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Abstract 

This paper investigates the year-to-year variability of the onset of the South China Sea 

summer monsoon (SCSSM) and the possible influences exerted by the surface temperature 

anomalies over land and sea. Early and late monsoon onsets are related to the temperature 

anomalies in different regions. It is found that an early onset follows negative sea surface 

temperature (SST) anomalies in the central tropical Pacific (CP) Ocean during the 

preceding winter and spring, corresponding to a CP La Niña. In contrast, a late onset is 

preceded by the negative surface air temperature anomalies over land in the central Asian 

continent. 

 

Negative SST anomalies in the central-eastern equatorial Pacific Ocean and the associated 

warming in the western Pacific induce an anomalously enhanced Walker circulation. This 

anomalous Walker cell leads to an increase in convection, causing more latent heat release 

and a subsequent decrease of surface pressure. The anomalous Walker cell and the 

enhanced latent heat release weaken the Western North Pacific subtropical high and the 

Philippine Sea anticyclone, favoring a westerly flow from the Indian Ocean, resulting in an 

early SCSSM onset. 

 

On the other hand, negative land surface temperature anomalies cool the atmosphere over 

land, and locally modify the Hadley circulation, accompanied by the anomalous 

divergence in the low-level atmosphere over the western equatorial Pacific. This 

divergence anomaly reduces the latent heat release and strengthens the anticyclone in the 

Philippine Sea, thus preventing the westward extension of the westerlies from the Indian 

Ocean and causing a late SCSSM onset. 

 

Keywords: South China Sea summer monsoon; Onset; Variability; sea surface 

temperature; land surface temperature; ENSO. 
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1. Introduction  

The South China Sea summer monsoon (SCSSM) is an important component of the 

Asian summer monsoon system (Tao and Chen, 1987). It indicates the end of the dry 

season and the beginning of the summer rainy season. The onset of SCSSM is considered 

as the beginning of the East Asian summer monsoon (Tao and Chen, 1987; Lau and Yang, 

1997; Wang et al., 2004a; Li and Zhang, 2009) and it is a key indicator characterizing the 

abrupt transition from the dry to the rainy season in East Asia (Qian et al., 2002; Wang and 

Ding, 2006a; Ding, 2007). After its onset, the summer monsoon propagates northward and 

the Meiyu rain belt establishes itself in South China, the Yangtze and the Huaihe River 

Basins; the Changma is forming over the Korean Penninsula; and the Baiu is taking place 

over Japan (Wang and LinHo, 2002; Wang, 2006).  

The onset of the SCSSM has been a focus of investigation in recent years (Chen et al., 

2000; Ding and Liu, 2001; Ding and Chan, 2005). It has been shown that the SCSSM 

onset is accompanied by the arrival of an intraseasonal oscillation, which modulates the 

dry spells and rainy periods during the monsoon season (Wang and Wu, 1997; Wu and 

Wang, 2000; Wang et al., 2004; Zhou and Chan, 2005; Bellon et al., 2008). The seasonal 

cycle and the intraseasonal oscillation make comparable contributions to the SCSSM onset 

variability (Wu and Wang, 2000). A late (early) onset is accompanied by an active 10-25 

(30-60) day intraseasonal variation (Kajikawa and Yasunari, 2005). Wu and Zhang (1998) 

and Liu et al. (2002) have suggested that the heating of the Tibetan Plateau creates a 

favorable environment for the onset of the SCSSM.  

It has been suggested that tropical sea surface temperature (SST) anomalies and land 

surface temperature (LST) anomalies (Tanaka, 1997; Zhou and Chan, 2007; Yuan et al., 

2008; Liu et al., 2009; Jiang and Li, 2011; Yang et al., 2011) are responsible for the early 

and late onsets of the SCSSM. Other studies have shown that seasonal changes in SST 

play an essential role in the climatological SCSSM onset (Wu and Wang, 2000, 2001; Wu, 

2002). There is a relatively close relationship between the interannual variability of the 

SCSSM onset dates and the El Niño/La Niña Southern Oscillation (ENSO) events (Lau 

and Yang, 1997; Wang et al., 2004; Zhou and Chan, 2007). The late (early) onset of the 

SCSSM in El Niño (La Niña) years was noticed by Tanaka (1997) and Zhou and Chan 

(2007). Zhang et al. (2002) regarded that the onset of the summer monsoon over the 

Indochina Peninsula is closely related to ENSO during the boreal spring. The delayed 

(advanced) onset of the SCSSM was suggested to be related to the basin-wide warm (cold) 

events of the Pacific Ocean (Lau and Yang, 1997; Huang et al., 2006). Huang et al. (2006) 
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proposed that early (late) SCSSM onset follows the warming (cooling) of the tropical 

western Pacific. The SCSSM onset date is also affected by the Indian Ocean basin SST 

anomaly via the modification of the Philippine Sea anticyclone (Yuan et al., 2008). 

However, these studies only use correlation analysis or composite analysis to classify the 

ENSO events, possibly insufficient to investigate early or late SCSSM onset nonlinearly 

affected by other factors.  

Previous studies mainly focused on the relationship between the SCSSM onset dates 

and ENSO events (Lau and Yang, 1997; Wang et al., 2004a; Zhou and Chan, 2007), with 

the exception of a few that look into the impacts of land surface temperature (LST) 

anomalies (Liu et al., 2009; Yang et al., 2011). The land-sea thermal contrast, reflected by 

anomalous land or sea surface temperatures, is an important factor influencing the SCSSM 

onset since it triggers the Asian monsoon system, especially the South Asian monsoon 

south of 20°N (Wang and Ding, 2006; Ding, 2007; Wu et al., 2012). Because of different 

rates of temperature change, contributions of sea and land surface temperatures to the 

land-sea thermal contrast in the transition from spring to summer are different. 

Nevertheless, very few attempts have been made to investigate the role of LST anomalies 

preceding the onset of the SCSSM (Liu et al., 2009). For example, Liu et al. (2009) 

suggested that the SCSSM onset date is affected by different heating rates over land and 

sea from the preceding winter to the following spring.  

A new type of El Niño phenomenon, which is characterized as a warming event in 

central Pacific (CP) Ocean, has been discovered in recent decades. This is referred to as El 

Niño Modoki (Ashok et al., 2007; Weng et al., 2007), dateline El Niño (Larkin and 

Harrison, 2005a,b), CP El Niño or warm Pool El Niño (Kug and Jin, 2009). Yeh et al. 

(2009) suggested that the occurrence of CP El Niño is related to changes in the 

background state under global warming, especially changes in the thermocline structure of 

the equatorial Pacific. Compared with EP El Niño events, CP El Niño events exert 

different influences on the climate over many parts of the globe (Taschetto and England, 

2009; Feng and Li, 2011; Zhang et al., 2012; Graf and Zanchettin, 2012).  

Several studies have investigated the impact of these two types of El Niño events on 

Asian monsoon climate (Weng et al., 2007; Feng et al., 2010, 2011; Wang and Wang, 

2012). During the developing year of an El Niño event, EP El Niño is accompanied by an 

increase in precipitation over southern China, while no significant precipitation changes 

have been detected in southern China during CP El Niño (Zhang et al., 2011). Feng et al. 

(2010, 2011) showed opposite precipitation changes in southern China and the Philippine 

Sea between the two El Niño types during the decaying year. However, the process by 
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which CP ENSO influences the onset of the SCSSM has yet to be investigated.  

Previous studies have concentrated either on the effects of SST or LST anomalies on 

SCSSM onset dates, focusing on quasi-linear relationships. However, SST and LST 

anomalies may also affect the onset of the SCSSM via different mechanisms, which cannot 

be detected when only one of these factors is considered. Therefore, the objective of this 

paper is (1) to re-examine the impact of SST anomalies in different regions on the SCSSM 

onset, and (2) to re-investigate the possible impact of LST anomalies on the onset date of 

the SCSSM.  

The paper is organized as follows. Section 2 describes the dataset, the definition of the 

SCSSM onset and its interannual variability. Section 3 examines the relationship between 

the SCSSM onset and SST/LST anomalies. Section 4 discusses possible mechanisms 

underlying the year-to-year variability of the SCSSM onset. Conclusion and discussion are 

made in Sections 5 and 6, respectively. 

 

2. Datasets and Definition  

2.1. Datasets  

The primary datasets used in this study are obtained from the National Center for 

Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) Re-

analysis Project (Kalnay et al., 1996). The temporal coverage is from 1948 to 2009 with 

the 2.5°×2.5°spatial resolution. The climate variables used in this study include: sea level 

pressure (SLP), 2 m air temperature, horizontal wind at 850 hPa and 200 hPa, and their 

derived velocity potential and divergence. In addition, we also use interpolated outgoing 

long-wave radiation (OLR) data, starting from 1979, provided by NOAA/OAR/ESRL PSD, 

Boulder, Colorado, USA, through their web site at http://www.esrl.noaa.gov/psd/ (Adler et 

al., 2003; Liebmann and Smith, 1996). The anomalies of surface air temperature 2 m over 

land and ocean from the NCEP/NCAR dataset are obtained by removing the climatological 

average during the period from 1971 to 2000.  

 

2.2. Onset date of the SCSSM  

Many indices have been proposed for the determination of the SCSSM onset (Ding, 

2004; Wang et al., 2004a). These indices include precipitation and its proxies, such as 

outgoing long-wave radiation (OLR), upper-tropospheric brightness temperature, high 

cloud amount, high reflective cloud (Tanaka, 1992; Lin and Lin, 1997; Yan, 1997; Zhu et 

al., 2001), surface or low-level winds (Lu and Chan, 1999; Wang et al., 2004a), equivalent 
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potential temperature (He et al., 2001), or a combination of convection and low-level 

winds (Liang et al., 1999; Kueh and Lin, 2001). Given the random noise associated with 

small-scale precipitation variation and the absence of direct precipitation data over oceans 

(Wang et al., 2004a), we choose to employ a wind circulation index, namely a pentad 

(5-day) average SCSSM circulation index rather than a precipitation index to characterize 

large-scale variation. The SCSSM circulation index, USCS, is defined as the area-averaged 

zonal wind at 850 hPa over the SCS region (5N-15N, 110E-120E). The SCSSM onset date 

is defined as the first pentad after mid-April (22
nd 

pentad) that satisfies the following 

criteria (Wang et al., 2004a): (a) USCS is positive in the onset pentad; (b) USCS remains 

positive in at least three pentads and the accumulative 4-pentad mean of USCS is greater 

than 1 ms
-1 

in the subsequent four pentads (including the onset pentad). Based on 

NCEP/NCAR Reanalysis dataset, the onset date for each year from 1949 to 2009 is 

calculated and shown in Figure 1. The climatological mean onset date is in mid-May 

(28.4
th 

pentad). We have also calculated the monsoon onset date based on the ERA-40 

reanalysis dataset during the period from 1958 to 2002 (Not shown in here because of the 

high similarity to that of the NCEP/NCAR results). The two series are almost identical to 

each other, with a 0.986 correlation significant at the 99% confidence level.  

Subject to the influences of several factors (e.g., tropical SST, LST over Asia, and the 

heat source condition over the Tibet Plateau), the SCSSM onset shows interannual 

variability (see Figure 1). The earliest monsoon onset date is in late April (22
nd 

pentad in 

2009), while the latest onset date is in late June (34
th 

pentad in 1968), giving an almost two 

months difference in time. To investigate the forcing and mechanisms underlying this 

year-to-year variability, we focus on the differences between two categories: early onset 

year (EOY) and late onset year (LOY). EOY and LOY are defined as the year in which the 

SCSSM onset date is outside the range of ±1 standard deviation from the mean. Thus, 15 

EOY years, including 1948 1950, 1951, 1953, 1966, 1971, 1972, 1976, 1994, 1996, 1999, 

2000, 2001, 2008, 2009, and 14 LOY years, including 1954, 1956, 1957, 1968, 1970, 1973, 

1975, 1981, 1982 1983, 1987, 1991, 1993, 2006, are selected to study the impacts of SST 

and LST. The remaining years are noted as normal onset years (NOY).  

Figure 2 depicts the 2-dimensional evolution of the SCSSM onset process in EOY and 

LOY, characterized by the composite sequence of pentad OLR and 850 hPa wind from 2 

pentads prior to the onset (-2 pentads) to 1 pentads after the onset (+1 pentads). It can be 

observed that the onset process in EOY is similar to that in LOY. About 2 pentads prior to 

the onset (-2 pentads), convection dominates the eastern Indian Ocean and most parts of 

the Indochina Peninsula, and westerly wind prevails over these regions and the Indian 
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subcontinent. The westerlies extend eastward and prevail over the Indian subcontinent 

about 1 pentad before the SCSSM onset (-1 pentad), and continue to extend eastward to 

the SCS region followed by the onset of the SCSSM (0 pentad). After the onset (+1 

pentad), strong convection activity occurs later in the SCS and strong westerly winds keep 

extending eastward and enter the Philippine Sea. We can also observe that there several 

differences in the onset processes in EOY and LOY. For instance, convection activities 

during the eastward extension of the prevailing westerly winds in LOY are stronger than 

those in EOY. In addition, northern Indian Ocean is covered by stronger prevailing 

westerly winds in LOY than EOY. These differences should be due to their onset dates. In 

the following sections, plausible reasons for early and late monsoon onsets and their 

underlying mechanisms are investigated. 

 

3. Relationships with surface temperature anomalies  

Firstly, we compare correlations between the SCSSM onset date (MOD) and surface 

temperature anomalies in different regions. Correlation coefficients of MOD with different 

SST indices, including Niño 1+2, Niño 3, Niño 3.4, Niño 4, El Niño Modoki index (EMI, 

proposed by Ashok et al. (2007) to monitor the CP ENSO event) from the preceding 

January to the following September are shown in Figure 3. SST indices in the preceding 

winter (during the mature phase of ENSO event) have significant positive correlation with 

the following SCSSM onset (during the decaying phases of an ENSO event). Among 

different SST indices, EMI has the highest correlation with MOD, indicating that the zonal 

SST gradient (or CP ENSO event) exerts a large influence on the SCSSM onset date. 

These findings imply that the preceding winter surface temperature anomalies are 

responsible for modulating the SCSSM onset.  

To find out more details about the surface temperature patterns associated with SCSSM 

onset, we examine surface 2m air temperature anomaly patterns from the preceding 

February to May of EOY and LOY. Results are depicted in Figure 4. In EOY, significant 

negative SST anomaly is found in central Pacific in the preceding February. At the same 

time, this negative anomaly extends into the eastern Pacific, and positive SST anomalies 

appear in WNP, particularly in the Philippine Sea and along the southeast coast of China. 

This is a CP La Niña pattern. The CP La Niña pattern persists until early summer (May). 

The evolution of tropical SST anomalies in EOY suggests that the preceding winter CP La 

Niña event is an essential factor leading to an early onset year.  

In LOY, however, the opposite SST anomalies pattern is absent, suggesting that a late 
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SCSSM onset cannot be explained by the preceding SST anomalies in the tropical Pacific. 

Nevertheless, the LST anomalies over the Asian continent regulate the late onset of the 

SCSSM. As shown in Figure 4, a slight but statistically significant cooling over parts of 

the Asian continent is noticeable in the preceding March of LOY. These negative LST 

anomalies are strengthened later in April and May, where significant negative LST 

anomalies dominate many parts of the central-eastern Asian continent. These patterns 

suggest that the preceding negative LST anomalies over the Asian continent may 

contribute to the late SCSSM onset.  

The above analyses imply that SST and LST anomalies are responsible for the early 

and late monsoon onsets, respectively. To substantiate this implication, we employ a 

scatter plot to compare the relationship of the monsoon onset date with the preceding 

winter EMI (characterizing a CP ENSO event) and the preceding late spring (i.e., 

April-May) LST anomalies averaged over the central-eastern Asian continent (25N-55N, 

85E-135E) where the cooling LST anomaly centers consistently from the preceding March 

to May. The results are shown in Figure 5. We find that most EOY cases have a negative 

EMI in the preceding winter; whereas, the LOY cases happen more frequently during the 

negative LST anomalies. Moreover, the time-lag correlation between LST anomalies and 

the SCSSM onset dates (see Figure 3) indicate that LST anomaly in the preceding late 

spring and early summer has the strongest correlation with the following SCSSM onset, 

suggesting that LST might be a factor contributing to the early or late SCSSM onset. These 

results further indicate that the EOY and LOY are preferentially modulated by SST and 

LST anomalies, respectively. It is possible that these modulations are due to different 

mechanisms further discussed below.  

 

4. Underlying mechanisms  

We further elucidate possible processes underlying the onset dates of the SCSSM by 

using composite analysis to investigate the meteorological conditions preceding early and 

late SCSSM onset. They include sea level pressure (SLP), wind, and large-scale 

circulation at low- and high-level atmosphere.  

 

4.1 SLP and winds 

Composite anomalies of SLP and 850hPa wind in EOY and LOY and their differences 

are shown in Figure 6 and Figure 7. As shown in Figure 6, low pressure anomalies over 

the western equatorial Pacific and Philippine Sea region persist until the SCSSM onset in 
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EOY. This is consistent with the anomalous cyclone at the low-level (i.e., (850 hPa) 

atmosphere over the region of the WNP anticyclone before the SCSSM onset (see the left 

panel of Figure 7). This weakening of the WNP anticyclone (shown as cyclone) favors a 

stronger westerly flow extending from the Indian Ocean, already transporting water vapor 

into the Philippine Sea in April supporting an early monsoon onset. As depicted in Figure 

7, anomalous westerlies also appear in the northern tropical Indian Ocean in EOY during 

April and May, as a result of the cold SST anomalies in the central-eastern tropical Pacific 

(i.e., a CP La Niña event). 

By contrast, in LOY (right panel of Figure 6), higher pressure is observed over the SCS 

and WNP region in April, May, and June. This strengthened high pressure leads to an 

anticyclonic anomaly in the WNP region (see Figure 7). An intensified WNP anticyclone 

will prevent the Indian Ocean westerlies from extending eastward into the SCS region, 

thereby causing a late SCSSM onset. It should be noted that, the high pressure anomaly in 

LOY is much weaker during the winter (e.g. in January through March, figures are not 

shown) than during the late spring and early summer (i.e., April, May, and June). LOY do 

not show SLP and SST anomalies in the equatorial Pacific in the preceding winter. This 

supports that late SCSSM onset is influenced by mechanisms other than SST anomalies in 

the preceding winter.  

 

4.2 Large-scale circulations  

As suggested above, an anomalous low-level cyclone accompanied by the low pressure 

over the Philippine Sea can be observed in EOY. These precursory signals can be 

connected to the preceding SST anomalies in the central-eastern equatorial Pacific Ocean, 

possibly by the modification of the Walker circulation. However, LOY follows a strength-

ened WNP anticyclone and an anomalous high pressure, which are suggested to be related 

to the preceding SST anomalies. Instead, anticyclone and high pressure anomalies in LOY 

are associated with the preceding spring LST anomalies over the central-eastern Asian 

continent, possibly by the modification of the local Hadley circulation. To validate the 

assumptions, we examine the composite anomalies of the zonal-vertical circulation (Figure 

8) and the velocity potential and divergent winds (Figure 8. Composite anomalies of the 

zonal-vertical circulation of the equatorial region (0-10N) prior to the SCSSM onset in 

EOY (left panel) and LOY (right panel). The vertical component of the vectors is the 
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pressure vertical velocity (unit: Pa s-1, scaled by -100), and the horizontal component is 

the zonal component of the wind. Shading indicates significance at the 95% confidence 

level for vertical velocity.  

Figure 9).  

Figure 8 shows the composite anomalies of the zonal-vertical circulation of the 

equatorial region (0-10N) prior to the SCSSM onset. In EOY (left panel of Figure 8), a 

stronger upward branch of the Walker cell is observed over the western equatorial Pacific 

(between 120E and 140E), Meanwhile, an enhanced anomalous downward branch between 

90E and 110E is also observed. It can also be observed in Figure 8. Composite anomalies 

of the zonal-vertical circulation of the equatorial region (0-10N) prior to the SCSSM onset 

in EOY (left panel) and LOY (right panel). The vertical component of the vectors is the 

pressure vertical velocity (unit: Pa s-1, scaled by -100), and the horizontal component is 

the zonal component of the wind. Shading indicates significance at the 95% confidence 

level for vertical velocity.  

Figure 9 (left panel), which show the velocity potential and divergent wind at the 

surface and 100 hPa levels prior to the SCSSM onset, that one convergence center in the 

lower (i.e., surface) atmosphere appears over the SCS and Philippine Sea and two 

divergence centers appear over the eastern tropical Indian Ocean and central-eastern 

tropical Pacific in EOY. These circulation patterns agree with the anomalously 

strengthened Walker cell (see Figure 8) induced by the La Niña event. The rising branch of 

the Walker cell leads to divergence aloft. In the lower (i.e., surface) atmosphere, 

anomalous Walker cell induced convergence over the western equatorial Pacific and 

divergence over the central Pacific favor eastward extension of the westerlies from the 

Indian Ocean to the SCS region, leading subsequently to an earlier SCSSM onset. 

Compared with EOY, changes of the Walker circulation in LOY are less significant 

(see Figure 8), suggesting that changes of the Walker circulation forced by ENSO exert 

less impact on LOY than on EOY, with no significant SST anomalies appearing in the 

preceding winter or spring of LOY. As shown in the right panels of Figures 8 and 9, in 

May of LOY, a divergence center over the central Asian continent, a convergence center 

over South Asia, and a divergence over the Philippine Sea can be observed in the low-level 

atmosphere. These three anomalies couple with each other, resulting in anomalous local 

Hadley cell that connects LST anomalies over the central Asian continent to South Asia, 

and to the WNP regions. The low-level convergence over the central Asian continent is 
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consistent with the cold air temperature anomalies over there. Anomalous convergence in 

the upper-level (i.e., 100 hPa) atmosphere over the Philippine Sea in LOY is related to the 

upper-level Hadley cell anomalies. Corresponding to the situation in the upper-level 

atmosphere, low-level (i.e., surface) divergence appears over the western equatorial Pacific. 

This is accompanied by the anomalously high pressure and enhanced WNP anticyclone 

(see Figure 6 and Figure 7), which can also be strengthened by the latent heat release 

anomaly induced by negative precipitation anomalies (figures are not shown) in this region. 

Based on the above analysis, we can depict the mechanisms underlying the impacts of LST 

anomalies on late monsoon onsets. The LST anomalies in the preceding late spring over 

the Asian continent lead to the cooling in the atmosphere and such changes propagates to 

the Philippine Sea region to strengthen the WNP anticyclone and subtropical high by 

enhancing the connection between the Asia and WNP via the modification of the local 

Hadley cell. The strengthened WNP anticyclone prevents the westerlies from the Indian 

Ocean from to extend eastward to the SCS and WNP region, leading subsequently to a late 

SCSSM onset.  

 

5. Conclusion  

SCSSM onset is a key indicator characterizing the abrupt transition from dry to rainy 

season in East Asia (Chen et al., 2000; Ding and Liu, 2001; Ding and Chan, 2005). For a-

gricultural management and climate prediction, it is important to identify the reasons and 

underlying mechanisms for the onset of the SCSSM. In the present study, we have 

investigated the spatial and temporal characteristics of land and sea surface temperature 

anomalies, atmospheric circulation and convective activity associated with the interannual 

variability of the SCSSM onset. To identify the precursor signals and the underlying 

processes influencing and determining such interannual variability, a composite study has 

been conducted on the early onset years (EOY) and late onset years (LOY). Analysis 

results show that CP ENSO plays a more important role in modulating monsoon onset than 

EP ENSO, given that EOY are preceded by negative SST anomalies centering in the 

central tropical Pacific. The SCSSM tends to have an earlier onset during years after a CP 

La Niña event. However, such a clear relationship does not exist for the late onset, 

suggesting that LOY is caused by mechanisms other than ENSO.  

The composite analysis shows that the SCSSM onset is affected by both SST and LST 

anomalies during the preceding winter and spring. An early SCSSM onset is often 

preceded by cold SST anomalies in the central-eastern equatorial Pacific (corresponding 
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more likely to a CP La Niña than to an EP La Niña event) in winter. A late SCSSM onset 

is more often dominated by cold LST anomalies in the preceding late spring just before its 

onset. Both SST and LST anomalies exert impact on the Philippine Sea anticyclone, which 

will favor or prevent the western extension of the westerlies into the SCS region, so as to 

advance or delay the onset date of the SCSSM.  

More specifically, in EOY, negative SST anomalies in the central-eastern Pacific (i.e., 

CP La Niña event) increase the zonal temperature gradient and thus enhance the upward 

branch of the Walker cell over the western Pacific. The related increase in convective 

activity leads to an increase in precipitation in this region. The increase in precipitation 

causes more latent heat release, leading to a depression of the surface pressure. The 

enhanced Walker cell and latent heat release weaken the anticyclone over the Philippine 

Sea region (shown as anomalous cyclone and low pressure in the lower-level atmosphere). 

The induced lower pressure over the SCS and Philippine Sea region favors the inflow of 

the westerlies from the Indian Ocean and Bay of Bengal, subsequently leading to an early 

SCSSM onset.  

In contrast to EOY, LOY are regulated more by temperature anomalies over land and 

the induced thermal land-sea contrast. Negative LST anomalies cool the atmosphere over 

land, change the land-sea thermal contrast, modify the local Hadley cell and change the 

lower- and upper- level atmospheric circulations that connect the cool LST anomalies in 

the central Asian continent to South Asia, and to the SCS and WNP. Changes of the local 

Hadley cell and the connection between the central Asian continent and WNP region, 

together strengthen the surface pressure and anticyclone over the Philippine Sea region. 

The strengthened anticyclone with higher pressure over the SCS and Philippine Sea region 

will prevent westerlies from the Indian Ocean to extend eastward to the SCS and WNP 

region, leading to a late SCSSM onset.  

 

6. Discussion 

Our analysis results are partially consistent with those of the previous studies (e.g. 

Zhou and Chan, 2007), providing further evidence for the role of ENSO in affecting the 

onset of the SCSSM. However, we have found that an early onset is regulated by the 

preceding negative SST anomalies centering in the central equatorial Pacific, rather in the 

eastern equatorial Pacific, indicating that CP La Niña plays a more important role in 

affecting the SCSSM onset. Besides, we have also found that a late onset is influenced 

more by LST anomalies. The asymmetric effects of SST/LST on early/late onsets may be 
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due to the difference in the duration of La Niña and El Niño (Ohba et al., 2010; Okumura 

and Deser, 2010). Most El Niño events rapidly terminate after their maturing towards the 

end of the calendar year; whereas, many La Niña events persist into the following year for 

a longer duration (Ohba et al., 2010; Okumura and Deser, 2010; Okumura et al., 2011). 

Therefore, La Niña events may exert more influences on the early summer season that 

follows and exert more impact on the SCSSM onset; whereas, El Niños persist for a 

shorter duration and exert less influence on monsoon onset. This corresponds to the 

persistence of the SST anomalies in EOY from the preceding winter to early summer. On 

the other hand, the SST anomalies in LOY do not show significant El Niño pattern either 

in the preceding winter or spring. 

Beside the contribution of negative SST anomalies in the central-eastern Pacific to the 

early SCSSM onset, we have also revealed that the preceding negative LST anomalies 

over the Asian continent contribute to the late SCSSM onset. Land surface is a complex 

system that interacts with various factors through possibly different processes and 

mechanisms. The cooling temperature in LOY is likely to be influenced by the surface 

energy balance. As shown in Figure 10, significant negative anomalies of upward 

long-wave radiation flux appeared over the central Asian continent, corresponding to 

negative LST anomalies in these regions (see Figure 4). This implies that such reduced 

upward long-wave radiation flux could cool the land surface, leading to the negative LST 

anomalies. Plausible contributing factors like the variation in the snow cover over the 

Asian continent including the Tibetan Plateau, land use/land cover changes, and related 

atmospheric circulations such as North Atlantic Oscillation may also be involved (Wu and 

Qian, 2003; Zhou et al., 2012; Yu et al., 2014). Further work is needed to understand the 

causes of land surface temperature.  

In addition to land and sea surface temperature, other factors such as intraseasonal 

oscillation activity (intraseasonal fluctuation of the active/break cycles) (Wang and Wu, 

1997; Wu and Wang, 2000; Wang et al., 2004; Zhou and Chan, 2005), tropical cyclones 

(Kajikawa and Wang, 2011), and variations of atmospheric heat source over the Tibetan 

Plateau (Wu and Zhang, 1998; Liu et al., 2002) can also affect the onset of the SCSSM 

through various processes. Available reanalysis data sets and the chosen composite method 

are not sufficient to disentangle these complex relationships in a statistically significant 

way. Using general circulation models (GCM) is an alternative way to separate the 

influence of different factors. Such an approach would also reveal the extent to which a 

state-of-the-art atmospheric climate model can be used to simulate the observed 

year-to-year variability in the SCSSM onset.  
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Recently, some studies have examined the interdecadal variability in summer monsoon 

onset dates and noticed a significant advance (i.e., half a month earlier) around the 

mid-1990s in the Asian summer monsoon onset date (Kajikawa and Wang, 2011; 

Kajikawa et al., 2012; Yuan and Chen, 2013). Changes in the global SST are suggested to 

be the main reason (Kajikawa and Wang, 2011; Kajikawa et al., 2012; Yuan and Chen, 

2013). However, the underlying process is controversial. For instance, Kajikawa and 

Wang (2011) suggested that the advanced SCSSM onset is influenced by the enhanced 

activity of the northwestward moving tropical disturbances and the tropical cyclones, 

possibly caused by the global SST warming. Yuan and Chen (2013) pointed out that it is 

due to the earlier retreat of the western Northern Pacific subtropical high, which may be 

caused by the La Niña-like interdecadal change of the Pacific SST. Some studies have 

found several other responsible factors, such as land-sea thermal contrast (Kajikawa et al., 

2012), and anthropogenic absorbing aerosols (Lee et al., 2013). There may exist other 

factors contributing to the interdecadal change in the SCSSM onset date, and detailed 

analysis of the impact of these factors on the monsoon onset is also of great research 

interest. The performance of the state-of-the-art GCM models in simulating this 

interdecadal change should be evaluated in further studies. 

 

Acknowledgments  

This research was jointly supported by the Geographical Modeling and 

Geocomputation Program under the Focused Investment Scheme of The Chinese 

University of Hong Kong, the National Basic Research Program (973 Program) of China 

(No. 2012CB955800), and the National Natural Science Foundation of China (No. 

41401052). 

 

References 

Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. 

Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin, 2003. 

The version-2 global precipitation climatology project (GPCP) monthly precipitation 

analysis (1979-present). Journal of Hydrometeorology, 4: 1147–1167.  

Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007. El Niño Modoki 

and its possible teleconnection. Journal of Geophysical Research-Oceans, 112: 

C11007.  

Bellon, G., A. H. Sobel, and J. Vialard, 2008. Ocean-atmosphere coupling in the monsoon 

Page 14 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

intraseasonal oscillation: A simple model study. Journal of Climate, 21: 5254–5270.  

Chen, T. C., M. C. Yen, and S. P. Weng, 2000. Interaction between the summer monsoons 

in East Asia and the South China Sea: Intraseasonal monsoon modes. Journal of the 

Atmospheric Sciences, 57: 1373–1392.  

Ding, Y. H., 2004. Seasonal march of the East-Asian summer monsoon. East Asian 

Monsoon, C. P. Chang, Ed., World Scientific, Singapore, 3–53.  

Ding, Y. H., 2007. The variability of the Asian summer monsoon. Journal of the 

Meteorological Society of Japan, 85B: 21–54.  

Ding, Y. H. and J. C. L. Chan, 2005. The East Asian summer monsoon: An overview. 

Meteorology and Atmospheric Physics, 89: 117–142.  

Ding, Y. H. and Y. J. Liu, 2001. Onset and the evolution of the summer monsoon over the 

South China Sea during SCSMEX field experiment in 1998. Journal of the 

Meteorological Society of Japan, 79: 255–276.  

Fan, Y. and H. van den Dool, 2008. A global monthly land surface air temperature analysis 

for 1948-present. Journal of Geophysical Research-Atmospheres, 113: D01103.  

Feng, J., W. Chen, C. Y. Tam, and W. Zhou, 2011. Different impacts of El Niño and El 

Niño Modoki on China rainfall in the decaying phases. International Journal of 

Climatology, 31: 2081–2101.  

Feng, J. and J. P. Li, 2011. Influence of El Niño Modoki on spring rainfall over south 

China. Journal of Geophysical Research-Atmospheres, 116: D13102.  

Feng, J., L. Wang, W. Chen, S. K. Fong, and K. C. Leong, 2010. Different impacts of two 

types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. 

Journal of Geophysical Research-Atmospheres, 115: D24122.  

Gao, H., J. He, Y. Tan, and J. Liu, 2001. Definition of 40-year onset date of South China 

Sea summer monsoon. Journal of Nanjing Institute of Meteorology, 24: 379–383.  

Graf, H.-F. and D. Zanchettin, 2012. Central Pacific El Niño, the ”subtropical bridge”, and 

Eurasian climates. Journal of Geophysical Research, 117: D01102.  

Huang, R., L. Gu, L. Zhou, and S. Wu, 2006. Impact of the thermal state of the tropical 

western Pacific on onset date and process of the South China Sea summer monsoon. 

Advances in Atmospheric Sciences, 23: 909–924.  

Jiang, X. W. and J. P. Li, 2011. Influence of the annual cycle of sea surface temperature on 

the monsoon onset. Journal of Geophysical Research, 116: D10105.  

Kajikawa, Y. and B. Wang, 2011. Interdecadal change of the South China Sea summer 

monsoon onset. Journal of Climate, 25: 3207–3218.  

Kajikawa, Y. and T. Yasunari, 2005. Interannual variability of the 10-25-and 30-60-day 

Page 15 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

variation over the South China Sea during boreal summer. Geophysical Research 

Letters, 32: L04710.  

Kajikawa, Y., T. Yasunari, S. Yoshida, and H. Fujinami, 2012. Advanced Asian summer 

monsoon onset in recent decades. Geophysical Research Letters, 39, L03803. 

Kalnay, E., et al., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the 

American Meteorological Society, 77: 437–471.  

Kueh, M. T. and S. C. Lin, 2001. South China Sea summer monsoon: Onset definition and 

characteristics. Atmospheric Science, 29: 141–170.  

Kug, J. S. and F. F. Jin, 2009. Two types of El Niño events: Cold tongue El Niño and 

warm pool El Niños. Journal of Climate, 22: 1499–1515.  

Larkin, N. K. and D. E. Harrison, 2005a. Global seasonal temperature and precipitation 

anomalies during El Niño autumn and winter. Geophysical Research Letters, 32: 

L16705.  

Larkin, N. K. and D. E. Harrison, 2005b. On the definition of El Niño and associated 

seasonal average US weather anomalies. Geophysical Research Letters, 32: L13705.  

Lau, K. M. and S. Yang, 1997. Climatology and interannual variability of the Southeast 

Asian summer monsoon. Advances in Atmospheric Sciences, 14: 141–162.  

Lee, S.-Y., H.-J. Shin, and C. Wang, 2013. Nonlinear effects of coexisting surface and 

atmospheric forcing of anthropogenic absorbing aerosols: Impact on the South Asian 

monsoon onset. Journal of Climate, 26, 5594–5607.  

Li, C., and M. Yanai, 1996. The onset and interannual variability of the Asian summer 

monsoon in relation to land-sea thermal contrast. Journal of Climate, 9, 358-375.  

Li, J. P. and L. Zhang, 2009. Wind onset and withdrawal of Asian summer monsoon and 

their simulated performance in AMIP models. Climate Dynamics, 32(7-8): 935-968. 

Liang, J., S. Wu, and J. You, 1999. The research on variations of onset time of the SCS 

summer monsoon and its intensity. Journal of Tropical Meteorology, 15: 97105.  

Liebmann, B. and C. A. Smith, 1996. Description of a complete (interpolated) outgoing 

longwave radiation dataset. Bulletin of the American Meteorological Society, 77: 1275– 

1277.  

Lin, P. H. and H. Lin, 1997. The Asian summer monsoon and Mei-Yu front Part I: Cloud 

patterns as a monsoon index. Atmospheric Science, 25: 267–287.  

Liu, P., Y. F. Qian, and A. N. Huang, 2009. Impacts of land surface and sea surface 

temperatures on the onset date of the South China Sea summer monsoon. Advances in 

Atmospheric Sciences, 26: 493–502.  

Liu, Y. M., J. C. L. Chan, J. Y. Mao, and G. X. Wu, 2002. The role of Bay of Bengal 

Page 16 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

convection in the onset of the 1998 South China Sea summer monsoon. Monthly 

Weather Review, 130: 2731–2744.  

Lu, E. and J. C. L. Chan, 1999. A unified monsoon index for south China. Journal of 

Climate, 12: 2375–2385.  

Okumura, Y. M., and C. Deser, 2010. Asymmetry in the duration of El Niño and La Niña. 

Journal of Climate, 23, 5826–5843.  

Okumura, Y. M., M. Ohba, C. Deser, and H. Ueda, 2011. A proposed mechanism for the 

asymmetric duration of El Niño and La Niña. Journal of Climate, 24, 3822–3829.  

Ohba, M., D. Nohara, and H. Ueda, 2010. Simulation of asymmetric ENSO transition in 

WCRP CMIP3 multimodel experiments. Journal of Climate, 23, 6051-6067.  

Qian, W., H. S. Kang, and D. K. Lee, 2002. Distribution of seasonal rainfall in the East 

Asian monsoon region. Theoretical and Applied Climatology, 73: 151–168.  

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. 

C. Kent, and A. Kaplan, 2003. Global analyses of sea surface temperature, sea ice, and 

night marine air temperature since the late nineteenth century. Journal of Geophysical 

Research-Atmospheres, 108: 4407.  

Tanaka, M., 1992. Intraseasonal oscillation and the onset and retreat dates of the summer 

monsoon over East, Southeast Asia and the western Pacific region using GMS high 

cloud amount data. Journal of Meteorological Society of Japan, 70: 613–629.  

Tanaka, M., 1997. Interannual and interdecadal variations of the western North Pacific 

monsoon and the East Asian Baiu rainfall and their relationship to ENSO cycles. 

Journal of the Meteorological Society of Japan, 75: 1109–1123.  

Tao, S. Y. and L. X. Chen, 1987. A review of recent research on the East Asian summer 

monsoon in China. Monsoon Meteorology, C. P. Chang and T. N. Krishnamurti, Eds., 

Oxford University Press, Oxford.  

Taschetto, A. S. and M. H. England, 2009. El Niño Modoki impacts on Australian rainfall. 

Journal of Climate, 22: 3167–3174.  

Wang, B., 2006. The Asian Monsoon. Springer, Chichester.  

Wang, B. and Q. H. Ding, 2006. Changes in global monsoon precipitation over the past 56 

years. Geophysical Research Letters, 33: L06711.  

Wang, B. and LinHo, 2002. Rainy season of the Asian-Pacific summer monsoon. Journal 

of Climate, 15: 386–398.  

Wang, B., LinHo, Y. S. Zhang, and M. M. Lu, 2004. Definition of South China Sea 

monsoon onset and commencement of the East Asia summer monsoon. Journal of 

Climate, 17: 699–710.  

Page 17 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

Wang, B. and R. G. Wu, 1997. Peculiar temporal structure of the South China Sea summer 

monsoon. Advances in Atmospheric Sciences, 14: 177–194.  

Wang, C. and X. Wang, 2012. El Niño Modoki I and II classifying by different impacts on 

rainfall in Southern China and typhoon tracks. Journal of Climate, 26: 1322–1338. 

Weng, H. Y., K. Ashok, S. K. Behera, S. A. Rao, and T. Yamagata, 2007. Impacts of 

recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. 

Climate Dynamics, 29: 113–129.  

Wu, G. X., Y. Liu, B. He, Q. Bao, A. Duan, and F.-F. Jin, 2012. Thermal controls on the 

Asian Summer monsoon. Scientific Reports, 2: 404.  

Wu, G. X. and Y. S. Zhang, 1998. Tibetan Plateau forcing and the timing of the monsoon 

onset over South Asia and the South China Sea. Monthly Weather Review, 126: 913–

927.  

Wu, R. G. and B. Wang, 2001. Multi-stage onset of the summer monsoon over the western 

North Pacific. Climate Dynamics, 17: 277–289.  

Wu, R. G., 2002. A mid-latitude Asian circulation anomaly pattern in boreal summer and 

its connection with the Indian and East Asian summer monsoons. International Journal 

of Climatology, 22: 1879–1895.  

Wu, R. G. and B. Wang, 2000. Interannual variability of summer monsoon onset over the 

western North Pacific and the underlying processes. Journal of Climate, 13: 2483–

2501.  

Wu, T.-W., and Z.-A. Qian, 2003. The relation between the Tibetan winter snow and the 

Asian summer monsoon and rainfall: An observational investigation. Journal of 

Climate, 16, 2038-2051.  

Yan, J., 1997: Observational study on the onset of the South China Sea southwest 

monsoon. Advances in Atmospheric Sciences, 14: 277–287.  

Yang, S., W. Min, R. Q. Yang, W. Higgins, and Z. Renhe, 2011. Impacts of land process 

on the onset and evolution of Asian summer monsoon in the NCEP climate forecast 

system. Advances in Atmospheric Sciences, 28: 1301–1317.  

Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009. El 

Niño in a changing climate. Nature, 461: 511–U70.  

Yu, B., X. L. Wang, X. B. Zhang, J. Cole, and Y. Feng, 2014. Decadal covariability of the 

northern wintertime land surface temperature and atmospheric circulation. Journal of 

Climate, 27, 633–651. 

Yuan, Y., W. Zhou, J. C. L. Chan, and C. Y. Li, 2008. Impacts of the basin-wide Indian 

Ocean SSTA on the South China Sea summer monsoon onset. International Journal of 

Page 18 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

Climatology, 28: 1579–1587.  

Yuan, F., and W. Chen, 2013. Roles of the tropical convective activities over different 

regions in the earlier onset of the South China Sea summer monsoon after 1993. 

Theoretical and Applied Climatology, 113, 175-185. 

Zhang, W., H.-F. Graf, Y. Leung, and M. Herzog, 2012. Different El Niño types and 

tropical cyclone landfall in East Asia. Journal of Climate, 25: 6510–6523.  

Zhang, W. J., F. F. Jin, J. P. Li, and H. L. Ren, 2011. Contrasting impacts of two-type El 

Niño over the Western North Pacific during boreal autumn. Journal of the 

Meteorological Society of Japan, 89: 563–569.  

Zhang, Y. S., T. Li, B. Wang, and G. X. Wu, 2002. Onset of the summer monsoon over the 

Indochina Peninsula: Climatology and interannual variations. Journal of Climate, 15: 

3206–3221.  

Zhou, L., Y. Tian, S. B. Roy, C. Thorncroft, L. F. Bosart, and Y. Hu, 2012. Impacts of 

wind farms on land surface temperature. Nature Climate Change, 2, 539-543. 

Zhou, W. and J. C. L. Chan, 2005. Intraseasonal oscillations and the South China Sea 

summer monsoon onset. International Journal of Climatology, 25: 1585–1609.  

Zhou, W. and J. C. L. Chan, 2007: ENSO and the South China Sea summer monsoon onset. 

International Journal of Climatology, 27: 157–167.  

Zhu, Y., Y. Li, and W. Qian, 2001. Comparison of the SCS summer monsoon onset, 

characteristics derived from different datasets. Journal of Tropical Meteorology, 17: 

34–44.  

 

 

  

Page 19 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

Figures  

Figure 1. Time series of the SCSSM onset date (MOD) from 1948 to 2009. The dashed 

lines indicate ±1 standard deviation from the mean. 

Figure 2. Composite pentad OLR (shading, unit: W m
-2

) and 850 hPa winds (vector, unit: 

m s
-1

) showing the monsoon onset evolution in EOY (left panel) and LOY (right panel) 

from -2 to +1 pentad (0 pentad represents the onset pentad). Winds less than 2 m s
-1

 are 

omitted here.  

Figure 3. Correlation coefficients between MOD and different SST indices (i.e., Niño 1+2, 

Niño 3, Niño 3.4, Niño 4, and EMI) and LST anomalies averaged in 25E-55N, 85E-135E 

from the preceding January to the following September. Dashed thick (thin) lines indicate 

that correlation is significant at the 95% (90%) confidence level.  

Figure 4. Composite anomalies of land and sea surface 2m air temperature (unit: °C) 

during the previous winter, spring, and summer in EOY (left panel) and LOY (right panel). 

Solid (dashed) contours indicate positive (negative) anomalies. Dark (light) shading 

indicates positive (negative) anomalies significant at the 95% confidence level. 

Figure 5. Scatter plot of the preceding winter EMI and May LST in EOY, LOY, and NOY. 

Solid circles, diamonds, and hollow circles indicate early (EOY), late (LOY), and normal 

onset years (NOY), respectively.  

Figure 6. Composite anomalies of SLP (unit: hPa) prior to the SCSSM onset in EOY (left 

panel) and LOY (panel), and their differences. Dark (light) shading indicates positive 

(negative) anomalies significant at the 95% confidence level. 

Figure 7. Composite anomalies of 850 hPa wind (unit: m s
-1

) prior to the SCSSM onset in 

EOY (left panel) and LOY (right panel), and their difference. Shading indicates 

significance at the 95% confidence level.  

Figure 8. Composite anomalies of the zonal-vertical circulation of the equatorial region 

(0-10N) prior to the SCSSM onset in EOY (left panel) and LOY (right panel). The vertical 

component of the vectors is the pressure vertical velocity (unit: Pa s
-1

, scaled by -100), and 

the horizontal component is the zonal component of the wind. Shading indicates 

significance at the 95% confidence level for vertical velocity.  

Figure 9. Composite anomalies of velocity potential (contour, unit: m s
-1

, scaled by 10
6
) 
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and divergent wind (vector, unit: m s
-1

) at surface and 100h hPa levels in (left) April of 

EOY and (right) May of LOY. Shading indicates significance at the 95% confidence level 

for velocity potential or divergent wind.  

 

Figure 10. Composite anomalies of upward long-wave radiation flux (unit: W m
-2

) in LOY. 

Shading indicates significance at the 95% confidence level. 
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Figure1. Time series of the SCSSM onset date (MOD) from 1948 to 2009. The dashed lines indicate ±1 
standard deviation from the mean.  
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Figure 2. Composite pentad OLR (shading, unit: W m-2) and 850 hPa winds (vector, unit: m s-1) showing the 
monsoon onset evolution in EOY (left panel) and LOY (right panel) from -2 to +1 pentad (0 pentad 

represents the onset pentad). Winds less than 2 m s-1 are omitted here.  
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Figure 3. Correlation coefficients between MOD and different SST indices (i.e., Niño 1+2, Niño 3, Niño 3.4, 
Niño 4, and EMI) and LST anomalies averaged in 25E-55N, 85E-135E from the preceding January to the 
following September. Dashed thick (thin) lines indicate that correlation is significant at the 95% (90%) 

confidence level.  
100x75mm (300 x 300 DPI)  

 

 

Page 24 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

  

 

 

Figure 4. Composite anomalies of land and sea surface 2m air temperature (unit: °C) during the previous 
winter, spring, and summer in EOY (left panel) and LOY (right panel). Solid (dashed) contours indicate 

positive (negative) anomalies. Dark (light) shading indicates positive (negative) anomalies significant at the 

95% confidence level.  
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Figure 5. Scatter plot of the preceding winter EMI and May LST in EOY, LOY, and NOY. Solid circles, 
diamonds, and hollow circles indicate early (EOY), late (LOY), and normal onset years (NOY), respectively.  

106x84mm (300 x 300 DPI)  

 

 

Page 26 of 31

http://mc.manuscriptcentral.com/joc

International Journal of Climatology - For peer review only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review
 O

nly

  

 

 

Figure 6. Composite anomalies of SLP (unit: hPa) prior to the SCSSM onset in EOY (left panel) and LOY 
(panel), and their differences. Dark (light) shading indicates positive (negative) anomalies significant at the 

95% confidence level.  
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Figure 7. Composite anomalies of 850 hPa wind (unit: m s-1) prior to the SCSSM onset in EOY (left panel) 
and LOY (right panel), and their difference. Shading indicates significance at the 95% confidence level.  
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Figure 8. Composite anomalies of the zonal-vertical circulation of the equatorial region (0-10N) prior to the 
SCSSM onset in EOY (left panel) and LOY (right panel). The vertical component of the vectors is the 
pressure vertical velocity (unit: Pa s-1, scaled by -100), and the horizontal component is the zonal 

component of the wind. Shading indicates significance at the 95% confidence level for vertical velocity.  
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Figure 9. Composite anomalies of velocity potential (contour, unit: m s-1, scaled by 106) and divergent wind 
(vector, unit: m s-1) at surface and 100h hPa levels in (left) April of EOY and (right) May of LOY. Shading 

indicates significance at the 95% confidence level for velocity potential or divergent wind.  
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Figure 10. Composite anomalies of upward long-wave radiation flux (W m-2) in LOY. Shading indicates 
significance at the 95% confidence level.  
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