOG) and a dislocation density as low as 7 x 105 cm-2 has been 

demonstrated [53]. However, the photolithography step for masking is time-

consuming and expensive and hence the fabrication becomes complicated as more 

steps are involved. 

Pendeoepitaxy (PE) is another type of ELOG involving etching down to the substrate 

prior to applying masks on top of the GaN stripes. Voids are produced below the 

coalescence regions, which provide the laterally grown layers with lower dislocation 

densities. This method is able to achieve low dislocation densities similar to 2-step 

ELOG but only one photolithography step is required. 

 

1.4 Light emitting diodes 

 

Light emitting diodes are based on p-n junctions; charge carriers (electron and holes) 

are injected from the electrodes by application of a forward bias. These carriers then 

recombine across the band gap and produce photons. For the QW LEDs, charge 

carriers flow into the active regions from electrodes and are confined to the quantum 

wells (which are made of a lower band gap material), increasing the overlapping of 

electron-hole wavefunctions and leading to more efficient radiative recombination. 

The emission wavelength is dependent on the energy band gap of the material used in 

the active region of the device and the desired wavelength can be obtained by varying 

the thickness or composition of the quantum wells. 

 

 
Figure 1.12: Schematic of operating principles of two basic kinds of LEDs: (a) a p-n 

junction based LED and (b) a quantum well based LED. [33] 
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A typical LED structure (Figure 1.13) has a p-type surface layer that is highly doped 

for an ohmic contact. Below this lies the active region often containing quantum 

wells, and an n-type layer. A buffer layer of GaN or AlN is used to accommodate the 

lattice mismatch with the sapphire substrate. In between QWs are barrier layers, 

which provide energy barriers on either side of the wells to prevent charge carriers 

escaping from the QWs. 

 

 
Figure 1.13: Schematic of a near-UV (using AlGaN buffer layers) LED structure 

[10]. 

 

The performance of an LED device is referred to as the external quantum efficiency 

(EQE), which is the product of the internal quantum efficiency (the proportion of all 

electron-hole recombination in the active region that are radiative and produce 

photons), the current injection efficiency and the extraction efficiency (the number of 

photons emitted from the LED per photon generated in the active region). Figure 1.14 

shows the current best external quantum efficiencies achieved in GaN based UV 

LEDs by research groups across the world. Many challenges still remain to be solved 

to achieve UV LEDs with EQE values comparable to those of visible LEDs. The 

reason for decreasing efficiencies at shorter wavelengths is mainly due to the lattice 

mismatch of substrates with high aluminium content alloys, which will be discussed 

in more detail in section 1.5. 
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Figure 1.14: Summarised plot of the maximum EQE reported for c.w (triangles) and 

pulsed (circles) operation of UV LEDs by different research groups [10]. 

 

1.4.1 General problems with III-nitride LEDs 
 

• Quantum-Confined Stark Effect (QCSE) 

The performance of light-emitting devices based on conventional polar (c-plane) GaN 

film suffers from a phenomenon termed the ‘quantum-confined Stark effect’ (QCSE) 

[54] due to a spontaneous polarisation and a piezoelectric polarisation in the materials 

(see section 1.3.2). Spontaneous polarisation occurs because of the non-

centrosymmetric orientation of gallium and nitrogen atoms along the [0001] direction 

in the wurtzite GaN structure. Piezoelectric polarisation occurs when the thin film is 

strained, such as for lattice-mismatch induced strains between the quantum wells and 

barriers. 

For c-plane InGaN/GaN devices, the QWs are under compression due to InGaN 

having a larger lattice parameter than GaN resulting in much larger piezoelectric 

polarisation and a net polarisation is created along the [0001] c-axis direction. On the 

other hand, AlGaN/GaN devices may have relaxed QWs but the spontaneous 

polarisation is high and again, a net polarisation along [000-1] is created. 
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This net polarisation creates an internal electric field across the wells [55][56], 

resulting in band bending, which decreases the electron-hole wavefunction overlap 

and increases the radiative recombination time (i.e. lower radiative recombination 

rates). This consequently decreases the quantum efficiency of the device and also red 

shifts the emitted wavelength, due to the smaller bandgap (see figure 1.15 a). The 

QCSE can be potentially reduced or eliminated with alternative growth directions 

such as nonpolar or semipolar planes (figure 1.15 b), more details in section 1.6. 

 

 
Figure 1.15: Schematic demonstrating the quantum confined Stark effect (QCSE). (a) 

Net polarisation in Ga-face (0001) material causes an electric field across a 3 nm 

InGaN QW. (b) No net polarisation in the growth direction for nonpolar material. 

Reproduced from [24]. 
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Although the emission wavelength is initially red shifted, there is a subsequent blue 

shift as the drive current increases, which is due to screening of the internal electric 

fields by the increasing charge carrier density. This variation in emission wavelength 

is detrimental to devices such as white LEDs.  

 

• Current crowding 

Most LEDs are fabricated on insulating substrates such as sapphire or AlN (for deep-

UV emitters). Therefore the electrical contacts have to be attached on one side of the 

device (figure 1.13). The attainment of high doping levels in n-type (Si-doped) and p-

type (Mg-doped) AlGaN is more difficult than in GaN due to the higher dopant 

ionization energies, a consequence of the larger band gap. This low doping level 

makes the AlGaN layers less electrically conductive. This leads to a problem of 

uneven current injection into the active region caused by the higher resistivity of the 

electrode contacts to the AlGaN layer. This phenomenon is termed ‘current crowding’ 

(i.e. some regions have very high current densities) [57]. In addition, higher resistivity 

also leads to Joule heating when using higher operating voltages. Therefore, 

additional thermal management efforts have to be employed to cool the device. 

However, a promising solution to this problem has been proposed in the literature. For 

example, a micro-pixel design was demonstrated, which provided a more uniform 

current injection distribution [58]. 

 

1.5 Ultraviolet light emitting diodes 

 

Today, ‘visible’ light emitting device technology is approaching its maturity and 

GaN-based white LEDs can already be found in many applications such as stadium 

television displays, traffic lights, flashlights and vehicle lighting. Many research 

groups are shifting their focus towards shorter wavelength UV GaN-based devices 

that can be employed in ‘non-visual’ applications, such as Blue-ray™ Discs, 

sterilization of water and other substances, and biomedical instruments [59]. These 

applications for UV LEDs together with the potential of producing warm white lights 

with red phosphors will create a promising new market that will be worth billions of 

dollars [18]. 
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The UV region (10-400 nm) in the electromagnetic spectrum is categorised into four 

sub-regions: UV-A, UV-B, UV-C and vacuum UV (figure 1.16). 

 

 
Figure 1.16: An EM spectrum showing the UV sub-regions. Modified from [1]. 

 

According to the band energy diagram shown in figure 1.1, the wavelength of III-

nitride materials spans the entire UV-A, UV-B and UV-C regions from about 200 nm 

for AlN to 400 nm for InGaN. Thus, in theory III-nitrides can be excellent candidate 

materials for fabricating these UV devices. Their existing and potential future 

applications are briefly summarised in Table 1.2. 

 

Table 1.2: Existing and potential future applications for UV LEDs [10]. 

UV-A UV-B and UV-C 

• Counterfeit currency detection 

• Industrial curing 

• Photocatalytic deodorizing 

• Pump sources for phosphors for 

white light LEDs 

• Purification of air or water 

microbiological contaminants. 

• Biological weapon detection 

• Treatment for skin disorders 

 

UV-A devices are relatively easy to manufacture owing to the similarity with growth 

technology for existing visible LEDs. These devices have already found a wide range 

of applications, especially in the industrial curing sector [60]. A UV LED with an 

output power of over 5 W at 365 nm has already been commercialised [61]. 

The Earth’s ozone layer is a strong absorber for deep UV (UV-C and below), so very 

little can penetrate through the atmosphere and arrive at the Earth’s surface. 
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Biological species therefore do not develop any resistance towards deep UV, and 

hence deep UV is commonly used to inactivate microbiological contaminants in air 

and water. It is possible to produce UV-B and UV-C wavelengths artificially, but the 

existing UV mercury lamps are expensive, fragile and inefficient [60]. For this reason, 

UV LEDs are soon expected to replace these lamps and will also find many other 

applications, especially in portable products. It is predicted that UV-C LEDs will 

contribute to half of all UV-LED sales by 2015 [18] owing to the crucial air and water 

disinfection market and by 2017 they will account for over two-thirds of the total UV 

LED market [18]. 

Although several LED manufacturers are strongly targeting the UV devices market, 

significant improvements over technical and economic challenges such as lifetime, 

efficiency and cost (UV-C LEDs are currently at least 50 times more expensive than 

UV-A LEDs [18]) are required before they become truly cost-effective. 

 

1.5.1 Specific problems with UV LEDs 
 

• Long-wave (UV-A) 

In the UV-A (long-wave) region, the devices can be sub-divided into the AlGaN 

system and the InGaN system. For a UV emission wavelength that is longer than 365 

nm, InGaN quantum wells are normally used, whereas AlGaN and GaN can be used 

for wavelengths between 365 nm and 330 nm. 

 

 
Figure 1.17: Typical quantum well materials used in the UV region. 

 

InGaN UV-A devices with >365 nm emission wavelength have a mature device 

technology due to their similarity with blue LED technology. 330-365 nm UV devices 

can also be obtained with narrow GaN quantum wells with AlGaN barriers but the 

large lattice-mismatch between the different materials can impinge on the device 

performance. In the case of 315-330 nm emission ranges, AlGaN quantum wells are 
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required and several issues start to arise. Although several groups have been using 

other approaches, such as AlxGa1-xN/AlyGa1-yN multiple quantum wells [62] or 

double-heterostructure active layers [63] in an attempt to achieve similar efficiencies 

to InGaN devices, the emission efficiency is still lower for AlGaN devices. 

 

The origin of the relatively high efficiency of InGaN QWs compared to AlGaN is 

controversial. High dislocation densities are believed to cause low device 

performance. However, as mentioned earlier, III-nitride LEDs based on In-related 

alloys still emit intense light despite the high dislocation densities occurring in the 

material. The original explanation was based on the formation of indium-rich clusters 

in the InGaN quantum wells. These clusters have a smaller bandgap than GaN, which 

localises electron and hole carriers so that they are not able to diffuse to the 

surrounding dislocations, resulting in lower non-radiative recombination rates. The 

evidence was supported by electron microscopy [64][65] and thermodynamic 

calculations [66]. However, this hypothesis has been questioned. It has been observed 

that the indium-rich clusters were formed by electron beam damage inside the 

electron microscope, and a clear correlation between electron beam dosage and the 

amount of clustering was observed [46]. This indicates the possibility of clustering 

being just an artefact of the observation techniques. 

More recent work suggests that the intense light emission in InGaN-based devices 

might be due to monolayer-height interface steps on the InGaN quantum wells [67] 

and a recent 3-D atom probe study has confirmed that this phenomenon occurs [68]. 

3-D atom probe also confirms that the InGaN is a random alloy with no gross In-rich 

clusters. These interface steps are believed to produce sufficient carrier confinement 

at room temperature. An additional carrier localisation mechanism is due to statistical 

fluctuations in the In content of the random InGaN alloy. Nevertheless, more studies 

are required in order to understand the fundamental physics in the active regions of 

both visible and UV LEDs. 

 

• Mid- and short-wave (UV-B and UV-C) 

Mid- and short-wave UV devices are sometimes termed ‘deep-UV’ devices. As 

mentioned earlier, these deep UV devices are of great interest in many applications 

but have yet to be proven cost-effective due to several key challenges that are 
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currently the subject of intense research: (i) metal contacts absorb light emitted by 

QWs. (ii) It is difficult to p-dope AlGaN due to the much higher dopant ionisation 

energies. Therefore p-GaN has to be used instead but it has a smaller band gap than 

the active region, which means that it absorbs the light emitted from the quantum 

wells and causes low light extraction efficiency. Several groups [69][70] have 

demonstrated that by decreasing the defect densities in devices with p-GaN layers, the 

devices are able to output reasonable powers despite the absorbing nature of the 

substrates. (iii) UV-transparent and low defect density AlN and AlGaN materials are 

essential to produce high quality UV LEDs with emission wavelengths below 365 nm. 

AlGaN films with high Al contents are necessary to achieve the required bandgap for 

deep UV wavelengths (see figure 1.17). However high Al content AlGaN is 

considerably more difficult to grow than GaN, because aluminium adatoms have a 

significantly lower surface mobility than Ga adatoms at the growth temperature. 

During growth, these Al adatoms would not be able to diffuse toward the 

energetically favourable lattice steps or kinks to create a smooth layer-by-layer 

growth front [61] (see figure 1.5). Consequently, a rougher initial growth surface is 

created with higher dislocation densities (~ 1010 – 1011 cm-2) as the islands coalesce. 

 

There have been several attempts to overcome this high-Al content issue: Pulsed 

atomic layer epitaxy (PALE) is a technique in which the flow rate of precursors is 

modulated during growth [71]. This could improve the mobility of aluminium 

adatoms to achieve a more uniform surface. A similar approach was used for the 

samples studied in chapter 3 and chapter 5, where a TMA pre-dose step was involved 

prior to the thin film growth to create an Al-polar growth surface, resulting in a much 

smoother template surface and lower TD density compared to the conventional 

(mixed polarity) AlN growth. Another approach in the literature involves the use of 

much higher temperatures (~ 1500 °C) during growth. A lower dislocation density of 

~ 106 cm-2 has been reported for AlN layers grown on 6H-SiC [72]. 

 

Strain is also an important factor that should be addressed when fabricating these 

high-Al content III-nitrides. The large lattice mismatch and thermal expansion 

coefficient mismatch with GaN template and sapphire substrate easily results in 

cracking of the layers, especially for the thick n-type AlGaN layer. One approach is 
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the use of AlN/AlGaN superlattices (SLs) as buffer layers [73]. This has shown 

promising results in reducing the cracking of thick AlGaN layers on top of sapphire 

substrates. In fact, the use of these buffer layers together with the PALE growth 

technique and other packaging improvements (e.g. flip-chip design) facilitated the 

development of the first high quality UV-C LEDs with an external quantum 

efficiency (EQE) higher than 1% [74]. 

 

1.6 Alternative crystal orientations 

 

Most of the III-nitride research and device development so far has been based on the 

growth along hexagonal wurtzite (0001) c-plane. As mentioned previously, this leads 

to the quantum-confined Stark effect, which ultimately decreases the internal quantum 

efficiency and causes a red shift. 

One solution is to grow the cubic zinc blende form of the material, where the 

centrosymmetric crystal structure eliminates any possible polarisation. However, this 

method is not widely accepted due to cubic III-nitrides being metastable phases, 

requiring MBE growth. 

 

A potential solution to the QCSE problem is growth on III-nitride films orientated 

along crystallographic directions where the piezoelectric field is small or zero, such as 

the nonpolar (11-20) or semipolar (11-22) planes. Much research has now been 

focused on films oriented in these directions, since the publication of the first report 

of successful nonpolar GaN growth in 2000 [75] and the development of the first 

nonpolar and semipolar LEDs in 2004 by Chakraborty et al. [76]. 

 

• Nonpolar 

Nonpolar GaN grown on (11-20) or {1-100} can theoretically lead to shorter radiative 

recombination times and thus higher device emission efficiency. Since nonpolar GaN 

is in a stable structure (hexagonal wurtzite), its growth is not limited to MBE and 

therefore higher growth rate MOCVD and HVPE growth methods can be used, which 

provide the ability to fabricate more complex and thicker films. 
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Nonpolar GaN can either be grown with ‘a-plane’ {11-20} or ‘m-plane’ {1-100} 

orientations. Both directions are perpendicular to the polar c-axis, which in this case 

lies in the growth plane, so films grown in these orientations are free from internal 

electric fields. This can be particularly beneficial for the device performance as 

electron-hole wavefunctions can remain overlapped resulting in high recombination 

efficiencies and there is no screening effect as the driving current increases, ensuring 

no shift in the emitted wavelength. This phenomenon has been confirmed in the 

literature [38] and also demonstrated in the photoluminescence data obtained in this 

work (see chapter 6). 

 

‘a-plane’ GaN can be grown on substrates such as r-plane (1-102) sapphire, a-plane 

SiC or (001) LaAlO3 and ‘m-plane’ GaN can be grown on m-plane SiC, (100) LiAlO2 

or bulk m-plane GaN. Both have been demonstrated successfully [38]. 

 

 
Figure 1.18: Schematic of nonpolar and semipolar planes relevant for experimental 

growth. Reproduced from [38]. 

 

The idea of nonpolar growth was reported more than thirty years ago [160], but 

unfortunately initial films had surfaces too rough for device growth. A breakthrough 

regarding these nonpolar films was finally achieved in 2000 when Waltereit et al. [75] 

reported the growth of m-GaN grown on a (100) LiAlO2 substrate using MBE. They 

obtained a film surface almost as smooth as c-plane GaN films. This at last enabled 

the growth of nonpolar III-nitrides device heterostructures. Since then research into 
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nonpolar III-nitride has spread rapidly and significant progress has been achieved in 

only a few years. For example in 2002 a-plane GaN grown on r-plane sapphire by 

MOCVD was reported by Craven et al. [77] and a year later, a-plane GaN grown by 

HVPE was successfully demonstrated by Haskell et al. [78]. 

 

• Semipolar 

Although the progress in nonpolar devices has already shown some promising results, 

the performance is not yet fully optimised due to many challenges (which will be 

addressed in the next section). Therefore significant interests have been focused on 

alternative inclined surfaces such as (10-1-3), (10-1-1) and (11-22) [160]. These 

orientations have lower polarisation, as theoretical calculations show that the total 

polarisation discontinuity varies with these growth orientations (figure 1.19). These 

planes are commonly termed ‘semipolar’ planes. 

 

 
Figure 1.19: Calculated polarisation charge density in InGaN/GaN QWs as a function 

of growth orientations, in which θ = 0° corresponds to the c-plane. The internal 

electric field is zero around θ = 45°. (after [79]) 

 

The first (10-1-1) semipolar GaN film was fabricated on (100) MgAl2O2 by MOCVD 

[80], and the first (10-1-3) film on (110) MgAl2O2 by HVPE [81]. A smooth surface 

morphology was obtained for these films by a 3-degree substrate miscut in the [001] 

direction. (11-22) semipolar GaN/InGaN MQWs were first produced with a stripe 

patterned GaN template [82]. These devices have already shown a reduction in the 

red-shift of emission wavelength, as predicted by the theory. 
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1.6.1 Problems with nonpolar and semipolar orientations 
 

Despite progress and development of both nonpolar and semipolar nitride materials, 

there are many challenges yet to be solved and several microstructural defects such as 

dislocations will have to be fully analysed and understood in order to optimise the 

devices. 

Nitride heterostructures are known to have high dislocation densities, which are 

highly detrimental to device performance. Although dislocation density reduction is 

not as crucial as for group II-IV devices, for other III-Vs, reduction of dislocation 

densities will improve device performance. Nonpolar and semipolar nitrides are 

known to have high stacking fault (SF) densities [38] in addition to high threading 

dislocation (TDs) densities. Stacking faults have typical densities of ~105 cm-1 in 

nonpolar films grown on r-plane sapphire [38] and the dominating type of stacking 

fault is the basal plane stacking fault (BSF), which is bounded by two partial 

dislocations (see section 1.3.4). A detailed study [83] of BSFs present in a-plane GaN 

grown on r-plane sapphire suggested that they are type I1, which constitutes as a very 

thin zinc-blende quantum well embedded in a wurtzite matrix (figure 1.20). Charge 

carriers can be confined in these zinc-blende quantum wells and they are responsible 

for a 365 nm emission peak in photoluminescence (PL). Liquid helium temperature 

cathodoluminescence (CL) spectra also suggested that the spectra from nonpolar GaN 

films are generally dominated by strong 362-363.4 nm emissions. The variation in the 

wavelength is dependent on film thickness [80].  

 

 
Figure 1.20: Schematic of nonpolar GaN/InGaN SQW showing the intersection 

between zinc-blende BSF and SQW. [84] 
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Other observed emission bands such as the yellow emission band represent the same 

defects, i.e. impurities, as in polar materials. Semipolar orientations are less studied 

with respect to the origin and behaviour of luminescence features. However they are 

expected to be comparable with those observed in nonpolar GaN due to the similar 

crystalline defects present in the microstructure. Other important defects such as the 

commonly observed threading dislocations and partial dislocations also appear in 

these off c-axis orientations and may act as non-radiative recombination centres. It is 

crucial to reduce defect densities in order to realise the potential of these off c-axis 

optoelectronic devices. 

Another key challenge with nonpolar and semipolar orientations is that the surface 

morphology is much rougher than for c-plane films due to anisotropic in-plane biaxial 

lattice constants leading to different strain states at different planes. For instance, the 

lattice mismatch is larger in the [1-100] direction compared to [0001] directions in a-

plane GaN grown on r-plane sapphire, causing large surface striations (with several 

hundreds of nanometres difference in heights) along the [0001] direction (figure 

1.21). 

 

 
Figure 1.21: AFM image of a nonpolar a-plane GaN surface showing large 

fluctuation in surface height and domain boundaries (further details in chapter 6). 

 

This surface roughness is detrimental to the quality of subsequent layer growth, 

especially for the active region where planar film growth is essential to ensure that 

carriers do not get trapped at interfacial defects caused by surface undulations. 
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1.7 Summary and challenges 

 

The development of conventional c-plane near-UV LEDs is approaching a mature 

stage. However, deep-UV c-plane LEDs, with high Al-content alloys, still have very 

low internal and external quantum efficiencies and much attention is required to 

address issues such as the high dislocation densities present in the film. Growth of 

nonpolar and semipolar crystal orientations has made rapid progress over the last 10 

years, and off c-axis growth may be beneficial for UV devices owing to the potential 

for achieving a reduced or eliminated QCSE. So far, the application of ELOG has 

enabled a reduction in defect densities in both polar and nonpolar films, but this does 

not prove to be effective on AlGaN films as AlGaN nucleates on the mask itself. 

Alternative approaches such as ‘hetero-ELO’ [86] where AlGaN is grown on a 

grooved GaN substrate using an AlN interlayer has been reported to give low 

dislocation densities (2 x 107 cm-2). Despite these advances, the efficiency of UV 

emitters is around ~5 % of that of InGaN/GaN blue/green emitters [85]. This indicates 

that there are many challenges and more detailed work is necessary before the full 

potential of these UV emitters can be exploited. On-going development includes 

further optimisation of growth quality and better understanding of the effects and 

properties of the defects. 
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2 
Experimental techniques 
 

2.1 Aim 

 

It has been discussed in chapter 1 that the performance of III-nitride optoelectronic 

devices is closely related to their microstructures, in particular the effects of defects. 

These microstructural features are typically on a nanometre scale. Characterisation 

techniques with the capabilities of extracting structural, compositional and optical 

information from the sample within this sub-micron to nanometre scale ranges can be 

extremely important. The use of a combination of several experimental techniques is 

required in order to fully characterise these III-nitride films. Destructive techniques 

such as transmission electron microscopy (TEM) and cathodoluminescence scanning 

electron microscopy (SEM-CL) can be used to investigate the internal microstructure, 

chemical composition and optical properties of the films, while non-destructive 

techniques such as atomic force microscopy (AFM), X-ray diffraction (XRD) and 

optical microscopy can be used to determine the surface morphology and crystallinity 

of the films. 

 

2.2 Atomic force microscopy (AFM) 

 

Many types of scanning probe microscopy (SPM) were established soon after the 

invention of SPM in the early 1980s [87]. Atomic force microscopy (AFM) is a very 

high vertical resolution type of SPM and has become one of the foremost tools for 
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imaging, measuring and manipulating matter at the nanoscale. In this work, AFM is 

used to obtain surface topographical information regarding III-nitride materials non-

destructively. An atomic force microscope includes a small tip attached to the end of a 

flexible cantilever. This cantilever is rastered over the sample surface and experiences 

attractive forces when the tip/surface distance is large, due to Van der Waals forces, 

and repulsive forces when tip/surface distance is small, due to electron clouds of both 

surface and the tip. These forces cause deflection of the cantilever hence creating a 

variation in its vertical and lateral position. A laser and a photodiode detector are used 

to measure this change in position precisely (see figure 2.1) and a feedback loop is 

used to restore the tip to its original position at each measurement point, producing a 

map containing vertical and lateral information. 

 

 
Figure 2.1: Schematic of AFM setup. 

 

There are two primary operating modes in AFM: contact mode and tapping mode. 

Contact mode is the most common method of operation of the AFM. The tip and 

sample remain in close contact as the scanning proceeds. “Contact” occurs when the 

tip is in the repulsive regime of the intermolecular force curve (see figure 2.2) and 

large lateral forces are exerted on both the sample and the tip as the tip is ‘dragged’ 

over the specimen. The lateral frictional forces are eliminated in the case of 

TappingMode mode to reduce tip wear: the cantilever vibrates near its resonant 

frequency close to the sample surface so that the tip ‘taps’ the surface at the bottom of 

its swing. Changes in the tip-to-surface distance caused by the surface morphology 

lead to changes in the resonant frequency of the cantilever and the damping of the 

oscillation. An electron feedback loop monitors these changes in oscillation amplitude 
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and moves the tip higher or lower to keep a constant oscillation amplitude and hence a 

distance from the surface. These vertical tip movements are recorded to produce a 

map of surface topography. 

 

 
Figure 2.2: An intermolecular force curve  

 

The X, Y and Z direction movement of the sample stage is controlled by three 

piezoelectric motors, which have extremely small step sizes and hence the vertical 

resolution is extremely high, as good as 0.25 Å [88]. However, the lateral resolution is 

poorer and is dependent on the size of the tip, i.e. a typical silicon tip has a radius of 

5-15 nm and this is the theoretical lateral resolution. The resolution can be worse if 

the tip becomes blunt or acquires debris during the scanning [89] (figure 2.3), the 

breadth of a tip may prevent it reaching the bottom of narrow pits or feature (figure 

2.3b): the image may also become distorted during scanning or may show the tip 

geometry itself in the case of a damaged tip [90]. Therefore care should be taken 

when interpreting the features on the image that are smaller than the tip. 

 

 
Figure 2.3: Schematic showing the lateral resolution of a protuberance is dependent 

on the tip size. (a) AFM trace width increase due to the tip size is larger than the 
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surface feature. (b) AFM trace depth is under-estimated as the tip is larger than the 

trench. 

 

AFM was performed on a Veeco Dimension 3100 AFM. Most of the nonpolar 

samples studied in chapter 6 exhibited some directionality in surface morphology 

along [0001] direction in GaN and therefore a [1-100] scan direction was used 

perpendicular to the surface features to minimise artefacts and ensure an accurate 

representation of the sample surface. A slow scan rate and low amplitude set-point 

(distance between the tip and surface) was also used for these nonpolar samples with 

rough surfaces to minimise tip damage and obtain good feedback. 

 

The AFM has several advantages over the scanning electron microscope (SEM). 

Scanning electron microscopy can only provide a two-dimensional projection of a 

sample surface while AFM is able to provide a true three-dimensional surface profile. 

Furthermore, in contrast to electron microscopy, AFM is a non-destructive technique 

and the sample does not require any special treatment. Most AFM modes work 

perfectly well in air or even liquid environments without the need for a vacuum 

environment. These key benefits make AFM an incredibly versatile technique. 

 

2.3 Scattering from crystals 

 

The characterisation techniques that are described in the rest of this chapter (X-ray 

diffraction and electron microscopy) are all related to the interactions of X-rays or 

electrons passing through a specimen and therefore the theory of scattering from 

crystals will be briefly reviewed. 

 

The periodic array of atoms in a crystal can act as a diffraction grating, where high-

energy electrons (e.g. 200-300 keV electrons in the TEM) and X-ray waves can be 

scattered from each atom and interfere with each other either constructively or 

destructively (overlapping waves either add together to produce stronger peaks or 

subtract from each other to remove peaks), producing a diffraction pattern on a 
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detector. The resulting wave interference pattern is described by the Bragg Law and 

can be analysed using the crystals reciprocal lattice. 

 

Bragg diffraction describes the intense peaks of reflected patterns of radiation at 

certain specific wavelength and incident angles, during diffraction through crystalline 

materials: 

 

 

 

Where n is an integer, λ is the wavelength of incident wave, dhkl is the spacing 

between the planes in the atomic lattice, and θB, the Bragg angle, is the angle between 

the incident ray and the scattering planes (figure 2.4). 

 

 
Figure 2.4: Schematic of constructive interference (left) and destructive interference 

(right) of an electron or X-ray incident beam diffracted from parallel planes in the 

crystal separated by a distance dhkl. Modified from [92]. 

 

The diffraction pattern is related to the crystal’s reciprocal lattice. Each set of planes 

(hkl) in a crystal corresponds to a reciprocal lattice point, the distance between each 

point is described by a lattice vector |g| (= hg1 + kg2 + lg3) which is equal to the 

reciprocal of the plane spacing dhkl, and is related to the real lattice vectors of the 

crystal, where: 

 

nλ = 2dhkl sinθB
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, ,  

 

With the concept of the reciprocal lattice, the position of diffraction spots can be 

explained by Bragg’s law in terms of the Ewald sphere construction. This is a sphere 

which intersects the origin of the reciprocal lattice, and describes the relationship 

between the wave vector of the incident and diffracted x-ray or electron beams, the 

diffraction angle for a given reflection, and the reciprocal lattice of the crystal (figure 

2.5).  

 

 
Figure 2.5: All the possible diffraction peaks can be found for a known reciprocal 

lattice and wavelength of radiation using the Ewald sphere when Bragg’s condition is 

satisfied. Modified from [93] 

 

2.4 High resolution X-ray diffraction (HRXRD) 

 

XRD is a non-destructive technique that is commonly employed to examine the 

crystalline quality of the materials. In the field of III-nitrides, XRD is a relatively 

rapid means of measuring the interplanar spacing, lattice parameters and is 

consequently an indirect method of measuring the composition of heterostructure 

layers based on Bragg’s law [91]. 

 

g1 =
a×b
a ⋅b× c

g2 =
b× c
a ⋅b× c

g3 =
c× a
a ⋅b× c
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In order to obtain as much information as possible from semiconductor 

heterostructures, for instance, the signal from MQWs, it is often required to use a 

number of precision components in the XRD apparatus to acquire high-resolution 

measurements [92] (i.e. to resolve the width of the rocking curve to within a few arc 

seconds). 

The resolution of XRD can be related to the divergence (δθ) of the X-ray beam, which 

is expressed as:  

 

 

 

Where h is the X-ray source size, s is the slit size and a is the source-specimen 

distance (Figure 2.6). For a typical low-resolution case where h = 0.4 mm, s = 1 mm 

and a = 500 mm, δθ ~ 500 arc seconds, however, the width of the rocking curve for 

highly perfect crystals is a few arc seconds. 

 

 
Figure 2.6: Relationship between the divergence with source size, slit size and 

distance between source and specimen. 

 

High-resolution XRD (HRXRD) measurements therefore require a small divergence 

and a small wavelength spread of the beam incident upon the specimen, as well as a 

narrow acceptance angle with the detector. The HRXRD measurements carried out 

throughout this thesis were performed on a Philips PW3050/65 high-resolution X-ray 

diffractometer. A CuKα X-ray radiation source was used due to its high intensity and 

relatively large wavelength (λ(CuKα) = 1.540562 Å) so the spacing of reciprocal 

lattice points is similar to the radius of the Ewald sphere (i.e. only one or two 

reciprocal lattice points can be at the Bragg condition). 

δθ =
h+ s
a
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Figure 2.7: Schematic of key components for HRXRD configuration. (a) Double-axis 

configuration for lower resolution (open detector) and (b) triple-axis configuration for 

high-resolution (with analyser). Reproduced from [93]. 

 

HRXRD measurements may be taken in either of two modes: double- or triple-axis 

configuration (figure 2.7) to achieve different angular resolutions. In double-axis 

configuration, the first axis is used for the adjustment of the beam conditioner 

(comprising optical elements such as a monochromator) and the second axis is used to 

scan the specimen through the Bragg angle. In triple-axis configuration, the additional 

third axis allows the adjustment of the analyser in front of the detector (in a similar 

way as the monochromator reduces the angular spread of the X-ray source). This 

provides the fine-scaled information necessary to obtain the highest resolution, but at 

the expense of intensity, and hence requires an increased time for acquisition. The 

movement along the three axes of measurement determines the precision and 

accuracy of the instrument [94]. Almost all of the measurements in this thesis were 

carried out in triple-axis configuration to obtain the highest resolution possible. 

 

Two types of scan are typically performed for III-nitride semiconductors. ω-scans 

measure the film quality by scanning the diffraction spot in an arc. The broadening of 

the peak is related to dislocations and wafer curvature. ω-2θ scans are required for 

lattice parameter determination. Both ω and ω-2θ scans are also known as rocking 

curves, i.e. the crystal is “rocked” about the ω-axis perpendicular to the incident 

beam, the resulting plot giving the intensity variation through the reciprocal lattice 

point. The following table provides an overview of the information that can be 

derived from rocking curves obtained from HRXRD measurements. 
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Table 2.1: Effect of substrate and epilayer parameters upon the rocking curve [12] 

Material 

parameter 

Effect on rocking 

curve 

Distinguishing features 

Mismatch 
Splitting of layer 

and substrate peak 
Invariant with sample rotation 

Tilt or 

misorientation 

Splitting of layer 

and substrate peak 
Changes sign with sample rotation 

Dislocation Broadens peak 

- Broadening invariant with beam size 

- No shift of peak with beam position on the 

sample 

Mosaic spread Broadens peak 

- Broadening may increase with beam size 

up to mosaic cell size 

- No shift of peak with beam position on the 

sample 

Wafer curvature Broadens peak 

- Broadening increases linearly with beam 

size 

- Peak shifts systematically with beam 

position on sample 

Relaxation 
Changes the 

splitting 

Different effect on symmetrical and 

asymmetrical reflection 

Thickness 

- Effects intensity 

of peaks 

- Introduces 

interference fringes 

- Integrated intensity increases with 

thickness up to a limit 

- Fringe period is controlled by the thickness 

Inhomogeneity 
Effects vary with 

position on sample 
Individual characteristics may be mapped 

 

Although peak broadening can be related to several factors as listed above, for 

HRXRD measurements performed on high dislocation density films, the broadening 

from lattice rotations at dislocations dominates [95] and can be used as a measure of 

dislocation density. A simple relation between the dislocation density and broadening 

of the rocking curve is expressed as [96]: 
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Where ρ is the dislocation density in cm-2, β is the broadening of the rocking curve in 

radians and b is the Burgers vector for the dislocation in cm. 

 

2.5 Scanning electron microscopy (SEM) / 

Cathodoluminescence (CL) 

 

Cathodoluminescence (CL) is light emitted by a material due to irradiation by an 

electron beam. The beam of a scanning electron microscope (SEM) is ideal for this 

purpose. The SEM-CL measurements in this work were performed on a FEI XL30s 

with a field-emission gun (FEG-SEM) for providing a high brightness and small 

probe size for a given beam current. In a typical SEM set-up, the electron gun is 

positioned at the top of the column (figure 2.8). Electrons are generated when a high 

voltage (adjustable between 1 to 50 kV) is applied between the anode and cathode. 

The focused electron beam can be achieved by demagnifying the beam through sets of 

electromagnetic lenses. The system, including the sample and detectors, is kept under 

high vacuum to avoid electron scattering or the build up of any contamination to the 

sample or electron source [97]. Two deflection coils positioned below the condenser 

lens are used to control the scanning of the electron beam probe across the sample. 

 

ρ =
β 2

9b2
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Figure 2.8: Schematic of basic components and configuration of a scanning electron 

microscope. 

 

The impingement of a SEM electron beam with typical energies of 1 keV to 30 keV 

can result in many different inelastic scattering processes as beam electrons lose 

energy in the solid (figure 2.9). These scattering processes can be extracted and 

detected by various detectors [97]. The secondary electrons (SE) can be used for 

evaluating topographic information. The back-scattered electrons (BSE) can be used 

for structural analysis of solids, since the image contrast depends on atomic number. 

X-rays provide compositional information of the sample. These beam electrons are 

also able to excite electrons from the valence band (VB) to the conduction band (CB) 

in semiconductors and leave behind holes. These electrons and holes can recombine 

(electrons fall back down to the VB) and emit photons and the process is termed 

cathodoluminescence (CL) emission. 
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Figure 2.9: Interaction between electron beam and the sample. 

 

The CL emission therefore is characteristic of the electronic transitions in 

semiconductors, and is able to provide high spatial resolution information on a variety 

of material properties. The main CL applications include: identifying luminescence 

centre concentrations and distributions, estimation of material composition [98], 

estimation of carrier diffusion length from the dependence between CL intensity and 

electron beam energy [99], and determining carrier lifetime from time-resolved CL 

measurements [100]. 

 

Two kinds of information can be obtained in SEM-CL: microscopy information (CL 

images or maps) and spectroscopy information (CL spectra). Throughout this thesis, 

the CL measurements were taken in an SEM to give optical and structural information 

about defects in III-nitride semiconductors. 

 

The emitted photons (CL emission) are collected through a precision diamond-turned 

paraboloidal aluminium mirror (up to 85% light collection efficiency [98]) positioned 

directly above the sample in the Gatan MonoCL4 (figure 2.10). The DigiScan II beam 

control system is attached to the MonoCL4 to enable imaging of multiple channels 
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(i.e. CL and SEM) and to enable control over pixel density and pixel dwell time. The 

MonoCL4 consists of a chamber-mounted monochromator and a highly sensitive 

photomultiplier tube (PMT) with a wavelength detection range of 160 nm to 930 nm. 

The incident photons are converted into electrons as a consequence of the 

photoelectric effect in the PMT. This electrical signal is then enhanced and amplified 

by the high voltage electron multiplier before entering the microscope. The gain of 

the PMT detector increases with increasing applied voltage up to about 75% of the 

maximum high tension (HT); further increase in HT would result in increasing noise. 

This high collection and transmission efficiency allows the CL to be performed 

without excessive beam injection voltages or currents, and hence high spatial 

resolution CL is achievable. Cryogenic temperatures at ~ 7K or ~ 90K using a Gatan 

CF302 continuous flow liquid helium cold stage or a nitrogen cold stage respectively 

can also be employed to achieve further enhancement of the CL resolution. This is 

possible because the CL emission can often be enhanced significantly due to radiative 

recombination being favoured at this temperature, so more signal can be collected at 

low injection condition. 

 

 
Figure 2.10: Schematic of emitted photons coupled to a detector via a paraboloidal 

mirror located directly above the sample surface. 

 

In the CL imaging mode, the system is able to operate in panchromatic or 

monochromatic setup. In panchromatic mode, all the transmitted light bypasses the 

monochromator and is collected directly by the PMT detector (figure 2.11, blue light 

path), providing a map of the total light output from the scanned area on the 

specimen. In monochromatic mode, a map of the light output at a specific wavelength 



Chapter 2  51 

 

   

can be acquired by dispersing the light through a diffraction grating (figure 2.11, red 

light path). The small range of wavelength (the bandpass) is controlled by the 

magnitude of the exit slit before entering the PMT. 

 

 
Figure 2.11: Schematic illustrating the path of emitted light in panchromatic (blue) 

mode and monochromatic (red) mode. 

 

The CL spatial resolution is determined theoretically by the size of the electron beam 

and by the beam-specimen interaction volume. Specimen characteristics such as 

specimen morphology, surface states (including dead layers present due to specimen 

preparation techniques) [101] and material-specific absorption characteristics can also 

influence the result obtained [102]. Higher electron beam energy provides a larger 

interaction volume and signal-to-noise ratio at the expense of spatial resolution 

 

Monte Carlo simulations were used to estimate the beam-specimen interaction 

volume, which as a result provides a guide to the approximate CL spatial resolution 

that can be obtained from the samples [103]. The simulation results shown here were 

carried out using CASINO [104] software. The simulation of the sample was 

generated using the sample C2691D growth recipe (see chapter 7 for sample details), 

which has 10 repeated layers of AlGaN/GaN quantum wells. Figure 2.12 shows the 

simulation of an electron beam with 1 keV and 5 keV beam energy, indicating that the 

interaction volume has an approximate radius of 25 nm at 1 keV, to over 200 nm at 5 



Chapter 2  52 

 

   

keV. Although the theoretical interaction volume for 5 keV exceeds 200 nm, most of 

the light output is concentrated and emitted from the top centre layer of the film. 

Therefore, the practical effective interaction volumes are less than the estimated 

values and hence the lateral resolution is on average slightly higher. 

 

  
Figure 2.12: A Monte Carlo simulation of electron beam and sample interaction 

volume for sample C2691D with a 1 keV (lef) and 5 keV (right) beam voltage. 

 

In CL spectroscopy mode, spectral analysis can be obtained by passing the CL 

emission through the entrance slit of a monochromator to a diffraction grating. A 

wavelength range is then selected for light passing through the exit slit to the detector. 

The CL intensity is then analysed as a function of wavelength. Spectral acquisitions 

can be achieved with a PMT (serial spectroscopy) or an array detector (parallel 

spectroscopy).  

 

In serial spectroscopy mode, the electron beam remains stationary at the region of 

interest and a stepper motor rotates the diffraction grating (dwell time and increment 

steps are adjustable) to change the wavelength of the light before reaching the PMT 

(figure 2.13). The CL intensity of the selected wavelength is collected from each 

rotation for a certain period of time (known as the exposure) to record the CL 

spectrum as a function of wavelength in nanometres. 

 

In parallel spectroscopy mode, the diffraction grating remains stationary. The light is 

collected with a multi-channel charge-coupled device (CCD) camera instead of a 

PMT (figure 2.13). Each pixel in the CCD camera acts as an exit slit which responds 

to a particular wavelength of the light dispersed from the monochromator. The signal 

from every pixel can be recorded and integrated simultaneously. Hence parallel 

spectroscopy acquisition is much faster (in milliseconds) in comparison to serial CL 
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mode. This is beneficial for analysing electron beam sensitive materials, such as 

InGaN [93].  

 

 
Figure 2.13: Schematic illustrating the light path for serial CL acquisition (left). The 

diffraction grating is rotated to select a specific wavelength before entering the PMT. 

In parallel CL acquisition (right), all the light diffracted from the diffraction grating is 

collected with a CCD array detector in a parallel manner. 

 

It is also possible to acquire both spatial and spectral information in a single data set 

with spectrum imaging (SI) [98]. This is achieved when the electron beam is rastered 

across the region of interest in either 3D mode for full spectrum imaging or in 2D 

mode for a spectrum line scan (figure 2.14). The region of interest is selected from a 

standard CL image acquired with the PMT to achieve a high pixel density. The spatial 

information is then obtained in SE imaging mode and spectral information is obtained 

using parallel CL with a CCD camera in a “spectrum per pixel” manner within this 

region of interest to form a spectrum image. 
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Figure 2.14: Schematic diagram of a 3D spectrum image (left) and a 2D spectrum 

image (right) 

 

The CL spectral resolution depends on the luminescence properties and temperature 

of the sample, and the detection capability of the CL system. Materials related 

dependency could be minimised with the aid of cryogenic temperatures as mentioned 

earlier. Therefore, the spectral resolution is mainly limited by the detection capability 

of the CL system, such as the width of the diffraction grating, the width of the 

entrance and exit slits and the spatial resolution of the detector. 

Figure 2.15 shows the calculated correlation between slit width, the bandpass and the 

width of the diffraction grating. A 1200 g/mm and a 2400 g/mm grating has been used 

for this work. 
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Figure 2.15: Calculated bandpass as a function of the widest width of either the 

entrance or the exit slit. (Reproduced from [98]) 

 

CL is a therefore powerful technique used to investigate the structural and optical 

properties of semiconductors. In some of this work (chapter 7), both CL and TEM are 

performed on the same areas of samples. By doing this, a correlation between areas 

with defects in TEM and maps of the CL intensity and wavelength can be obtained, 

thus providing further understanding of the luminescence properties of the defects. 

 

2.6 Transmission electron microscopy (TEM): Sample 

preparation 

 

In order to study the microstructure of the material in TEM, a very thin sample with 

thickness less than 100 nm should be prepared so it is electron transparent. However, 

artefacts and damage can be generated at each stage of preparation, which may result 

in misleading features being observed in the TEM. 

 

The TEM samples used throughout this thesis were prepared with mechanical 

polishing followed by argon milling in a Gatan Precision Ion Polishing System 
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(PIPS). Two types of samples were used: Plan-view (the sample was thinned in the 

growth direction) and cross-sectional samples (the sample was thinned in a direction 

perpendicular to the growth direction). Cross-sectional samples were prepared by 

sandwiching two specimens together with a relative 90° in-plane rotation such that the 

[1-100] and [11-20] zone axes ([1-100] and [0001] for nonpolar material) are readily 

accessible in the TEM. 

 

Two different preparation processes for cross-sectional samples were used to 

investigate the quality of the samples. The first is by conventional mechanical 

polishing, using the CHREA method (by Dr P. Vennéguès, CNRS-CHREA, France). 

The second process is carried out using the Focused Ion Beam (FIB) microscope. 

 

CHREA method 

The CHREA method involves cleaving two strips of wafer (~ 4mm by 10mm) one 

with the long edges running parallel to [11-20]GaN and [1-100]GaN directions for c-

plane samples ([0001]GaN and [11-20]GaN for nonpolar samples). These cleaving 

directions are approximated relative to the wafer flat. The two strips were then glued 

together with the GaN sides facing each other using an epoxy resin (Araldite). This 

sandwich was then pressed firmly to minimise the thickness of the glue line and cured 

for 20 minutes at ~ 100°C. G2 epoxy (Gatan) was used to glue the sandwich piece 

inside a brass fork and the whole assembly placed together into a brass tube. This tube 

was also cured for 20 minutes at ~ 100°C. The tube was then sliced into 1 mm discs 

using a rotating saw with a diamond-coated blade. 

 

A maximum of four prepared discs can be polished simultaneously by using a Gatan 

disc grinder. The large-scale jaggedness was polished away with silicon carbide 

grinding paper (240 grade) until the samples were at an even thickness. A rotating 

grinding wheel with different grades of diamond lapping films was then used to thin 

down and polish the samples. The first side of the samples was polished using 

successive grades of 30, 15, 6, 3 and 1 µm lapping films, each grade removing 

approximately three times the grain size of the previous film, i.e. the 15 µm film was 

used to remove 90 µm of material. After a mirror surface finish was achieved, the 

samples were inverted to polish the second side. Again the same subsequent grades of 
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diamond lapping films were used and 30 µm lapping film was used to remove 

material until the sample was at ~ 150 µm. 15 µm film was then used until the sample 

reached ~ 100 µm thickness and 6 µm was used for the final polish to a thickness of ~ 

50 µm. The thickness achieved during each stage was estimated with an optical 

microscope. The samples were then polished down further with a Gatan dimple 

grinder. This reduced the thickness at the centre of the sample to less than ~ 20 µm 

and the final mirror surface finish was also achieved using a dimple grinder with 1 µm 

diamond paste for ~ 2 minutes at the maximum speed. The samples were then 

removed from the grinder stub and cleaned with acetone for a few hours. Next, each 

cross-sectional sample was then attached to a spring clip PIPS holder for the ion 

milling stage. Plan-view sample preparation starts with a square of wafer with ~ 3 mm 

diamond length. The samples were polished with the same procedures as for the 

cross-sections but only from the sapphire side. Samples were adhered to the PIPS 

plan-view sample holder with the GaN side facing down. 

 

 
Figure 2.16: Schematic of CHREA sample preparation procedures. 

 

In the PIPS, the argon milling guns were set to a shallow angle at -4° on the flat side 

and +6° for the dimpled side to achieve a wide electron-transparent thin area for 

cross-sectional samples (for both guns were set to +7° to mill away the sapphire for 

plan-view samples). Double beam modulation was used for cross-sectional samples to 

avoid milling the sample holder. Material was milled at a rate of ~ 5 µm per hour at a 

5 kV beam voltage. Once a small hole was generated at the centre of the sample, the 

beam voltage was then reduced to 2.5 kV for 10 minutes to remove the surface 
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amorphous region caused by the high beam voltage. Fringes around the hole were 

visible under the optical microscope (figure 2.17) and these indicated the presence of 

electron-transparent thin areas to be investigated in the TEM. 

 

 
Figure 2.17: Optical micrograph of a completed TEM cross-sectional sample (left) 

and plan-view sample (right). The regions with thickness fringes are suitable for TEM 

analysis. 

 

Focused Ion Beam (FIB) method 

Focused Ion Beam (FIB) microscopy is a widely used materials science research 

technique for site-specific analysis, material deposition and ablation. Because high-

energy gallium ions are used, its sputtering capability also allows the FIB to be used 

as a TEM sample preparation technique [105]. The FIB used in this work is a dual-

beam system consisting of an electron beam and a gallium ion beam allowing real-

time viewing of the sample area during ion milling. 
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Figure 2.18: Side view (left) and top-down view (right) images of sample C2691D 

prepared with FIB to create a wedge shape with 3° angle from thinner region (<100 

nm) to thicker region (~ 500 nm) 

 

In contrast to the PIPS mentioned earlier, although both are capable of producing 

electron transparent thin TEM samples, the FIB method has the additional benefit of 

creating specific sample shapes, such as micro-machining a sample to a wedge shape 

with custom thickness and angle (figure 2.18). The benefit of this sample shape is that 

the thicker region can be used for CL analysis whilst the thinner region can be used 

for TEM analysis (more detailed in chapter 7). More importantly, the nanometre-scale 

resolution of the FIB allows selected sample regions to be investigated, and TEM 

specimens of specific sample features to be prepared. For example, the exact region of 

interest in the sample can be “marked” by the FIB such that the region of interests can 

be found easily using both CL and TEM, allowing a direct correlation between both 

data sets on a specific defect to be established. 

 

The drawbacks of FIB sample preparation are the surface damage caused by the high-

energy ions (which sputter atoms from the surface), and the effect of gallium ions 

being implanted into the surface [106]. This causes the top few nanometres of surface 

to become amorphous (dead layer), which affects both CL and TEM observations 

(chapter 7). This dead layer can be removed by using lower FIB milling voltages at 

the end of preparation. 
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2.7 Transmission electron microscopy (TEM) 

 

TEM is an invaluable tool for providing a wealth of information about crystalline 

materials. An excellent overview of TEM and related techniques may be found in 

Williams et al [107]. This section highlights the use of conventional TEM techniques 

to obtain structural information about the crystalline defect types in c-plane and 

nonpolar III-nitride specimens. Three different TEM techniques are most commonly 

used: diffraction patterns (DP), bright field (BF) and dark field (DF) imaging. 

Diffraction patterns can be used to determine lattice parameters of the material and to 

provide crystallographic information such as the orientation of the wurtzite structure 

of GaN. Bright field and dark field imaging are used to image dislocations and 

stacking faults. 

 

Fundamentals of TEM 

A Philips CM30 TEM was used to obtain most of the images in this thesis. The CM30 

is capable of accelerating electrons up to maximum energy of 300 keV and the 

electron source is a thermionic LaB6 crystal source. Figure 2.19 below highlights the 

simplified layout of the key optical components in a conventional TEM. Modern 

TEM columns have many more lenses in their imaging systems, which give greater 

flexibility in terms of the magnification and focusing range for both images and DPs. 
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Figure 2.19: Schematic of a conventional TEM showing optical components. 

(Reproduced from [108]) 

 

The CM30 microscope consists of three stages of lenses. They are the condenser 

lenses, the objective lenses, and the projector/diffraction lenses. The condenser lenses 

are responsible for the primary beam formation. The objective lenses magnify the 

image of the specimen and they should be optimally aligned and stigmated as they 

deal with largest range of angles, which can present the worst aberrations. The 

projector lenses further magnify the image of the specimen. 
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Figure 2.20: The two basic operations of the TEM imaging system involve (A) 

diffraction mode: projecting the DP onto the viewing screen and (B) image mode: 

projecting the image onto the screen. (Reproduced from [107]) 

 

Figure 2.20 is a highly simplified schematic, which illustrates the two basic operation 

modes in TEM: imaging mode and diffraction mode. In imaging mode, the electron 

beam is focused by a condenser lens onto the specimen. The electrons passing 

through the specimen are focused by the objective lens to form an image called the 

first intermediate image. The first intermediate image forms the “object” for the next 

lens, the intermediate lens, which produces a magnified image of it called the second 

intermediate image. This again becomes the object for the projector lens, which forms 
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the greatly magnified final image on the viewing screen of the microscope. In 

diffraction mode, the diffraction pattern that is formed at the back focal plane of the 

objective lens can be viewed on the viewing screen by weakening the intermediate 

lens. 

 

Diffraction patterns 

In TEM, two types of electron diffraction patterns (DP) can be obtained: selective 

area diffraction (SAD) patterns or convergent beam electron diffraction (CBED) 

patterns. Figure 2.21 illustrates the optics involved in obtaining these two DPs. The 

SAD pattern is acquired when a parallel electron beam is incident on the specimen 

with diffraction spots formed in the back focal plane (BFP) of the objective lens. The 

selective area aperture is placed in the first intermediate image plane to select a small 

region of the sample for diffraction contrast imaging, a technique that is commonly 

used to characterise the structure of III-nitride materials. 

The CBED pattern is acquired when the electron beam converges to form a spot on 

the specimen by adjusting the condenser lens, resulting in diffraction disks formed in 

the BFP. The main application of CBED in this work is to extract information on the 

polarities of the III-nitride samples (reviewed later in this section). 
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Figure 2.21: Schematic of the optical rays in selected area diffraction (SAD) (left) 

and convergent beam electron diffraction (CBED) (right). 

 

The basic concepts of diffraction and the reciprocal lattice in TEM are the same as for 

X-ray diffraction, which has already been reviewed in sections 2.2 and 2.3. The 

important difference between X-ray and electron diffraction is the wavelength of the 

beam source. In TEM, the emitted electrons have a wavelength (depending on the 

microscope, λ ≈ 0.00370 nm ~ 0.00164 nm at 100 keV ~ 400 keV accelerating 

voltage) shorter than that of X-rays, resulting in a much larger Ewald sphere, (almost 

planar according to the radius of the sphere = 1/λ). In addition, the electron 

transparent TEM specimen is normally very thin in the direction of the incident beam. 

The actual shape of the reciprocal lattice points is elongated in this direction to form 

rel-rods [107] (figure 2.22). The electron interact much more strongly with matter 

than X-rays, and therefore reciprocal lattice points do not have to be at the exact 

Bragg conditions to intersect the Ewald sphere. The combination of these effects 

results in more reciprocal lattice points being intersected by the Ewald sphere. The 

diffraction spots observed in TEM are therefore projections of these intersected 

reciprocal lattice points. 
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Figure 2.22: An Ewald sphere intersecting reciprocal lattice points “rel-rods”. C is 

the centre of the sphere, ki is the incident wave-vector, kd is any diffracted wave-

vector that satisfied the Bragg diffraction condition, and s is the excitation error that 

corresponds to the distance from the Ewald sphere to the reflection. 

 

Bright field and dark field imaging 

Diffraction contrast imaging is a conventional TEM technique that has been used to 

study the defects in the III-nitride materials throughout this thesis. The contrast in a 

TEM image arises due to the different Bragg conditions at the regions of the specimen 

that are disrupted by the presence of defects. In the bright field (BF) condition, the 

objective aperture that lies below the objective lens is placed at the optic axis 

allowing only the direct beam to pass through to form an image. In thin specimen the 

defects appear dark in the image due to the scattering of the electron beam by the 

defects, disrupting the crystallographic planes. In the dark field (DF) condition, the 

objective aperture is placed around a diffracted beam and in thin specimen the defects 

appear bright on a dark background. However, the diffracted beam is sometimes far 

away from the optic axis, which increases the degree of astigmatism and other 

aberrations due to the TEM lenses being imperfect. Therefore, the image beam is 

usually tilted onto the optic axis for higher resolution ‘off-axis’ dark field images.  
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Figure 2.23: Ray diagrams showing the combination of objective lens and objective 

aperture used in producing (A) a BF image formed from the direct electron beam, (B) 

a DF image formed with aperture centred at the deflected beam, and (C) a ‘off-axis’ 

DF image where the incident beam is tilted so that the deflected beam emerges on the 

optic axis. (Adapted from [107]). 

 

Weak beam dark field imaging (WBDF) 

An alternative approach to dark field imaging is weak beam dark field imaging 

(WBDF). WBDF has become the most widely used technique for imaging high 

dislocation density III-nitride materials since the observed dislocation lines appear 

narrower (~ 1.5 nm wide [109]) and less sensitive to the specimen thickness contrast, 

[109] and hence the positions of these lines are well defined with respect to the 

dislocation cores, which is extremely useful for studying high dislocation density 

films. The WBDF approach has been used for this analysis because it provides higher 

contrast: white dislocation lines on a dark background. 

The dislocations appear very narrow compared to the dislocations in the BF or DF 

images because only the highly strained lattice planes close to the dislocation core are 

sufficiently tilted to be in the Bragg condition for the incident beam. 
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The diffraction condition used in WBDF is slightly different from that in the on-axis 

DF as shown in figure 2.24a. WBDF images can be obtained when tilting the 

specimen far from g. Typically the g(3g) condition is used as it is a good compromise 

between obtaining good dislocation visibility at low ng (n = integers) and high 

resolution at high ng. For a g(3g) diffraction condition (figure 2.24b), the specimen is 

tilted to make the excitation error s large and the ‘new’ strongly excited reciprocal 

lattice point is now at the 3G position where the Ewald sphere intersects. A small 

objective aperture is then placed around the G diffracted beam to form a WBDF 

image. As the excitation error s increases, the intensity decreases as 1/s2 and the beam 

in the DP appears as a weak spot, hence the name, weak-beam. 

 

 
Figure 2.24: Diffraction conditions for (A) a BF image and (B) a WBDF image with 

g(3g) condition (adapted from [107]). 

 

The contrast of the defects is determined by the appropriate invisibility criterion, 

which is derived from the dynamical theory [110] e.g. g.b and g.b×u=0, where b is 

the Burgers vector of the dislocation and u is a unit vector along the dislocation line. 

For a screw type dislocation, the g.b≠0 condition will result in the dislocation being 

visible and g.b=0 will result in the dislocation being invisible. For edge or mixed type 

dislocations, visibility will depend on both g.b and g.b×u. This is an extremely useful 

criterion for imaging particular types of dislocations. Stacking faults also produce 

contrast due to the disruption of the crystal lattice and their visibility depends on g.R, 

where R is the lattice translation associated with the stacking faults. These invisibility 

criterions is summarised in Table 2.2. 
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Table 2.2: Invisibility criteria used for distinguishing between different types of 

dislocation or stacking faults. 

Defects Characteristic Visible g vector = 

BSF R = ⅓[1-100] [1-100], [11-20] 

PSF R = ½[10-11] [0002], [1-100], [11-20] 

a-TD b = ⅓[11-20] [1-100], [11-20] 

c-TD b = [0001] [0002] 

PD b = ⅙[20-23] [0002], [1-100], [11-20] 

 

Zone axis g = 0002 g = 1-100 g = 11-20 

[0001] n/a BSF, PSF, PD PSF, PD, a+c-TD 

[1100] BSF, PD, a+c-TD, c-TD n/a PSF, PD, a+c-TD, a-TD 

[1120] PD, a+c-TD, c-TD BSF, PSF n/a 

 

The g-vectors needed for the invisibility of edge dislocations are perpendicular to 

those needed for screw dislocations. Hence the best specimens to use for Burgers 

vector determination are cross-sectional specimens. The [11-20] and [1-100] zone 

axes are readily accessible in c-plane material and the [0001] and [1-100] zone axes 

are accessible in nonpolar material. Examples of the diffraction patterns obtained 

along each zone axis are shown in figure 2.25. 

 
Figure 2.25: Three commonly used diffraction patterns for wurtzite III-nitrides on the 

(a) [1-100] (b) [11-20] and (c) [0001] zone axes. Open circles represent forbidden 
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reflections. Crossed reflections are present due to dynamical diffraction. (Adapted 

from [111]). 

 

Convergent beam electron diffraction 

CBED is a powerful technique that can be used to extract many kinds of structural 

information from a very localised area in a specimen, such as film thickness 

measurements [112]. In this work, CBED is used to determine the bond symmetry 

(polarity), rather than to characterise defects in III-nitride materials with cross-section 

samples. As mentioned in figure 2.21, the diffracted disks are formed when 

converging the electron probe on the specimen. An example of such a CBED pattern 

in GaN viewing along the [1-100] zone axis is shown in figure 2.26 (further details in 

Chapter 6). 

 

 
Figure 2.26: Two CBED patterns of GaN viewed along the [1-100] zone axis taken at 

the either side of an inversion domain boundary. Contrast is different for the (0002) 

and (000-2) disks due to the non-centrosymmetric crystal. 

 

The CBED patterns exhibit opposite contrast due to the polarity of GaN, i.e. the 

crystal is non-centrosymmetric in real space. This method has been successfully used 

in the literature to determine the polarity of the inversion domains present in a GaN 

epilayer [113] and also the work in Chapter 6. However, the contrast of the disks also 

varies with TEM specimen thickness; the bright band in the centre of the (000-2) disk 

can swap with the dark band in the centre of the (0002) disk and vice-versa for certain 

specimen thicknesses. Therefore it is preferable to carry out the CBED measurements 
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at the regions that have at least 100 nm thickness and only small variations in 

thickness. 

To determine the absolute polarity of the layer, CBED patterns must be compared to 

simulated patterns using Bloch wave calculations in the EMS software [114]. Detailed 

experimental and modelling techniques can be found in the work by Sharma et al. 

[115] 

 

2.8 Scanning transmission electron microscope (STEM) 

 

In contrast to conventional TEM where a parallel incident electron beam is used, a 

converged electron beam is used in STEM. A much smaller and a brighter electron 

probe can be achieved by the FEI Tecnai F20 TEM with a field emission gun source 

(FEG) operating at 200 kV due to more spatially localised electron emission. This 

small electron probe is then used to scan the specimen and build up an image on a 

point-by-point basis. An annular dark-field (ADF) detector is used to collect electrons 

from an annulus around the beam, sampling far more scattered electrons than in 

conventional dark-field imaging where only diffracted electrons can pass through the 

objective aperture. This provides an advantage in terms of signal collection efficiency. 

A high angle ADF detector (HAADF) collects electrons that are scattered inelastically 

by thermal diffuse scattering to large angles (figure 2.27). The contrast in STEM-

HAADF images is therefore most strongly influenced by compositional variation (the 

signal varies approximately as the square of atomic number [107]) and is often termed 

z-contrast imaging. 
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Figure 2.27: Schematic of the arrangement of sample and high angle dark-field 

(HAADF) detector in STEM. 

 

STEM-HAADF is used to image the nonpolar GaN/AlGaN quantum wells in Chapter 

6. The GaN wells appear brighter than AlGaN barriers due to gallium’s higher atomic 

number (figure 2.28). 

 

 
Figure 2.28: A STEM-HAADF image of GaN/AlGaN MQWs grown on a nonpolar 

GaN template. GaN well appear brighter due to higher gallium atomic number. 
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3 
c-plane AlGaN grown on AlN 
template: Defect analysis 
 

3.1 Background 

 

The growth of AlGaN alloys of high aluminium content on a thick AlN buffer layer 

has attracted much interest recently because AlN buffer layers are optically 

transparent for deep UV radiation (sub-290nm). They also prevent cracking as AlGaN 

layers grown epitaxially on AlN are under compressive strain, due to the different 

lattice mismatch between GaN (a=3.1893Å) and AlN (a=3.1130Å). However, there is 

a large lattice mismatch strain between AlN and the sapphire substrate and the strain 

is relaxed by the generation of dislocations. Therefore AlN films usually have a very 

high density of threading dislocations. These dislocations are observed to extend into 

the succeeding AlGaN layer, which can degrade the device performance as 

dislocations are thought to be nonradiative recombination centres.  

 

It is well known that when a strained layer exceeds a critical thickness [116], misfit 

dislocations are generated by interfacial migration of pre-existing threading 

dislocations, or by the nucleation and subsequent glide of dislocation loops, or by 

direct nucleation of new dislocations in nearly perfect crystal materials [117][118]. 

The strain relaxation process in AlGaN/GaN heterostructures has been discussed 

extensively in the literature [24] and is dominated by the combined processes of 

interfacial misfit dislocations and cracks [119]. It has been suggested that the cracks 

are introduced to the film first and help promote nucleation of dislocation half loops, 
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which consequently determine the quantity of misfits presented at the interface. 

However, in the case of little-discussed AlGaN/AlN heterostructures cracks are 

normally suppressed due to the compressive strain. Instead, these compressively 

strained heterostructures are largely relaxed by the generation of bent threading 

dislocations in addition to the misfit dislocations.   

 

These threading dislocations bend away from their original [0001] direction and, in 

conjunction with the misfit dislocations, they are the dominating strain relaxation 

mechanisms in these films, as reported by several authors [119][120][121]. However, 

for heterostructures that have much higher lattice mismatch (e.g. Al0.2Ga0.8N epilayer 

grown on AlN), other defects such as dislocation multiplication mechanisms (e.g. 

Frank Read sources) and inclined dislocation arrays (discussed in the next chapter) 

and hillocks on the layer surface can also occur in these structures, as reported in this 

work. These additional defects are rarely discussed in the literature. The Frank-Read 

sources, for example, have been reported for SiGe on Si cubic systems [122][123] but 

are not discussed in AlGaN/AlN systems. Inclined dislocation arrays have not been 

reported before. Their origins and how they interact with other defects in the materials 

is unclear but all these additional defects present in the epilayer can contribute to the 

strain relaxation processes. It is necessary to understand their properties and the 

influences on the film quality in order to reduce or eliminate these defects that are 

detrimental to the device performance. 

 

3.2 Aim 

 

Specific aims of this chapter include: 

 

1. To study the microstructural properties of each type of defect using 

characterisation techniques such as (S)TEM, XRD and SEM-CL.  

 

2. To investigate the effect of AlGaN epilayer composition on the distribution of 

these defects.  
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3. To evaluate the strain attributed to each type of observed defect using in-situ 

wafer curvature measurement in conjunction with the microscope data. 

 

 

3.3 Experimental details 

 

All samples studied in this chapter were grown by Dr. Menno Kappers at the 

University of Cambridge, using metalorganic vapour phase epitaxy (MOVPE) in a 

Thomas Swan 6 x 2” close-coupled showerhead reactor with trimethylaluminium 

(TMA), trimethygallium (TMG) and ammonia (NH3) as precursors and hydrogen as 

carrier gas. Initially, 4 µm thick AlN layers were deposited on c-plane sapphire 

substrate (0.25° ± 0.10° towards (1120)) for all the samples. For this, the sapphire 

substrates were thermally cleaned for 7 minutes in a flow of hydrogen, followed by a 

predose of 56 µmol TMA in the absence of ammonia, and the growth of a 30 nm thick 

AlN nucleation layer at a pressure of 200 Torr, a V-III ratio of 250 all at a 

temperature of 1050 °C, followed by high-temperature AlN growth at 50 Torr, 1130 

°C and a V-III ratio of 60. These templates were re-introduced in the reactor and were 

overgrown with a ~2 µm AlxGa1-xN layer at 1100 °C and 50 Torr, where x = 0.23, 

0.44, 0.72 and 0.87, for sample C3901A, C3902A, C3903A and C3905A, respectively 

(see Table 3.1). A schematic of the sample is shown in figure 3.1. 

 

 
Figure 3.1: Schematic of the structure for a deep UV emitter. 
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Table 3.1: Aluminium contents in the samples determined by XRD. 

Sample Aluminium content in 

AlxGa1-xN epilayer 

C3901A 0.23 

C3902A 0.44 

C3903A 0.72 

C3905A 0.87 

 

3.3.1 Growth of high quality thick AlN template 
 

The TMA predose method in the initial AlN growth was used to create an Al-polar 

coverage of the substrate before growth. This predose method was found greatly to 

reduce the number of inversion domains in the film beyond these of the conventional 

continuous growth method (mixed polarity) [124][125]. This enables us to grow a 

thicker AlN layer without cracking, and at the same time achieve a low threading 

dislocation density, favourable to the growth of the succeeding AlGaN hetero-

epilayer. Figures 3.2 and 3.3 give an example of a low magnification overview of the 

sample microstructure under cross-sectional TEM. Defect reduction is apparent in 

these images as the film thickness increases (see Chapter 6 for further details on the 

growth of high quality AlN template) 
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Figure 3.2: Cross-sectional TEM image of C3905A, viewed along [1-100] using 

g=0002 condition , showing reduced a+c and c-type dislocations and annihilation as 

the AlN layer thickness increases. 

 

 
Figure 3.3: Cross-sectional TEM image of C3905A, viewed along [1-100] using 

g=11-20 condition, showing reduced a+c and a-type dislocations and annihilation as 

the AlN layer thickness increases. 
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3.4 Results 

3.4.1 XRD results 
 

The following table summarises the XRD data collected by Dr. Clifford McAleese 

from this set of AlGaN epilayers grown on AlN templates. The threading dislocation 

density was calculated from the plan-view TEM results. The difference between 

C3901A, C3902A, C3903A and C3905A is the aluminium content used for the 

AlGaN growth, 23%, 44%, 72% and 87%, respectively.  

 

Table 3.2: Summary of XRD FWHM values and threading dislocation densities for 

the samples used in this work. 

Sample AlxGa1-xN 

x = 

AlGaN 

relaxation 

wrt AlN 

ω scan FWHM TD Density 

/cm-2 AlGaN 

(002) 

AlGaN 

(101) 

AlN 

(002) 

AlN 

(101) 

C3901A 0.23 77% 256 679 251 445 1.6±0.1x1010 

C3902A 0.44 68% 246 570 254 449 3.4±0.2x109 

C3903A 0.72 21% 219 431 218 462 3.3±0.2x109 

C3905A 0.87 6% 200 411 219 465 4.3±0.1x109 

 

The AlGaN composition and strain state were determined from reciprocal space maps 

of the (0002) and (10-11) reflections. In AlGaN layers where significant strain 

relaxation has taken place clear strain/compositional variations are present. In such 

cases the analysis was carried out for the highest intensity peak as this is likely to be 

most representative of the surface region to be measured by PL. 

Lower Al content AlGaN layers have broader (101) ω peaks (the AlN templates are 

largely consistent in the series), which, in conjunction with the TEM analysis (shown 

in the next section) confirmed there was an increase in edge-type threading 

dislocations, as a result of the strain relaxation process. 
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The FWHM values for both AlGaN and AlN layers indicated that the film quality 

improves as the aluminium content increases in the AlGaN layer, as expected from 

the smaller lattice mismatch with respect to AlN. All the samples studied in this work 

showed improvement on older samples that did not employ the TMA predose method. 

This again confirms the importance of the high quality AlN template for the 

succeeding AlGaN epilayer growth. 

 

3.4.2 Electron microscopy 
 

Dislocation reduction and annihilation as well as various types of dislocations were 

observed in the epilayer. With low-aluminium content, high lattice mismatched 

samples such as C3902A, several types of dislocations were observed, as shown in 

figures 3.4 and 3.5. 

 

 
Figure 3.4: Cross-sectional TEM image of C3902A, viewed along [1-100] using 

g=11-20 condition. Four different types of defect were observed in the AlGaN 

epilayer. 
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Figure 3.5: Cross-sectional TEM image of C3902A, viewed along [1-100] using 

g=0002 condition. Only an inclined dislocation array and a few a+c-type dislocations 

are visible. 

 

Using g.b criteria, these figures indicated that most of the dislocations were a-type 

and only a few were a+c or c-type dislocations. The micron-scale inclined dislocation 

array (discussed in chapter 4) remained visible in both imaging conditions. 

 

Figures 3.6 and 3.7 show the cross-sectional TEM images of the high aluminium 

content and low lattice mismatch sample, C3905A. Again most of the dislocations 

were a-type. 
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Figure 3.6: Cross-sectional TEM image of C3905A, viewed along [1-100] using the 

g=11-20 condition, showing a+c and a-type dislocations. 

 

 
Figure 3.7: Cross-sectional TEM image of C3905A, viewed along [1-100] using the 

g=0002 condition, showing a+c and c-type dislocations. 

 

This high Al-content sample had a much “cleaner” microstructure than that of the low 

Al-content sample showing just TDs in the AlGaN epilayer, as was expected with 
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slight relaxation. Most of the dislocations propagated through the heterointerface from 

the pre-existing dislocations in the AlN template. 

 

Cross-sectional TEM of these samples shown above identified 4 types of defects. All 

the characterisation techniques used in this chapter identified a total of 6 types of 

defects in the AlGaN film. These include: 

 

1. Helical threading dislocations 

2. Bent threading dislocations 

3. Inclined dislocation arrays 

4. Misfit dislocations (shown later using large angle TEM tilt) 

5. Frank-Read sources 

6. Flat and spiral hillocks (shown later using plan-view SEM-CL) 

 

The following sections focus on the observations on each of the 6 types of defect. 

The effect of different AlGaN compositions on the distribution of these defects will 

be discussed extensively in chapter 3.5. 

 

3.4.2.1 Threading dislocation half-loops 
 

Some of the a-type threading dislocations thread up from the AlGaN/AlN 

heterointerface and form half loops in the AlGaN epilayers, as shown in figure 3.8. 
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Figure 3.8: Higher magnification image focused on the helical threading 

dislocations. 

 

The sharp angle of the dislocation line at position a could indicate a turning point of a 

helical circle. The distinctly oscillating contrast of the dislocation line at position b is 

due to diffraction contrast varying with depth as the inclined dislocation passes 

through the specimen thickness. This indicates that the dislocation line was going into 

or out of the page. These observations suggest that these TDs could be helical TDs. 

The presence of helical threading dislocations is not very common in the III-nitride 

films. Dislocation movements, such as climb, probably govern the formation 

mechanism as suggested by Fu et al. [126], using finite element simulations (more 

details in chapter 3.5). This type of threading dislocation was observed only in the 

two low-Al content samples, C3901A and C3902A and the density of this defect was 

higher in the C3902A sample. Another interpretation of the observed features could 

be that the dislocations are pinned by impurities and as dislocations glide, half-loops 

are formed similarly to those seen in dislocation multiplication processes, such as 

Frank-Read sources. 
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3.4.2.2 Bent threading dislocations 
 

All four epilayers of different AlGaN composition studied in this work showed some 

TDs inclined away from the [0001] direction (figure 3.9). 

 

 
Figure 3.8: Cross-sectional TEM images all viewed along [1-100] with g = 11-20, 

showing a-type threading dislocations bend away from their original [0001] direction. 

The bend angle increases as Al-content decreases, as shown in the (a) 23%, (b) 44%, 

(c) 72% and (d) 87% AlxGa1-xN epilayer. 

 

Table 3.3: Average bend angles, α, of the bent threading dislocations against AlGaN 

layer compositions. 

Sample AlxGa1-xN, x = ρBTD / cm-2 α / ° 

C3901A 0.23 1.6±0.1x1010 22.1 

C3902A 0.44 3.4±0.2x109 15.6 

C3903A 0.72 3.3±0.2x109 15.2 

C3905A 0.87 4.1±0.1x109 8.3 
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From these TEM images it was clear that the pre-existing threading dislocations in the 

AlN template were inclined at certain angles upon entering the compressively strained 

AlGaN epilayer. The degrees of inclination (α, averaged over 30 TDs) were 

dependant on the Al-content of the AlGaN layers. These bent threading dislocations 

have been noted in the literature in similar AlGaN/AlN heterostructures [120]. They 

also suggested the compressive strain in the AlGaN film could be relieved by bending 

these threading dislocations away from the [0001] direction. The inclination direction 

of these a-type TDs is not random as confirmed by the plan-view TEM data from the 

similar structures in the literature [120][121]. They always incline toward <1-100> 

directions, perpendicular to their Burgers vector b= 1/3<11-20>. The misfit 

components of these bent threading dislocations can either add to or relieve the strain 

in the compressively strained film depending on the sign of the Burger’s vectors. For 

instance, if two misfit components with opposite Burger’s vectors move into 

coincidence, the sum of the Burger’s vector will be zero (two opposite extra half 

planes would cancel), and the overall strain relieve may be less than expected. Thus it 

is important to determine the sign of Burger’s vector in order to carry out an accurate 

quantitative strain analysis. However, determining the sign of Burger’s vector would 

require the use of LACBED [178], high-resolution TEM or simulation of the stress 

field from a plan-view TEM image, these techniques can be complicated and beyond 

the scope of this chapter, therefore the characterization of the Burger’s vectors will be 

done in the future work. 

The cause of this inclination is not very well understood, as bending cannot be caused 

by conventional dislocation movements such as glide or climb (further details in 

section 3.5). Faceted growth could be a possible reason for the TD bending (e.g. 3D to 

2D growth, details in chapter 1.3.6), however this kind of bending normally only 

occur at the initial growth stage and no longer bend after the initial TD reduction and 

annihilation. Thus, this cannot explain the reason for the bent TDs having line 

directions that continue linearly to the sample surface. 

 

3.4.2.3 Inclined dislocation arrays 
 

The micron-scale inclined dislocation arrays are observed for samples with relatively 

low Al-content, such as C3901A and C3902A (see figure 3.9). These dislocation 
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arrays appear to be related to the surface steps of the AlN template. The direction of 

the bent threading dislocations changes (inclined toward the original [0001] direction) 

when they encounter these arrays, which might suggest strain-relief related 

mechanisms between the TDs and arrays. Detailed studies of these inclined 

dislocation arrays are shown in chapter 4. 

 

 
Figure 3.9: Cross-sectional TEM image of C3902A showing a large scale inclined 

dislocation arrays running across the entire AlGaN epilayer. 

 

3.4.2.4 Misfit dislocations 
 

Misfits dislocations can be imaged using both plan-view and cross-sectional electron 

microscopy. For plan view samples the buffer layer has to be very thin (<100 nm) in 

order to reveal the triangular grid of misfit dislocations on the interface. They are 

normally observed as a triangular grid since each misfit dislocation can have one of 

the three <1-100> line directions and hence each pair forms a 60-degree angle. 

For samples that have thicker buffer layers on top of the interface, cross sectional 

electron microscopy has to be used. Misfit dislocations can be imaged with the 

sample tilted to a large angle (over 35-degree) from the usual imaging zone axis, e.g. 

[11-20] or [1-100] to broaden the projection of the interface. The resulting zone axis 

after the tilting is a [10-11] zone axis (see figure 3.10). This is useful as misfit 

dislocations lying on the interface that is normally parallel to the electron beam 

appear as dots on the image and become very difficult to identify. With tilting, the 
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misfit dislocations will appear as short lines across the tilted interface and are easy to 

identify as they appear as an unique dotted line due to the distinctly oscillating 

contrast (see figure 3.11). The oscillations are produced by the diffraction contrast 

varying with depth in the TEM specimen as the misfit dislocations pass through its 

thickness [107]. 

 

 
Figure 3.10: Diffraction pattern of the 10-11 zone axis.  

 
Figure 3.11: Cross-sectional TEM image of C3902A after a large angle tilt to reveal 

the interfacial misfit dislocations (indicated by the yellow arrow). 

 

The length of the interfacial misfits observed in this imaging condition is directly 

proportional to the specimen thickness due to 3D to 2D projection. The misfit length 

increases as the specimen thickness increases.  

High resolution XTEM has been used to confirm the spacing between each extra half 

plane, which represents the true misfit dislocations. 

An image at 500kx magnification was taken from a very thin sample area, which 

contains the interface of AlGaN and AlN. The interface was identified from the 

change in contrast (figure 3.12). 
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Figure 3.12: (a) High resolution XTEM image at the AlGaN/AlN heterointerface 

indicated by the yellow dotted line. (b) corresponding Fourier transformed image 

showing two extra half-planes indicated by the red lines. 

 

A total of 14 images of 512 pixel-squares was taken continuously across the sample 

for Fourier Transform purposes. The masks were applied to show only the contrast 

perpendicular to the interface, i.e. showing the extra half planes normal to the 

interfaces. 

 
Figure 3.13: (a) A total of 14 HRTEM images at the interface. (b) Corresponding 

Fourier transformed image showing 5 extra half planes as indicated by the red lines. 

 

Over the total image length of 150 nm across 14 images (figure 3.13), there were 5 

misfit dislocations identified resulting in 30 nm spacing between each misfit 

dislocation. This is consistent with the observation from a dark field XTEM image, 

where the spacing average was found to be around 33 nm. This also confirms that the 

well-defined short dotted lines were indeed misfit dislocations, consisting of extra 

half planes on the AlGaN/AlN interfaces. Note that the extra half-planes are mostly 

below the interface indicating that the material below the interface has smaller lattice 

spacing and therefore is AlN.  

Misfit dislocations were observed for the low Al-content samples in C3901A and 

C3902A. The distance between each misfit dislocation was estimated to be around 33 

nm (averaged over 50 misfits) for both samples. However, I did not see any interfacial 

misfit across a few microns of the sample area for samples with higher Al-content 
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(figure 3.14). This was expected from the small relaxation determined from XRD 

earlier. However, for C3903A with 73% Al-content, the critical thickness is still much 

less than ~10 nm (according to the critical thickness calculation on the similar 

compressively strained InGaN/GaN system by Holec et al [33]) and normally misfits 

should be generated above this critical thickness. It is likely that other mechanisms, 

such as bent threading dislocations, dominate the strain relaxation in this case. 

 
Figure 3.14: Cross-sectional TEM image of (a) 23%, (b) 44%, (c) 72% and (d) 87% 

of Al-content in the AlGaN epilayers. All the images were taken with large angle tilt 

under the [10-11] zone axis condition. 

 

Table 3.4: Average distance between misfit dislocations, dm, against AlGaN 

composition. 

Sample AlxGa1-xN, x = 

AlGaN 

relaxation 

wrt AlN 

dm / nm 

C3901A 0.23 77% 33±5 

C3902A 0.44 68% 33±5 

C3903A 0.72 21% n/a 

C3905A 0.87 6% n/a 
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3.4.2.5 Frank-Read multiplications 
 

Frank-Read sources were observed using WBDF TEM at the interface between 

AlGaN and AlN. These dislocation multiplication processes can occur in systems 

such as SiGe film grown on Si substrate [127]. A Frank-Read source occurs when a 

dislocation (figure 3.15) is pinned in the basel plane at two ends either by impurities 

or an immobile non-basal dislocation. If a shear stress is resolved onto the basel 

plane, the dislocation line becomes unstable and begins to bow. With increasing 

stress, the line bows back onto itself to produce a new loop that is free to progagate, 

and a section that remains pinned, which may initiate more loops. In these 

AlGaN/AlN samples the origins of the Frank-Read sources are the interfacial misfit 

dislocations. 

 

 
Figure 3.15: Schematic of a Frank-Read source. A dislocation (red line) bows out due 

to the local shears associated with nearby defects and is locally pinned [128].  

 

A similar observation in the literature was reported by Floro et al [119] and showed 

interfacial dislocation multiplication in an AlGaN/GaN film, due to misfit segments 

gliding in the basal plane and pinned by propagating threading dislocations from the 

underlying GaN. However, there is little explanation in the literature of why Frank 

Read Sources operated in a non-basal plane and extended into the underlying AlN 

layer (figure 3.16). Frank-Read sources that operated below the interface at the AlN 

region were not observed from pure AlN template growth on sapphire (not shown), 

which implied that they must have occurred during or after the succeeding AlGaN 

growth. 
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Figure 3.16: Cross-sectional TEM image of C3902A taken with g=11-20 condition. 

Yellow dashed line indicated the heterointerface of AlGaN/AlN layers. Yellow arrow 

shows the Frank-Read sources under the heterointerface. 

 

These Frank-Read sources were only observable under the g=11-20 imaging 

condition, suggesting they were pure a-type dislocations, consistent with their sources 

of origin, the a-type interfacial misfit dislocations. 

The reason for these Frank-Read sources operating in the underlying AlN template 

may be found in the work on SiGe on the Si system by M. Albrecht et al. [127] who 

suggested that the stress can concentrate at the trough of the surface features (e.g. 

surface steps), which generates a positive stress. If this positive stress is great enough, 

it can cause the underlying misfit dislocations, pinned by the pre-existing threading 

dislocations, to inject the misfit dislocations into the substrate. Such an observation 

has not been reported for hexagonal crystal structures. 

 

In our results, it is notable that most of the Frank-Read sources occurred when there 

was a triangular area (bounded by the inclined dislocation arrays, see figure 3.17) 

present above the interface. There were no evidences of troughs at the heterointerface, 

suggesting that the formation of Frank-Read sources was different compared to the 

study by Albrecht et. al. An alternative explanation might involve strains occurring 

due to a thermal gradient across the template and the epilayer. However, further work 

is required to understand whether this would be the case.  
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Figure 3.17: Cross-sectional TEM image of C3902A taken with g=11-20 condition. 

The yellow dashed line indicates the surface islands above the heterointerface. 

Positions a and b show two yellow dotted lines indicating two pre-existing threading 

dislocations in the AlN template that pinned the interfacial misfit dislocations. 

 

It is interesting that Frank-Read sources occurred only in the sample with 44% Al-

content AlGaN layer (C3902A), but not in any other sample. It was expected that the 

Frank-Read sources would also occur in the 23% Al-content AlGaN sample 

(C3901A) due to similar relaxation and high number of dislocations that could give 

raise to large stress to generate these Frank-Read sources.  

This inconsistency might be due to the amount of triangular areas on the 

heterointerface. These areas were formed when two inclined dislocation arrays with 

opposite inclined directions coalesce. Since there were far fewer inclined dislocation 

arrays in the 22% Al-content AlGaN sample, and therefore there was no triangular 

area presented in the film (at least over a few micron of area under XTEM), we did 

not observe any Frank-Read sources. This suggests that Frank-Read sources only 

occur when a significant quantity of inclined dislocation arrays were generated in the 

AlGaN epilayer. 

 

3.4.2.6 Flat and spiral hillocks 
 

Plan-view spatially resolved CL analysis was carried out for this set of samples. In 

plan-view, C3901A, which has the lowest aluminium content of 23%, showed a very 

rough surface as expected due to large relaxation of 77% from the XRD data. C3902A 

was similar to C3901A where a large number of surface step edges (figure 3.18) were 

observed due to the relatively low aluminium content and large relaxation. The 

surface steps were much less radiative than the surrounding materials. (The steps are 



Chapter 3  92 

 

   

associated with inclined dislocation arrays, discussed in chapter 4). In addition to 

these surface steps, a large number of hillocks were observed in C3901A but not on 

other samples (figure 3.20), some unusual micron sized crystals were observed in the 

centre of each hillock. These crystals seemed to oriented at either <1-100> or <11-

20> directions (figure 3.20a). Our data were insufficient to explain their occurrence. 

Further work will be required to understand whether they were reactor-related 

impurities or were intrinsic to the materials. C3905A with 87% aluminium content 

showed a much smoother (atomically flat) surface with uniform surface emission, 

which is again expected from the slight relaxation of 6% (figure 3.19).  

 

 
Figure 3.18: (a) Plan-view SEM and (b) corresponding panchromatic CL images of 

C3902A taken at 75K. Arrows indicate surface steps that are non-radiative 

recombination centres. 

 

 
Figure 3.19: (a) Plan-view SEM and (b) corresponding panchromatic CL images of 

C3905A taken at 75K. 
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Figure 3.20: Low magnification images of (a) plan-view SEM and (b) corresponding 

panchromatic CL of C3901A taken at 75K . Higher magnification images of (c) plan-

view SEM and (b) corresponding panchromatic CL images of the flat and spiral 

hillocks. 

 

The C3901A plan-view CL results showed two types of hillocks, flat and spiral. For 

the spiral hillock, emission from the centre of the hillock was redshifted by 7±3 nm 

relative to that of the flat hillock (figure 3.21 b). Both types of hillock have longer 

emission wavelength on the hillock edges (figure 3.21 c), which is likely due to the 

absence of QCSE at these semipolar facets. 
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Figure 3.21: Monochromatic CL images taken at (a) 308 nm, (b) 315 nm and (c) 325 

nm wavelength. 

 

These spiral hillocks were often reported for MBE GaN films but not for MOCVD 

films (shown later). It is well known that control of the growth surface is very 

important to the device fabrication. A rough surface can lead to poor film quality and 

ultimately affects the device performance. These spiral hillocks can cause variations 

in surface height that may lead to a non-uniform quantum well thickness and the 

spiral structure may lead to fluctuations in the composition of nitride alloys and 

dopant concentration. It is important to understand the origin of these surface non-

uniformities and how they can be controlled. 

 

An early theoretical study by Burton, Cabrera and Frank [129] predicted that when a 

mixed threading dislocation intersects with the atomically smooth free surface, a 

pinned step is created from the dislocation slip plane with ends of the step fixed to the 

mixed dislocation. In certain growth conditions, these pinned steps can elongate and 

bow out from the dislocation with one end fixed at a mixed dislocation and wind into 

a spiral centre. The continuous growth of a pinned step can result in spiral hillocks. 

Heying et al. [130] observed such formations on the GaN surface grown by MBE 

(figure 3.22), similar to the observation in this work. Heying et al. and Merlin et al. 

[131] found a simplified condition in which spiral hillocks form. The condition is 

defined by the relation between the miscut terrace width, wMC and the width of a 

terrace on the two interlocking spiral ramps that create a spiral hillock, ws. 
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Figure 3.22: The AFM images from Heying et al. show the morphologies of an (a) 

MOCVD and (b) MBE grown GaN film. [130] 

 

They concluded that if wMC was smaller than ws, the miscut steps would annihilate the 

spiral steps faster than the spiral could spread on the surface and therefore spiral 

hillocks form when wMC >> ws.  

In our case the terrace widths wMC and ws can be measured by plan view SEM images 

(ws is measured and averaged by taking the diameter of the hillocks and dividing by 

the number of spiral layers). wMC is measured to be around 15 µm and ws to be around 

2.5 µm. And indeed the wMC >> ws is satisfied. ws is also proportional to the curvature 

of the initial step line connected to the mixed dislocation. It was reported that the 

decrease in curvature (which is related to the step energy) is proportional to 

decreasing III/V ratio. Therefore the lower the III/V ratio, the larger ws and once it is 

larger than wMC the formation of spiral hillocks should be inhibited. This also 

explains why the formation of spiral hillocks was not normally observed in samples 

grown by MOCVD. The III/V ratio of MBE is much higher than that in MOCVD but 

for low Al% AlGaN grown on AlN, the III/V ratio is also higher, which can lead to 

smaller ws satisfying the spiral formation condition. It might be possible to prevent 

the formation of these hillocks in the AlGaN samples by using smaller substrate 

miscut steps. However, in Heying’s model, the spiral hillocks were around 5 nm in 

diameter, whereas the diameter can be as large as 10 µm in our case. Detail work will 

be required in the future to determine the limitations of application of Heying’s model 

to these data. 
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3.5 Discussion 

 

Stress is known severely to affect the film quality and consequently the device 

performance due to wafer bending and defect formation. Although for AlGaN/AlN 

heterostructures, cracking is usually suppressed due to the compressive stress, 

dislocation formations can become very complicated due to the presence of several 

types of defect, as shown in the results section. It has also been shown that the AlGaN 

epilayers with different Al-content significantly influence how these different types of 

defects are produced and distributed in the film. Those observed defects could have 

their own influences on relaxation of the heterostructures.  

 

Table 3.5 summarises the observations on how each type of defect was distributed in 

all four AlGaN epilayers with different Al-content. It can be seen that most of the 

defect types were observed in samples of low-Al content. Only bent threading 

dislocations were observed for high-Al content. 

The main differences of C3902A compared with C3901A were (a) higher HTDs 

density, (b) smaller BTDs angle, (c) larger IDA angle, (d) larger degree of Frank-

Read sources bowing and (e) no surface hillocks. The main difference between 

C3905A and C3903A was only a smaller BTDs angle.  

 

Because several types of defects were generated concurrently in the film (especially 

for the low-Al content AlGaN epilayers), understanding of how they interrelated and 

influenced the film quality can be complex. In order to understand accurately and in 

detail why they were distributed in this way, a quantitative strain analysis on each of 

the defects was required. 
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This discussion section aims to describe how the AlGaN composition affects the 

distribution of the defects based on quantitative strain analysis, with the aid of in-situ 

wafer curvature measurement. 

 

This description is explained in the following sub-sections: 

 

3.5.1: Purposes of using in-situ wafer curvature measurement for this work. 

3.5.2: Estimate of total strain, εT. 

3.5.3: Estimate of strain associated with misfits, εm and BTDs, εBTD, 

3.5.4: Estimate of strain associated with other types of defects. 

 

The main assumption used in this work is that the total strain relieved εT is equal to 

the strain relieved from all different types of defects observed in the epilayers. 

 

εT = εHTD +εBTD +εIDA +εmisfit +εFR  

 

where εHTD, εBTD, εIDA, εm and εFR is the strain relieved by helical threading 

dislocations, bent threading dislocations, inclined dislocation arrays, misfit 

dislocations and Frank-Read sources respectively.  

 

On this assumption, the total strain εT may be estimated using the in-situ wafer 

curvature measurement. εBTD and εm may be estimated using the same approach. Once 

these values are known the strain associated with other types of defects can be 

extracted from this equation. Using this approach it is possible to understand why 

certain types of defects are generated only in certain AlGaN compositions. 

 

3.5.1 In-situ wafer curvature measurement 
 

In recent years, in-situ wafer curvature measurement has become popular in 

measuring the stresses in films. It has very frequently been reported in the literature 

that strain engineering via wafer curvature measurement has been successfully 
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employed to develop crack-free AlGaN on GaN buffer layers [132] and optimise the 

growth recipes for GaN on Si close to zero wafer bow [133]. 

This technique also has the advantage of characterising the stress at the growth 

temperature, unlike other techniques such as XRD, where the determined stress state 

is at post-growth stage. Effects from cooling have to be taken into account and may 

complicate the overall strain analysis.  

Most importantly, in-situ wafer curvature measurement has the advantages of 

determining the strain at a specific thickness of the sample, whereas XRD averages 

the strain across a macroscopic scale. It is useful, for instance, to obtain the strain 

state at the AlGaN/AlN heterointerface where most of the strain is relieved by the 

interfacial misfit dislocations, or to obtain the strain state close to the sample surface, 

where most of the strain is relieved by bent threading dislocations. This gradual 

decrease in strain state toward the surface of the sample can only be determined using 

this in-situ curvature measurement. With this information to hand, it is possible to 

determine quantitatively the effects of different types of dislocations on relaxation 

processes at different stages of growth (see figure 3.23). 

 

 
Figure 3.23: XTEM image of C3901A with corresponding curvature to the right. A 

non-linear decrease in strain was observed from beginning to the end of the growth. 
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Figure 3.24: Temperature and curvature during growth of sample C3902A. 

 

Figure 3.24 above shows an example of temperature and wafer curvature 

measurement of sample C3902A during growth. The growth recipe is shown in the 

previous experimental details section (section 3.3). Several templates were produced 

with the same growth recipes, hence the breaks (cool down and re-heat) due to sample 

batches between different growth stages. The AlN template grown on a sapphire 

substrate is under tensile stress and therefore the wafer becomes concave as expected 

and shown in the figure. An AlGaN epilayer grown on an AlN template is under 

compressive stress and therefore the wafer curvature decreases and bows toward the 

original flat wafer.  

 

In theory, if the AlGaN epilayer was fully strained (without any relaxation) with 

respect to the AlN template, the wafer curvature would stay the same with increasing 

layer thickness (for a relatively thin epilayer). In practice, relaxation occurred most of 

the time by generating a high density of defects. This process relieved some of the 

strain in the heterostructures and therefore the wafer curvature decreases. Given this 

relationship, strain in the film can be estimated (shown in next section). In the case of 
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C3902A shown above (figure 3.24) the decreasing curvature was not linear; the 

gradient also decreases as the film thickness increases. This indicated that the 

interfacial misfit dislocations relieved a relatively greater degree of strain initially and 

a lesser relaxation then took place after a certain layer thickness but at a lower rate, 

which might be correlated to the bent threading dislocations and other types of defect 

observed in TEM. 

 

 
Figure 3.25: Wafer curvature measurements during growth of C3902A (blue), 

C3901A (green), C3903A (purple) and C3905A (red). 

 

Figure 3.25 compares AlGaN compositions grown on top of the same AlN templates. 

Sample C3901A had a larger overall change in wafer curvature than C3902A did, 

which was expected from the largest lattice mismatch. The curvature trend was 

similar to that of C3902A, suggesting a relatively large degree of strain was relieved 

initially due to interfacial misfit formation. In C3905A the overall change in curvature 

was the smallest, as expected from the much smaller lattice mismatch. Its wafer 
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curvature decreased linearly, which reflected the observations from TEM images, 

where bent threading dislocations provided the only strain relaxation mechanism. 

However, sample C3903A showed an even greater change in wafer curvature despite 

the defect distributions being similar to those of C3905A. 

 

3.5.2: Estimate of total strain, εT. 
 

There are 4 contributions to wafer bowing: 

 

(a) The initial bow of the sapphire substrate. This value is very small and can be 

disregarded in this calculation. 

(b) Curvature change caused by a vertical temperature gradient. When the 

temperature is ramped to the desorption temperature (in order to desorb 

volatile surface contamination) the bowing of the sapphire substrate due to a 

difference in the vertical temperature gradient across the thickness of the 

sapphire (430 µm) i.e. the temperature difference between top and bottom of 

the substrate. The in-situ curvature measurement showed a linear increase of 

substrate bowing between 650°C to 1050°C (see figure 3.23). Since the 

growth temperature for AlGaN and AlN is similar and the curvature caused by 

the vertical temperature gradient can be treated as a constant, this value can 

also be disregarded. 

(c) Thermal mismatch. Since the layer is grown at constant temperature, the 

difference of thermal expansion coefficient between an epilayer and substrate 

is also constant and can be ignored in this calculation. 

(d) Lattice mismatch induced change in curvature during growth at a constant 

temperature. This change is directly associated to the strain in the film and is 

used for strain analysis. 

 

This change in curvature is based on the measurement of the substrate curvature κ in 

the centre of the wafer. The data are normally interpreted using the classical Stoney 

formula [134]. 
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Where κ is the curvature measured in situ, Mf and Ms are the biaxial modulus of the 

film and substrate respectively, ε is the mismatch strain and hf,s is the thickness of 

film layer and substrate. Mf  and Ms can be calculated using:  

 

However, the elastic constants of AlGaN at the growth temperature are not readily 

available in the literature and several different values have been reported [135]. They 

are assumed to be similar to the biaxial modulus of GaN at high temperature, i.e. 

449.6GPa. (For comparison, M for AlN is 470 GPa) 

The mismatch strain ε can also be expressed as: 

 

ε =
af (T )− as (T )

as (T )
=
Δaf
as

 

=> Δaf
as

=  Gradient of the curvature ×
hs
2Ms

6M f  
 

Thus the lattice parameters of the epilayer can be estimated with the curvature 

gradient data obtained from the in-situ measurements (the gradient is the change of 

curvature over a certain film thickness). The curvature gradient must be measured 

cautiously due to the artefacts arising from oscillations in the reflected light laser 

(reflections and resonances with the substrates) [136]. Also it is necessary to use the 

gradient values at the very beginning of the growth before significant relaxation has 

occurred (when curvature becomes nonlinear) since this method can become 

complicated and unreliable if the gradient was averaged over a nonlinear trend line 

due to relaxation. 

 

Total strain is then determined from these estimated lattice parameters. In order to 

calculate the lattice parameters at the growth temperature, the two-step effective 

substrate method has to be used [137] because all the multilayers grown on sapphire 

κ =
6M fhf
Mshs

2 ×ε

M f ,s =C11 +C12 − 2C13
C13
C33

"

#
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are affected by the strain associated with the layers underneath. The strain, af, in each 

layer has to be determined first and applied to the next layer, af
*. (see figure 3.26 for 

schematic). 

 

 
Figure 3.26: Schematic of two-step effective substrates method 

 

Table 3.6 summarises the total strain in each AlGaN composition calculated from the 

lattice parameters determined from curvature data. 

 

Table 3.6: Lattice parameters of AlN, af, and AlGaN, af
* using in-situ wafer curvature 

measurements. The composition, x, of AlxGa1-xN and the total strain relieved were 

resolved using the calculated lattice parameters of AlN and AlGaN. 

Sample XRD 

AlxGa1-xN, x = 

Calc. 

AlN af / nm 

Calc. 

AlGaN af
* / nm 

Calc. 

AlxGa1-xN, x = 

Calc. 

total ε 

C3901A 0.23 0.3117±1E-4 0.3181±5E-4 0.104±0.035 0.0204 

C3902A 0.44 0.3117±1E-4 0.3156±1E-4 0.429±0.005 0.0124 

C3903A 0.72 0.3117±1E-4 0.3131±5E-5 0.753±0.002 0.0044 

C3905A 0.87 0.3117±1E-4 0.3120±5E-5 0.896±0.002 0.0026 

 

The calculated AlN lattice parameter, af, is the actual lattice parameter at the growth 

temperature on sapphire; for reference, the bulk lattice parameter for AlN is 0.3112 

nm [135]. Using the two-step effective substrate method the calculated AlN lattice 

parameter then become the effective substrate lattice parameter for the calculation of 

the AlGaN layers. Therefore the calculated AlGaN lattice parameter should represent 

the actual lattice parameter at the growth temperature. The errors were produced when 
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measuring the best-fit lines for the gradient of the curvature. The errors were larger 

for lower Al% AlGaN layers due to larger changes in curvature. 

The calculated AlGaN compositions were in good agreement with the XRD results. 

However, in the case of C3901A the calculated composition was markedly 

inconsistent with the XRD. This might be due to the error terms or to the finding 

mentioned earlier that XRD averages over the entire AlGaN film to obtain the lattice 

parameters, whereas wafer curvature measures the lattice parameters at the 

heterointerface where the strain is at its maximum. 

 

3.5.3: Estimate of strain associated with εm and εBTD. 
 

The strain relaxation produced by the misfit dislocations is given by [137]: 

εm =
3
2
×
a
λ

 

Where a is the lattice parameter of the layer below the interface, in this case the AlN. 

The strain is corrected by a factor of 3/2. The reason for this is that there are three <1-

100> misfit directions on the (0001) basal plane. However, we can only image two 

out of 3 misfit directions using cross-sectional TEM images (section 3.4.2.4) and 

assuming the misfit dislocations have equal densities in all three directions (which is 

the case with hexagonal crystal structures), therefore a factor of 3/2 has to be taken 

into account. λ is the spacing between each misfit dislocation (~33 nm in both 

C3901A and C3902A, see section 3.4.2.4). In order to yield good statistics of the 

spacing, 100 data points are collected cross several cross-sectional TEM images to 

obtain averaged values. 

 

Table 3.7: Misfit strain calculations. 

Sample XRD 

AlxGa1-xN, x = 

Calc. 

AlN af / nm 

Calc. 

total ε 

Misfit strain 

C3901A 0.23 0.3117 0.0204 0.0141 

C3902A 0.44 0.3117 0.0124 0.0141 

C3903A 0.72 0.3117 0.0044 n/a 

C3905A 0.87 0.3117 0.0026 n/a 
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This calculation suggests that for C3901A, over 2/3 of the total strain was relieved by 

the interfacial misfit dislocations. For C3902A, the interfacial misfit dislocations 

relieve almost all of the strain. Note that the estimated misfit strain was larger than the 

total strain. This may be for two reasons, (a) errors caused by the oscillating artefacts 

of the curvature data were significant, or (b) additional misfit dislocations were being 

generated after growth during cool down or even during TEM sample preparation due 

to large shear stresses associated with grinding and polishing. 

 

Bent threading dislocations were first reported by Cantu et al [120], where edge 

dislocations were found to bend away from the vertical upon entering the 

compressively strained AlGaN layer. They have also found that these edge 

dislocations inclined along [1100] lines (if viewed projected onto the (0001) growth 

plane), which lie perpendicular to the b=a Burgers vectors of the dislocations and that 

the bent dislocations are not in their glide planes. Thus the bending must result from 

climb or by some other mechanism. Romanov and Speck [121] subsequently 

proposed a theoretical energy-balancing model to describe these inclined dislocations. 

They predicted that dislocation bending occurs once the critical thickness is exceeded 

and therefore the bending becomes energetically favourable. However, more recent 

work by Follstaedt [137] found that the bending of dislocations occurs almost at the 

interface before the critical thickness has been reached, and the same finding was 

reported in this work (see cross-sectional TEM images in results section). Dislocation 

climb by bulk defect diffusion is too slow at the growth temperature, which is not 

sufficient for inclination to occur. This contradicts the model Romanov and Speck 

proposed (which assumes sufficient climb exists). Accordingly, bending of a 

dislocation takes place by another process at the growth surface, which Follstaedt 

described as ‘surface-mediated climb’, where an existing dislocation overgrows a 

surface vacancy without filling the vacancy, as illustrated by the schematic (figure 

3.27). This is likely because the formation energy for an interstitial is much larger 

than for a vacancy. This makes the dislocation move away by one atomic unit length 

and continue up until the dislocation core again meets another surface vacancy. This 

surface process may provide the reason for inclination initiation below the critical 

thickness. However, this model only holds for the initial stage of growth, because it 



Chapter 3  107 

 

   

does not explain why bent dislocations are inclined at a fixed angle (with fixed 

amount of strain relieved) even after the strain decreases nonlinearly (figure 3.23) 

further away from the interface. 

 
Figure 3.27: (a) A cross-sectional view of an AlGaN layer showing the extra (2-1-10) 

half plane produced by a bent threading dislocation. The dashed line represents the 

average bend of the thread. A surface vacancy is attached to the terminated 

dislocation core. The area inside the circle is enlarged in (b) to show the atomic 

structure. The vertical black line is the existing thread and the heavy dashed line 

shows the jog that would be created if the surface vacancy is overgrown without 

filling [137]. 

 

These bent threading dislocations are inclined away from the [0001] direction and 

therefore their projections to the basal plane actually consist of misfit components 

(figure 3.28). These misfit components are equivalent to interfacial misfit 

dislocations, which also effectively relieve the strain in the film. Thus the bend angles 

were observed to increase as the lattice mismatch increases (relieving more strain). 
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Figure 3.28: A schematic showing a bent threading dislocation that has a misfit 

component (yellow dashed line) due to its projection to the basal plane. 

 

The strain relieved by these bent threading dislocations can be estimated using the 

following equation [137]: 

εBTD =
1
2
bρBTDL  

L = h tanα  

where b is the magnitude of the dislocation’s Burgers vector (b=0.318 nm [135]), 

ρBTD is the density of inclined dislocations (assuming all dislocations are bent). L is 

the projection of the inclination to the basal plane, which is the misfit component. h is 

the thickness of the layer and α is the average angle of inclination. 

In the case of samples C3901A and C3902A, because the inclinations were not linear 

across the entire film, BTD strain evaluation was separated into 2 layers where the 

inclinations were relatively consistent in each layer (see figure 3.29). The strains 

calculated from these two layers were then added and represent the total εBTD for the 

sample. 

 
Figure 3.29: XTEM image of C3901A. The thin yellow dashed line marked the 

position where most of the BTDs had a change in bend angles 
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Table 3.8: BTDs strain calculation in different AlGaN compositions. 

Sample AlxGa1-xN 

x = 

ρBTD / cm-2 h / µm α / ° εBTD 

C3901A 0.23 1.6±0.1x1010 0.45(1.35) 22.1(8.3) 0.00966 

C3902A 0.44 3.4±0.2x109 0.83(1.11) 15.6(4.3) 0.00170 

C3903A 0.72 3.3±0.2x109 2.10 15.2 0.00299 

C3905A 0.87 4.1±0.1x109 1.90 8.3 0.00181 

 

As expected the amount of strain relieved by these inclined dislocations (Table 3.8) 

was less than the amount relieved by pure misfit dislocations (Table 3.7).  

In sample C3901A the BTD strain was the largest due to much greater inclined angles 

and a larger number of TDs, which contributed to more misfit segments when 

projected onto the basal plane. Interfacial misfits accounted for about 3/5 of the total 

strain relieved whereas BTDs accounted for 2/5. The sum of the strain relieved by 

these two mechanisms was greater than the calculated total ε (Table 3.7), which is 

similar to C3902A suggesting some post-growth generated interfacial misfit 

dislocations. 

In sample C3902A the strain contributed from BTDs was the least among all samples 

due to a smaller averaged incline angle, despite the lattice mismatch being still quite 

large. This might suggest that the inclined dislocation arrays (discussed in chapter 4) 

also relieved a significant amount of strain as it can be seen that the threading 

dislocation bend angles decreased significantly once they encountered the arrays. 

Therefore both the interfacial misfits and the dislocation arrays have already relieved 

most of the strain. 

In C3903A and C3905A, the total strain is largely accommodated by these BTDs, 

which is consistent with the observations from XTEM, where BTDs were the major 

relaxation process in the samples.  

Bent threading dislocations were observed in all cases since the formation of misfit 

dislocations is related to the critical thickness of the layers. This indicates that the 

energy required to cause threading dislocations to bend was much lower than that for 

misfit dislocation generation. Their misfit segments were not constrained to the 

critical thicknesses of the samples. This also suggested that these bent threading 

dislocations were probably inconsequential to the formation of the misfit dislocations. 
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3.5.4: Estimate of strain associated with other types of defect. 
 

From the calculations shown above, it can already be seen that most of the strain in 

the AlGaN film was relieved via generation of both misfits and BTDs in the low Al-

content layer or just simply BTDs in the high Al-content layer. Therefore on the 

assumption mentioned earlier: 

 

εT = εHTD +εBTD +εIDA +εmisfit +εFR  

 

The strains associated with helical threading dislocations and Frank-Read sources 

were almost non-existent. However, they were observed in the TEM images. The 

reason for their presence might be partly that helical (or half-loops) threading 

dislocations also have misfit components when projected onto the basal plane, and 

essentially these helical (or half-loops) TDs were similar to the BTDs, which have 

already been taken into account in the previous calculation. As for the Frank-Read 

sources, these were essentially misfit dislocations that bowed out due to the local 

shear stress (discussed in section 3.4.2.5) and therefore their associated strain has also 

already been taken into account in the misfit strain calculations. 

 

Table 3.9: Comparison (column 3 and 4) between the amount of strain that XRD 

suggests has been relaxed with the amount of calculated strain that can be relaxed by 

the defect, and (column 5 and 6) between the total strain determined by XRD prior to 

relaxation with that measured from the in-situ curvature data (also before relaxation). 

Sample AlxGa1-xN 

x = 

Calc. strain relaxed 

by BTD and misfits 

Strain that XRD suggests 

has been relaxed 

Calc. 

total ε 

XRD 

total ε 

C3901A 0.23 0.0238 0.0146 0.0204 0.0190 

C3902A 0.44 0.0158 0.0094 0.0124 0.0138 

C3903A 0.72 0.0030 0.0015 0.0044 0.0071 

C3905A 0.87 0.0018 0.0002 0.0026 0.0032 

 

The XRD measured total strain prior to relaxation was comparable to the calculated 

total strain (Table 3.9 column 5 and 6), indicating the in-situ curvature data were 

overall in a good agreement with the XRD data.  
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However, the amount of strain that XRD suggests has been relaxed (according to the 

relaxation in Table 3.2) was only about half the amount of strain calculated from in-

situ curvature data that can be relaxed by the defects (Table 3.9 column 3 and 4). This 

discrepancy was expected since the calculation assumed that every misfit components 

of the bent TDs relieve the strain (i.e. all extra half planes occur at one side of the 

dislocations), whereas in reality, some bent TDs can also add to the strain if the misfit 

components have opposite sign of the Burger’s vector (see section 3.4.2.2). Therefore 

further studies on the characterisation of the Burger’s vectors will be necessary to 

correct this inconsistency.  

 

3.6 Conclusion 

In this chapter different types of defects seen in compressively strained AlGaN on 

AlN have been examined and discussed. Stress relaxation in these films occurred by 

the combined processes of interfacial misfit dislocations and bent threading 

dislocations. In-situ wafer curvature measurement in conjunction with other 

characterisation techniques has demonstrated that interfacial misfit dislocations 

dominate the strain relaxation processes while bent threading dislocations also relieve 

a fraction of the strain due to their inclined projection on the basal plane, equivalent to 

interfacial misfits. The strain associated with other types of defects was much smaller 

than that of the previous two types. In addition we have found that these bent 

threading dislocations occurred in all different AlGaN compositions studied ranging 

from 22% to 87% aluminium content. This suggests that their projected misfit 

segments were unrelated to the critical thicknesses of the layer and therefore the 

density of bent threading dislocations was probably inconsequential to the formation 

of the misfit dislocations. 

 

Frank-Read sources can occur at the interfaces in AlGaN/AlN films, not so far 

reported in the literature. Our data here were insufficient to determine their exact 

formation mechanisms. However, the results from conventional TEM studies showed 

that some of these dislocation multiplication sources originated from pre-existing 

interfacial misfit dislocations. Hence we hypothesised that the Frank-Read sources are 

interfacial misfit dislocations that bow out due to a local positive stress concentration 
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arising from surface islands or steps, which force some misfits to glide into the 

underlying AlN layer. 

 

Flat and spiral hillocks on the surface of highly lattice-mismatched films 

(Al0.23Ga0.77N on AlN) can be detrimental to the optical properties of the structure as 

the emitted wavelength is red-shifted. We also hypothesised that the formation of 

hillocks should be prevented by using a low III/V ratio and large substrate miscut 

steps, based on the model described by Heying et al. An atomically flat surface can be 

achieved with a high aluminium content AlGaN alloy so the lattice mismatch is small 

with respect to AlN and hence there is a small relaxation. However the dislocation 

density does not decrease further with a smaller lattice mismatch, because dislocation 

inclination angles become smaller and without surface steps or islands, dislocations 

are less likely to meet each other to reduce or annihilate.  

 

There are some limitations to the in-situ wafer curvature analysis. The most 

problematic are the difficulties in accurately determining the slope gradient when the 

sample is relaxed (small critical thickness) and the periodic oscillation artefacts 

caused by the interaction between the laser and the wafer, which can be extremely 

complex to correct.  

 

Additional inclined dislocation arrays, which also cause shifting in the emission 

wavelength, were also noted in low Al-content samples with a high density of surface 

steps. Detailed optical and structural studies of these inclined dislocation arrays are 

discussed in the next chapter.   
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4 
Inclined dislocation arrays in 
AlGaN/AlN structures. 
 

4.1 Background 

 

III-nitride materials are usually grown on foreign substrates such as sapphire, due to 

the lack of lattice-matched bulk substrates. The relaxation induced by the large lattice 

mismatch in these heteroepitaxially grown films generates a significant amount of 

dislocations, which hinder the performance of the devices (see literature). Numerous 

growth techniques have been developed in order to reduce the dislocation density, 

such as epitaxial lateral overgrowth (ELOG) [138] and the use of interlayers (SiN or 

ScN) [38]. However, these techniques can be complicated, such as requiring 

additional patterning, re-growth, etc. These additional growth steps can increase the 

overall manufacturing costs. Therefore another approach has been proposed in the 

literature [139] by simply using vicinal substrates. It has been reported that the miscut 

steps on the substrates lead to the formation of macro-scale inclined dislocation 

networks, which are able to lock and drag threading dislocations within the network, 

creating areas that are dislocation-free. This is very similar to the ELOG process but 

with a simpler approach and without the need of ex-situ patterning. However, the 

dislocation reduction and annihilation mechanisms at these macro-scale inclined 



Chapter 4  114 

 

   

networks are not very clearly understood. Also the properties of these networks have 

not been thoroughly studied, for instance, even though they are able to reduce the 

dislocation density. However the steps induced by these network on the surface can 

have detrimental consequences for the succeeding quantum well growth, for instance, 

non-uniform active region heights. 

Most of the reports in the literature have focused on the studies of inclined dislocation 

networks in the first layer of the template, e.g. AlN or GaN on vicinal sapphire, or 

AlN on vicinal Si(111) substrates. However, so far there are no reports on the studies 

of these inclined dislocation networks on the succeeding grown buffer layers. 

As mentioned in the previous chapter, we have observed similar inclined dislocation 

network in the AlGaN buffer layer in our AlGaN/AlN heterostructures grown on 

sapphire. These features occurred without the use of vicinal substrates but occurred 

solely on the growth induced surface steps of the AlN template. How these inclined 

dislocation networks interact with other types of dislocations in the materials is rather 

complicated. In order to understand their influence on device performance, another 

reference sample with slightly different growth (with a thinner AlN layer and a GaN 

interlayer) was employed for comparison between the surface step densities, threading 

dislocation densities, and inclined dislocation arrays.  

 

4.2 Aim 

 

This chapter aims to explain the formation mechanisms and investigate the optical 

and structural properties of these inclined dislocation networks and their influence on 

device performance.  

 

4.3 Experimental details 

 

All samples were grown by metalorganic vapour phase epitaxy (MOVPE) in a 

Thomas Swan 6 × 2” close-coupled showerhead reactor using trimethylaluminium 

(TMA), trimethygallium (TMG) and ammonia (NH3) as precursors and hydrogen as 

carrier gas. Initially, 1 µm thick and 4 µm thick AlN layers were deposited on c-plane 
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sapphire substrates (0.25º ± 0.10º towards (

€ 

1120)) for Samples A and B, respectively. 

For this, the sapphire substrates were thermally cleaned for 7 min in a flow of 

hydrogen, followed by a predose of 56 µmol TMA in the absence of ammonia, and 

the growth of a 30 nm thick AlN nucleation layer at a pressure of 200 Torr, a V/III 

ratio of 250 all at a temperature of 1050 ºC, followed by high-temperature AlN 

growth at 50 Torr, 1130 ºC and a V/III ratio of 60.  For Sample C, the 1 µm thick AlN 

template (sample A) was re-introduced in the reactor and a 20 nm GaN interlayer was 

introduced for defect reduction purposes [140] and was grown at 1100 °C, 50 Torr 

and V/III=3880, followed by a 1.0 µm Al0.46Ga0.54N layer at 1100 °C and 50 Torr. For 

Sample D, the 4 µm thick AlN template (sample B) was overgrown with a 1.5 µm 

Al0.43Ga0.57N layer at 1100 °C and 50 Torr. For sample E, the Al0.46Ga0.54N/AlN 

template (Sample C) was overgrown with an AlGaN connecting layer with the same 

composition and a 10-period Al0.30Ga0.70N/Al0.46Ga0.54N QW structure. For sample F, 

the Al0.44Ga0.56N/AlN template (Sample D) was overgrown with an AlGaN 

connecting layer with the nominally same composition (however, XRD analysis 

showed it to have an Al fraction of 0.49) and a 10-period Al0.35Ga0.65N/Al0.49Ga0.51N 

QW structure.  A schematic of the different sample growth stages for Samples E and 

F is shown in Figure. 4.1. 

 

 
Figure 4.1: Schematic of the two sample structures. 
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4.4 Results and Discussion 

4.4.1. X-ray diffraction 
 

The AlGaN/AlN ‘template’ layers (Samples C and D) were characterised first, in 

order to determine their compositions and to evaluate their dislocation densities.   

 

Table 4.1: Summary of the XRD data collected from Samples C and D. 

 
 

Table 4.1 shows a summary of the XRD data collected from the two template layers: 

the full width at half-maximum (FWHM) values were obtained from ω-scans of the 

0002 and 

€ 

1011 reflections for both samples. The FWHM values for the AlN as well as 

the AlGaN 0002 and 

€ 

1011 reflections were reduced by a factor of 2 or more in the 

layers used in Sample D, compared to those used in Sample C.  In all cases, the 0002 

FWHM was less than the 

€ 

1011 FWHM, indicating that edge-type dislocations were 

predominant in the layers and that Sample D contained a significantly lower 

dislocation density than Sample C, primarily due to a lower dislocation density in the 

AlN buffer layer.  Comparison between the AlGaN and AlN FWHM values within 

the same sample shows that the AlGaN layers have broader (101) ω peaks, suggesting 

an increase in edge-type threading dislocations at the AlGaN/AlN interface.  Cross-

sectional TEM measurements (discussed below) will confirm this result. The AlGaN 

compositions and strain states were determined from reciprocal space maps (RSMs) 

of the 0004 and 

€ 

1015 reflections. The data in Table 4.1 indicate that significant strain 

relaxation has taken place in the AlGaN layers, which may be linked to the increase in 

edge-type TD density at the AlGaN/AlN interface. Because clear strain and/or 

compositional variations were visible from the RSMs for both AlGaN layers, the 

analysis was carried out for the highest intensity peak.  Figure 4.2(a) and (b) show the 

RSMs of the 

€ 

1015 reflection for the MQW structures, respectively Sample E and F.  
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The data clearly indicated that (a) the AlGaN layers have relaxed significantly with 

respect to the AlN buffer layers and (b) the AlN reciprocal space point of sample F, 

i.e. from the 4 µm-thick AlN layer is much smaller that that of sample E, i.e. from the 

1 µm-thick AlN layer.  The lower AlGaN RSP in Figure 4.2(b) indicates the 

compositional mismatch between the Al0.44Ga0.56N layer of Sample D and the 

Al0.49Ga0.51N connecting layer for the growth of Sample F. 

 

 
Figure 4.2: X-ray diffraction reciprocal space maps of the AlGaN and AlN 10-15 

reflections from the ‘templates’ used in (a) Sample E and (b) Sample F, with the 

dotted lines indicating the AlN in-plane lattice parameter. (c) ω−2θ scans of the 0002 

AlGaN reflection, showing interference fringes due to the AlGaN/AlGaN multiple 

quantum wells. 

 

Figure 4.2(c) shows ω−2θ scans for both samples. The sharper fringes observed in the 

ω−2θ scan for Sample F indicate the smooth, high-quality interfaces within the 

MQWs, while the ‘smearing’ of the fringes in the ω−2θ scans from Sample E 

indicates rougher or more diffuse interfaces [12]. However, in both cases, the data 

were sufficient to enable simulations to be performed in which the QW and barrier 

compositions and thicknesses could be extracted. 
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4.4.2. Atomic force microscopy 
 

The surface morphology of both the AlN layers, Samples A and B, was investigated 

using atomic force microscopy. No cracks were observed in any of the layers.  The 

surface roughness of Sample A (RMS = 1.96±0.05 nm, over 5 x 5 µm area) was 

higher than that of Sample B (RMS = 1.64±0.10 nm, over 5 x 5 µm area) due to a 

higher density of bunched surface steps (Figure 4.3). Surface step densities were 0.30 

± 0.04 µm-1 and 0.24 ± 0.02 µm-1 for Sample A and B, respectively. The surface step 

densities (µm-1) were calculated by measuring the total length of the steps (in µm) 

within a 20 µm x 20 µm area of the sample as revealed by plan-view SEM-CL data. 

The height of the bunched steps in Sample A and B is about 20 nm and 10 nm on 

average, respectively.  

 

 
Figure 4.3: 5 µm x 5 µm atomic force microscopy height images of the surface of (a) 

the 1 µm AlN buffer layer used in Sample A (RMS = 1.94±0.05 nm), (b) the 4 µm 

AlN buffer layer used in Sample B (RMS = 1.69±0.10 nm). 

 

4.4.3. SEM-cathodoluminescence 
 

Plan-view SEM-CL imaging of the surface morphology of Sample E and F indicate 

that the MQWs in the region of the bunched surface steps have a reduced 

cathodoluminescence intensity compared to the rest of the sample. Dark spots are also 

observed in the CL image; these are most likely due to non-radiative recombination at 
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threading dislocations (TDs) [141]. However, the CL spectra taken from sample F 

(Figure 4.4) showed a small shoulder around 300 nm. A plan-view monochromatic 

CL image taken at 302 nm (Figure 4.4) showed that this longer-wavelength, lower 

intensity emission originated from the step edges. This step-edge-related emission 

was also observed in Sample E (spectra not shown). The intensity of the shoulder 

peak in Sample E is stronger than that in Sample F suggesting the step density is 

higher for Sample E, which is consistent with the higher surface step density 

measured by AFM. 

Dark features running at an angle of 30º across the entire AlGaN region of both 

samples were observed in cross-sectional panchromatic CL measurements (not 

shown). Careful comparison with the corresponding SEM images of the same areas 

showed that the features were intrinsic to the sample and not due to morphological 

features of the cleaved surface.  

 

 
Figure 4.4: Plan-view monochromatic CL image (302 nm) obtained from Sample B, 

along with a CL spectrum obtained from this area. 

 

4.4.4. Transmission electron microscopy 
 

The inclined features observed in SEM-CL in the Samples E and F can also be seen in 

STEM-HAADF, as shown in Figure 4.5. In these low-magnification images, the 

inclined features are observed to meet, annihilate or overgrow one another. The 
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contrast in the HAADF images may be caused by a change in strain state and/or a 

local change in composition. To further characterise these inclined features, 

conventional cross-sectional TEM studies were carried out on Sample F and the 

results are shown in Figure 4.6.  First of all, a significant number of pure edge-type 

TDs were generated at the AlGaN and AlN interface, confirming the broadening of 

the AlGaN X-ray rocking curves compared to those of the AlN layer as discussed 

previously.  The formation of extra TDs at the AlGaN/AlN interface is likely the 

result of the significant lattice mismatch between AlN and AlGaN [137]. The 

dislocation density in Sample E was determined at (3.6±0.1)×109 cm-2 and that in 

Sample F at (1.7±0.1)×109 cm-2, which is consistent with both the plan-view CL data 

and XRD data. Also observed in Figure 4.6 is the bending of all types of TDs 

occurring at the inclined features, which has already been discussed extensively in the 

previous chapter. Plan-view TEM images taken with the g = 1-100 diffraction 

condition revealed arrays of inclined dislocations in addition to conventional 

threading dislocations aligned perpendicular to the substrate (Figure 4.7). These 

correspond to the intersection of the inclined features with the sample surface; indeed, 

thickness fringes corresponding to a surface step can be detected running along the 

edge of the array. Clearly, the inclined features consist of arrays of dislocations, 

which terminate at bunched surface steps. These inclined bundles of dislocations 

show up as dark features in both plan-view and cross-sectional SEM-CL images.  

 

 
Figure 4.5: Cross-sectional STEM-HAADF image of Sample F. 
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Figure 4.6: Cross-sectional weak beam dark field TEM images of Sample F taken 

with diffraction conditions using (a) g = 11-20 (revealing a and (a+c)-type 

dislocations) and (b) g = 0002 (revealing (a+c) and c-type dislocations). 

 

 
Figure 4.7: Plan-view weak-beam dark field TEM image taken with the g = 1-100 

diffraction condition from Sample F, showing an inclined dislocation array 

terminating at a surface step. 

 

However, plan-view CL data (Figure 4.4) showed that the surface steps were 

associated with luminescence at both lower intensities and longer wavelengths 

compared to the bulk. While the lower intensities are explained well by the presence 
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of the inclined dislocation arrays, the shift in emission wavelength is not. However, 

STEM-EDX measurements showed that the region around the inclined dislocations in 

both the AlGaN epilayer and the quantum wells also had lower aluminium content 

(Figure 4.8). The inclined dislocations also produced an increase in the thickness of 

the wells and barriers in the succeeding MQW region as seen in Figure 4.9. In 

conjunction with the additional Ga in the wells, this was likely to be responsible for 

the emission wavelength shifts in CL emission spectra (Figure 4.4). The low-

aluminium content regions (containing the inclined dislocation arrays) were solely 

generated at the side facets of the surface steps at the AlGaN/AlN interface, 

suggesting differences in the relative incorporation rates of Al and Ga on these 

inclined facets [142][143]. It is not clear whether the dislocation arrays formed 

independently, or whether they are misfit dislocations produced as a result of the 

lattice mismatch of the low-Al content region with respect to the surrounding higher-

Al content AlGaN. 

 

 
Figure 4.8: STEM-EDX maps and corresponding line profiles indicating the relative 

proportions of Ga (filled circle) and Al (open circle) in the region surrounding the 

inclined defect in (a) the AlGaN ‘template’ layer and (b) the quantum wells. 
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Figure 4.9: Cross-sectional STEM-HAADF image of the inclined defect within the 

MQWs region in Sample F. 

 

4.5 Discussion 

A similar inclined dislocation network was observed by Shen et al. [139] in the AlN 

film grown on a 2.0° miscut (0001) sapphire substrate as mentioned in section 4.1. 

Figure 4.10 shows the dislocation reduction mechanism induced by these inclined 

dislocation networks.  

 

 
Figure 4.10: (a) Cross-sectional TEM image of the AlN film grown on a 2.0° miscut 

sapphire substrate. Dislocation reduction was observed at the inclined dislocation 

networks region. (b) Plan-view TEM image of the same sample showing an ELOG-

like structure. (Results from [139]) 



Chapter 4  124 

 

   

 

The inclined dislocation arrays observed in this work were similar to Shen’s work. 

However, dislocation reduction did not occurred in our cases, which was clearly 

evident in figure 4.11. 

 

 
Figure 4.11: Plan-view panchromatic CL image of sample F. Surface steps that are 

associated with inclined dislocation arrays were marked by red arrows. Dislocation 

densities seem to remain unchanged at the vicinity of the steps. 

 

Although the inclined dislocation arrays may lead to local TDD reduction similar to 

Shen’s result, the inclined dislocation arrays observed in this work were associated 

with a change in composition (more gallium as shown in STEM-EDX data), causing a 

change in lattice parameters in comparison to the surrounding material. Therefore, it 

is likely that the lattice mismatch at these arrays can also lead to the generation of 

misfit dislocations and hence an overall dislocation reduction was not observed. The 

dislocations were revealed as dark spots in plan-view CL images and the density 

remained unchanged at either side of the surface steps, indicating the inclined 

dislocation arrays had no effect on the overall TDD of the sample.  

Since the TDD did not change, it also suggested that the inclined dislocation arrays 

probably have an insignificant effect on the stress relaxation in the film, and therefore 

are insignificant in the strain calculation in Chapter 3. A future study involves the 

determination of the magnitude and sign of the Burger’s vector of dislocations (in 
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figure 4.7) would be useful to clarify the effect of the inclined dislocation arrays on 

the stress relaxation. 

 

Figure 4.12 showed evidence that the low-Al content inclined dislocation arrays were 

likely to originate from the surface steps on the AlN template as mentioned earlier. 

Since the inclined dislocation arrays were detrimental on the device (causing a shift in 

emission wavelength, changing the active region’s heights and possibly generating 

additional dislocations due to lattice mismatch), reducing the density of surface steps 

on the AlN template may directly reduce the amount of inclined dislocation arrays 

and improve the AlGaN film quality. 

 

 
Figure 4.12: Cross-sectional STEM-HAADF image showing an inclined dislocation 

array originated from a surface step on AlN template. 

 

4.6 Conclusion 

 

Throughout the course of this chapter, we have compared two AlGaN/AlGaN MQW 

structures emitting at around 290 nm, which were grown using two different defect 

reduction methods, one with a GaN interlayer and one with a thicker AlN buffer 

layer. The optical and structural properties of the buffer layers and MQW structures 

were investigated by a number of complementary characterisation techniques. The use 

of a thick (4 um) AlN buffer layer was found to be more effective in reducing overall 

defect densities, as shown in the XRD data, and in increasing the internal quantum 
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efficiency, as shown in the PL data, compared to a 1 um AlN buffer layer plus a GaN 

interlayer. This was mainly due to the improvement in AlN template growth. Both 

AlN layers contained bunched surface steps, which led to the formation of arrays of 

inclined dislocations in the AlGaN buffer and MQW layers. The GaN interlayer did 

not prevent the formation of these inclined dislocations.  

 

The inclined dislocation arrays were found to be lower in aluminium content possibly 

being generated during AlGaN growth on the inclined facets at the step edges due to 

differences in the relative incorporation rates of Al and Ga on different facets. The 

inclined dislocation arrays would be detrimental on device performance; they 

distorted the quantum well and barrier heights and changed the composition leading 

to a shift in emission wavelength. Additional misfit dislocations could probably be 

generated due to the lattice mismatch with the surrounding AlGaN materials.  

 

The inclined dislocation arrays seem to originate from the surface steps on the AlN 

template. We hypothesise that reducing the step density of the AlN film may directly 

reduce the density of inclined dislocation arrays and result in an improved AlGaN 

film. This leads to the investigation of AlN template growth optimisation in Chapter 

5. 
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5 
AlN growth 
 

5.1 Background 

 

The use of AlN as the template for UV optoelectronic device structures has attracted 

much attention in recent years [144] due to AlN having the largest direct band gap in 

the conventional III-V nitrides and thus being transparent to UV emission. However, 

the growth techniques for AlN are not very well established, as it is relatively more 

difficult to grow, in comparison to GaN, due to the low aluminium adatom mobility, 

slow lateral growth rate and the requirement for a higher growth temperature etc. (see 

chapter 1 for more details). AlN layers grown on sapphire substrates therefore usually 

exhibit a large degree of surface roughness with a high threading dislocation density, 

of the order of 1010 cm-2 often being reported [145]. This greatly affects the quality of 

the succeeding epilayers and growth of the active region. For instance, the surface 

steps on the AlN template can lead to the generation of inclined dislocation arrays as 

shown in chapter 4. 

 

Several growth techniques for AlN have been reported in the literature which were 

developed in an attempt to improve the materials quality: these include high 

temperature growth using hot-wall MOCVD [146], epitaxial lateral overgrown AlN 

[147], patterned sapphire prior to AlN growth [148], pulsed atomic layer epitaxy 

growth (PALE) [149], mid-temperature nucleation layers [150] and pre-dose methods 

[150]. McAleese et al [150] in Cambridge achieved substantial improvements in 

material quality by combining the TMA pre-dose method and nucleation layer 

technique leading to a high quality 4 µm thick AlN layer with XRD ω scan FWHM 
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values of 272 arcsec and 473 arcsec for the (002) and (101) reflections, respectively. 

These values are comparable to conventional GaN layers on sapphire, suggesting 

these AlN templates are indeed promising candidates for deep-UV optoelectronic 

applications. For instance, 2 µm AlGaN epilayers growth on these high quality 

templates have shown the narrowest XRD peak widths of any method to date with 

dislocation densities of order of low - mid 108 cm-2 (see chapter 3 for more details). 

 

Although high quality AlN templates have been successfully used to achieve the 

growth of succeeding high quality AlGaN epilayers, it has been shown in chapter 4 

that further reduction in the amount of surface steps on the AlN templates should 

eliminate the generation of inclined dislocation arrays and further enhance the quality 

of succeeding epilayers. In addition, the growth of high quality AlN templates is not 

as reproducible as the growth of GaN templates due to several growth-related issues. 

For instance, under the exact same growth condition, the AlN surface morphology can 

vary significantly (Figure 5.1) depending on “memory effects” associated with the 

history of the reactor’s usage, (e.g whether a H2 bake prior to a TMA pre-dose is used, 

whether impurities are left over from previous runs, or contaminants are incorporated 

from the showerhead/susceptor). Thus, it is believed that there is scope for AlN 

growth techniques to be further optimised to achieve atomically flat surfaces and high 

reproducibility. 

 

 
Figure 5.1: AFM images of 1 µm AlN templates grown under the same conditions 

except for the use of a hydrogen bake prior to the TMA pre-dose. The left hand image 

shows sample C4162 grown using such a hydrogen bake whilst the right hand image 

shows sample C4164 grown without a hydrogen bake. 
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5.2 Aim 

 

Specific topics covered in this chapter include: 

 

1. Further understanding of the influence of the bake recipe and reactor history 

effects prior to pre-dose. 

 

2. Optimising the bake recipe and the TMA pre-dose step for AlN growth. 

 

3. Microstructural analysis of the AlN films. 

 

 

5.3 Pre-existing results from the Cambridge GaN centre 

 

5.3.1 MOCVD growth conditions for AlN 
 

The Al-N bond strength (EB = 2.88 eV) is greater than that of Ga-N (EB = 2.2 eV) 

[151], as a consequence AlN has a higher melting point of ~3200°C in comparison to 

GaN, which melts at ~2500°C, thus the Al adatoms have less mobility on the growth 

surface at a given temperature than do Ga adatoms, which leads to slower lateral 

growth rates and a higher dislocation density. Therefore AlN is normally grown under 

the highest reactor temperature possible to increase the adatoms mobility [152]. 

However, the maximum temperature achievable in our MOCVD is ~1130°C, which is 

still insufficient to reach the comparable lateral growth rate as for GaN.  

Also TMA and NH3 precursors undergo strong parasitic reactions in the gas phase to 

form low volatility addition compounds, which consequently lowers the growth rate 

under high V/III ratio [153]. Therefore, low ammonia flows and reactor pressures are 

normally used during AlN growth to minimise the parasitic reactions in the gas phase 

and to increase the growth rate.  
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5.3.2 TMA pre-dose step 
 

Early works on AlN growth exhibit very rough surfaces [154], which were unsuitable 

for epitaxial growth of further heterostructures or active regions. This is because the 

growth rate of Al- and N-polar materials is significantly different and therefore the 

surface morphology is highly sensitive to the presence of inversion domains in the 

layers (mixed polarity, Figure 5.2). Therefore, films exhibiting a single polarity are 

preferred for obtaining smooth AlN surfaces. N-polar material can be obtained by 

extensive nitridation of the sapphire substrate and has been demonstrated to give a 

very narrow XRD ω scan FWHM values of less than 50 arcsec [150]. However, the 

surface roughness is still very high due to non-uniform and incomplete coverage of N-

polar material on the sapphire substrate surface even after 1-hour of nitridation. 

 

 
Figure 5.2: STEM-HAADF image and CBED patterns from AlN layer without pre-

dose step. Data from Dr. McAleese et al [150].  

 

The surface roughness can lead to MQW thickness fluctuations and is therefore 

unsuitable for further heterostructure growth. 

Al-polar AlN material can be obtained by injecting (“predosing”) the group III 

precursor (TMA) into the reactor prior to the introduction of the ammonia [155]. This 

deposits a thin layer of Al metal on the sapphire surface initially producing an Al-

polar surface for the subsequent material growth.  Nitridation can be also prevented 

when the ammonia flow is introduced after this TMA pre-dose. Al-polar AlN was 



Chapter 5  131 

 

   

found to represent the only option to achieve a smooth surface (Figure 5.3) but with 

the trade-off of incurring a higher defect density (ω scan FWHM values of ~800 and 

~1000 arcsec in the (002) and (101) reflections, respectively). 

 

 
Figure 5.3: WBDF image (g = 0002) of an Al-polar AlN layer with TMA pre-dose. 

Data from Dr. McAleese et al. [150] 

 

The thickness of the AlN layer grown using a TMA pre-dose step is limited to around 

1 µm or less to avoid cracking, leading to difficulties in the developments of 

dislocation reduction methods [156].   

 

5.3.3 Low temperature nucleation layer 
 

The use of a low V/III ratio nucleation layer (~30 nm thick grown at 700°C) in the 

initial stage of growth can prevent nitridation before growth commences to create an 

Al-polar film. The surface was also smooth in comparison to the pre-dose method. In 

addition, AlN layers grown on this nucleation layer were found to be under 

compression at 1 µm thickness (in comparison, standard AlN growth at 1130°C was 

under tensile strain and generally cracked at thickness > 1 µm). 

An alternative method that combines the merits of both the TMA pre-dose step and an 

intermediate temperature nucleation layer was developed in Cambridge by Dr. 

McAleese in order to maintain the crystal quality whilst allowing thicker layers to be 

grown. The TMA flow was reduced to 30 sccm with a 120s pre-dose time for the 

initial stage of growth. The nucleation layer was then grown at 1050°C with an NH3 

flow of 75 sccm and a V/III ratio of 255, all at a reactor pressure of 200 Torr. The 
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growth temperature was then raised to 1130°C and pressure lowered to 50 Torr to 

commence the growth of the main AlN layer at a higher growth rate of up to 1.3 

µm/hour and a low V/III ratio of 42. 

As a result, a high quality AlN layer with a smooth surface was successfully 

produced. Such layers exhibited decreasing XRD ω scan values (Figure 5.4) with 

increasing layer thickness due to dislocation bending and annihilation, as shown in 

chapter 3 (in comparison, the thickness of GaN makes no difference to the ω scan 

peak width, and the TDD is stable after the initial 500 nm or so). However, some 

occasional large step bunches are still apparent in wide area images.  These caused 

generation of large-scale inclined dislocation arrays in the succeeding AlGaN layers 

as shown in chapter 4. A further improvement on the surface morphology will 

certainly lead to a very promising future for many UV applications that utilise AlN 

templates, as the material quality is clearly approaching that of high quality 

GaN/sapphire templates. 

 

 
Figure 5.4: Evolution of XRD ω scan peak widths with increasing layer thickness 

and data for highly resistive (HR) and low dislocation density (LDD) GaN templates 

as a comparison. AFM amplitude image on the right shows the surface of a 4 µm 

thick AlN layer. Data from Dr. McAleese et al [150]. 

 

 



Chapter 5  133 

 

   

5.4 Experimental details 

 

The AlN template growth procedure was based on the same conditions as described in 

chapter 3 (see chapter 3.3 for detailed growth procedures). Therefore most of the 

parameters remained unchanged, the only differences were introduced at the very 

beginning of the growth, i.e. modifying the TMA pre-dose flux, and commencing 

growth with or without a pre-bake. The following table (Table 5.1) summarises the 

samples used in this chapter. All the samples were grown in The Cambridge Centre 

for Gallium Nitride by Dr Menno Kappers (reference samples) and Dr Fabrice Oehler 

(new pre-dose and AlN samples). 

 

Table 5.1: Sample descriptions. 

Sample Pre-growth 

treatments 

TMA pre-dose @ 30 

sccm 

Description 

Reference samples 

C3899 No-bake 120s 4 µm AlN template used in chapter 

3 

C4154 No-bake 0s Test samples 

C4155 No-bake 10s Test samples 

C4157 No-bake 60s Test samples 

C4156 No-bake 120s Test samples 

C4159 No-bake 180s Test samples 

C4158 No-bake 240s Test samples 

C4169 H2 baked 120s Hydrogen baked C4156 

C4164 No-bake 120s 1 µm AlN grown on C4169 

C4162 H2 baked 120s 1 µm AlN grown on C4156 

TMA pre-dose on sapphire 

C4604 30 min H2 bake 120s Beginning of 1 week growth session 

C4619 Idle in reactor 

overnight 

120s Day before end of the growth 

session 

C4624 30 min H2 bake 120s End of the growth session 

C4606 After an AlN run  120s Bake-like recipe 

C4607 Modified H2 bake  120s 5 min of NH3 introduced during 

cool down after H2 bake 
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C4608 Modified H2 bake  120s 30 min NH3 introduced during cool 

down after H2 bake 

C4617 Full N2 bake 120s Nitrogen bake 

AlN grow after TMA pre-dose 

C4610 Modified H2 bake (5 

min NH3) 

120s Rough surface, incomplete 

coalescence 

C4612 After an AlN run 120s Rough surface, incomplete 

coalescence 

C4615 H2 bake 120s Rough surface, incomplete 

coalescence 

C4621 H2 bake 60s Rough surface, incomplete 

coalescence 

C4623 After a previous 

AlN run 

Double TMA flux Direct NH3 injection, fully 

coalesced, large random crystals 

C4626 After a previous 

AlN run 

Double TMA flux Slow NH3 ramp, fully coalesced, 

smaller random crystals 

 

 

5.5 Results 

 

The following work attempts to verify the hypothesis on the effect of baking, (based 

on the observations from two 1µm AlN reference samples shown in Figure 5.1). With 

baking, the reactor should be free from any nitrogen containing impurity left over 

from the previous growth run. As mentioned earlier, under the exact same recipe, the 

AlN surface morphology can vary significantly depending on whether or not a pre-

bake was used prior to growth. The AlN islands did not coalesce when a H2 bake was 

used, whereas the AlN was almost completely coalesced when no H2 bake was 

employed. However, additional work needs to be carried out to further understand the 

effect of baking on the final AlN layer surface morphology. 
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5.5.1 Pre-dose of aluminium on sapphire wafers 
 

• Optimising TMA pre-dose duration 

Sample studied: C4154 – C4159 

 

The effect of varying the TMA pre-dose duration between 0 to 240 seconds using a 

fixed 30-sccm flow was investigated with AFM (Figure 5.5). An optimum pre-dose 

duration of 120s has been determined. 60s pre-dose was insufficient to fully cover the 

surface with Al, which could lead to partial substrate nitridation resulting in mixed 

polarity films. A 180s pre-dose was too long and resulted in large scale Al blobs and a 

rougher pre-dosed sapphire surface, making defect generation more likely once the 

AlN begins to grow. It should be noted that the surfaces observed using AFM under 

ambient conditions were not necessarily representative of the surfaces at the growth 

temperature (since aluminium metal melts at ~550°C). However, significant 

differences in the surface morphology were apparent when the pre-dose time was 

varied.   

 

 
Figure 5.5: AFM images, 1 µm square, of Al coverage on sapphire wafers with 

varying TMA pre-dose time (sample C4154-C4159). Image z ranges are (a), (b), (c) 

20 nm, (d) 10 nm and (e), (f) 5 nm. 
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• Reactor evolution over time 

Samples studied: C4604, C4619, C4624 

 

The growth session which provided the new pre-dose and AlN samples lasted ~ 1 

week and consisted of over 23 growth runs. It was reasoned that the state of the 

reactor will be different between the beginning and the end of the growth session, i.e. 

the showerhead can be contaminated with metallic precursors and impurities can be 

left behind on the susceptor, and that these may influence the growth mode. 

At the beginning of the growth session with a new susceptor and a cleaned 

showerhead, the TMA pre-dosed sapphire surface was smooth. As the growth mode 

evolves over several runs, relatively large-scale Al blobs start to appear on the TMA 

pre-dosed sapphire surface (Figure 5.6) prepared using exactly the same bake recipe 

as the one used initially. 

This suggests that the TMA pre-dosed sapphire surface morphology after H2 bake 

varies not only with the previous growth recipe but also with the full reactor history, 

i.e. the state of the susceptor and the degree of contamination on the showerhead. 

 

 
Figure 5.6: AFM images, 5 µm square with 20 nm z scale, of three TMA pre-dose on 

sapphire samples grown using the same H2 bake, taken at the beginning of the growth 

(C4604), day before the end of growth (C4919) and end of growth (C4624). Number 

of aluminium blobs increased over time. (Courtesy of Dr Oehler) 
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• Effect of different bake recipes 

Bake recipes used for the TMA pre-dosed sapphire samples: 

C4606: After a AlN growth run (i.e. without H2 bake) 

C4607: H2 bake and an introduction of ammonia (NH3) during final cool down 

for 5 minutes. 

C4608: H2 bake and an introduction of ammonia (NH3) during final cool down 

for 30 minutes. 

C4617: 30 min nitrogen (N2) bake 

 

Since we have hypothesized that baking affects the amount of nitrogen containing 

impurities left over from the previous growth run or the state of the reactor, for 

example, a contaminated showerhead (refer to previous section), which leads to the 

variation in surface morphology. Therefore, four different bake recipes were 

investigated for a study of modified bake processes. 

 

The TMA pre-dosed sapphire sample after an AlN growth run, C4606, (i.e. without a 

H2 bake) had a rougher surface than any of the H2 baked samples shown in the 

previous section. It also appeared different than the old reference sample C4156 

(Figure 5.5 c) grown under the same conditions without a H2 bake. Surprisingly this 

non-baked C4606 sample was similar to the old baked sample C4169 (Figure 5.7), 

suggesting the morphology of the Al film deposited on sapphire wafers may greatly 

depend on the reactor history in addition to the bake recipe. 

 

 
Figure 5.7: AFM image of C4169 (C4156 with H2 bake), the image z scale was 40 

nm. 
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Interestingly, if the samples (C4607 and C4608) were introduced to an ammonia flow, 

during the final cool down, their surface morphologies appear to be similar to C4606 

(Figure 5.8). The longer duration of the ammonia flow introduced during cool down, 

C4608, seems to increase the size of the blobs on the sapphire surface (the blobs may 

be AlN nuclei due to the thermophoretic force between TMA and NH3, more details 

in section 5.6). This suggests that either the NH3 or the compound related to the 

introduction of NH3 may produce a memory effect in the reactor. 

 

The sample subjected to a nitrogen (N2) bake before the TMA pre-dose (C4617) 

showed similar morphology to a sample grown with a H2 bake, suggesting that pure 

nitrogen has an insignificant effect on the surface and only the introduction of 

ammonia would affect the size of the blobs. However, sample C4617 was grown a 

few days after the other 3 samples and it was difficult to verify this analysis due to the 

reactor evolution over time as shown in the previous section. 

 

 
Figure 5.8: AFM images, 5 µm square with 20 nm z scale, of TMA pre-dosed on 

sapphire samples with different bake recipe. (Courtesy of Dr Oehler) 
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5.5.2 AlN growth 
 

The difference between a smooth and a rough AlN layer surface as shown in Figure 

5.1 seems to be related to the lateral spreading of the surface features (Figure 5.9). 

Both samples showed a very similar height difference between the flat surfaces and 

uncoalesced regions.  

 

 
Figure 5.9: Line profiles of the surface feature height extracted from AFM data in 

figure 5.1. 

 

This in conjunction with the study on the TMA pre-dose and bake recipe in the 

previous section suggests that the AlN surface morphology may be indirectly related 

to the bake recipe, but instead directly associated with the variation in the density or 

nucleation time of the surface blobs (AlN nuclei). In another words, although the 

lateral growth rate is the same for both samples (the same V/III ratio, pressure and 

temperature), it is possible that the AlN sample can still have a coalesced surface due 

to more nuclei being available at the beginning of the growth. If that assumption 

holds, we would expect to see a coalesced surface when grown on the TMA pre-dosed 

sapphire sample with a high blob density, such as C4608 (Figure 5.8). 

 

Figure 5.10 shows three 1 µm AlN layers (all grown with intermediate temperature 

AlN nucleation layers prior to the main layer grown) grown after three different bake 

recipes: an H2 bake with an additional 5 min NH3 flow during cool down, and without 

an H2 bake (grown straight after a previous AlN run), and a H2 bake. 
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Figure 5.10: AFM images (5 µm square) of three 1 µm AlN templates grown after 

different bake recipes. RMS values were 17.9 nm, 10.2 nm, and 18.8 nm for C4610, 

C4612 and C4615, respectively. (Courtesy of Dr Oehler) 

 

These three samples showed a result inconsistent with the assumption made earlier: 

The RMS value of the AlN surface grown on a high blob density pre-dose sample was 

actually higher than the AlN sample grown on a non-baked (lower surface blob 

density) pre-dose sample, and all samples had uncoalesced surfaces. This indicated 

that the lateral spreading of the surface features did not significantly affect the final 

AlN layer surface morphology and therefore other parameters should be considered 

and tuned to achieve a smooth surface.  

 

Varying the duration and molar concentration of TMA used for the pre-dose was 

initially considered. The same AlN main layers were grown on a 60 s TMA pre-dose 

sample and a double TMA flux (changed 30 sccm to 60 sccm) sample for C4621 and 

C4623, respectively. The AlN layer with a 60 s TMA pre-dose grown after an AlN 

run (without bake) showed a similar morphology (Figure 5.11) compared to the 

sample prepared using a 120 s TMA pre-dose with a H2 bake (C4615, Figure 5.10). 

This indicated that both a 60 s and a 120 s pre-dose were probably insufficient to 

produce a completely Al-polar surface.  
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Figure 5.11: A 5 µm square AFM image of C4621 grown with a 60 s TMA pre-dose 

time. RMS = 19.4 nm 

 

Doubling the TMA flux (with the same pre-dose duration) may lead to a more 

complete coverage of TMA on the surface at growth temperature (1130°C) according 

to a thermodynamic study made by Dr Oehler. It was noted that doubling the TMA 

flux does not necessarily correspond to a doubling of the amount of Al metal being 

deposited onto the surface. In real life, when the mass flow controller is set to 60 

sccm flow, approximately 20 sccm of TMA is required in the gas phase before any 

material is deposited on the surface. 

This AlN layer grown with a doubled TMA flux was grown after another AlN run 

(without bake), which makes it comparable to sample C4612 with a standard 120 s 

TMA pre-dose. Figure 5.12 shows the AFM image of this new sample C4623, it 

seems that the double TMA flux was sufficient for the AlN to coalesce fully and an 

atomically smooth surface was achieved. The typical surface steps related to the 

substrate miscut (0.25° toward a-Al2O3) were visible. 
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Figure 5.12: A 10 µm square AFM height image of C4623 (left) and an amplitude 

error image of the same region (right) showing typical surface steps following the 

substrate miscut. Large-scale structures were also observed with no particular crystal 

arrangements. 

 

However, there were also a significant number of large-scale structures on the surface 

being approximately 300 – 500 nm higher than the flat surface. These structures 

showed a random crystal arrangement (more details on these structures are shown 

later).  

 

The final AlN layer surface morphology seems to depend greatly on the pre-dose and 

the early stage of growth. In the next growth run, C4626, an attempt was made to 

maintain this atomically smooth surface and reduce these large-scale structures by 

using the same double TMA flux and by optimising the initial nucleation layer growth 

recipe. 

 

C4626 used the same recipe as C4623; the only difference was how the nucleation 

layer was grown. For comparison, C4623 had the NH3 switched directly from vent to 

inject at 75 sccm, and the TMA was ramped from 60 sccm (pre-dose) to 30 sccm 

(NL) with NH3 in 1 min. Whereas C4626 had the NH3 put to 0 sccm (leaking rate1) to 

vent, and then switched to inject into the reactor (run) for 5 seconds (still at “0 sccm”) 

and ramped slowly to 50 sccm in 1 min and then instantly switched to maximum 

                                                
1 At a set point of 0 sccm, the ammonia flow is not completely turned off, so a very 
small of flow rate (<5 sccm) could still occur   
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value of 75 sccm flow. The TMA was switched instantly from 60 sccm to 30 sccm 

during the 5-second window when the NH3 was switched from vent to run. 

 

Figure 5.13 shows the AFM height and amplitude error image of the improved 

sample. Again, an atomically smooth surface was observed, however the sample still 

showed the similar large-scale features. In contrast to the previous run, these features 

were actually smaller and surrounded by a number of hexagonal hillocks that raised 

above the surface and the “indents” that extended tens to hundreds of nanometres 

below the surface. 

 

 
Figure 5.13: A 10 µm square AFM height image of C4626 (left) and an amplitude 

error image of the same region (right) showing an atomically smooth surface. 

Relatively smaller structures were also observed surrounded by hillocks and indents. 

 

The HR-XRD scan data (Table 5.2) of the two samples with double TMA flux 

showed relatively narrow peaks in comparison to the old high quality samples (C4164 

and the 4 µm templates used in chapter 3).  
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Table 5.2: HR-XRD ω scans data. 

Sample AlN layer 

thickness 

ω scan FWHM 
Description 

(002) (101) 

C4623 1 µm 402 693 
Double TMA flux 

C4626 1 µm 522 1090 

C4164 1 µm 616 773 

Old recipe C4162 1 µm 660 1495 

C3899 4 µm 254 462 

 

The reference samples C4164 (without bake, smooth surface) showed a narrower 

peak width in (10-11) reflection in comparison to C4162 (bake, rough surface), 

suggesting a reduced edge-type threading dislocation density, as confirmed with 

cross-sectional TEM studies in Figure 5.14 and 5.15. The higher threading dislocation 

density in C4612 was related to the high number of inversion domains present in the 

mixed polarity layer.  
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Figure 5.14: Cross-sectional TEM images of sample C4162 showing rough surfaces 

with high threading dislocation densities associated with inversion domains in both g 

= 11-20 (a+c- and a-type) and 0002 (a+c- and c-type) conditions. 
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Figure 5.15: Cross-sectional TEM images of sample C4164 showing smooth surfaces 

with relatively lower threading dislocation densities in both g = 11-20 (a+c- and a-

type) and 0002 (a+c- and c-type) conditions. 

 

The AFM image of C4164 (Figure 5.1) shown earlier indicated that the surface was 

not fully coalesced, there were some regions with “indents” that extended up to 90 nm 

below the surface. The cross-sectional TEM image (Figure 5.16) showed the higher 

threading dislocation density was associated with these indents and were possibly 

inversion domains (i.e. N-polar materials embedded in Al-polar AlN). This suggested 

that the old reference sample with a standard 120 s TMA pre-dose was insufficient to 

fully cover the substrate surface, or that the way the ammonia was injected into the 

reactor was not optimised so that slight nitridation still occurred on the substrate 

surface. 
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Figure 5.16: Cross-sectional TEM image of C4164 showing the regions with higher 

threading dislocation densities were associated with the “indents” (marked by the red 

arrows) on the layer surface. 

 

Sample C4623 with larger surface features was of better crystalline quality than 

C4626, especially in the (10-11) reflection, which also suggested a reduced edge-type 

threading dislocation density (Figure 5.17), similar to the observation of C4162 and 

C4164: the XRD ω scan peak width value was higher for C4626, which was related to 

a higher density of inversion domains in a cross-sectional TEM image (Figure 5.18). 

These inversion domains corresponded to the raised hexagonal hillocks observed 

earlier in the AFM data in Figure 5.13. 
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Figure 5.17: Cross-sectional TEM images of sample C4623 showing threading 

dislocations reduction in both g = 11-20 (a+c- and a-type) and 0002 (a+c- and c-type) 

imaging conditions. 
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Figure 5.18: Cross-sectional TEM images of sample C4626 showing slightly higher 

threading dislocation densities than C4623 in both g = 11-20 (a+c- and a-type) and 

0002 (a+c- and c-type) conditions. Inversion domain (marked by the yellow dashed 

line) was observed as an opposite contrast (brighter) in the WBDF imaging condition. 

 

Both double TMA pre-dosed sapphire samples were slightly better than the older 

samples C4164 and C4162 grown with the standard 120 s TMA pre-dose. Figure 5.19 

summarises the XRD ω scan FWHM values of the samples studied (including 

additional low dislocation density GaN and different AlN layer thicknesses for 

comparison).  
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Figure 5.19: HR-XRD ω scan peak widths of the AlN samples with doubled TMA 

pre-doses compared to reference samples. 

 

The crystalline quality of the 1 µm AlN layer (C4623) was comparable to the old 

reference 2 µm AlN layer despite the presence of the large-scale structures. It is 

expected that growing a 4 µm layer with the new recipe would result in a film quality 

that exceeds the original high quality AlN layer and will become comparable to the 

LDD GaN template. 

 

 

5.6 Discussion 

 

 

• Influence of the bake process and the reactor history 

 

The early hypothesis based on the observation of C4162 and C4164 stated that the 

final film surface morphology greatly depends on the initial bake process, i.e. a 

smooth and coalesced film would be produced if the layer were grown without a bake 
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providing impurities such as nitrogen containing compounds were present in the 

reactor after the previous run. 

In this work, some variations in the island morphology during the initial growth stage 

were observed depending on whether a hydrogen bake was used prior to growth (after 

a previous AlN growth). However, the surface never achieved coalescence with any 

bake recipe. This suggested that the final surface morphology did not depend only on 

the bake, but instead on the entire initial growth process including the effects from the 

pre-dose step. 

The evolution of the reactor performance overtime suggested that the H2 bake was not 

always able to fully remove the influence of historical effects in the reactor. Nitrogen 

containing compounds were able to stay in the reactor between the runs. These 

compounds would affect the size of the blobs on the TMA pre-dosed sapphire surface. 

The presence of the residual NH3 contamination could originate from the previous run 

or the residual GaN decomposition at 900°C in the H2 ambient. However the result 

was not able to differentiate between these two hypotheses and further experiments 

are required. 

 

• Influence of the TMA pre-dose flux and the presence of the “blobs” 

 

Coalescence was achieved with a significant increase in the TMA pre-dose. This new 

pre-dose was not optimized and it is likely that a smaller pre-dose could achieve a 

similar result. The double TMA pre-dose final surfaces were fully coalesced whereas 

the final surfaces of the standard TMA pre-dose were near complete with the presence 

of some elongated indents in the layer.  

The “blobs” observed on the TMA pre-dosed sapphire surface might be AlN islands 

that arise from the reaction between the ammonia and the molten Al layer, resulting 

from the TMA pre-dose, at high growth temperature. Another explanation might be 

due to the thermophoretic force, reported by Creighton et. al. [158], that convert the 

precursors, TMA and NH3, into nanoparticles in gas phase, a co-ordination compound 

(CH3)3Al:NH3, where some of the lone-pair electron distribution on the ammonia is 

donated to the Lewis acid of the TMA [159]. Creighton et. al. suggested this 

conversion process was significant, 20-80% of the input aluminium is lost from the 

MOCVD process because of nanoparticle formation. This degree of conversion could 
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also explain the decline in AlN growth rates at high temperature. However, at this 

stage, it is not clear whether these nanoparticles are able to stay on the sample surface 

as nuclei that lead to the presence of AlN islands (“blobs”) at high temperature, and 

potentially lead to the formation of large randomly orientated crystals.  

 

• Large features on the coalesced surfaces 

 

Both AlN samples with doubled TMA pre-doses contained large (> 1 µm wide) 

pyramidal agglomerates of crystals. The cross-sectional TEM images (Figure 5.20) 

suggested these features start growing at the same time as the main AlN layer growth. 

They do not seem to be epitaxially related to the surface and the agglomerates were 

randomly orientated as indicated by the diffraction pattern. 

 

 
Figure 5.20: Large features were observed in both AlN samples with doubled TMA 

pre-doses. Diffraction pattern at these regions showed randomly orientated crystals. 

 

Unlike the formation of inversion domains, the “alien” nature of these large crystals 

suggest that they do not form on the surface but instead nucleate in the gas phase 

(powder formation) before impinging on the sapphire substrate. Powder formation in 

the gas phase is favoured when a high reactor pressure (200 Torr) used during the 

nucleation layer growth is coupled with the high TMA reactivity [157]. These seed 

with random orientations, which impinge on the surface, then lead to various 

configurations of the large crystals. Further investigation would be required to 
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understand whether this powder formation is related to the nanoparticles mentioned in 

the previous section. 

 

STEM-EDX measurements were employed to study the composition of these large 

polycrystalline features. Figure 5.21 shows the change in ratio of oxygen and nitrogen 

signals from a 200 nm EDX line profile acquired between the sapphire and the main 

AlN layer. A clear transition from Al2O3 to AlN was observed as the oxygen signal 

decreases and nitrogen signal increases at the heterointerface.  

 

 

 
Figure 5.21: A cross-sectional STEM-EDX map of the structure (left). The red line 

profile was extracted to show the oxygen and nitrogen signals against measurement 

position (right). The red square was the spectrum drift correction. 

 

Figure 5.22 shows the EDX line profile acquired when moving from the sapphire 

substrate to the polycrystalline features. The change in oxygen and nitrogen signals 

was similar to the previous result indicating that these large polycrystalline features 

were AlN compounds, the same composition as the rest of the AlN layer. However, 

above the heterointerface, there were regions showing darker z-contrast (lower atomic 

number) in the STEM map. The change in oxygen and nitrogen signals at this region 

was similar thus making it difficult to differentiate the composition at the interface. 
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Figure 5.22: A cross-sectional STEM-EDX map of the structure (left). The red line 

profile measured the oxygen and nitrogen signal transition from sapphire to 

polycrystalline features (right). 

 

An EDX line profile with smaller pixel step (the same 30 acquisitions as previously 

but acquired within 400 nm length instead of 1000 nm) was measured just above the 

heterointerface (Figure 5.23). At this scale, the oxygen and nitrogen signals were still 

difficult to differentiate. However, an additional peak was distinguishable 

corresponding to elemental carbon. The TEM image of the exact same region (Figure 

5.20) did not show any void at the interface, suggesting that these darker z-contrast 

regions just above the interface contain oxygen, nitrogen, carbon or their related 

compounds. The presence of carbon was possibly due to a broken valve of the reactor 

exhaust system leading to back-flow of residual contaminants and causing an increase 

in chamber pressure. Alternatively, this carbon trace might also indicate the presence 

of nanoparticles (CH3)3Al:NH3 as suggested earlier. Again, further detailed EDX 

analysis on the surface blobs would be required to understand the role of the 

nanoparticles formed in the gas-phase. As mentioned earlier, high TMA flux coupled 

with high reactor pressure often leads to powder formation. Thus further optimising 

the TMA pre-dose duration and flux and careful control of the chamber pressure 

should prevent the formation of AlN powder in the gas phase. 
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Figure 5.23: A cross-sectional STEM-EDX map of the structure (left). The red line 

profile measured the oxygen and nitrogen signal transition at the heterointerface with 

a smaller pixel step. 

 

5.7 Conclusion 

 

The effect of a bake process on the final AlN film surface morphology was more 

complicated than expected. The pre-dose study suggested that the final surface 

morphology depends not only on the bake process but also the reactor state since a H2 

bake could not always fully remove the impurities in the reactor. Residual nitrogen 

containing compounds could stay in the reactor between runs and cause partial 

nitridation at the initial pre-dose step that breaks up the coverage of the thin Al film 

on the substrate surface. 

Doubling the TMA pre-dose enabled a better Al coverage to be achieved leading to a 

fully coalesced AlN film at 1 µm thickness (the old high quality reference sample was 

only nearly completely coalesced at this thickness). An atomically smooth surface 

was achieved over a large 10 x 10 µm AFM scale (the old high quality sample still 

showed large surface steps even at 4 µm thickness at this scale). The XRD ω scan 

peak width of this new 1 µm AlN film was comparable to the older 2 µm thick 

reference sample. It was expected that using this approach, a 4 µm AlN film could 

achieve an even better ω scan result that would be comparable to a typical LDD GaN 

film. 

Large polycrystalline AlN compounds were observed initiating at the heterointerface. 

Their “alien” nature suggested that they originated from powder formation in the gas 
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phase due to high TMA flux coupled with high reactor pressure during the initial 

stage of growth (pre-dose step and nucleation layer). Randomly oriented seeds drop 

onto the surface and enlarge during the main AlN layer growth. Further optimising 

the TMA pre-dose duration and flux and a careful control of the chamber pressure 

should prevent the formation of these large polycrystalline features.  
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6 
Nonpolar a-plane GaN/AlGaN 
MQW structures. 
 

6.1 Background 

 

The lack of symmetry in the Wurtzite III-nitride unit cell leads to macroscopic 

spontaneous polarisation PSP induced along the polar [0001] c-axis. This in 

conjunction with the piezo-electric polarisation PPZ introduced by the strain at hetero-

interfaces, results in the Quantum Confined Stark Effect (QCSE), which redshifts the 

recombination energy and decreases the electron-hole wavefunction overlap with 

increasing QW width (figure 6.1), which ultimately reduces the optical efficiency due 

to non-radiative recombination processes.  
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Figure 6.1: Effect of quantum wells thickness on polar and nonpolar III-nitride band 

structures. 

 

As mentioned earlier in Chapter 1, growth in the nonpolar crystal orientation 

eliminates the QCSE and restores e-h wavefunction symmetry. This has been 

confirmed by many reports [38] in the literature and also by photoluminescence (PL) 

studies on the nonpolar AlGaN/GaN MQW structures used here. Figure 6.2 shows 

that nonpolar (11-20) AlGaN/GaN QWs are not subject to a significant electric field. 
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Figure 6.2: Results of polar and nonpolar QW structures on PL peak positions against 

quantum well thicknesses. Nonpolar (11-20) QWs are not subjected to a significant 

electric field (Courtesy of Dr. Tom Badcock). 

 

Nonpolar a-plane GaN/AlxGa1-xN multiple quantum wells (MQWs) are promising for 

use in ultraviolet light-emitting diodes, due to the reduced quantum confined Stark 

effect expected for nonpolar structures [54]. Many works on nonpolar or semipolar 

structures have been reported in the literature in the past few years and have shown 

successful reduction in the QCSE [38]. However, the consequence of growing in an 

off-basal-plane crystal orientation is that much higher defect densities are produced 

due to the nature of nonpolar growth as mentioned in Chapter 1. 

 

Epitaxial lateral overgrowth (ELOG) was found to be effective at reducing the defect 

density of nonpolar and semipolar structures as reported by [38] and many other 

groups [160]. However, the ELOG technique requires a number of ex-situ process 

steps, including mask deposition and lithography. In addition, the materials are only 

improved over the overgrown wings but the defect density remains high in the 

window regions. 
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An alternative solution is to employ an in-situ SiNx interlayer to reduce the defect 

density. The SiN interlayer produces inhomogeneous nucleation and lateral growth of 

the overlayer, causing bending of dislocations towards facet walls, and it also blocks 

some dislocations from entering the overlayer. The interlayer is deposited on the 

templates by in-situ deposition of silane (SiH4) and ammonia (NH3) and it has been 

shown to be effective at reducing defect densities from 109 to 107 cm-2 in c-plane GaN 

[161]. It has also been recently used successfully in nonpolar growth [162], where 

significant reduction in partial dislocations has been observed. However, the defect 

reduction mechanism of the SiN interlayer is not very well understood and detailed 

studies are required to optimise the use of these interlayers in nonpolar structures. 

 

It is also interesting to study the MQW structures grown on these reduced defect 

density nonpolar templates, especially for UV-emitting GaN/AlGaN QW structures, 

where most of the studies on UV structures are still based on more mature c-plane 

growth techniques, and much less work has been reported on nonpolar UV structures. 

This chapter reports on a series of GaN/AlxGa1-xN MQW structures grown on reduced 

defect density a-plane (11-20) GaN on r-plane (1-102) sapphire substrates, in which 

the QW thickness, t, was varied between t = 1 and 5 nm and the AlxGa1-xN barrier 

composition, x, was varied between x = 0.22 and 0.41, while the barrier thickness was 

kept constant at 5 nm. This series of samples were designed in collaboration with the 

University of Manchester. Their role was to used temperature dependent PL to study 

the enhancement in the exciton binding energy and the reduction in radiative lifetime 

and therefore possibly higher IQE. Our role was to study the structural information 

such as defect analysis. 

 

 

6.2 Aim 

 

Specific aims throughout the course of this chapter include: 

 

1. To study the optical and microstructural differences between samples with 

varying well thicknesses and barrier compositions. 
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2. To study the effects of a SiN interlayer on the quality of an a-plane GaN 

template. 

 

 

6.3 Experimental details 

 

All samples were grown by metalorganic vapour phase epitaxy (MOVPE) in a 

Thomas Swan 6 × 2” close-coupled showerhead reactor using trimethylaluminium 

(TMA), trimethygallium (TMG), silane (50 ppm SiH4 in H2) and ammonia (NH3) as 

precursors and hydrogen as carrier gas. The nonpolar (11-20) GaN epilayers were 

grown as follows: (a) r-plane (1-102) sapphire was heated in a flow of hydrogen and 

ammonia to 1050 ºC for 3 min at a reactor pressure of 100 Torr followed by 3 min 

with an additional silane flow of 200 nmol/min; (ii) a GaN nucleation layer with a 

thickness of 30 nm was deposited at 540 ºC and 500 Torr; (iii) a 600 nm-thick GaN 

epilayer was deposited using a flow of 660 µmol/min at 1030 ºC, 100 Torr and a V–

III ratio of 34; (iv) the GaN growth was interrupted for the incorporation of in-situ 

SiNx interlayer using a flow of 200 nmol/min silane and ammonia at 860 ºC for 900s; 

(v) the GaN overgrowth was recommenced at 1000 ºC and 300 Torr for 300s using a 

TMG flow of 270 µmol/min and a V-III ratio of 1650 followed by 2300s using a 

TMG flow of 660 µmol/min at 1010 ºC, 100 Torr and a V–III ratio of 34. The pseudo-

templates grown as such were stored in wafer boxes in a dry nitrogen atmosphere of a 

glove box. The growth of the 15 different GaN/AlGaN 10QW structures was started 

with a GaN connecting layer of 700 nm thickness to bury the regrowth interface. 

Three sets of MQW structures were grown in which the Al composition of the AlGaN 

barrier was set at 22, 32 and 41%, while the nominal QW thickness was varied 

between 1 and 5 nm with a step size of 1 nm by varying the well growth time. The 

quantum wells were grown at 1020 ºC and 50 Torr using a TMG flow of 106 

µmol/min giving a GaN growth rate of 0.263 nm/s, while the barriers were grown 

under the same conditions with the same TMG flow of 106 µmol/min and either a 

TMA flow of 38 µmol/min for 13.7s for 5nm thick Al0.22Ga0.78N barriers, or a TMA 
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flow of 65 µmol/min for 11.4s for 5nm thick Al0.32Ga0.78N barriers, or a TMA flow of 

102 µmol/min for 9.8s for 5nm thick Al0.41Ga0.78N barriers. 

A schematic of the sample growth is shown in figure 6.3. 

 

 
Figure 6.3: A schematic of the sample structure. GaN QW thickness ranged between 

1 to 5 nm.  AlGaN QB composition ranged between 22%, 32% and 41%, at constant 5 

nm thicknesses. A 900s SiN interlayer was grown 600 nm above the substrate. 

 

Both cross-sectional and plan-view TEM samples were prepared by an argon ion 

beam thinning technique using a Gatan precision ion-polishing system. For 

microstructural characterisation of the TEM samples, a Philips CM30 (300 kV) TEM 

and a Tecnai F20-G2 (200 kV) TEM with STEM-HAADF facilities were used. A 

PANalytical MRD PW3050/65 HR-XRD diffractometer was used to determine the 

full width at half-maximum (FWHM) values from ω-scans of the 11-20 reflections, 

and to determine strain-states and alloy compositions of AlGaN buffer layers from 

reciprocal space maps around 11-22 and 11-20 reflections. The cathodoluminescence 

(CL) data were acquired from a Gatan MonoCL4 system attached to a Philips XL30s 

field emission gun scanning electron microscope. Panchromatic images (displaying 

intensity collected over a broad wavelength range of about 200 - 600 nm) and 

monochromatic images (displaying intensity collected over a narrow wavelength 

range of about 10 nm, centred on a specified wavelength) and CL spectra were 

acquired at an operating voltage of 5 kV using liquid nitrogen cooling to reach low 

temperatures of 90 K. Surface morphologies were studied using a Veeco Dimension 

3100 atomic force microscope (AFM) in TappingModeTM with a standard uncoated 

silicon tip. 
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Table 6.1: Sample descriptions. Samples selected for detailed studied are printed in 

bold. 

GaN QW 

/ nm 

5 nm  

Al0.22Ga0.78N barrier 

5 nm  

Al0.32Ga0.68N barrier 

5 nm  

Al0.41Ga0.59N barrier 

1 C4284B C4289B C4294B 

2 C4286B C4291B C4296B 

3 C4283B C4288B C4293B 

4 C4285B C4290B C4295B 

5 C4287B C4292B C4297B 

 

PL measurements were carried out for all 15 samples. 6 out of the 15 samples were 

selected for further SEM-CL, AFM and (S)TEM studies. 

 

6.4. Results 

6.4.1 Optical studies 
 

QW emission energies were calculated using in-house simulation software, BlueCalc, 

(shown as dotted lines in figure 5.4). Room temperature PL and CL measurements 

were carried out and compared with the theoretical values. It should be noted that the 

slight blue shifts in the CL peak positions compared to PL may be due to calibration 

differences between the detectors in the different instruments.  
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Figure 6.4: BlueCalc simulations (dotted lines) and experimental (data points and 

drawn lines) CL and PL results on peak positions against quantum wells thicknesses. 

 

The QW confinement decreases as the well thickness increases, which is expected 

from the calculation by [163] and confirmed by the PL and CL results. This leads to 

similar peak positions for the 5 nm well thicknesses even when the aluminium content 

varied between 22% and 42% in the AlGaN barriers. This also indicates that the 

simulated quantum well and barrier thicknesses are in a good agreement with the 

actual growth. However, the variation between the simulated well thicknesses (t = 1 

and 5 nm) and AlxGa1-xN compositions (x = 0.22, 0.32 and 0.41) may affect the 

growth of the active region due to differences in strain and critical thicknesses. 

Therefore, accurate experimental determination of the thicknesses was still required in 

order to correlate to the band gap energy measured from the optical studies.  

 

X-ray diffraction was employed to measure the actual layer compositions and 

thicknesses. These can be easily measured for c-plane oriented III-nitrides as the films 

are under symmetric biaxial stress and a reliable set of calculated elastic constants are 

available [135]. However, in the case of the nonpolar orientation, the two in-plane 

elastic constants are no longer the same, and tilt might occur in the film. Also 

commercial XRD simulation software does not exist yet for off basal plane 
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orientations. Therefore an alternative approach has to be used instead. A method 

developed by Hollander and McAleese [164] described the transformation from 

conventional (c-plane) calculated elastic constants into new values appropriate for the 

nonpolar orientation. They have derived an equation based on the transformation, the 

d-spacing of the III-nitride template and the strained alloy layer (determined from 

well-to-barrier thickness ratio from low-angle X-ray reflectivity measurement), which 

successfully measured the composition of a layer. 

Reciprocal space maps of (11-20) at both phi = 0° and 90° confirmed that there was 

no presence of tilt in the film (figure 6.5). 

  

 
Figure 6.5: Reciprocal space maps (RSM) of C4287B taken at (11-20) reflection with 

(a) [0001] (phi = 0°), and (b) [1-100] (phi = 90°) crystal orientations. 

 

Unfortunately, the peak intensities from the ω−2θ scans (figure 6.6) and low angle 

reflectivity (not shown) measurements were too low to accurately determine the well-

to-barrier thickness ratio. This can be attributed to the surface morphology of the 

samples being fairly rough with a few hundred nanometres difference in heights in the 

vicinity of the striations (figure 6.7). 
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Figure 6.6: 11-20 ω−2θ scans with an open detector (blue line) and with an analyser 

crystal (red line) of sample C4287B. Both could not detect MQW fringes. 

  

 
Figure 6.7: Nomarski plan-view images of the sample surfaces showing surface striae 

run in the <0001> direction. 

 

XRD scans taken at both beam incident directions (i.e. <0001> and <1-100> sample 

directions) could not detect MQW fringes, suggesting the key issue that caused such 
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low signal intensities was because X-ray diffraction is highly sensitive to the local 

nano-scale changes in surface steps. If there was a significant amount of nano-scale (~ 

5 nm) surface steps presented in the film, the peak intensities ‘smear-out’ and drop 

significantly. The presence of these nano-scale surface steps was confirmed from the 

AFM results (figure 6.8) and cross-sectional electron microscopic images shown later. 

These samples were therefore unsuitable for X-ray diffraction analysis of layer 

compositions and thicknesses. Alternative characterisation techniques, such as cross-

sectional STEM-HAADF were required to determine these values. 

 

 
Figure 6.8: AFM images of C4287B with high roughness consisting of surface 

striations, pits and steps. 

 

Plan-view SEM-CL images were used to compare the structural differences between 

these samples, such as threading dislocations (appear as dark spots) and distributions 

and possible misfit dislocations (appear as dark lines) if the well or barrier layer 

extend beyond the critical thickness. 

Six out of fifteen samples (1 nm and 5 nm quantum wells with 3 different AlGaN 

composition barriers) were selected for this study. 
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Figure 6.9: Room temperature SEM images of selected samples. 

 

Both SEM (figure 6.9) and CL (figure 6.10) data were acquired at the same time at 

the same imaging areas at room temperature. From the plan-view SEM images, in all 

cases, coalescence boundaries were clearly visible, which consist of many pits that 

run along the boundaries (figure 6.11). Large surface striations were apparent and run 

in the [0001] direction. Additional smaller scale striations (pyramidal shape with 

~2µm in length) were also observed, which are related to the coalescence boundaries 

(as shown later in the plan-view TEM images in a later section). The only apparent 

difference between these samples in SEM was the additional surface steps that run in 

the [1-100] direction observed in the 1 nm QW samples. These steps become more 

obvious as the aluminium content in the AlGaN barriers increases, suggesting they are 

basal plane stacking faults that run in the typical [1-100] direction in the nonpolar 

materials [38] and their density increases as the mismatch between the QW and 

barriers increases. 
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Figure 6.10: Corresponding room temperature panchromatic CL images of selected 

samples.  

 

From the CL images, in all cases, the coalescence boundaries, dislocations and the 

stacking faults (running in the typical [1-100] direction) were associated with non-

radiative recombination, appearing as dark spots and lines in the CL data. For the 1 

nm QW with 22% AlGaN sample, the surface emission was less uniform compared to 

the others. The non-uniformity was not caused by the surface morphology (i.e. surface 

striations) but was instead due to the coalescence boundaries since the brighter and 

darker emission areas are separated by these boundaries. This suggests the presence of 

inversion domains [165]. 
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Figure 6.11: Higher magnification SEM and CL images of the coalescence 

boundaries that consisted of pits and surface steps. 

 

From the 1 nm QW samples, the uniformity of the panchromatic CL emission across 

the surface improves as the aluminium content in the barriers increases. However, for 

the 5 nm QW samples, the aluminium content had no apparent effect on the emission 

uniformity.  

One interesting observation was the presence of additional horizontal non-radiative 

lines that run perpendicular to the stacking faults, and both defects formed a cross-

pattern-like defect network. These networks were most apparent in the 1 nm QW with 

the highest 41% AlGaN barriers. Some were observed in the 1 nm QW with 32% 

AlGaN sample and all three of the 5 nm QW samples. And is least obvious in the 1 

nm QW with 22% AlGaN sample. There can be two possible explanations for these 

additional defects: 

(a) Micro-cracks that result in non-radiative dark lines: We have already 

disregarded this reason as both SEM (figure 6.9) and AFM (figure 6.8) images 

did not showed any cracks present on the surfaces. 

(b) Misfit dislocations: Since the 41% aluminium content AlGaN barrier thickness 

(5 nm) may already exceeds its critical thickness based on the calculated 

values from c-plane GaN/AlGaN [171] (the a-plane GaN/AlGaN critical 

thickness is not readily available), relaxation was expected in the active 

region. For nonpolar GaN/AlGaN heterostructures, the lattice mismatch in the 

a-plane direction [1-100] is larger compared to the c-plane direction, which 
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might cause misfit dislocations being generated only in one direction. (In polar 

materials, misfits can exist equally in <1-100> and <11-20> directions due to 

the symmetry of biaxial stresses). In addition, the amount and rate of 

relaxation is likely to be different between 5 nm MQBs grown on 1 nm 

MQWs in comparison to 5 nm MQBs grown on 5 nm MQWs. And therefore, 

based on these two influences, the misfit dislocation density should be the 

highest in the 1nm QW with 41% AlGaN barrier, which could be reasonably 

consistent with the observation in the CL data. It was however, difficult to 

confirm the presence of misfit dislocations in the plan-view SEM-CL data. 

Further investigations, such as plan-view and cross-sectional TEM were 

required. 

 

6.4.2 Linear defects perpendicular to the stacking faults 
The plan-view SEM-CL results from the previous section revealed additional dark 

lines (defects) running in the [0001] direction perpendicular to the typical stacking 

faults direction [1-100]. Cross-sectional TEM (figure 6.12) was used to confirm 

whether these additional defects were misfit dislocations. Two different g vectors (g = 

0002 and g = 11-20) were used for a [1-100] zone axis orientation to image all types 

of threading dislocations in the film. 
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Figure 6.12: Cross-sectional TEM image of C4297B with 41% AlGaN QBs and 5 nm 

GaN QWs. (a) viewed along [1-100] using g = 11-20 (b) viewed along [1-100] using 

g = 0002. (c) and (d) are the corresponding active regions. (e) and (f) are the 

corresponding areas marked the yellow arrows indicating the linear defects. 

 

Interestingly, no misfit dislocations were observed in the active regions for all the 

samples used in TEM studies. Instead, linear defects were found around 250 nm 

below the active regions. These defects are a+c type and run in the [0001] direction 

perpendicular to the stacking faults. Plan-view TEM (figure 6.13) also revealed these 

[0001] linear defects. They originated from the corners of the void sidewalls, possibly 

due to stress concentration [166]. These voids were observed in all the nonpolar GaN 

templates due to overgrowth of GaN above the SiN islands in the interlayer. The size 

of the voids can vary between a few hundreds of nanometres to a few microns in 

height. The voids (also shown as large silver features in the Nomarski image in Figure 

6.7) seemed to be randomly distributed across the entire film and were found to be 

roughly tens of microns apart from each other. 
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Figure 6.13: Plan-view TEM image of C4297B with 41% AlGaN QBs and 5 nm GaN 

QWs viewed along [11-20] using g = 1-100. Yellow arrow highlights the linear 

[0001] defect originated from the corners of the void sidewalls. Black arrow 

highlights the region that is BSF free. 

 

These defects can be generated at different layer depths depending on the dimensions 

of the voids. They only existed in [0001] directions possibly due to the stress 

concentration at the corners of the voids in conjunction with larger lattice mismatch in 

the [1-100] direction as mentioned earlier. If some of these defects were generated 

closer to the surface, they could be imaged by the SEM-CL (electrons from a 5kV 

electron gun accelerating voltage have around 250 nm penetration depth) and 

corresponded to the additional linear dark lines observed in the CL data. Since there 

were no misfit dislocations found in the MQW as shown in the cross-sectional TEM 

images in a later section, this indicated that these additional lines indeed occurred in 

the template and were unrelated to the QW structure. 
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6.4.3 Inversion domains 
 

In addition to the linear defects originating from the voids, inversion domains were 

also observed above the SiN interlayer. These inversion domain boundaries form 

when islands coalesce with opposite in-plane polarities on either side of a void [167]. 

Noted that the sample preparation technique (e.g. ion-milling) might preferentially 

etch the void and boundaries, therefore caution should be taken when studying TEM 

samples. However, inversion domain boundaries were evident in these cross-sectional 

TEM images (figure 6.14), where the periodic oscillating contrast of the domain 

boundaries is produced due to the diffraction contrast varying with depth in the TEM 

specimen as the boundary passes through its thickness.  

 

 
Figure 6.14: Cross-sectional TEM image of C4284B viewed along [1-100] using g = 

0002. Linear defects were found generating from the void’s sidewall. Inversion 
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domain boundaries were observed above the void tip. (b) shows an enlarged image of 

the inversion domain boundaries. 

 

Since the growth rate of –c direction ([000-1]) was very slow as confirmed by the 

ELOG studies [170] and selective area growth [172], the elongated shape of the void 

shown in the image above suggested that the domains at either side of the void were 

probably both running in the –c direction, hence only coalesced after several microns 

of growth.  

Convergent beam electron diffraction (CBED) measurements were used to suggest 

the presence of inversion domains at either side of the void (figure 6.15). However, an 

accurate determination of the polarities would require both thickness map (CBED 

contrast is highly sensitive to the thickness variation at the sampling area) and a full 

simulation of the CBED patterns. 

 

 
Figure 6.15: Cross-sectional TEM image of C4292B viewed along [1-100] using g = 

11-20. CBED measurements were taken at position (1) and (2) and confirmed 

inversion domains at either side of the void. [Courtesy of Dr Lewis Liu] 
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The same oscillating contrast of these inversion domain boundaries was also observed 

in plan-view TEM (figure 6.16). The termination of BSFs was also an evidence of 

inversion domain boundaries. 

 

 
Figure 6.16: Plan-view TEM image of C4292B viewed along [11-20] using g = 1-

100. Yellow arrow highlights the inversion domain boundaries run perpendicular to 

the stacking faults. Image to the right is the enlarged area of the red box. 

 

Although the inversion domain boundaries were often reported to be irregular in size 

and crystallographic directions in the epilayer [167], however, it was observed that 

some of the domain boundaries aligned linearly in the [0001] directions perpendicular 

to the stacking faults in the scale of few hundreds of nanometres. These inversion 

domain boundaries could be imaged by the SEM-CL and corresponded to the 

irregular curvy dark lines observed in the CL data (figure 6.11). 

 

6.4.4 V-defects and domain boundaries at quantum wells 
 

As described earlier, the presence of a significant amount of local changes in surface 

height was the reason for XRD measurement not being able to collect enough signal 

to carry out QW thickness analysis. The local scale roughness could already be seen 

from the AFM and CL data where the surface consisted of v-defects and surface steps. 

Cross-sectional STEM-HAADF was used to confirm the presence of these defects. 
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Figure 6.17: Cross-sectional STEM-HAADF image of C4284B viewed along [1-100] 

showing a v-pit at the MQWs. 

 

The quantum wells orientation and thickness remained unchanged in the vicinity of 

the v-defects. This was unlike our observation for a-plane InGaN/GaN MQW 

structures [167], where the MQWs orientation and thickness followed the shape of the 

v-defect. In Figure 6.17, the dark spot located in the image below the v-defect was a 

void. Figure 6.18 shows another v-defect with a more apparent void underneath. 
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Figure 6.18: (a) Cross-sectional STEM-HAADF image of C4284B viewed along 

[0001] showing a v-defect at the MQWs and a void underneath the v-defect. (b) and 

(c) are the lower magnification images of (a) under WBDF TEM and STEM-HAADF, 

respectively, showing an inversion domain boundary linked between the SiN 

interlayer and the void. 

 

A void was observed underneath the apex of the v-defect below the MQW region and 

was correlated with the inversion domain boundary. The boundary was more apparent 

in the above images when viewed along the [0001] direction, since the majority of 

boundaries were aligned along [0001] as shown previously in the plan-view STEM 

image (figure 6.16). This observation suggested that the v-defects, voids and 

inversion domain boundaries were interrelated. 
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However, the inversion domain boundaries do not always lead to the formation of 

voids and v-defects in some cases (figure 6.19). 

 

 
Figure 6.19: Cross-sectional STEM-HAADF image (left) of C4284B viewed along 

[1-100] direction showing an inversion domain boundary intersect with the MQWs. 

The yellow lines highlight the 10 repeats of GaN QWs (right). 

 

The inversion domain boundary shown in Figure 6.19 was not associated with a v-

defect or void. Instead it caused a variation in the MQW’s registry on either side of 

the IDB. From the image in Figure 6.19 it can be seen that for the same 10 repeats of 

MQWs, there was a ~ 5 nm difference in the total active region height at either side of 

the inversion domain boundary. Since the interface of the a-GaN template and MQWs 

was step-free, it suggests that the MQW thickness was different for opposite domains 

(polarities). An alternative explanation for this could be due to a void (e.g. figure 

6.17) hidden underneath the active region causing a misinterpretation of the TEM 

image. 

 

6.4.5 Relationship between the observed features 
 

The observations shown previously suggest that the linear defects, inversion domains, 

v-defects and voids below v-defects were all interrelated and all these features could 
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be correlated and referred back to the voids originated above the SiN interlayer when 

GaN coalesced. Schematic below summarised the relationship between the observed 

features. 

 

 
Figure 6.20: Summary of the relationship of each features observed in all samples. 

 

The use of SiN interlayers was able to significantly reduce the BSF and dislocation 

densities in the non-polar material as mentioned in the background section. Johnston 

et al. [38] compared an a-plane GaN template without an SiN interlayer to three other 

templates with different single SiN interlayers for which the silane dosing time was 

varied from 600 s, 900 s to 1200 s. The 900 s SiN interlayers were found to be the 

optimum condition, where 600 s had a high TDD and 1200 s did not reduce the TDD 

further compared to the 900 s dose.  

The templates with 900 s SiN interlayers used in this work gave a reduction in the 

dislocation density of two orders of magnitude to ~3.5 × 108 cm-2, and the BSF 

density was reduced by an order of magnitude to ~4.0 × 105 cm-1 (courtesy of R. Hao) 

compared to the template without the interlayer. There were also regions, extending 

for ~500 nm along [0001], that were free from BSFs (figure 6.13). The defect density 
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reduction was due to both blocking of dislocations by the interlayer and dislocation 

bending at the interlayer. 

 

 

6.4.6 MQW optical analysis: effect of thickness fluctuation 
 

The MQW thickness analysis was carried out using cross-sectional STEM for each 

sample, 15 data sets were collected for each sample (3 data sets from each image over 

5 images, see figure 6.21). Each data set (the well and barrier thickness) was 

calculated by measuring the FWHM values of the peaks in the count vs. distance 

graph. The counts (i.e. signals arise from the z-contrast image in STEM) were 

integrated over an area of a 200 integral-width for sufficient signal. Quantum wells 

and barrier thickness values were averaged over 15 points and standard deviations 

were presented as the error bars in figure 6.22 and 6.23. 

 

 
Figure 6.21: Cross-sectional STEM-HAADF image for the MQW thickness analysis. 

This example shows sample C4297B with 41% AlGaN QBs and 5 nm QWs. One red 

dashed box with a 200 integration-width was used to calculate one data set as shown 

in the graph. QW and QB thickness was obtained from the FWHM (marked by the 

red dotted lines) values of the peaks in the graph. 

 

Figure 6.22 and figure 6.23 show the MQW thickness analysis of 1 nm and 5 nm GaN 

quantum wells thickness, all with three different AlGaN barriers compositions.  
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Figure 6.22: MQW thickness analysis of 1 nm QWs with 3 different 5 nm AlGaN 

barriers compositions. 

 

 
Figure 6.23: MQW thickness analysis of 1 nm QWs with 3 different 5 nm AlGaN 

barriers compositions. 
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The quantum barrier thickness remained constant for all 6 samples. The 1 nm 

quantum well samples showed random distributions of thicknesses, however all of the 

wells were around 1.5 nm in thickness instead of 1 nm as predicted by the growth 

recipe. The 5 nm quantum well samples showed trends of thickness distributions, 

especially for the sample with 41% AlGaN barriers, where the initial well growth was 

thicker (near the interface) at around 6 nm and decreased toward the surface to around 

4.5 nm. This could be attributed to increasing strain in the active region as more 

stacks of MQW were grown, which caused a reduction in the growth rate. 

As discussed earlier, opposite in-plane material polarities might cause a change in the 

MQW thickness, this can be correlated with the error bars in the graph above. These 

error bars represent the standard deviations of the 15 data points for each quantum 

well. The errors were quite significant, varying between 0.2 nm to 0.7 nm for the 1 

nm QW samples and between 0.2 nm to 2 nm for the 5 nm QW samples. Since it is 

likely that over 5 STEM images (approximately 1-3 microns imaging distance) would 

contain a certain amount of inversion domain boundaries intersecting the MQWs (as 

judged by the spacing between the IDBs in Figure 6.16). The deviations in MQW 

thickness might be associated with different growth rates for different domains. 

Therefore, apart from the fluctuation in thickness between quantum wells, there was 

also a fluctuation in thickness within each quantum wells (standard deviation). This 

can lead to fluctuating quantum confinement within a single quantum well, leading to 

a broader QW PL emission peak (figure 6.24) compared to the older sample (chapter 

7) with higher defect density but fewer inversion domains (and therefore fewer 

quantum well fluctuations). 
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Figure 6.24: 6 K PL spectra of 5 nm QW samples with 3 different AlGaN barriers 

compositions compared to higher defect density sample (black line). Main peak was 

associated with emissions of the quantum wires produced by BSF intersecting QWs 

(Courtesy of Dr. T. Badcock) 

 

BSFs in nonpolar structures are optically active [84] and can act as carrier localization 

centres. These BSFs can play a dominant role in the QW recombination process at 

low temperature. Stacking faults in bulk wurtzite GaN can be considered as narrow 

(~8 Å) type II zinc blende QWs in the wurtzite GaN host. In these MQW structures, 

the perpendicular intersection of the wurtzite GaN QWs and the zinc blende BSFs 

produces quantum wires along <1-100>. Recombination of electrons and holes in 

these BSFs intersecting the QWs region is responsible for the dominating emission 

peak at 354 nm in the low temperature PL result shown above.  

While PL spectra provided an optical overview of the sample, CL spectrum imaging 

(figure 6.25) was employed to study both spatial and spectral information on a more 

refined scale. 100 CL spectra were acquired within a distance of 2.2 µm with each 

spectrum acquired 22 nm apart in order to distinguish different emissions. 
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Figure 6.25: Liquid nitrogen temperature CL spectrum imaging across a length of 2.2 

µm as indicated by the yellow line in the SEM image. 100 spectrums (22 nm apart) 

were taken and 5 were selected for further analysis. 

 

The spatial resolution of the CL measurements in SEM is limited by the electron 

probe size, how the material interacts with the electron beam (generation volume) and 

the minority carrier diffusion. For a 5kV SEM electron gun accelerating voltage used 

for the GaN template, the interaction volume is estimated to be around 200 nm wide, 

according to the Monte-Carlo simulations (see chapter 2). 

 
Figure 6.26: 5 spectra taken at 90K at different region within 2.2 µm imaging 

distance showing significant variation in CL emission.  



Chapter 6  187 

 

   

 

The spectrum imaging showed a significant variation in emission wavelengths on a 

local scale (figure 6.26). PL temperature dependency should be taken into account 

when comparing with the CL results. Paskov et. al. [173] reported that the peak 

positions were comparable between PL and CL if both spectra were acquired below 

100K. Three peaks were identified from the CL results in comparison to the PL data 

and were responsible for QW emission at 351 nm, BSF-Qwire emission at 355 nm 

and a possible impurity-related [170] emission at 359 nm. 

Thickness fluctuations within the well due to either alloy disorder or effects from 

inversion domains might be responsible for the 2 nm wavelength blue shift of the 

BSF-related quantum wire emission peak at spectrum position 5. Thickness 

fluctuations between the wells should also demonstrate a shift in wavelength when 

acquiring the spectra using different accelerating voltages (i.e. varying the interaction 

volume to pick up emissions from the wells at different level). Plan-view TEM results 

(figure 6.13) showed that for the BSF free regions, the BSFs were at most 50 nm apart 

from each other. This indicated that, for a 200 nm interaction volume, every CL 

spectra acquired from this spectrum imaging would pick up the quantum wire 

emissions originating from a BSF intersecting QWs. This was consistent with the 

spectrum imaging result. 

 

6.5 Discussion 

 

The presence of the interlayer can lead to the generation of voids after the material 

coalesces. The size and amount of the voids possibly depend on the morphology of 

the SiN islands (see figure 6.27). Some voids can be seen below the interlayer, 

however this is likely due to the preferential etching of the PIPS during TEM sample 

preparation.  
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Figure 6.27: Schematic of the coalescence boundary between two islands with 

opposite in-plane polarity. Red trapezoid represents the portion of the SiN interlayer 

on the GaN.  

 

The exact mechanism for void formation is unclear with the available data. However, 

since the number of voids increases with increasing SiN growth time (courtesy of Dr. 

Johnston), it is expected that the larger SiN islands (due to longer SiN growth time) in 

conjunction with the different growth rate between [0001]GaN and [000-1]GaN (growth 

rate of [000-1] is slower [172]) may increase the coalescence time of the materials, 

which leads to void formation if the lateral growth rate is not fast enough. 

 

All the templates studied in this work have a significant amount of voids generated 

above the SiN interlayers. Some of these voids were found to associate with the 

generation of linear defects that run in the [0001] direction and also the inversion 

domain boundaries (see figure 6.15). These two defects were observed in the plan-

view panchromatic SEM-CL data, producing cross-patterned defect networks. The 

thickness and composition of the MQWs contribute greatly to the formation of these 

defects. They were most apparent with the highest Al% barriers and thinnest wells. 

This was possibly due to the combination of (i) highly lattice mismatched active 

regions leading to highly strained heterostructures, which were observed to generate 

additional [0001] linear defects instead of misfit dislocations (this also might suggest 

the possibility of dislocation movements [126][168]) and (ii) a thinner overall active 

region thickness leading to electrons in the SEM penetrating deeper into the template 
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and picking up more emissions from dislocations, this can be tested in future work 

with different beam currents as well as Monte-Carlo simulations. 

 

Since the nonpolar GaN materials probably started with random in-plane polarity on 

the sapphire substrate at the beginning of the growth, these in-plane opposite 

polarities continue when GaN is overgrown on top of the SiN interlayer. Therefore 

inversion domain boundaries were clearly observed originating at the interlayer and 

also the tips of the voids in cross-sectional TEM (not every void is associated with 

inversion domains, since islands may also have the same in-plane polarity).  

 

Where the inversion domain boundaries intersected with the active regions, a 

difference in total MQW thickness could be produced at the either side of the 

boundary. This suggested that the growth rate could be different with in-plane 

opposite material polarities and this could have two effects on the films: (i) causing a 

difference in the thicknesses of quantum wells and barriers (more details in section 

6.4.1) and (ii) causing a difference in surface height and leading to a rougher surface 

on a nano-scale as observed in the AFM (figure 6.8) and SEM (figure 6.11) data. 

 

V-pits were observed in all the MQW samples. Cross-sectional STEM indicated that 

the v-defects were associated with surface steps in the GaN template of the order of 

10 nm in height. These in conjunction with the surface steps caused by inversion 

domain boundaries lead to significant nano-scale MQW thickness variations across 

the sample, which indirectly confirmed the reason for the XRD scans not being able 

to pick up enough MQW signal for thickness analysis (section 6.4.1). The reason for 

the QW orientation remaining unchanged in the vicinity of the v-defect was unclear, 

but the voids underneath the tip of the v-defects might suggest that material 

decomposition might occur. 

 

 

6.6 Conclusions 
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A SiN interlayer is well known for reducing the TDD in the templates, however these 

interlayers’ additional consequences on the film properties were not often reported in 

the literature. This chapter observed and examined how these interlayers lead to the 

generation of voids and consequently the generation of linear defects and the relation 

with inversion domain boundaries and their associated v-defects and the variation in 

the MQW growth rate. These observations were all interrelated. Although the 900 s 

SiN interlayer significantly reduced the defect density in the a-GaN template, high 

amounts of voids lead to the generation of additional linear defects and cause 

fluctuations in MQW thicknesses due to inversion domains and v-defects, which is 

detrimental towards their optical properties. Therefore a 600 s SiN interlayer might be 

a better choice for reducing the void density. This suggested that there is a 

compromise between obtaining a low defect density film and good quality MQWs. 
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7 
Defect luminescence from 
non-polar a-plane GaN/AlGaN 
MQWs 
 

7.1 Aim 

 

In order to improve the performance of nonpolar optical devices, it remains crucial to 

understand the influence of defects on the optical properties of the active region. The 

objective in this section was to carry out a comparative study of the defect properties 

at the same area of the specimen by using both spatially resolved CL and TEM. This 

could establish a direct correlation between the defects and their luminescence 

properties and thus clarify the nature of the different emission bands in the spectra. 

 

 

7.2 Experimental details 

 

The older sample C2691D studied here has a similar structure compared to the ones 

mentioned in the previous chapter. The sample was grown in a 6x2 in. Thomas Swan 

CCS-MOVPE reactor using trimethylgallium (TMG), trimethylaluminium (TMA), 

silane (50ppm SiH4 in H2) and ammonia (NH3) as precursors, and hydrogen (H2) as 
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carrier gas. The (11-20) GaN pseudo-template was grown in a standard two-step 

growth process, as follows: (i) r-plane (1-102) sapphire was heated in a flow of 

hydrogen and ammonia to 1050 ºC for 3min at a reactor pressure of 100 Torr 

followed by 3min with an additional silane flow; (ii) a GaN nucleation layer with a 

thickness of 30nm was deposited at 540 ºC and 500Torr; and (iii) the GaN epilayer 

was deposited at 1020 ºC, 100 Torr and a V–III ratio of 200.  The growth of the GaN 

epilayer with a total thickness of 6 µm was interrupted three times for the 

incorporation of in-situ SiNx interlayers using a flow of silane and ammonia at 860 

ºC. The surface of the GaN pseudo-template showed some triangular-shaped pits and 

a strong corrugation aligned along the [0001] or c-direction. High-resolution X-ray 

diffraction (11-20) omega-scans taken along the different in-plane [0001] and [1-100] 

crystallographic directions show good in-plane isotropy with FWHM values as low as 

540 arcsec [174]. The GaN/Al0.18Ga0.82N 10xQW structure was grown on the (11-20) 

GaN pseudo-templates for which the GaN QW thickness was set at 6.0 nm at a 

constant barrier thickness of 10.8nm. 

A schematic of the sample growth is shown in figure 7.1. 

 

 
Figure 7.1: A schematic of the sample structure. 10 GaN QW thicknesses were set 

6.0 nm at a constant barrier thickness of 10.8 nm. 3 SiN interlayers were grown 

during the a-plane GaN template growth. 

 

The well and barrier widths were determined by X-ray diffraction and X-ray 

reflectivity measurements taken on a P’Analytical high-resolution MRD instrument. 

The results from the X-ray analysis were in good agreement with thickness 

measurements from transmission electron microscopy (TEM) images. The barrier 



Chapter 7  193 

 

   

composition was determined from X-ray measurements assuming bi-axial strain of 

the barriers to the template. TEM studies have shown that the incorporation of SiN 

interlayers effectively reduces the density of defects (mainly partial dislocations, 

Figure 7.2) in nonpolar materials. The dislocation and BSF density was (6.6±0.4) × 

109 cm-2 and (3.0±0.3) × 105 cm-2, respectively, after the third SiN interlayer [38].  

 

 
Figure 7.2: Cross-sectional TEM images of the nonpolar GaN ‘template’ sample with 

three SiN interlayers viewed along [1-100] using g = 0002. [38] 

 

CL measurements require a relatively thick sample area (>200 nm) for sufficient light 

emission, however TEM analysis requires a very thin sample area (<100 nm) to be 

electron transparent. Therefore it is also important to choose a suitable sample 

thickness for carrying out both CL and TEM on the same region of the sample and to 

ensure that the thickness of any amorphous ‘dead layers’ on the specimen surface is 

minimised. Thus, specimens were prepared with both focused-ion beam (FIB) and 

mechanical polishing methods, in order to determine the optimal sample preparation 

technique for carrying out this type of experiment. 

 

 

7.3 Results and discussions 
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The FIB preparation technique allowed us to produce a very thin sample that is 

electron transparent. In this work, a wedge shaped sample with a thin region less than 

100 nm and thicker region at around 500 nm was produced. The CL measurement was 

carried out at 7K (figure 7.3). However, the CL panchromatic image acquired using a 

5 kV electron beam voltage was poorly resolved. The SEM image showed some 

degree of image drifting induced by surface charging, possibly due to poor electrical 

contact with the stub. This is one of the main factors limiting the CL resolution, 

however the sample surface damage due to the FIB preparation technique may also 

have greatly influenced the CL result. 

 

 
Figure 7.3: SEM and CL panchromatic images of sample C2691D (nonpolar GaN 

film with GaN/AlGaN MQWs) prepared by the FIB method. 

 

The cross-sectional sample prepared with the conventional mechanical polishing and 

ion-milling method was also investigated by CL at ~ 7K (figure 7.4). This cross-

sectional sample consists of two wafer pieces glued with the GaN sides facing each 

other and there is a 90° in-plane misorientation of the two pieces relative to each 

other. The CL measurement was much better resolved than in the FIB sample: CL 

panchromatic images clearly revealed layers of luminescence features. 
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Figure 7.4: SEM and CL panchromatic images of sample C2691D prepared by the 

conventional mechanical polishing method. 

 

The luminescence features could be identified according to the growth recipe. The 

layers of luminescence features were introduced by the presence of SiN interlayers 

(indicated by dark lines running parallel to the sample surface). The dark layer close 

to the quantum wells was the high temperature low V/III ratio GaN layer (~1.5 µm), 

followed by an overgrown low temperature high V/III ratio GaN layer (~200 nm) and 

multiple quantum wells (~150 nm with 10 repeated GaN/AlGaN QWs) to complete 

the structure. It also showed many defects propagating vertically from the 

GaN/substrate interface to the quantum well region. 

 

 
Figure 7.5: Serial CL spectra acquired from throughout the whole scanning region. 
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A serial CL spectrum was acquired from the total scanned area (figure 7.5). Four 

peaks were revealed at around 363, 378, 426 and 550 nm. The peaks at 363 nm and 

378 nm corresponded to the BSF- and PSF-related emission [141]. The source of the 

426 nm and 550 nm peak emission wavelengths was unclear, but is likely to be 

related to point defects. Since the spectrum was summed over the entire scanning area 

of the sample, it was difficult to relate the luminescence to specific defects. Therefore 

detailed analysis was required, as follows. 

 

 
Figure 7.6: Serial CL spectra acquired from the quantum wells region (blue), the 

template below the active region (red) and the template below the active region with a 

90° relative in-plane orientation (green). 

 

Three further serial CL spectra were acquired from the MQWs region, the template 

below the active region and the template on the relative 90° in-plane rotated sample 

section (figure 7.6). 

The spectrum at the quantum wells showed a high intensity 358 nm emission peak, 

related to the quantum wire emission originating from the BSF intersecting QWs as 

shown from PL studies (figure 6.25) [84]. The presence of PSFs in this quantum wells 

region was confirmed with a cross-sectional TEM study using the sample prepared by 

FIB (figure 7.7) and these suggest near band emission at ~ 380 nm. The sample 
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prepared by the conventional mechanical polishing method was not thin enough to 

carry out TEM analysis. (Note that an image showing the BSFs image was not 

acquired, as only the [1-100] zone axis was accessible in the FIB sample). 

 

 
Figure 7.7: Cross-sectional TEM image of the nonpolar sample prepared with the FIB 

method. The image was viewed along [1-100] using g = 10-10. TDs, PDs and PSFs 

(white arrows) are visible. 

 

The spectrum taken from the template showed similar peak positions and intensities 

compared to the overall spectrum (figure 7.5), however, for the 90° in-plane rotated 

sample, the stacking fault related emissions were not observed in the spectrum. This 

might suggest an orientation dependency of the sample luminescence. These spectra 

also confirmed that the 426 nm and 550 nm yellow luminescence originated from 

radiative recombination centres outside of the quantum wells. 
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Figure 7.8: CL monochromatic images acquired at 362 nm, 378 nm, 426 nm and 555 

nm emission wavelengths. The yellow dashed lines indicated the quantum wells 

region. 

 

Monochromatic CL images were acquired at each peak wavelength (figure 7.8). The 

image acquired at 362 nm showed some bright stripes running perpendicular to the 

sample surface indicating the radiative recombination centres at BSFs. The brighter 

spotted line running parallel to the sample surface corresponded to the vicinity of SiN 

interlayers and the origin of higher light emission intensity from these regions could 

be due to the luminescence from unintentional doping [169] or the 3D islands. 

The image acquired at 378 nm showed some luminescence stripes running at a 60° 

angle perpendicular to the sample surface, which indicated the presence of PSFs and 

this was also consistent with the previously shown TEM image (figure 7.7) showing 

some extended PSFs running from the substrate interface to the quantum wells 

regions unaffected by the interlayer. 

Some literature reports [170] have suggested that the luminescence from the images 

acquired at 426 nm and 555 nm wavelengths originated from point defects. This idea 
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was supported with their studies on ELOG samples showing that these emission 

centres were not directly associated with the dislocations as the emissions arise both 

in the window and wing regions. Also, the reason why no discernable contrast arises 

at the dislocations in these monochromatic images can be attributed to the long 

lifetime of these radiative recombination processes, which blurs the image contrast.  

 

 
Figure 7.9: A colour coded monochromatic image of the 555 nm emission 

wavelength (red). 362 nm emission wavelength image (blue) was used as a reference 

background to increase the contrast of the red colour. The yellow dashed line 

indicated the quantum wells region. 

 

The monochromatic images acquired at 426 and 555 nm showed an increase in 

luminescence (indicated by the red colour) toward the sample surface (figure 7.9). 

Optically active stacking faults could not attributed to this phenomenon, as a decrease 

in luminescence toward the sample surface would be observed instead. This suggested 

that there is a correlation between partial dislocations and the point defects, e.g. a 

decrease in partial dislocations density may lead to an increase in impurities 

concentration. However, further studies will be required to understand this 

relationship. 
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Figure 7.10: High magnification CL panchromatic images acquired at the quantum 

wells region with 5 keV, 3keV, and 2 keV electron beam energies. 

 

The highest CL resolution was achieved at 2 keV at 7K (<50 nm theoretical spatial 

resolution) and some weak radiative dark lines were observed perpendicularly 

intersecting the quantum wells (figure 7.10). These dark lines were separated by a 

distance of ~200 nm, which is comparable to the TEM image (figure 7.11) showing 

similar separation distances for the defects (possibly partial dislocations). The 

observations in both CL and TEM studies suggest that the partial dislocations in 

nonpolar GaN films are possibly non-radiative centres. However, those dark lines 

could also be due to the PIPS damage and might not necessary represent the true 

luminescence property of the defects. Further studies will also be required to confirm 

this observation. 

 

 
Figure 7.11: Cross-sectional TEM image of the nonpolar sample prepared with the 

FIB method. The image was magnified to show the quantum wells region (further 

magnification showing contrast of the MQWs is indicated by the yellow box) and was 

viewed along [1-100] using g = 10-10. 
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7.4 Conclusions 

 

Two different sample preparation techniques have been investigated. The sample 

prepared by the FIB method showed insufficient CL luminescence, but the sample 

thickness was sufficiently thin for TEM analysis, whilst the sample prepared by the 

CRHEA method showed the opposite effect. Further optimisation of the sample 

condition is required to establish a direct correlation between the CL and TEM results 

using one single TEM sample. 

 

The CL data acquired from the CRHEA sample showed layers of luminescent 

features that directly corresponded to changes in the growth conditions. Serial CL 

spectra indicated four distinctive peak wavelengths, each corresponding to a specific 

type of defect. The origin of luminescence at 362 nm and 378 nm was identified (with 

both monochromatic CL and TEM images) as BSF- and PSF-related luminescence.  

Comparison of selected areas of the serial CL spectra indicated that luminescence is 

orientation-dependent and could be affected by surface states. Luminescence at 426 

nm and 555 nm was only observed outside the active region. Emission from the 

quantum wells was only observed at 358 nm whereas a PL study on the same wafer 

showed mostly 362 nm BSF-related emission. It is not yet clear whether this 

difference is related to a difference in calibration between different instruments or 

whether it is a genuine effect. 

 

Monochromatic images obtained at 426 nm and 555 nm wavelengths likely 

corresponded to the point defects, as suggested in the literature. The increase in 

luminescence intensity after each SiN interlayer suggested that there is an association 

between partial dislocation density and the impurity concentration. Detectable 

luminescence could be obtained from the sample prepared by the CRHEA method at 

2 keV and close to liquid helium temperatures, which corresponds to a theoretical 

spatial resolution of less than 50 nm.  
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8 
Conclusions and future work 
 

8.1 Conclusions 

 

This thesis has covered the structural and optical characterisation of the defects and 

their impact on device performance in the nitride semiconductor materials emitting at 

near- and deep-UV region. A range of UV structures was investigated, including c-

plane (polar) AlGaN epilayers grown on an AlN template, and nonpolar GaN/AlGaN 

MQWs grown on an a-plane GaN template. In-depth summaries of each experimental 

chapter have been given previously so this section will emphasise the main 

observations and highlight some conclusions. 

 

Chapters 3 and 4 are the two experimental chapters based on the study of the same 

series of c-plane deep-UV emitting structures: AlGaN epilayers with different 

aluminium contents grown on thick high quality AlN templates. Several types of 

defect were found in the AlGaN materials. Stress relaxation in these films occurred by 

the combined processes of interfacial misfit dislocations and bent threading 

dislocations. In-situ wafer curvature measurement in conjunction with other 

characterisation techniques has demonstrated that interfacial misfit dislocations 

dominate the strain relaxation processes while bent threading dislocations also relieve 

a fraction of the strain due to their inclined projection to the basal plane, equivalent to 

interfacial misfits. The strain associated with other types of defects, such as Frank-

Read sources, was very small compared to the previous two types. In addition, we 

have found that these bent threading dislocations occurred in all the different AlGaN 

compositions studied ranging from 22% to 87% aluminium content. This suggests 
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that their projected misfit segments were unrelated to the critical thicknesses of the 

layer and therefore the density of bent threading dislocations was probably 

inconsequential to the formation of the misfit dislocations. 

 

The inclined dislocation arrays observed in the AlGaN epilayers were found to be 

lower in aluminium content and were possibly generated during AlGaN growth on the 

inclined facets at the step edges due to differences in the relative incorporation rates 

of Al and Ga on different facets. The inclined dislocation arrays distorted the quantum 

well, the barrier heights and the composition leading to a shift in emission 

wavelength. Additional misfit dislocations could probably be generated due to the 

lattice mismatch with the surrounding AlGaN materials. We suggest that reducing the 

step density of the AlN film may directly reduce the density of inclined dislocation 

arrays and result in an improved AlGaN film.  

 

As suggested by the previous two chapters, an atomically smooth surface of the 

template is essential and has a direct impact on the quality of the succeeding epilayer 

and MQW growth. This leads to the investigation of c-plane AlN template growth 

optimisation in Chapter 5, based on the TMA pre-dose on sapphire method to enhance 

the quality and the surface morphology of the template even further. The initial 

growth conditions were shown to be critical for the final AlN film morphology. A 

higher TMA pre-dose was shown to enable a better Al coverage leading to a fully 

coalesced AlN film at 1 µm thickness. An atomically smooth surface was achieved 

over a large 10 x 10 µm AFM scale. The XRD ω scan peak width of this new 1 µm 

thick AlN template was comparable to the older 2 µm thick reference sample. It is 

expected that using this approach, a 4 µm AlN film could achieve an even better ω 

scan result that would be comparable to a typical LDD GaN film. 

 

Chapters 6 and 7 investigate UV emitters based on nonpolar crystal orientations. A 

series of different GaN multiple quantum well thicknesses and AlGaN barrier 

compositions were grown on a nonpolar a-plane GaN template of low dislocation 

density using a SiN interlayer. The SiN interlayer was able to reduce the defect 

density but was also found to generate additional voids with longer SiN growth time. 

Although the 900 s SiN interlayer significantly reduced the defect density in the a-
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GaN template, high amounts of voids lead to generation of additional linear defects 

and cause fluctuations in MQW thicknesses due to inversion domains and v-defects, 

which is detrimental for their optical properties. Therefore a 600 s SiN interlayer 

might be a better choice for reduced voids density. This suggests that there is a 

compromise between obtaining a low defect density film using a SiN interlayer and 

good quality MQWs.  

 

8.2 Future work 

 

1.  In-situ wafer curvature measurement: real-time stress analysis 

Strain engineering using wafer curvature measurement has been successfully 

employed and reported in the literature for various nitride heterostructure 

growths. This technique has been employed in this work to extract the 

information of real-time stress evolution in the AlGaN/AlN structures and thus 

a detailed quantitative stress analysis on the defects could be demonstrated.  

However, as mentioned in chapter 3, the wafer curvature analysis can 

sometimes lead to misinterpretation of the stress measurement due to the 

periodic oscillation artefacts, caused by the interaction between the laser and 

the wafer. This is because real films are not uniformly thick, and unintended 

thickness gradients produce optical diffraction effects that steer the laser away 

from the ideal condition, this is particularly severe for transparent films such 

as the AlN films studied in this work. As a result, the deflection of the laser is 

actually sensitive to both the film stress and the film-thickness gradient.  

In order to improve the accuracy of wafer curvature measurement (i.e. to 

differentiate and define these combined effects), an optical diffraction model 

has been proposed by Breiland et. al. [136] that can be used to isolate the 

oscillating artefacts caused by the film-thickness gradient. This model is fairly 

complicated and a detailed simulation would be required to correct the results 

in this work, however a full integration of this model would provide us with a 

highly accurate wafer curvature measurement that can be beneficial not only 

for stress analysis purposes but also for the crystal grower to evaluate the 
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strain management procedures being used more quickly and more accurately 

in real-time. 

 

2.  Further optimisation of AlN template growth 

An initial improvement of the AlN template quality has been achieved in this 

work. However, there is room for further improvement, including: (i) a 

complete elimination of the randomly oriented AlN polycrystalline 

compounds, and (ii) an improvement in reproducibility.  

The large polycrystalline compounds possibly originate from nanoparticles as 

suggested in chapter 5. A further detailed EDX analysis on the surface blobs 

just before the start of AlN growth would be required to understand the role of 

the nanoparticles formed in the gas-phase, and ultimately to control and 

eliminate these compounds to achieve an atomically smooth surface over a 

large surface area. Reproducibility has always been a concern for AlN growth, 

mainly due to the reactor memory effects, where NH3 as a molecule can be 

trapped in the reactor and only outgases when the susceptor is operating at 

high temperature. A long period of H2 baking before growth does not remove 

all the impurities. Future work, including alternative baking recipes and 

further optimisation of growth parameters, is necessary to achieve high quality 

AlN templates. 
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