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Summary 

Despite of the documented impacts of the so-called green revolution, food security in the 

world faces new challenges in terms of population growth, increases in no-agricultural land 

use (urbanization), and climate change. Trends in food security show that the world 

community is operating within two limits of food system: (i) the quantity of food that can be 

produced under a given climate; and (ii) the quantity of food needed by a growing and 

changing population. Therefore, taking food security successfully into the future requires 

novel approaches to boost agricultural productivity in order to balance food supply and 

demand without expanding the agricultural land.  

To date, progress in wheat yield has been largely the result of the development of dwarf 

varieties through introgression of reduced height (Rht) genes. The height reductions arising 

from the presence of these genes increased yield by alteration of partitioning of dry matter 

and nitrogen in favour of the spike. However, increased partitioning through additional 

reductions in plant height is not likely; as comparative studies indicate that wheat yield is 

reduced when plants are shortened beyond a threshold, and most of the modern cultivars have 

reached the optimal height. Therefore, this dissertation aimed to identify the physiological 

attributes able to produce yield increases in the Rht genotypes with the optimal heights.  

Approaches based on physiological understanding of yield are necessary for developing 

genotypes combining high yielding potential and agronomic traits of superior adaptation, and 

for understanding yield limiting factors. Yet, direct measurement of physiological variables is 

often difficult or expensive; as an example, measuring plant water status in the field is 

problematic, with techniques such as psychrometry generally only being suitable for 

laboratory studies. Therefore, proxy such as tissue RWC may be a good alternative measure 

of plant water status. We aimed to address these questions with three components of 

experimental research :(i) proxy-based screening to increased photosynthetic rate and water 

use efficiency in wheat; (ii) determinants of increased HI in lines with different Rht genes (b, 

c) when incorporated into contrasting background wheat genomes (B, D), and the relative 

effect on N partitioning during grain filling; (iii) analyses of stable isotopes (δ²H, δ¹¸O, δ¹µN 

and δ¹³C) in an agronomic perspective in alley cropping systems associated with adjacent N₂ 

fixing trees, in terms of hydraulic redistribution, N availability and crop yields.  

In this thesis, the proxy-based approach to crop selection was defined as a surrogate-based 

(proxy and surrogate used interchangeably) screening of cultivars for morphological, 

anatomical, and physiological traits of performance or crop environmental responses. The 
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research proposed steps for conducting a proxy-based crop selection programme. A 

comparative screening of 23 Eps cultivars and ranking for traits of photosynthetic and water 

use efficiency showed the correlative relationships of SLA to An, WUEi, leaf N, Δ¹³C, Kh, leaf 

RWC, and IVD. Additionally, it was observed that IVD may influence WUE and Amax. It was 

suggested that these relationships of SLA to traits of photosynthesis possibly resulted from the 

association of SLA and the leaf biochemical characteristics.  

Attention was also given to examining the mechanistic foundations that determine the 

relationship between plant height and yield. The results showed the straw-shortening 

significantly correlated both with Amax and Kh; and SLA decreased with the level of dwarfing; 

and the Amax related both Kh and SLA. Therefore, it was proposed that the straw-shortening 

may affects Amax by exerting a controlling influence over Kh through SLA. Moreover, both the 

partitioning of N to spike and the flag leaf N were related to plant height and growth stage. 

Additionally, the increased post-anthesis partitioning of N to grain associated with high N 

uptake rate and high MRT of N were probably the traits behind increased NUE and NHI. The 

data also indicated that increased grain number per spike, kernel weight and reduced 

peduncle length might be the driver of the increased HI in this experiment. 

The test of the hypothesis that there might be practical application of the analyses of the 

natural abundance of stable isotopes (δ²H, δ¹¸O, δ¹³C, and δ¹µN) and isotopic mixing model by 

IsoSource to understand plant interactions in terms of water redistribution and nitrogen 

transfer and uptake in agroforestry systems, indicated a consistent gradient in depletion of 

wheat xylem water δ²H, δ¹¸O, and δ¹µN in leaf as moving further away from the tree line. The 

data also reflected a consistent pattern of isotopic values (δ²H, δ¹¸O, and δ¹µN) in wheat in the 

proximity of the tree being similar to that of the tree, suggesting they were using the same 

source of water and N. Similarly, an isotopic mixing model data showed that the crops in the 

proximity of the trees accessed considerably amounts of the water and nitrogen redistributed 

by trees. The study also indicated the improvement in water use efficiency, chlorophyll 

content, grain number per spike, and grain yield for the crops nearest to the trees for a 

distance up to 5 m.  

In conclusion, selection for increased HI should shift focus from reduced plant height to 

include increased grain number and kernel weight, increased partitioning of N to spike, 

reduced peduncle length, and low SLA. Finally, the hypothesis that efflux of water and N in 

agroforestry system from tree roots in topsoil and influences a number of physiological 

functions of neighbouring crops was confirmed by isotopic and physiological data.  
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Chapter 1 General introduction 

“Things are complicated in this world and are determined by many different factors. We 

 should look at a problem from different points of view and not from one point of view 

only” (Mao Tse-Tung, the Little Red Book). 

1.1 Preamble 

The United Nations (UN) forecasts the world human population will reach 9.4 billion by 

2050 (Foulkes et al., 2011). The world must therefore develop capacity to feed 10 billion 

within the next 40 years, and within the context of climate change (Cattivelli et al., 2008; 

Hirel et al., 2007). The climate change that is occurring over the years is partly responsible 

for modifying the crop production environment (Semenov et al., 2012). Increased deviation 

in mean temperatures and precipitation are expected to dominate future changes in climate as 

they affect crop production (Hoffmann, 2011; Semenov & Halford, 2009; Jenkins et al., 

2009a; Solomon et al., 2007). Consequently, it is expected that climate change could threaten 

food security in many areas of the World (Knox et al., 2012). 

Climate change could strongly affect the wheat crop that accounts for 21 % of food and 200 

million hectares of farmland Worldwide (FAO, 2010), and constrain economic development 

in those countries that largely rely on agriculture. According to Hoffmann (2011), agriculture 

accounts for 20 to 60 % of GDP in most developing countries. Although wheat is traded 

internationally and developing countries are major importers (43 % of food imports), about 

81 % of wheat consumed in the developing world is produced and utilized in the same 

countries (FAO, 2012; CIMMYT, 2005). This requires the breeding of new and high yielding 

cultivars of wheat that can resist various abiotic stresses or adapting existing cultivars to new 

production environments (Acquaah, 2008; Kurukulusuriya & Mendelsohn, 2008). 

Global world demand for wheat is growing about 2 % per annum (Ortiz et al., 2008). 

Meeting this demand will need to result from greater yield on existing croplands (Edgerton, 

2009), because expanding agricultural production into remaining natural ecosystems is 
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environmentally unacceptable. Increases in wheat yield potential to date have resulted mostly 

from conventional breeding, and the contribution by physiology-driven breeding to date has 

been modest (Reynolds et al., 2011; Braun et al., 2010). However, there is now evidence that 

understanding traits at a physiological level could help to identify phenotypic interactions that 

could accelerate the progress of crop breeding (Shabala, 2013; Reynolds & Borlaug, 2006; 

Loss & Siddique, 1994).  

1.2 Physiological approach to crop improvement: A conceptual background 

While conventional plant breeding has relied heavily on empirical approaches to increase 

yield in the past, there is a broad consensus that strategies approaches based on sound 

physiological understanding of yield are also required if further yield gains are to be achieved 

(Fischer, 2011; Slafer & Araus, 2007; Jackson et al.,1996). 

The knowledge of the physiological traits associated with gains in yield is essential to 

improve the understanding of yield limiting factors and to inform conventional breeding 

(Shearman et al., 2005). There has been considerable discussion in the literature about the 

potential role of physiological research in crop breeding (Aisawi et al., 2010; Slafer et al., 

2005). It is possible to argue that the physiological understanding of yield is of greater 

importance; According to Reynolds et al.(2011), yield progress from traditional breeding 

may be slowing and has become less efficient (in term of less progress per unit of breeding 

resources). It is also hard to see how functional genomics can deliver on yield or how 

genotype by environment interaction (G × E) can be elucidated without knowledge of 

physiological functions (Foulkes et al., 2011). 

1.2.1 The rationale for using physiological trait in crop breeding 

Differences in developmental patterns among wheat are essential for improving adaptation 

and yield. Understanding the physiological basis of these traits is critical for their rational use 

in breeding. The word “trait” invokes several considerations; a trait may broadly be defined 
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to include developmental patterns, physiological processes, yield and its components, and 

plant environmental responses (Acquaah, 2008).  

Crop growth and development depend on interaction of biochemical and physiological 

processes; the latter are under both genetic control and the influence of the environment, and 

the crop yield depends on the interaction between these processes (Acquaah, 2012). 

Therefore, improved knowledge of the factors involved in generating variation among 

cultivars would facilitate an efficient selection strategy. 

Historically, the conventional approach to breeding, geared to cereal improvement, has been 

to start from yield and move towards underlying processes (Passioura, 1981; Acevedo & 

Ceccarelli, 1988; Jackson, 2001). Fischer (2011) named this strategy the “black box” and 

contrasted it to the “Ideotype” strategy which attempts to improve yield from understanding 

underlying processes. Of course, the challenge for conventional crop improvement has been 

to increase the precision of identifying the genotype of a complex trait; the degree of 

precision decreases with increased complexity of the character, and becomes very low for a 

highly complex trait such as yield (Reynolds et al., 2011). 

Therefore, the key question is whether selection for a given physiological trait as part of an 

integrated breeding approach could achieve results more quickly and efficiently than 

conventional breeding alone. It is already established that breeding for new cultivar with 

conventional breeding usually takes 10 to 12 years (Semenov & Halford, 2009; Acquaah, 

2008). Many physiological traits appear to be of potential benefit to yield (Reynolds et al., 

2011). To assess which trait should be prioritized, alternate hypotheses may be tested 

empirically, based on conceptual understanding of physiological and biochemical constraints 

to performance. According to Jackson (2001), the following steps could be effective for 

incorporating physiological criteria into a breeding program; 

i) Defining the yield limiting factors in the target growing environment 
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ii) Identification of physiological traits that may be used as indirect selection criteria 

iii) Choosing the genotypes appropriate for evaluating trait expression 

iv) Defining the protocol and measurement of trait expression and its association with 

performance 

1.2.2 Defining the yield limiting factors in the target growing environment 

Understanding of the factors limiting the performance of the genotype in the target 

environment is essential for improving breeding program through physiological research. It 

has been argued that the knowledge of limiting factors in the target environment would 

enable selection for cultivars that are most relevant to the target environment (Reynolds & 

Trethowan, 2007).  Similarly, Cooper et al. (1995) suggested that an accurate defining feature 

of the target environment such as identifying constraints causing G х E interactions may lead 

to improved strategies of selection breeding. 

Different approaches can be used to identify the factors limiting yield across the target 

environment (Jackson et al., 1996): For instance qualitative local knowledge of the target 

environment may provide useful level of understanding. Similarly, agronomic trials could be 

used in which suspected limiting factors are manipulated to verify and quantify their effects 

(Nix, 1980). Climatic database of the region may add useful information such as rainfall 

variability, etc. Diseases screening trials could also be used (Jackson et al., 1996). 

1.2.3 Identification of physiological traits that may be used as indirect selection criteria 

Identification of yield limiting factors may suggest the physiological traits that breeders could 

use as indirect selection traits. According to Jackson et al. (1996), to be of potential use in 

breeding, a trait must meet two broad criteria; 

i) Evidence of genetic variability for a trait must exist 

ii) Selection for a trait must be economically advantageous based on relative cost and 

benefits. 
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Additionally, Acquaah (2012) proposed that traits can be classified into two categories; (i) 

Simple traits associated with a particular morpho-physiological attribute, and (ii) integrative 

traits produced by the net effect of a number of simple traits. According to Reynolds et 

al.(2001) before  the traits can be characterized, individual traits must be conceptualized and 

defined in terms of ; i) the stage of crop development they are pertinent, ii) the specific 

attributes of the target environment in which they are adaptive, and iii) their potential 

contribution to yield. Similarly, Jackson (2001) proposed two broad approaches to identify 

physiological traits to be used for crop improvement; i) Evaluating a set of genotypes for 

physiological performance in the presence of a known constraints of interest, and ii) 

Concurrently measuring putatively useful traits in the same genotype. 

According to Reynolds et al. (2001), once identified, physiological traits affecting the 

response to a limiting factor may be used in two ways; i) as indirect selection criterion in core 

breeding programs, and ii) as selection criteria in introgression programs. Also, Fischer 

(2011) suggested that the use of physiological traits as indirect selection criteria should be 

based on their correlation both with the physiological performance of the crop and yield, their 

heritability, and their cost for measurement. The use of traits in association with yield as a 

combined selection index could also be considered. 

1.2.4 Choosing the genotype appropriate for evaluating traits expression 

The initial choice of germplasm is critical since conclusions will hinge on it being 

representative of breeding objectives (Ribaut et al., 2001). According to Skovmand et al. 

(2001), the collection of germplasm may provide useful sources of genetic diversity, 

especially if the accessions originate from environments where yield constraints are similar to 

those in the target environment. Donor germplasm may also be identified outside locally 

adapted material being selected; for example, it may include improved material from other 

breeding programs which may have desirable characters, or material from related species.  
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Parent germplasm may also be either synthetically produced by artificially manipulating 

ploidy and backcrossing into elite lines or selected on the basis of a specific trait (Foulkes et 

al., 2007). The number of lines to study must be sufficient to ensure a range of genetic 

diversity of the trait of interest. 

1.2.5 Protocol and measurement of trait expression 

The efficiency of selection for a physiological trait can be related to how accurate a trait is 

measured; thus, experimentation should take place to establish how and when measurement 

should be made to maximize the resolution for expression of the trait (Slafer et al., 2007). 

The experiment should be managed optimally; because environmental factors such diseases, 

nutrient deficiency, and others, may affect the expression of physiological trait by genetic 

interaction by genotype (G × E). The experiment environment should also mimic the target 

environment factors.  According to Hobbs & Sayre (2001), two groups of factors may interact 

with the expression of a trait; 

i) Macro-environment (i.e., temperature, radiation, nutrient status, soil type, etc) 

ii) Physiological factors (growth stages, small genetic diversity that may exist within 

fixed lines, phenology, etc). 

Data should be collected to assess for consistent expression of traits of interest, and their 

association with physiological performance among genotypes. Multiple sampling would be 

necessary to reduce errors associated with measurement. A second phase of experiment may 

be needed to demonstrate a definitive genetic link between the trait and its performance in 

more closely related material such as homozygous sister lines. Finally, if the trait shows a 

strong association with the physiological performance, the nature of the association should 

also be examined. According to Jackson et al. (1996), the selection for specific trait both in 

the field and under controlled environments are likely to be more effective. 
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1.3 The reactions of photosynthesis in C3 plant 

The understanding of the process of photosynthesis is central to crop improvement for 

photosynthetic efficiency. The reactions that occur during photosynthesis involve two main 

processes: (i) light reactions, and (ii) carbon-fixation reactions. 

1.3.1 The light reactions of photosynthesis 

In the chloroplast, the pigment molecules (chlorophylls a, b, and carotenoids) are embedded 

in the thylakoids in discrete units of organization called “Photosystems”. Two photosystems 

(PSI & PSII) are involved in the light reactions. The PSI and II, are spatially separated, and in 

work together simultaneously and continuously (Bruce et al., 2010). The PSII is located 

primarily in the grana thylakoids; and the PSI is almost entirely in the stroma thylakoids and 

at the margins, or outer portions of either side of the grana thylakoids. The two photosystems 

are linked together by an electron transport chain. 

Each photosystem consists of two closely linked components: an antenna complex, and a 

reaction centre. The reaction centre of each photosystem contains a special pair of 

chlorophyll a that is known as P700 and P680 in PSI and II respectively (The “P” stands for 

pigment, and the subscript “700” and “680” refers to the optimal absorption peak in 

nanometers). Each photosystem is also associated with a light-harvesting complex (but this 

does not contain a reaction centre). 

In short, drawing from Taiz & Zeiger (2010), in PSII, light is absorbed by molecules of P680 

in the reaction centre, either directly or indirectly by resonance energy transfer from antenna 

complex or light harvesting complex. When a P680 molecule is excited, its electron is 

transferred to a pheophytin, a modified chlorophyll a molecule. Pheophytin then passes the 

electron to PQA, a plastoquinone which is tightly bound to reaction centre. Next the PQA 

passes two electrons to PQB, another plastoquinone, which simultaneously picks up two 

protons from the stroma thereby becoming plastoquinol (PQBH2). The PQBH2 then joins a 
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pool of mobile plastoquinol molecules in the interior lipid portion of the thylakoid membrane, 

where it donates, one at a time, two electrons to the cytochrome b6/f complex, and is oxidized 

back to PQB. The reduced cytochrome b6/f donates the electrons to plastocyanin (a mobile 

electron carrier protein) in lumen. The protons released into thylakoid lumen via the 

cytochrome b6/f complex, and during the pumping of protons across the thylakoid membrane, 

generate an electrochemical proton gradient that drives the synthesis of ATP from ADP and 

Pi. 

On the other hand, in PSI, light energy excites antenna molecules which pass the energy to 

the P700 molecules at the reaction centre. The excited P700 molecule passes electron to a 

special molecule called A0. The electrons are then passed through a chain of carriers that 

includes phylloquinone (A1), and Ferrodoxin. Electrons are transported from ferrodoxin to 

NADP, and this reduces NADP to NADPH. The electrons removed from the P700 molecule are 

replaced by electrons that are carried from PSII to PSI by plastocyanin. 

1.3.2 The carbon fixation reaction 

The ATP and NADPH generated by the light reactions are used to fix carbon to synthesize 

sugar. The reduction of carbon occurs in the stroma of chloroplast by means of reaction 

called “Calvin cycle”. The starting and ending compound in the Calvin cycle is ribulose1,5 

bisphosphate (RuBP). The cycle begins when three molecule of CO2 enter the cycle and 

enzymatically (Rubisco catalyse this reaction) fixed to RuBP. The resultant 3 molecules of an 

unstable intermediate compound rapidly splits apart, and yield 6 molecules of 

phosphoglyceric acid (PGA), a three carbons compound. The 6 molecules of PGA are 

reduced to 6 molecules of phosphoglyceraldehyde (PGAL). Five of the 6 PGAL molecules are 

combined and rearranged to form three RuBP, the starting material. The extra molecule of 

PGAL is exported from chloroplast to the cytosol where through a series of reactions is 
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converted to sucrose, and which is exported from the leaf via vascular bundles to the other 

parts of the plant. 

However, O2 competes with CO2 at the active site of Rubisco which also catalyzes the 

condensation of O2 with RuBP to form one molecule of PGA and one of phosphoglycolate, in 

a process called photorespiration. Photorespiration is thought to be a wasteful process, 

yielding neither ATP nor NADH; and energy must be expended to salvage of the carbon in 

phosphoglycolate. The salvage involves the conversion of 2 molecules of phosphoglycolate 

into a molecule of amino acid serine and molecule of CO2. The condensation of O2 with 

RuBP occurs concurrently with CO2. The conditions that alter the CO2/O2 ratio in favor of O2 

also induce condensation of O2 (i.e. the close of stomata). It is argued that photorespiration 

acts to protect the photosynthetic apparatus from photoninhibition (i.e. when the leaf is 

exposed to more light than they can utilize) (Bruce et al., 2010). Also photorespiration is the 

only way for the plant to remove phosphoglycolate, which is a toxic compound. 

1.4 Fundamental for application of stable isotopes to physiological crop improvement 

Over the past decades, there has been growing interest in the use of stable isotopes in plant 

physiological studies (Condon et al., 2004; Unkovich et al., 2001; Ehleringer et al., 1993; 

Farquhar et al., 1989; Richards & Caldwell, 1987). According to Griffiths et al. (1999), the 

natural abundance of stable isotopes can provide a quantitative framework for biological 

transformations and environmental influences on those processes. 

1.4.1 Theoretical background for the use stable isotopes in plant physiology 

The use of stable isotopes in plant physiological research requires knowledge of the 

fundamental principles of stable isotopes. According to Dowson & Brooks (2001), isotopes 

are nuclides of a single element that have different atomic weight. The word “nuclide” refers 

to any distinctive type of atom (Criss, 1999). An element can exist in several physically 
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distinguishable but chemically identical forms called isotopes, and each isotope having 

different number of neutrons but the same number of protons and electrons (i.e. 
12

C, 
13

C, ¹´C). 

Nuclide may be classified into radioactive and stable (Michener & Lajtha, 2007); the 

radioactive nuclides are the ones that can decay into different forms of atoms. Stable nuclides 

do not decay, and may be subdivided into the radiogenic and the non-radiogenic stable 

nuclides, depending on their origins. According to Criss (1999), different processes can cause 

the stable non-radiogenic isotopes to vary in abundance;  

i) Diffusion can produce abundance variations among the isotopes of any element 

simply because the various isotopes have different masses. 

ii) Evaporation is another process that can cause isotopic fractionation. 

iii) Through metabolic reactions, organisms also produce isotopic fractionations. 

iv) Isotopic fractionations can also occur in a system that comprises two or more 

phases that contain a common element (i.e. 
13

C is enriched during dissolution of 

CO2 in water relative to air) 

1.4.1.1 The carbon isotope effects 

The isotopes are unevenly distributed among and within different compounds (i.e. most 

isotopes of carbon are 98.9 % of ¹²C, with 1.1 % being ¹³C), and this distribution can reveal 

information about the physical, chemical and metabolic processes involved in the isotope 

transformations. Variation in the ¹³C/¹²C ratio is the consequence of “isotope effects” 

(Farquhar et al., 1989) which are expressed during the formation and destruction of bonds 

involving a carbon atom, or because of other processes that are affected by mass such as gas 

diffusion. 

According to Farquhar et al. (1989) isotope effects are classified as being either kinetic or 

thermodynamic: The kinetic effect is the process that discriminates against the heavier 

isotope while the thermodynamic effects represent the balance of two kinetic effects at 
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chemical equilibrium in a system. Thermodynamic effects, like kinetic ones are temperature 

dependent. One example of kinetic effect is the difference between the binary diffusivity of 

¹³CO2 and that of ¹²CO2 in air. One the other hand, an example of thermodynamic effect is the 

unequal distribution of isotope species among phases in a system (i.e. in CO2 in air versus in 

CO2 in solution). 

The carbon isotope effects, denoted by α, are also called fractionation factors (O‟Leary, 

1993), and they are defined as the ratio of carbon isotope ratios in reactant and product: 

α = Rr/Rp          (1.1) 

where Rr is the ¹³C/¹²C molar ratio of reactant and Rp is that of the product. 

1.4.1.2 Notation and standards 

The analysis of stable isotopes is expressed in a differential notation, based on the 

comparison of mass spectrometric of the quotient of heavy to light isotopes for sample and a 

defined standard (Griffiths, 1998). Originally, Farquhar & Richards (1984) proposed that 

whole plant processes should be analyzed in the same terms as chemical processes (formula 

1.1), however, because the absolute isotopic composition of a sample is not easy to measure 

directly (Farquhar et al., 1989), rather, the mass spectrometer measures the deviation of the 

isotopic composition of the material from a standard.  

According to Farquhar et al.(1989), the stable isotopes are reported as the measured 

difference in the isotopic composition of the sample  𝜒 and an accepted standard, and in term 

of dimensionless of δ values, termed “delta-values”, defined by the formula; 

δ={R (sample) / R (standard) - 1} × 1000      (1.2) 

Where the R values refer to the isotopes ratio; for instance ¹³C/¹²C, and depending on the 

element of interest, this formula may define for example the δ
13

C, or δ
18

O. The factor of 1000 

converts the δ value to per mil (‰).  
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The standards and their absolute values for the isotope used in this thesis are given (tab.1.1). 

The original standard for carbon and oxygen isotopes in CO2 or carbonates was a fossil 

belemnite from the Pee Dee formation (PDB) which is no longer available but replaced by 

Vienna PDB (Ehleringer et al., 1993).  The standard for hydrogen and oxygen isotopes was 

the standard mean ocean water (SMOW) but has been replaced by Vienna-SMOW (Mook, 

2001). The ¹µN/¹´N ratio of air is used to calibrate nitrogen isotope data (Criss, 1999). 

Table 1.1 Standards and their absolute abundance (Source: Dawson et al., 2002) 

 

Farquhar & Richards (1984) proposed the use of Δ as the measure of the carbon isotope 

discrimination by the plant: they argued the Δ directly expresses the consequences of 

biological processes whereas composition δp is the result of both source isotopic composition 

and carbon discrimination. According to O‟Leary (1993), the Δ13
C is computed as; 

Δ13
C= (δ¹³Ca - δ¹³Cp) / (1+δ¹³Cp / 1000)      (1.3) 

Where δ
13

Ca  is the δ
13

C value of air, and δ
13

Cp is that of the sample. On the PDB scale, the 

carbon dioxide in air has a δ value of approximately - 8 ‰ (Ehleringer et al., 1993).  

However, this value changes slowly becoming depleted in ¹³C as consequence of 

anthropogenic emission. For example, from 1956 to 2007, the δ¹³C in air has decreased from - 

6.7 to - 8.1 ‰ (Keeling et al., 1979; Michener & Lajtha, 2007).  

Element Isotope Percent abundance Ratio measured Standard Abundance ratio of standard

Hydrogen ¹H 99.984

²H 0.0156

Carbon ¹²C 98.982

¹³C 1.108

Nitrogen ¹´N 99.63

¹µN 0.3663

Oxygen ¹¶O 99.759

¹·O 0.037

¹¸O 0.204 V-PDB 2.0672 × 10⁻³

1.5575 × 10⁻´

1.1237 × 10⁻²

3.6764 × 10⁻³

2.0052 × 10⁻³

²H/¹H

¹³C/¹²C

¹µN/¹´N

¹¸O/¹¶O

V-SMOW

V-PDB

N₂ 

V-SMOW
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1.4.2 Physiological basis of ¹³C discrimination in C3 plants 

Carbon isotope composition of plants was first used to indicate photosynthetic pathway in 

plants (Bender, 1971): this is because phosphoenolpyruvate carboxylase, the primary 

carboxylating enzyme in species having a C4 metabolism, exhibits a different intrinsic kinetic 

isotope effects and utilizes a different species of inorganic carbon that has isotopic 

composition at equilibrium different from that of Rubisco. The results of such survey have 

provided a broad base of the distribution of photosynthetic pathways among different 

phylogenetic groups and ecological zones (O‟Leary, 1981). 

According to Taiz & Zeiger (2010), plant leaves discriminate against 
13

C though the chemical 

properties of 
13

C are identical those of 
12

C. Early workers recognized that diffusion and 

carboxylation were likely to be the principal causes of carbon isotope discrimination in plants 

(Farquhar et al., 1982, 1989). A key to all these works has been the recognition that the 

carbon isotope fractionation in plant is related to Ci, the CO2 in the intercellular air spaces of 

leaf. 

According to O‟Leary (1993), the carbon isotope fractionation in C3 plants can be pictured by 

the relative limitation imposed during two steps of CO2 uptake;  

i) Diffusion of CO2 into the leaf 

ii) Fractionation at carboxylation site 

In the first step, CO2 diffuses from air into the leaf through the stomata to carboxylation site, 

whereby for a typical stomatal conductance, for every three CO2 molecules entering a leaf, 

two retro-diffuse; because 
12

CO2 is lighter than 
13

CO2, it diffuses slightly faster toward the 

carboxylation site, creating a diffusion fractionation factor of - 4.4 ‰. In the second step, this 

CO2 is taken up irreversibly by Rubisco, and which has an intrinsic discrimination value 

against 
13

C of around - 30 ‰ (Taiz & Zeiger, 2010). However, two limiting cases can be 

considered (Ehleringer et al., 1993); first, if the stomata are nearly closed, for instance in the 
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case of when leaves are exposed to water stress, the overall CO2 uptake rate is limited by the 

initial diffusion process and the internal CO2 concentration is low; in this circumstance, the 

carboxylation process takes up relatively more of the carbon species available, and the 

carboxylation isotope fractionation is not fully expressed. In this case, the isotope 

fractionation is reduced, theoretically approaching - 4.4 ‰ at very small apertures. Thus, for 

a C3 plant, the δ
13

C in this case should approach -12 ‰ (- 8 + - 4.4). On the other hand, if 

diffusion were infinite the stomata are relatively open, the internal CO2 concentration 

approaches the external CO2 concentration, and there is a facile transfer of CO2 between the 

external and internal pool, allowing maximal retro-diffusion of 
13

C. In this case, the diffusion 

approaches equilibrium and the observed fractionation approaches the carboxylation 

fractionation, and the leaf δ
13

C of C3 would approach - 38 ‰ (-8 + - 30).  Real C3 plants 

show behaviours intermediate between these two extremes. 

According to Farquhar et al. (1989), the carbon isotope of a C3 leaf plant can be predicted as; 

δ
13

CL= δ¹³Ca – a – (b – a) (Ci/Ca)         (1.4)   

where δ
13

CL  and δ
13

Ca are the carbon isotope of the leaf and atmosphere, respectively; 𝑎 is 

the fractionation due to diffusion ( - 4.4 ‰); b is the fractionation due to carboxylation (- 30 

‰); and Ci/Ca is the ratio of intercellular to ambient CO2 concentrations. 

The application of carbon isotope to plant physiology has become very productive, because 

equation (1.4) provides a link between the carbon isotope measurement and the intercellular 

CO2 value in a leaf. Intercellular CO2 levels are then directly linked with aspects of 

photosynthesis and stomatal constraints. As stomata close in C3 plants or as water stress 

increases, the leaf carbon isotope is found to increase (Taiz & Zeiger, 2010). The carbon 

isotope measurement then becomes a direct proxy to estimate several aspects of water stress 

(Farquhar et al., 1989). These applications include using isotopes to study plant performance 
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in both agricultural and ecological studies (Ehleringer et al., 1993; Dawson et al., 2002; 

Bowling et al., 2008). 

1.4.2.1 Source of variation of 
13

C in C3 plants 

The major processes contributing to carbon isotope fractionation in plants are CO2 diffusion 

and carboxylation (Farquhar et al., 1989; Ehleringer et al., 1993; Taiz & Zeiger, 2010). 

Additionally, the fractionation dues to the diffusion through the boundary layer of air above 

the leaf surface can also be considered as distinct from the effects of the diffusion through 

stomata and in the mesophyll cells (Vogel, 1993), although effects are small and largely 

ignored.  

Cultivar variation in carbon isotopic composition is known to exist within crop species 

(Hubick & Gibson, 1993; Hall et al., 1993; Condon et al., 2004; Rebetzke et al., 2006). The 

genetic control of Δ13
C appears to be strong in wheat; Condon et al. (2004) showed that 

genetic ranking was maintained at different sites and between plant grown in pots and in the 

field. Their work also indicated that broad sense heritability (proportion of total variance) of 

Δ13
C that can be ascribed to genotype, rather than to environment or to interactions between 

the two (G × E) ranged between 60 and 90 %, which suggests that Δ13
C is a trait with genetic 

control for which crop improvement strategies could readily exploit. Stable carbon isotope 

composition also varies among plant tissues (O‟ Leary, 1993); they argued that some of this 

variation is due to differences among the chemical components of plant tissue; for example, 

lipids can be as much as 10 ‰ lighter than the whole tissue (O‟ Leary, 1993; Badeck et al., 

2005); In contrast, cellulose and other carbohydrates are typically 1 to 2 ‰ heavier than 

whole tissue (Leavitt & Long, 1986), and lignin is typically 1 to 2 ‰ lighter; and the isotopic 

composition of tree rings is often enriched by 1.5 to 2 ‰ relative to foliage (Leavitt & Long, 

1986).  Other physiological and environmental factors can also affect the carbon isotope of 

C3 leaf plant (Griffiths, 1999). One of emergent environmental pattern is that, isotopic 
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composition of the atmosphere affects the isotopic composition of the leaf plant (Farquhar & 

Lloyd, 1993); the δ
13

C of atmospheric CO2 is close to - 8 ‰. This value is slowly becoming 

more negative as the atmosphere becomes depleted in 
13

C relative to 
12

C. This depletion has 

arisen as a consequence of the anthropogenic emissions. The soil respiration (depleted in 
13

C) 

can also affect the 
13

C of the leaf produced near the soil surface as a result of abrupt decline 

in wind speed under closed canopy (Farquhar et al., 1989; Jackson et al., 1993). Latitudinal 

gradient in δ
13

C of atmosphere has also been shown to exist, with δ
13

Ca at 60
0 

N being 0.2 ‰ 

more negative than that 60
0 

S (Keeling et al., 1989 cited in Ehleringer et al., 1993). In global 

surveys of δ
13

C over altitudinal gradients, Körner et al. (1988, 1991) found that plant δ
13

C 

increased with altitude. Moorcroft & Woodward (1990) attributed the altitudinal gradient 

primarily to temperature effects on gas exchange, based on extrapolations from controlled 

environment studies. Similarly, consistent altitudinal gradients in plants 
13

C were observed by 

Marshall & Zhang (1994); they observed that water use efficiency increased threefold over 

2000 m altitude. 

According to Lambers et al. (2008), the δ
13

C was found to be less negative in the desert 

plants than in mesic plants, and in tissue produced during dry seasons. They also observed 

that annuals fractionate more strongly against 
13

C than perennials; and, herbs fractionate 

more than grasses. Soil fertility, particularly the mineral nutrition of nitrogen, can affect the 

biochemical machinery for photosynthetic CO2 assimilation (Farquhar, 1989);  for example 

both Fu & Ehleringer (1992) and Fu et al (1993), observed that both in pot and field grown 

plants in high fertilizer treatment had significantly lower Δ13
C value than those grown at 

lower fertilizer level. 

1.4.2.2 Implication of Δ
13

C for C3 crop improvement 

The use Δ
13

C as a proxy of long term water use efficiency (WUE) by C3 plants has now been 

routine for more than a decade (Ehleringer, 1989, 1991; Ehleringer & Osmond, 1989; 
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Ehleringer et al., 1993; Condon et al., 2004; Rebetzke et al., 2006).  Recently, two new wheat 

varieties (Drysdale & Rees) have been brought to market in Australia using selection for 

drought tolerance and yield stability informed by Δ13
C as proxy for water use efficiency 

(Condon et al., 2004; Passioura, 2006). 

Traditionally, WUE has been defined as the ratio of net photosynthesis to transpiration (A/E). 

Farquhar et al. (1982) demonstrated that δ
13

C in C3 plant leaf provides a reliable index of 

water use efficiency because both WUE and δ
13

C are controlled by intercellular CO2 levels. 

This relationship can be described as with the formula (1.4) above. It was noted earlier that 

δ
13

C is also related to WUE, and the relationship can be described as (Michener & Lajtha, 

2007); 

A = (Ca – Ci) g / 1.53         (1.5) 

E = g (LAVD)           (1.6) 

WUE = (Ca – Ci) / [1.53(LAVD)]       (1.7)   

Where A is the net photosynthesis rate, E is the transpiration rate, g is stomatal conductance 

to water vapor, 1.53 is the ratio of diffusivities of water vapor and CO2 in air (Campbell & 

Norman, 1998), and leaf-to-air vapor difference (LAVD) is the difference in water vapor 

concentration between the interior of the leaf and the surrounding atmosphere (Farquhar & 

Richard, 1984). 

Because Ca is nearly constant in the atmosphere within a given year, WUE varies primarily 

with Ci and LAVD. If LAVD can be assumed constant among plant being considered at a 

given site, then plant δ
13

C would be linearly be correlated with WUE. However, both 

environmental and anatomical factors (irradiance, soil moisture, salinity, air pollution, 

mesophyll conductance) have been recognized to influence the value carbon discrimination 

by plants (Griffiths, 1999; Farquhar et al., 1989), therefore δ¹³C can only relate to WUE in a 

comparative sense for crop under equivalent period, seasons, and environment conditions.  
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For instance Goldstein et al. (1989) proposed that when LAVD cannot be assumed constant or 

unknown, the intrinsic water use efficiency (A/g) can be inferred from isotope; 

 A/g= (Ca - Ci)/1.53        (1.8) 

1.4.3 Fundamentals of application of stable isotopes of ²H and ¹⁸O to plant hydraulic lift 

Oxygen-18 and deuterium occur in water at abundances of 0.204 % of all oxygen atoms and 

0.015 % of all hydrogen atoms, respectively (Clark & Fritz, 1997). These relative abundances 

change slightly as a result of the isotopic fractionations that accompany the evaporation from 

the ocean and other surface water and the reverse process of rain formation (fig.1.1). A 

correlation between δ
2
H and δ

18
O in fresh water was established, and the locus line of such 

sample in δ, and which is now known as the global meteoric water line and was defined by 

Gat et al. (2001) as; 

δ²H= 8 δ¹¸O + 10 ‰        (1.9) 

 
Figure 1.1 Isotope fractionation that accompany evaporation of ocean & rain formation 

(Source:Gat et al., 2001) 

The δ
18

O and δ
2
H isotope composition of plant are predominantly determined by the isotopic 

composition of water source (Dawson et al., 2001), thus the processes that affect the isotopic 

composition of water source may influence the hydrogen and oxygen isotopic composition of 



19 
 

the plant. According to Marshall et al. (2007), the main sources of isotopic variation in plant 

water come from isotopic variation in precipitation, surface and soil water, and evaporation 

from the leaf surface during transpiration.  

1.4.3.1 Isotopic fractionation associated with evaporation of surface water 

Water –air interaction balances two opposing water fluxes: one upward from the surface and 

the other a downward one of atmospheric moisture (Gat et al., 2001). At saturation (i.e. when 

the atmospheric humidity is 100 %), this interaction would bring the liquid water and air 

humidity into isotopic equilibrium with one another; for instance such a situation would 

occur at cloud base between the falling rain droplets and ascending air. When the air is 

unsaturated, a net evaporation flux results, in which the rate determining step is the diffusion 

of water vapor across the air boundary layer in response to the humidity gradient between the 

surface and the fully turbulent ambient air (Gat, 1996). 

According to Mook (2001), three factors are involved in determining the overall isotope 

fractionation of surface water; 

i) The equilibrium isotope fractionation of the liquid to vapor 

ii) Fractionation resulting from the diffusion across the air boundary layer 

iii) The back flux of the atmospheric moisture 

1.4.3.2 Source of variation for isotopic composition of precipitation 

An understanding of the process that controls the isotopic composition of precipitation is 

necessary for application of δ
18

O and δ
2
H to plant physiological research. According to 

McGuire & McDonnell (2007), the isotopic composition of precipitation is dependent upon 

several factors including isotopic composition of its vapor source (from ocean regions), 

fractionation that occurs as water evaporates into the air mass, rain formation processes, and 

air mass trajectory (fig.1.1).  
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The water cycle can be described by its marine part, which accounts for 90 % of the water 

flux (Mook, 2001). The isotope data of marine precipitation collected by the International 

Atomic Energy Agency (IAEA) show that isotope for marine precipitation for δ
18

O is in the 

range of - 2.5 and - 3.0 ‰ , and with variable values for δ
2
H of about - 14 ‰.  As the marine 

air moves over the coast and across continental land masses, precipitation is initially closely 

aligned along the so-called Meteoric Water line (MWL)(δ²H= 8 δ¹¸O + 10 ‰). Precipitation 

signals reflect isotopic effects (Michener & Lajtha, 2007), of which five have been 

recognized to determine the depletion in isotope value of continental precipitation, including 

altitude effect, distance from coast (continental effect), latitude effect, amount effect, and 

temperature as the overriding factor. 

There are other factors to explain isotopic variation of precipitation (fig.1.2). Generally, more 

depleted isotopic values are found in winter rain, and enriched precipitation in the summer 

(Gat et al., 2001).  Precipitation also interact with plant covers as it fall, which can alter the 

isotopic signal of precipitation reaching the soil (Mook, 2001; fig.1.2); this could happens 

when part of the incoming precipitation is intercepted on the leaves of plant, and in part lost 

by evaporation; if further rain follow before the leaf is dried up, this can flush the enriched 

residual of the partially evaporated water to the ground. 

1.4.3.2.1 The altitude effect 

An altitudinal effect on the isotopic composition of precipitation has been reported in many 

studies conducted by IAEA around the World and has been found to vary from - 0.15 to - 0.6 

‰ per 100 m increase in elevation, and - 1 to - 4 ‰ per 100 m increase in elevation for δ
18

O 

and δ
2
H, respectively (McGuire & McDonnell, 2007).  For instance, detailed measurements 

in the western Oregon, USA, showed that δ
18

O from individual rainfall event was strongly 

elevation dependent (- 0.22 to – 0.32 ‰ per 100 m increase in elevation) and that elevation 

explained between 63 and 89 % of the variance (McGuire et al., 2005). 
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According to Mook (2001), the isotopic composition of precipitation changes with the 

altitude of the terrain and becomes more and more depleted in 
18

O and 
2
H at higher 

elevations. The altitude effect is temperature related, because the condensation is caused by 

the temperature drop due to the increasing altitude.  Another factor associated with altitude 

effect is the evaporative enrichment of δ
18

O and δ
2
H in raindrops during their fall beneath the 

cloud base, which is large at low altitude where the cloud base is high above ground level 

(Gat, 1996).  

1.4.3.2.2 Continental effect 

The continental effect, also referred to as “the distance-from-coast effect” influences the 

isotope variation of precipitation; IAEA observed around the World, progressive δ
18

O 

depletion in precipitation with increasing distance from the ocean; for example precipitation 

sample collected along west to East transect in Oregon , USA, showed an isotopic depletion 

in δ
18

O of about - 1.5 ‰ per 100 km (Welker, 2000). 

The continental effect has also been found to correlate with the temperature gradient and 

depends both on the topography and the climate regime (Gat et al., 2001).  According to 

Mook (2001), the extent to which a continental effect occurs depends also on the prevailing 

direction of the movement of air masses. 

1.4.3.2.3 The latitude effect 

The latitude effect is responsible for isotopic variations caused by progressive cooler 

temperatures that air masses encounter as they proceed from equatorial regions to higher 

latitudes with lower temperatures (McGuire & McDonnell, 2007). According to IAEA 

reports (Gat et al., 2001), the latitude effect on δ
18

O is ~ - 0.6 ‰ per degree of latitude for 

coastal and continental stations in Europe and USA, and up to - 2 ‰ per degree of latitude in 

the cooler Antarctic continent. 
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1.4.3.2.4 Amount effect 

A relationship between the amount of precipitation and 
18

O has been observed; small rains 

events are as a rule enriched in the heavy isotope than larger storms (Gat et al., 1996). The 

amount effect has been attributed to evaporation and isotopic exchange of descending 

raindrops with atmospheric moisture, which affect more the rainfall of low intensity and low 

amount than a large storm. As the rainfall proceeds, humidity beneath the cloud base 

increases through time, reducing the evaporation loss of the raindrops; thus during long 

periods of rainfall, enrichment is less overall, and also because a greater proportion of the 

overall vapour is lost. 

1.4.3.3 Soil water isotope composition 

Water infiltrating from the surface drains through the void space in the soil. According to 

Mook (2001), the retention of water in the soil column and transport through it, does not, in 

itself affect the isotopic composition of the infiltrating water (fig.1.2). However, when 

evaporation from within the topsoil occurs during dry intervals between rain events, this 

results in an enrichment of the heavy isotopes in the residual water.  At some depth beneath 

the surface an evaporative front develops; above it water transport is predominantly in the 

gaseous phase; below it flow and diffusion in the water filled pore space dominate. An 

isotopic concentration profile develops, representing a balance between the upward 

convective flux and the downward diffusion of the evaporative signatures (Barnes & Allison, 

1988). These enriched waters are then flushed down by subsequent rains, importing their 

evaporative isotope signature to the deeper soil water and groundwater (Clark & Fritz, 1997). 
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Figure 1.2  Surface interception of precipitation and its movement into soil (Source: Gat, 

1996) 

1.4.3.2 Isotope signatures of plant water 

Water is not isotopically fractionated when taken up by plant (Dawson & Ehleringer, 1993). 

As a result, water in plant xylem carries the same isotopic signatures as the source water in 

the soil it is derived from, until it reaches the leaf (fig.1.3). Therefore, the isotope ratio of 

xylem water can be used as measure of the isotope of the main source of water being used by 

the plant. 
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Figure 1.3  Water movement in plant and isotopic fractionation 

1.4.4 Isotopic basis of plant nitrogen 

There is a great deal to be learned about plants and their source of nitrogen, and among plant 

components. Understanding of the mechanistic relationship of N source and plant isotope 

signature would be an effective tool to elucidate the physiology of plant N nutrition. The 

physiological mechanisms that influence plant N isotopic signatures have been reviewed by 

Handley & Raven (1992), Högberg (1997), Evans (2001), and Robinson (2001). 

The use of δ
15

N in plant physiological research presents the potential for assessing 

contributions of various N sources to plant nitrogen nutrition in the field, including symbiotic 

nitrogen fixation and atmospheric deposition, and the interpretation of nitrogen in soil 

profiles. For instance Garten et al. (2007), used 
15

N natural abundance measurements to 

assess the importance of N availability on the processes determining soil C dynamics in 

forest. 
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1.4.4.1 Sources of plant nitrogen and variation in δ
15

N  

Many authors have used δ
15

N data to draw inference regarding nitrogen source (Unkovich et 

al., 2001; Evans & Ehleringer, 1993; Handley & Scrimgeour, 1997; Pate & Unkovich, 1999; 

Sanford et al., 1995). The N2 fixation by plant has been assessed using techniques first 

developed by Shearer and colleagues (Shearer & Kohl, 1986; Shearer et al., 1983). Their 

technique relied on finding local reference species that would integrate the signal from 

available soil N that could then be compared with the signature of the presumed fixing 

species. 

Recently, the potential of using δ
15

N to understand plant N nutrition, and to trace the relative 

contribution of nitrogen fixation to plants and soil has been recognized (Evans, 2007). The 

assumption of this approach is that fractionation does not occur during N uptake and N 

fixation. The ability of plants to take up N directly via foliage has been recognized through 

experiment using 
15

N in various gas or liquid sources as tracers (Boyce et al.,1996; Wilson & 

Tiley, 1998) or from leaf-chamber input-output budgets (Sparks et al., 2001, 2003). 

According to Evans (2007), the isotopic composition of nitrogen input and fractionation 

during transformation determine soil δ
15

N; a consistent pattern of soil δ
15

N increases and N 

content decreases with soil depth has been observed across ecosystems. The mechanisms 

beyond this change were addressed by Nadelhoffer & Fry (1988), Brenner et al. (2001), and 

Baisden et al. (2002).  Nadelhoffer & Fry (1988) hypothesized three possible mechanisms; 

i) discrimination during decomposition 

ii) differential preservation of components enriched in 
15

N  

iii) illuviation of 
15

N enriched organic matter in deeper soil horizons 

Results from field and laboratory experiments by Nadelhoffer & Fry (1988) indicated that the 

most likely mechanisms for the δ¹µN increase with depth were input of litter at the soil surface 

that were isotopically lighter than organic matter (OM) and overall isotopic fractionation 
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during microbial processing of OM during decomposition. This was supported by Kramer et 

al. (2003) who examined soil δ
15

N in relation to the degree of humification, and found that 

δ
15

N increased with humification during microbial processing of OM. 

1.5 The research context 

The research of this thesis was undertaken in the context of the partnership between the 

government of Rwanda and the Cambridge Commonwealth Trust to support capacity 

building of Rwanda by enabling talented Rwandans to pursue postgraduate study at 

University of Cambridge in the area that contributes to the development of Rwanda. The 

genocide in nineteen ninety four in Rwanda, and ensuing wars and mass population 

displacement led to significant loss of human capacity, and strongly hit both academic and 

research institutions.  

Rwanda is one of the poorest countries in the world (World Bank, 2007), with an average 

annual per capita income of only $245, more than half of all population (52 %) living in 

extreme poverty as measured by the international standard of $1 per day in income, and 67 % 

of rural poverty rate. Poverty in Rwanda is foremost a rural phenomenon. According to the 

national institute of statistics of Rwanda (NISR, www.statistic.gov.rw) 65 % of Rwandans 

rural resident are classified as poor. Therefore, empowering the agricultural sector is crucial 

for development. Agricultural research in Rwanda is carried out mainly in the public 

institutions; following the loss of considerable number of scientists during the Rwandan 

tragedies, Rwanda has gradually rebuilt its capacity (World Bank, 2007); however lack of 

trained scientist remains a problem.  For instance, in its effort to intensify agricultural 

production system as an approach to food security, up to now, the Government of Rwanda is 

still relying on importing improved seeds from neighboring countries (Kathiresan, 2011). 
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1.5.1 The bio-physical environment of Rwanda 

Rwanda is a small mountainous landlocked country of 26338 km
2
 of area, of which 5.3 % 

occupied by water, and located at the centre of East Africa at 1.9403
0 

S and 29.8739
0 

E, and 

bordered by Uganda in north, Tanzania in the East, Burundi in the south and Democratic 

Republic of Congo (DRC) in west  (fig. 1.4). 

The landscape is dominated by hills with forested tops and cultivated hillsides ending in 

marshy valleys. With the altitude ranging between 970 and 4507 m, this equatorial country is 

characterized by a sub-equatorial climate (Vandoort & Van Ranst, 2003). According to the 

Rwanda Meteorology Agency (http://www.meteorwanda.gov.rw), temperature is relatively 

stable during the year (annual average of 20
0
C), and ranges between 15 and 25

0
C depending 

the altitude. However, diurnal fluctuations regularly exceed 12
0
C. Enormous variability in 

space and time characterize the Rwandan rainfall regime; the highlands receive more rainfall 

(>2000 mm annually) than the lowlands, where the annual rainfall is about 1000 mm 

(fig.1.5). Two rainy seasons alternating with two dry seasons can be distinguished; i) a short 

rainy season from mid September to mid December; ii) a short dry season from the second 

part of December to the beginning of February, iii) a long rainy season from February to the 

end of May, and iv) a long dry season from the beginning of June to the first half of 

September. Verdoodt & Van Ranst (2003) calculated the length of the dry and humid period 

in different zones of Rwanda, and found the water supply from rainfall during dry months is 

insufficient to meet the water demands and the crops have to rely on soil water reserves. 
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Figure 1.4 Location of Rwanda in Africa (Source: World atlas maps) 

1.5.2 Agricultural context of Rwanda 

Agriculture is the most important sector in Rwanda (MINECOFIN, 2012) in terms of 

contribution to GDP, employment, and foreign exchange. The agricultural sector accounts for 

42 % of GDP, contributes significantly to national food self-sufficiency as over 90 % of all 

food consumed in the country is domestically produced. According to MINECOFIN (2006), 

90 % of the economically active populations were employed in agriculture. About 87 % of 

rural households in Rwanda depend on agriculture as their main livelihood source (World 

Bank, 2007).  Food crops dominate the Rwandan agriculture (potatoes, wheat, maize, 

cassava, beans, rice, and soybeans), reflecting the subsistence orientation. However, 

agricultural exports represent the main source of foreign exchange, and export earnings 

derive mainly from coffee and tea (MINECOFIN, 2012).   

Agriculture in Rwanda is dominated by small-scale, subsistence-oriented family farming 

(MINAGRI, 2011). The use of improved inputs is still low, though since 2007, the Ministry 

of Agriculture has been distributing subsided seeds and fertilizer under the program of crop 

intensification (CIP). However, Rwanda remains in the group of countries with an overall 

low rate of fertilizer use (< 24 kg ha⁻¹). The scarcity of land in Rwanda is evident; with the 
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highest population density in sub-Saharan Africa (434 inhabitants per km², in 2014), with 

about 40 % land classified by FAO as having high erosion rate (MINAGRI, 2009), and the 

smallest average farm size (0.3 ha per rural resident).  

According to the World Bank (2007), Rwanda clearly faces a major challenge with regard to 

land. Insights into the distribution of land in Rwanda can be gained from IFPRI grouping 

based on calculation from the National Institute of Statistics of Rwanda (NISR) data, three 

groups of land holding size can be recognized in rural area of Rwanda; 

i) Landholding of less than 0.3 ha: approximately 40 % of rural household hold less 

than 0.3 ha. The average holding in this category is 0.11 ha. This group includes 

11.5 % of all households holding no land (landless). 

ii) Landholding between 0.3 ha and 1.0 ha: approximately 32 % of rural households 

hold between 0.3 ha and 1.0 ha. The average landholding per household is 0.58 ha 

in this group. 

iii) Landholding of more than 1.0 ha approximately 26 % of rural households hold 

more than 1.0 ha. The average landholding per household is 1.94 ha in this 

category. 

The scarcity of land in Rwanda becomes more evident when land endowments are compared 

to those of neighboring countries (tab. 1.2) 

 

 

   

Limited agricultural research and extension systems and low use of improved inputs 

contribute to the low productivity of Rwandan agriculture.  Most of Rwandan farmers today 

have very limited contact with extension agents; in the past, agricultural extension was 

Rwanda Burundi Uganda Kenya

Population density (people/km²) 335 274 136 58

Agricultural land/rural population 0.3 0.4 0.5 1.3

Arable land/rural population 0.2 0.2 0.2 0.3

Table 1.2 Land endowment in Rwanda compared to neighboring countries (Source: World Bank, 2007) 
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considered the responsibility of the Government, and the responsibility for extension delivery 

assigned to MINAGRI. The extension was very top-down; technology recommendations 

were formulated centrally based on research results, and these recommendations were 

conveyed by extension agents to farmers, who were expected to adopt them exactly as 

formulated. The obvious ineffectiveness of the extension service led to the complete 

scrapping of the national extension service in 1998, and the devolution of responsibilities for 

technology transfer activities to the local level. In the absence of any follow up, public 

extension services basically disappeared, to be replaced by patchwork of project-funded 

initiatives, for which coverage is far complete and their technical competence is highly 

debatable. 

Food security is a concern; fueled by high population growth averaging 2.9% per year, and 

modest income gains, demand for food has outstripped food production gains, contributing to 

a long term decline in national food self-sufficiency (World Bank, 2007). Rwanda remains a 

structurally food deficient country that imports annually at least 130000 tons of food, mainly 

(edible oil, wheat, sugar, rice, beans, maize, and cooking banana) (www.statistics.gov.rw). 

 
Figure 1.5 Rainfall distribution in Rwanda (Source: Verdoodt & van Ranst, 2003) 
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1.6 Research aim and questions  

The aim of this research was to investigate the ways physiological research may be integrated 

to conventional breeding. The assumption is that selection for physiological traits could 

refine and enhance a breeding program. Central to this thesis was to address the key question 

of whether the physiological approach can be used to inform a crop improvement program. 

To address the specifics of the main issue, research focused on the following specific 

questions; 

i) Are there traits closely related to physiological processes that can be used as easy 

and cheap proxy of a particular component of performance for wheat? 

ii) To what extent do variations in specific leaf area (SLA) account for variations in 

photosynthetic capacity and water use in wheat? 

iii) Are there mechanisms linking leaf venation to photosynthetic rate and leaf water 

content in wheat? 

iv) What is the mechanistic foundation that determines the relationship between plant 

height and grain yield? 

v) Which physiological traits are related to grain yield and harvest index in semi-

dwarf wheat? 

vi) What factors underlie N partitioning to spike semi-dwarf wheat cultivars? 

vii) What are the implications of hydraulic redistribution and nitrogen transfer for crop 

water and nitrogen use, wheat yield and its components, in agroforestry farming 

with the N2 fixing Alnus acuminata? 
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1.7 Thesis structure 

In this thesis the results of three years of research are presented. The thesis consists of the 

following five chapters, three of which are experimental; 

Chapter 1 General introduction 

Chapter 2 Proxy-based approach to physiological selection of wheat 

Chapter 3 The Physiological consequences of Rht genes in winter wheat  

Chapter 4 Hydraulic lift and N2 fixing: Consequences of water efflux and N transfer for wheat 

production in agroforestry with Alnus acuminata on the terrace risers 

Chapter 5 Major conclusions and outlook for further research 

Chapter 1 General introduction 

Before outlining the research aim and questions, structure, and content of the research in this 

chapter 1, the general introduction starts with the conceptual background of theoretical 

framework of physiological approach to crop breeding, and then continues with the 

underlying theories of fundamentals of application of stable isotopes to plant physiological 

research. Furthermore, it provides the research context for the field experiments in Rwanda, 

in which an overview of the bio-physical environment and agricultural context of Rwanda are 

given. 

Chapter 2 Proxy-based approach to physiological selection of wheat 

The second chapter deals with the proxies of physiological variables and traits. The efficiency 

of selection for physiological traits can be related to how well a trait is measured, and the 

nature of its association with performance. However, direct measurement of a particular 

physiological trait or plant response is often difficult or impossible. Taking the entire plant 

contextual approach, the study investigated the potential proxies in relation to photosynthesis 

and crop water relations, and how easier components are measured, and how these relate to 
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the physiological performance of the crop. Attention was given to proxies of leaf function; 

leaf thickness in relation to plant resource acquisition and use. Also leaf veins are at the core 

of the transport network for water, nutrients, and carbon for plant; yet the physiological 

connection between vein characteristics, leaf water supply and demand, and leaf performance 

are not easy to measure directly. This chapter provides the methods used to address the above 

issues, and discuss the results for specific leaf area (SLA), and inter-vein distance (IVD) as 

potential proxies of photosynthetic rate and water use efficiency. 

Chapter 3 The physiological consequences of Rht genes in winter wheat  

The third chapter focuses on mechanistic foundations that determine the relationship between 

plant height and grain yield in Rht lines. Considerable progress in wheat yield has been 

achieved through straw-shortening by introgression of Rht genes, and which has been 

associated with an increase in the HI, defined as the ratio of grain yield to total biomass.  

However, the relationship between grain yield and plant height has been proved to be 

parabolic; and the literature indicates that wheat yield is reduced when plant are shortened 

beyond a threshold optimum. The research of chapter 3 investigated for approaches to further 

increase both grain yield and HI within the reduced height of Rht-B1b, Rht-D1b, Rht-B1c and 

Rht-D1c, and compared to wild type in Mercia background. The research examined in the 

controlled environment, the partners of the determinants of HI in measurements of 

morphological, anatomical, physiological and yield components. Additionally, the 

partitioning of N at different growth stages was studied through the 
15

N labeling experiment.   

Chapter 4 Hydraulic lift and N2 fixing: Consequences of water efflux and N transfer for 

wheat production in agroforestry with Alnus acuminata on the terrace risers  

Below ground efflux of water from roots and nitrogen transfer among plants has been 

hypothesized, but it remains uncertain how important they are in facilitating physiological 

functions in intercropping farming.  The fourth chapter presents results of a field experiment 
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conducted in north of Rwanda in the terraces field with agroforestry of Alnus acuminata and 

wheat. The study focused on the analyses of the natural abundance of stable isotopes δ²H, 

δ¹¸O, δ¹µN, and δ¹³C, and an isotopic mixing model IsoSource to examine the patterns and 

consequences of the crop water and N acquisition from sources at different distance further 

away from the tree (1 m, 3 m, 5 m, and 7 m).  Results indicated the crops in the proximity of 

trees exhibited isotopic values δ²H, δ¹¸O, and δ¹µN closer to that of the tree, and these 

improvements in water and nitrogen access resulted into increased grain yield for crops 

nearest the tree for a distance up to 5 m. 

Chapter 5 Major conclusion and outlook for further research 

In the concluding chapter, major conclusions and findings are discussed. Further research is 

also proposed.  
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Chapter 2 Proxy-based approach to physiological selection of wheat 

“Even though it is often difficult to measure a particular physiological variable, it is 

certainly worthwhile determining its proxy” (This thesis). 

Abstract 

Approaches based on physiological understanding of yield are necessary for developing 

genotypes combining high yielding potential and agronomic traits of superior adaptation, and 

for understanding yield limiting factors. Physiological processes underlie the phenotype and 

yield observed in crops; plants respond to environmental and physiological stimuli through 

morphological, physiological, and metabolic modification occurring in all plant organs. Yet, 

direct measurement of a particular physiological variable is often difficult. This study was set 

to develop a proxy-based approach to wheat selection.  After conceptualizing a theoretical 

framework of links between the traits of photosynthesis, water relations, leaf morphology and 

anatomy, and their likely proxies; a comparative screening of 23 Eps wheat cultivars was 

conducted in field by means of photosynthetic gas exchange measurement, followed by 

isotopic measurements (Δ
13

C, δ
15

N, δ
18

O) in the leaf matter, and morphological and 

anatomical measurement (SLA, IVD, SD). Having ranked a number of traits according to their 

likely association with particular proxy, the results showed that photosynthetic rate and WUE 

were statistically significantly (p<.01) associated with SLA, and IVD. Based on these results, 

the study concluded that SLA would be a potential proxy of both Amax and WUE in wheat, and 

surrogate measure of Δ
13

C, and that IVD could be proxy of leaf RWC and Amax. 

Key words: Proxy-based selection, physiological traits, wheat, SLA, IVD 
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2.1 Introduction 

2.1.1 Proxy-based crop selection: A conceptual approach to physiological research 

To date, progress in yield per se has been achieved mainly through conventional breeding 

(Reynolds et al., 2011). However, given the complexity of yield trait, it is apparent that a 

comprehensive approach to crop improvement has the greatest probability of achieving 

increased productivity. Given that any improvement in grain yield results from underlying 

physiological processes; approaches based on physiological understanding of yield are 

necessary for identification of traits putatively related to yield and adaptation, and selection 

criteria that could be exploited to complement the conventional breeding (Slafer et al., 2005; 

Reynolds & Borlaug, 2006; Foulkes et al., 2011). Yet, direct measurement of a particular 

physiological variable is often difficult.  

In this chapter, we present a proxy-based approach to crop selection. Based on detailed 

knowledge of plant physiology, a definition was proposed; “a proxy-based approach to crop 

selection is a surrogate-based screening of genotypes for morphological, anatomical, and 

physiological traits of performance or crop environmental responses”.  

The proxy-based approach to crop selection is needed to accelerate the progress of breeding 

and at cheap cost. In this chapter, we propose six steps through which a physiological proxy 

is developed; 

i) A particular physiological variable is identified 

ii) Defining the trait through which a process can be measured 

iii) Determining the growth stage at which the physiological variable is pertinent 

iv) A proxy is proposed 

v) A screening test is applied to a random set of cultivars 

vi) The accuracy of the test is confirmed 
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Therefore, an idealized conceptual framework is proposed for making such a “proxy-based 

approach” operational in terms of physiological research in wheat (fig.2.1).  

 
Figure 2.1 Conceptual framework of interaction between physiological variables  

Taking the entire plant contextual approach, the research for this chapter aimed to answer the 

question of which physiological traits offer an easy and cheap proxy for a particular process 

in wheat. After theorizing the likely interaction between the physiological process of 

photosynthesis, water relations, leaf morphology and anatomy; attention was given to the 

proxies for photosynthetic and water use efficiency in wheat.  

2.1.2. Background of earliness per se (Eps) of anthesis in wheat 

Varietal differences in timing to anthesis independent of sensitivity to photoperiod and 

vernalization had been found (Ford et al., 1981), and referred to as “earliness per se (Eps)” 

(Hoogendoorn, 1985a), or “intrinsic earliness” (Slafer, 1996). Eps genes have been 

identified on different wheat chromosomes, and some of them have been mapped as 

quantitative trait loci (QTL) for flowering time (Kuchel et al., 2006). For example, Bullrich et 

al. (2002) mapped a QTL for earliness per se in the distal region of chromosome 1A
m
L in a 
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cross between cultivated (DV92) and wild (G3116) Triticum monococcum L. accessions, 

which was designated Eps-A
m
1.  

On the other hand, Slafer (1996) reported that Eps genes not only regulate anthesis time but 

also affect the transition from vegetative to reproductive apices, early and late spike 

development, and stem elongation. As grain yield components are determined during these 

phases (Slafer & Whitechurch, 2001), it is therefore relevant to examine how Eps relate to the 

physiological processes of performance. The research of this chapter conducted a 

comparative screening of 23 Eps cultivars for photosynthetic and water use efficiency. 

2.1.3 Photosynthetic gas exchange 

Gas exchange implies the exchange of CO2 and water vapor between the interior of the plant 

leaf and its surroundings (Larcher, 2003). The CO2 diffusion to chloroplast is essential to 

photosynthesis (Lambers et al., 2008).  For photosynthesis to occur there must be a diffusion 

of CO2 from the atmosphere into the leaf and into the carboxylation sites of Rubisco; first 

through the stomata, then through intercellular air space, and ultimately into chloroplast (Taiz 

& Zeiger, 2010).  Of course, the main port of entry of CO2 into the leaf is the stomatal pores, 

and the same port is traveled into the reverse direction by water vapor. The sharing of the of 

the stomata entry pathway by CO2 and water vapor presents the plant with functional 

dilemma; the diffusion gradient that drives water loss is about 50 times larger than the 

gradient that drives CO2 uptake ( Taiz & Zeiger, 2010), with 1.6 molar ratio of diffusion of 

water vapor and CO2 in the air. Therefore, it is obvious that the opening of stomata facilitates 

higher CO2 uptake but unavoidably accompanied by substantial water loss. However, 

according to Sage & Sharkey (1987), this higher water loss rate also removes heat from 

leaves through evaporative cooling, keeping them relatively cool under full sunlight 

conditions. 

The diffusion of CO2 into leaf can be divided into two major components; 
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i) Gas phase 

ii) Liquid phase 

The gas phase of CO2 diffusion includes; the boundary layer, the stomata, and the 

intercellular spaces to the leaf. And each of which imposes a resistance to CO2 diffusion 

(Evans et al., 2009). The boundary layer consists of relatively unstirred air at the leaf 

structure, and its resistance to diffusion is termed “boundary layer resistance”.  Taiz & Zeiger 

(2010) shows that the boundary layer resistance to diffusion decreases with leaf size; small 

leaves having a lower boundary layer resistance to CO2 and water diffusion. After the 

diffusion through the boundary layer, CO2 enters the leaf through the stomatal pores, and 

which impose resistance as well. There is also resistance to CO2 diffusion in the intercellular 

air spaces that separate the sub-stomatal cavity from the wall of the mesophyll cells, causing 

a drop of ~ 5 ppm of CO2 from the 400 ppm outside the leaf (Taiz & Zeiger, 2010). 

The CO2 diffusion of the liquid phase encompasses diffusion from the intercellular leaf 

spaces to the carboxylation sites in the chloroplasts, imposing the mesophyll resistance; and it 

is thought to be approximately one tenth of the combined boundary layer resistance and 

stomatal resistance when stomata are full open (Terashima, 1992). According to Larcher 

(2001), the stomata aperture (number, distribution, size, shape & mobility) is a cultivar- 

specific characteristic. By varying the width of the stomatal pores, a plant is able to control 

the entry of CO2 into the leaf. In a steady state, the rate of CO2 diffusion can be ascribed by 

Fick‟s first law (Lambers et al., 2008). Hence: 

An= gc (Ca - Cc) = (Ca - Cc)/rc      (2.1) 

where, gc is the leaf conductance for CO2, Ca and Cc are the mole fractions of CO2 in the air 

and at the site of carboxylation, respectively; rc is the inverse of gc (leaf resistance to CO2 

diffusion). According to Lambers et al. (2008), the leaf conductance to CO2, the gc, can be 
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derived from measurements on leaf transpiration, which can also be described by Fick‟s first 

law in a similar way: 

E= gw (Wi - Wa)= (Wi - Wa)rw      (2.2)    

where gw is the leaf conductance for water vapor; Wi and Wa  are the mole of water vapor in 

the intercellular spaces and in air, respectively; rw is the inverse of gw , and 𝐸 is the rate of 

leaf transpiration. 

The ratio of CO2 assimilation to transpiration which is termed instantaneous water use 

efficiency (WUEi) of photosynthesis can be calculated as follow: 

WUEi= An/E = gc (Ca - Ci)/gw (Wi -Wa)     (2.3) 

        =Ca (1 - Ci /Ca)/1.6(Wi -Wa) 

It has been suggested that the maximal rate of CO2 assimilation (𝐴max), under natural 

conditions, at atmosphere CO2 supply under optimal environmental conditions, is 

characteristic constitutional feature of specific crop cultivar (Larcher, 2001). The 

photosynthetic capacity, although characteristic of crop cultivar, is not a constant value; gas 

exchange patterns can change appreciably during plant growth and are also influenced by a 

number of external factors such as radiation, availability of CO2, temperature, and supply of 

water and mineral nutrients (Griffiths, 1999; Geiger & Servaites, 1994). However, the 

literature shows that the variation in Amax among varieties and species are consistent enough 

so that the Amax is a useful parameter (Driever et al., 2014). 

The research for this chapter set out to investigate the potential for rapid, easier and low cost 

proxy for these photosynthetic gas exchanges. 

2.1.4 Leaf morphology and anatomy 

The influence of leaf morphology and anatomy on photosynthetic activity has long been 

recognized (Jellings & Leech, 1984; Garnier & Laurent, 1994). According to Nobel (1983), 

and Sharkey (1985), differences in photosynthetic capacity among plant cultivars may be 
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attributed to differences in biochemical, morphological and anatomical features of their 

leaves. Similarly, Taiz & Zeiger (2010) suggested that morphological aspects of the leaf such 

as leaf area can be a determinant in influencing the thickness of the boundary layer.   

It appears that leaf thickness plays an important role in leaf functioning and relates plant 

strategy of resource acquisition and use (Vile et al., 2005). Wide variation in leaf thickness 

among plant cultivars had been observed (Evans, 1999; Poorter et al., 2009). Building both 

on Witkowski & Lamont (1991), and Roderick et al. (1999), it was shown that leaf thickness 

is closely related to SLA (the ratio of leaf area to leaf dry matter); as such SLA can be used as 

a proxy of leaf thickness. It was also suggested that SLA is a trait that may be up to 60 to 90 

% heritable (Rebetzke et al., 2004; Songsri et al., 2008). However, the measurement of leaf 

thickness is not straight forward.  

Therefore, the research of this chapter was set to examine the mechanistic determining the 

possibilities of potential use of SLA for screening purposes in wheat. To guide the 

investigation, the study addressed the specific questions of; 

i) To what extent do variation in SLA account for variations in photosynthetic 

capacity and water use in wheat? 

ii) Are there mechanisms linking leaf venation to photosynthetic rate and leaf water 

content in wheat? 
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2.2 Material and Methods 

The 23 Eps cultivars (Appendix A) characterized in this study, form part of a broad 

physiological selection at NIAB from which selected cultivars are subsequently used for 

further selection for earliness of flowering. However, any other wheat cultivars could have 

been used for this experiment. The Eps lines were chosen as there was on-going agreement 

between the laboratory of physiological ecology and NIAB to phenotype these lines for 

photosynthetic performance on behalf of NIAB selection programme. 

2.2.1 Photosynthetic gas exchange measurements 

Photosynthetic performance can be assessed by gas exchange measurement (Lambers et al., 

2008). Snapshot measurements of photosynthetic gas exchange were performed on wheat 

leaves of 23 Eps cultivars in the field located at 52
0
 13´N, 04

0
 59´E at National Institute of 

Agricultural Botany (NIAB, Cambridge, the UK), using a portable LICOR LI-64000XT (LI-

COR Inc., Lincoln, Nebraska, USA) (fig. 2.2). The plot size based on “hege” drill was 1.2 m² 

(1 m × 1.2 m).  About 120 seeds (each cultivar) were sown in each entire plot. The field plots 

received a full schedule of agrochemical inputs according to the protocols used in the HGCA 

recommended list trials series (www.hgca.com). The plots were randomized designed with 

two replicates for each cultivar, and 46 plots were sampled. 

Measurements were taken at anthesis (GS65), between 10h00 and 14h00, on fully expanded 

flag leaf of the main tiller (two leaves per plot, & 4 replications per cultivar) randomly 

chosen in the center of each plot. Parameters were set in the LI-COR as; Relative humidity to 

60 - 80 %, the block temperature at 20
0
C, the CO2 reference to 400 ppm, flow rate at 400 

µmol s⁻¹, the photosynthetic active radiation (PAR) of 1000 µmol quanta s⁻¹ (the A/PAR 

curve was performed before the beginning of measurement, to determine the saturation 

point). After the setting of the parameters, a leaf was placed in the sensor head, and enclosed 

the chamber (and waited until the values got stable, ~ 2 minutes), and then measurement was 

http://www.hgca.com/
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recorded on the LI-COR. The measurement was repeated on the second leaf in the same plot 

before moving to another plot, and the same leaves were marked for further sampling and 

analysis (SPAD measurements; SLA; Δ
13

C; leaf N %; & Δ
18

O).  

The essence of gas exchange measurement is the direct measurement of photosynthesis from 

leaf gas exchange with an infrared gas analyzer (IRGA) which measures the carbon dioxide 

flux within sealed chamber containing a leaf sample.  Air enters the chamber at a specified 

flow rate (Fm) measured and controlled by a flow–controller. The leaf changes the 

concentrations of CO2 and H2O inside the chamber. The magnitude of the difference in CO2 

and H2O concentration between the air entering the chamber (Ce and We) and at the outlet (Co 

and Wo) depends on the leaf gas exchange activity. The net photosynthetic rate (An) is then 

calculated following Von Caemmerer & Farquhar (1981): 

An= Fm/La {Ce - Co (1-We) / (1 - WO)}      (2.4) 

The portable LI-COR 64000XT provides real time measurement of CO2 uptake (𝐴), 

transpiration (𝐸), stomatal conductance (𝑔s), and intercellular CO2 concentration (𝐶i).  

 
Figure 2.2 Gas exchange measurement in the field with LI-COR 
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2.2.2 Chlorophyll content measurement 

From a physiological perspective, leaf chlorophyll content is a parameter of significant 

interest in its own: First, chlorophylls are the main pigments involved in the light capture for 

photosynthesis and other photochemical reactions (Marenco et al., 2009); and the amount of 

solar radiation absorbed by a leaf was found to be largely a function of the foliar 

concentrations of photosynthetic pigments (Filella et al.,1995; Fritschi & Ray, 2007).  

Second, much of leaf nitrogen is incorporated in chlorophyll (Moran et al., 2000). Third, 

pigments can be directly related to stress physiology and abiotic factors; for instance, it had 

been observed that chlorophyll content of the leaf generally decreases under stress and during 

senescence (Penuela & Filella, 1998; Larcher, 1995). Therefore, the measurement of leaf 

chlorophyll content may indicate photosynthetic variation among cultivars and provide other 

information about physiological performance of plants in their environment. 

The chlorophyll measurement was taken non-destructively at anthesis (GS65) on a fully 

expanded flag leaf (two leaves per plot & four replicates per cultivar), using a hand held 

portable chlorophyll meter SPAD-502 (Konica Minolta Sensing Inc., Osaka, Japan). The 

values measured by the chlorophyll meter SPAD-502 correspond to the amount of 

chlorophyll present in the plant leaf. The values are calculated based on the amount of light 

transmitted by the leaf in two wavelength regions in which the absorbance of chlorophyll is 

different (Minolta, 1989).  

The measuring head of the chlorophyll meter SPAD-502 includes two LEDs, a red LED (peak 

wavelength: approx. 650 nm) and an infrared LED (peak wavelength: approx.940 nm), that 

provide illumination.  According to Minolta (1989), the SPAD unit values that appear in the 

display SPAD meter results from two processes: during calibration, the two LEDs emit light 

sequentially without any leaf sample in the head, and the received lights are then converted 

into digital signals and the ratio of their intensity is calculated and stored in the unit‟s 
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memory. When a leaf is subsequently measured, the SPAD-502 microprocessor outputs a 

processed value based on the ratio of the voltage produced by each wavelength relative to the 

value stored in the memory. 

2.2.3 Specific leaf area (cm² g⁻¹) measurement 

The same flag leaf samples on which gas exchange and chlorophyll content measurements 

were taken in the field at NIAB were collected for specific leaf area (SLA) measurement. At 

anthesis (GS65), two flag leaves were sampled per plot (four replicates per cultivar): leaf was 

cut from plant, rapidly wrapped in moist paper, placed in plastic bag, put in cool box, and 

taken to the laboratory of physiological ecology at department of plant sciences (University 

of Cambridge) for further measurements.  

In the laboratory, each leaf was recut under distilled water to remove the ligule, and placed 

immediately into a tube filled with distilled water, and stored in refrigerator at 4
0
C for 6 

hours to ensure fully rehydration of the leaves (Garnier et al., 2001). After this period, the 

leaf blade was taken out of the tube, and blotted dry with tissue paper to remove any surface 

water, and immediately it was weighed to determine its saturated fresh mass. 

The leaf area (LA), one side of the leaf, was measured with ImageJ (version 1.42q, National 

Institute of Health, USA). Then, the sample was oven dried in a paper envelope at 75
0
C for 24 

hours. The leaf dry weight (DW) was obtained by reweighing the sample on micro-balance 

after oven drying.  The SLA was calculated as the ratio of leaf area (LA) to dry weight (DW): 

SLA (cm² g⁻¹) =
𝐿𝐴 (𝑐𝑚2)

𝐷𝑤  (𝑔)

        (2.5) 
  

2.2.4 Carbon discrimination (Δ
13

C) and leaf N measurement 

The realization that Δ
13

C  in leaf matter could provide indirect measure of integrated variation 

in photosynthesis efficiency in C3 plants over a growing season (Farquhar et al., 1982; 

Farquhar & Richards, 1984) gave impetus to the prospects of its use in crop selection. The 
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utility of using Δ
13

C in crop selection stems from the biochemical discrimination against 
13

C 

during gas exchange: of course, in C3, discrimination against 
13

C by the carboxylating 

enzyme, Rubisco (~ 27 ‰) is linked to photosynthesis via Ci/Ca, the ratio of intercellular to 

atmospheric CO2 concentrations (Farquhar et al., 1982; Brugnoli et al., 1988). This ratio 

reflects the relative magnitudes of net assimilation (𝐴n) and stomatal conductance (𝑔s). 

Dawson et al. (2002) argued that δ
13

C integrates photosynthetic activity through the period 

the leaf tissue was synthesized, and that leaf δ
13

C values reflect the interplay among all 

aspects of plant carbon and water relations. Because of the integrative features of Δ
13

C 

through time; Henderson et al. (1998) suggested that 
13

C isotope can be used to assess traits 

that co-vary with gas exchange, C gain, and water relations. 

Moreover, the photosynthetic capacity of leaf is related to its nitrogen content (Evans, 1989): 

Association between CO2 assimilation rate per unit leaf area and the total leaf nitrogen per 

unit leaf area had been observed in many studies (Poorter & Evans, 1998; Reich et al., 1994; 

Evans, 1983), and it had been argued that the reason for this relationship is the large amount 

of leaf organic nitrogen present in the chloroplasts, most of it in the photosynthetic machinery  

specifically Rubisco (Evans & Seemann, 1989).  

At the Godwin laboratory (Cambridge University, UK), the dried ground leaf samples 

weighed (1 mg) into a tin capsule were analyzed for both δ
13

C and percentage of nitrogen 

using Costech elemental analyzer attached to a Thermo Delta V mass spectrometer in 

continuous flow mode. The samples were introduced into the combustion reactor and flash 

combustion occurs. The sample and the tin capsule react in a temporarily enriched 

atmosphere of oxygen reaching temperatures of 1700 - 1800 
0
C and the sample is broken 

down into its elemental components. These combustion products are carried by a constant 

flow of Helium “carrier gas” through an oxidation catalyst of Chromium trioxide and then 

silver coated cobaltic oxide both kept at 1020 
0
C. The mass spectrometer software measures 
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the 
12

C/
13

C and the 
14

N/
15

N ratio, and N percentage in the sample. Reference standards from 

IAEA in Vienna are also run at intervals throughout the sequence and these values are used to 

calibrate to the international standards for δ
13

C PDB and δ
15

N in air. 

The δ
13

C value was used to compute the Δ
13

C following Farquhar et al. (1982); 

Δ
13

C = (
𝛿¹³𝐶𝑎−𝛿¹³𝐶𝑝

1+𝛿¹³𝐶𝑝
)/1000    (2.6) 

Where the δ
13

Ca is the delta value of C in the air (~ - 8 ‰) and the δ
13

Cp is the delta value of 

C in the sample. 

2.2.5 Oxygen isotope analysis (δ
18

O) in leaf matter 

Oxygen isotope analysis of leaf samples was undertaken at Godwin laboratory (Cambridge 

University, the UK) using a Thermo Finnigan TC/EA attached to a Thermo Delta V mass 

spectrometer via a conFlo 3. Dried and ground leaf sample weighed (0.1 mg) and reference 

materials were placed in silver capsules, sealed and loaded into an auto-sampler for analysis. 

The samples and references are dropped automatically in sequence into a “high temperature 

conversion reactor” consisting of an outer ceramic mantle tube of aluminium oxide and an 

inner glassy carbon reactor containing a graphite crucible, glassy carbon granules and silver 

wool. The reaction temperature was 1450
0
C. The gaseous products produced (H2, N2, CO) 

are separated by a packed gas chromatographic molecular sieve column at a temperature of 

90
0
C, and then passed into the mass spectrometer via the conFlo for isotopic analysis.  

According to Farquhar et al. (1998), the δ
18

O of the leaf is largely determined by the 

integrated leaf to air vapor pressure gradient during photosynthetic gas exchange. This leaf 

air vapor pressure gradient changes with environment conditions (such as atmospheric 

humidity, soil moisture, air temperature) and plant responses to these environmental changes 

(Dawson et al., 2002). Therefore, measurement of δ
18

O of the leaf can aid with 

interpretations of differences in δ
13

C among crop cultivars growing in the same conditions. 
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By considering concurrent variations of δ
13

C and δ
18

O, one can distinguish between 

biochemical and stomatal limitations to photosynthesis. 

2.2.6 Inter-vein distance (IVD) measurement 

Leaf veins form the transport network for water, nutrients and carbon for plant (Brodribb & 

Holbrook, 2006). However, the underlying physical principles that connect veins pattern with 

photosynthesis remain unresolved. Here, we investigated the links between leaf venation to 

functional process of photosynthesis in wheat. 

Leaf tissue of 5 mm × 15 mm to be used for vein measurement was cut in the middle area 

between the central vein and the leaf edge, on the same each leaf sample that was collected 

for stomatal measurement. Then, the tissues samples were fixed in a solution of 4% para-

formaldehyde overnight at 4
0
C; and washed into 100 % ethanol and dehydrated passing into 

ethanol concentration series of 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 % and staying in 

each concentration for 45 minutes at 4
0
C. Thereafter, samples were transferred into ethanol 

95 % with eosin 0.1 %, and cooled overnight at 4
0
C; and then moved into three series of 100 

% ethanol at room temperature for 45 minutes each. 

The embedding followed through the sequences of steps; first under the mixture of 50 % 

ethanol and 50 % technovit, then under 100 % technovit, and third, into mixture of 100 % 

technovit and hardener I for 45 minutes per step. Thereafter, the samples were polymerized 

overnight in made up of technovit plus hardener I and II into mould covered with parafilm. 

Finally, samples were mounted with araldite on wooden block and kept cool and dry to 

harden fully over night at room temperature.  Four μm thick cross sections were cut using a 

glass knife on microm HM340E; and stained with 0.1 % toluidine blue. Sections were 

photographed on microscope at a magnification of ×40 using a digital camera (Nikon Coolpix 

P5100). The inter-veins distance was measured by means of ImageJ (version 1.42q, National 

institute of health, USA), and measured following Dengler et al. (1993), as the distance 
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between the half of a major vein and half of minor vein (fig.2.3). The half of the major vein to 

the half of the minor vein was chosen due to the fact that water moves laterally from major to 

minor veins. 

 
                                                                                                         
                                                                                                            100 µm 

Figure 2.3 The IVD measurement 

  

2.2.7 Leaf relative water content (RWC) measurement 

The leaf relative water content (RWC) is a measure of its hydration status relative to its 

maximal water holding capacity at full turgidity (Mullan & Pietragalla, 2012). Measurement 

of leaf RWC may indicate the degree of water deficit and stress of plant (Bowman, 1989). 

The leaf water content status is intimately related to many physiological variables such as 

photosynthesis, stomatal conductance, transpiration, and so (Kramer & Boyer, 1995); 

therefore, a genotype with the ability to minimize stress by maintaining high leaf water 

content in stressed environment may have physiological advantage. The research of this 

chapter investigated the potential of using leaf RWC as a screening tool for physiological 

performance. 

The two fully expanded intact flag leaf samples were collected at GS65 from two randomly 

chosen plants in each plot (4 replicates per cultivar) for RWC measurement. The samples 

IVD 
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were immediately placed into pre-weighed plastic tubes and sealed the lid, placed in cooled 

container, and taken to the laboratory of physiological ecology (University of Cambridge, the 

UK) for measurement.  

In the laboratory, the leaf fresh weight was measured as the weight of the tube containing the 

sample minus the weight of the tube. Thereafter, 1cl of distilled water was added to each tube 

containing the sample and was placed in refrigerator at 4
0
C for 24 hours for leaf to reach full 

turgor; then, samples were taken out the tubes and blotted dry with paper towel, and the 

turgid leaf weight of the sample was measured; thereafter they were oven dried at 75
0
C for 24 

hours, and reweighed for dry weight afterwards.  

The leaf RWC was computed following Barrs & Weatherley (1962); 

Leaf RWC (%) = ((FW – DW) / (TW – DW))*100    (2.7)  

where; FW= fresh weight; TW= turgid weight; and DW= dry weight 

2.2.8 Stomata density measurement 

Leaf stomata density and distribution may affect remarquably the plant physiological process 

and its relations to environmental factors (Taiz & Zeiger, 2010; Lambers et al., 2008; Raven 

et al., 2005). In wheat , stomata occur on both sides „adaxial and abaxial‟ of the leaf. The 

research of this chapter investigated how stomata density is related to physiological 

performance among 23 Eps wheat cultivars in term of photosynthetic and water use 

efficiency, and its potential use as a proxy for wheat. 

The impression approach was used to determine the stomatal density. Both adaxial and 

abaxial side of the leaf were smeared with nail varnish in the middle area between the central 

vein and the leaf edge; after 20 minutes, the varnish print of 5 mm × 15 mm was peeled off 

from the leaf surface, mounted on glass slide, immediately covered with the cover slip, and 

lightly pressured with fine point twezers.  Then a microscope image was taken on microscope 

under ×40 magnification, using a digital camera (Nikon Coolpox P5100)(fig. 2.4).  
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The stomata density(SD) was calculated following Radoglou & Jarvis (1990b); 

Stomata Density = Number of stomata / Leaf area (mm²)                   (2.8)   

 
                                                                                                                 
                                                                                                                   100 µm 

Figure 2.4 Stomata density 
 

2.2.9 Statistical analysis 

The statistical analysis of the data was performed using SPSS 16.0 for windows (SPSS Inc., 

Chicago, IL, USA). Data were explored for parametric assumptions of normal distribution, 

and homogeneity of variance: The test for normal distribution was performed using both 

histograms, and Kolmogorov-Smirnov test to produce K-S test and normal Q-Q plots. The 

Levene‟s test was used to test for homogeneity of variance. Then, graphing of means, ranking 

for variations in performance among cultivars, and the analysis for the linear relationships 

were performed by means of bar charts and scatter-plots respectively. Thereafter, the partial 

Pearson correlation analysis was conducted. Finally, data were subjected to the mixed 

analysis of variance (Mixed ANOVA) at p<.01; and Bonferroni test.  
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2.3 Results 

The genotypic rankings for traits of physiological performance are reported, and followed by 

the relationships among variables of photosynthetic and water use efficiency. 

2.3.1 Proxy-based ranking and magnitude of variability in performance of Eps cultivars 

Ranking of the 23 Eps cultivars with Rialto as control are presented for Δ
13

C (‰) in leaf 

matter, SLA (cm² g⁻¹), and instantaneous water use efficiency (WUEi, µmol CO2 mmol⁻¹ H2O) 

(fig.2.5). 
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Figure 2.5 Ranking for variation in Δ¹³C, SLA, & WUEi 

The star (   ) on the top of the bar indicates statistical significance of difference depicted by 

the mixed ANOVA between the means of cultivars at 𝑝 < 0.01. The bars represent the mean 

value ± SE. N=8 

 

Genotypic ranking for Δ
13

C values based upon leaf samples revealed consistency in rankings 

for both SLA and WUEi. The Δ
13

C in leaf organic matter was lowest in seven cultivars: 

BBCB-91-232-4-16-1-4; BBCB-90-231-8-17-6-6; Badger; BBCB-91-232-4-1-5-5-1; SR96-1-

412-1-11; SSRS-67-147-5-1-12-2-2; & SSSR-67-147-6-2-4-19-B-7, with the mean values 

ranging between 21.4 ± 0.1 ‰ and 22.0 ± 0.0 ‰ (tab.2.1). On the other range, the two 

cultivars: RRSR-15-159-2-7-4-A-4; SR99-1-413-2-15, showed the highest Δ¹³C value with the 

mean in the range of 23.1 ± 0.1 ‰ and 23.0 ± 0.0 ‰. The mixed ANOVA depicted 

statistically significant difference at p<0.01 between cultivars (fig. 2.5). 

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

B
B

C
B

-9
1

-2
3

2
-4

-1
-1

6
-1

-4

B
B

C
B

-9
0

-2
3

1
-8

-1
-1

7
-6

-6

B
ad

ge
r

B
B

C
B

-9
1

-2
3

2
-4

-1
-5

-5
-1

Sp
ar

k

SR
9

6
-1

-4
1

2
-1

-1
1

SS
SR

-6
7

-1
4

7
-6

-2
-4

-1
9

-B
-7

B
B

C
B

-9
1

-2
3

2
-4

-1
-1

6
-3

-1

SS
SR

-6
7

-1
4

7
-6

-2
-4

-8
-6

SS
R

S-
6

7
-1

4
7

-5
-1

-1
2

-2
-2

R
R

SR
-3

3
-1

8
7

-3
-2

-6
-8

R
ia

lt
o

SS
SR

-6
4

-3
2

-8
-1

-3
-1

2
-1

SS
R

S-
6

4
-8

4
-4

-2
-1

8
-1

-5

SR
9

9
-1

-4
1

3
-2

-8

SR
9

4
-1

-4
1

1
-1

-2

R
R

SR
-3

3
-1

8
7

-3
-2

-6
-5

SR
9

4
-1

-4
4

1
-1

-7

SS
R

S-
6

7
-1

4
7

-6
-2

-4
B

-2
-3

SR
9

9
-1

-4
1

3
-2

-1
5

R
R

SR
-1

5
-1

5
9

-2
-7

-4
-A

-4

SS
SR

-6
7

-1
4

7
-6

-2
-4

-8
-4

SS
SR

-6
4

-3
2

-8
-1

-3
-1

8
-1W

U
Ei

 (
µ

m
o

l C
O

2
  m

m
o

l⁻
¹ H

2
O

)



54 
 

Table 2.1 The magnitude of variability in traits among Eps cultivars 

Variety ∆¹³C WUEi An SLA RWC Chlor SD IVD gs N  Δ¹¸O 

BBCB-91-232-4-1-16-1-4 21.4 ± .1** 6.2±.5** 31.9± 1.1** 114± 15** 83±2** 52.8±1.5** 60±3** 0.36±.01** .47 ± .01** 4.4±.4* 24.4±.2** 

BBCB-90-231-8-1-17-6-6 21.4 ± .2** 5.6±.2** 30.1± 1.8** 120± 13** 77±4* 50.4±.7* 57±3** 0.30±.02** .41 ± .03** 4.3±.4* 24.7±.4** 

Badger 21.7± .2** 5.6±.4** 31.8± 1.2** 134± 6** 83±2** 51.8±1.7** 62±3* 0.37±.00* .41 ± .02** 4.1 ±.3 25 ±.2** 

BBCB-91-232-4-1-5-5-1 21.8± .2** 5.5±.3** 28.1± .8** 126± 3** 77±1* 50.1±1.5* 61±2* 0.37±.01* .40 ± .04** 4.2±.2* 25.3±.2** 

SR96-1-412-1-11 22.0± .1** 5.3±.2** 27.6± 1.5** 137± 2** 78±2* 49.8±.2* 59±4** 0.32±.00** .43±.02** 4.3±.2* 25.6±.1** 

SSRS-67-147-5-1-12-2-2 22.0± .2** 5.0±.4* 26.5± 2.2* 146± 16* 76±1 50.2±.1* 62±6* 0.37±.00* .40±.04** 4.2±.1* 25.6±.3** 

SSSR-67-147-6-2-4-19-B-7 22.0± .0** 5.2±.1* 27.0± 2.5* 142± 3* 76±1 49.5±.3* 65±3 0.38±.01* .38±.02** 4.2±.2* 25.7±.0** 

SSSR-67-147-6-2-4-8-6 22.1± .0 5.1±.0 26.8± .7* 149± 4 75±3 48.4±.2 64±1 0.40±.01 .39±.01 4.0 ±.2 26 ±.1 

BBCB-91-232-4-1-16-3-1 22.2± .2 5.1±.3 27.0± .9* 140± 6* 74±1 48.4±.3 65±4 0.42±.01 .40±.03 4.1 ±.3 26.2 ±.3 

Spark 22.2± .1 5.4±.7** 29.8± 1.9* 150± 5 77±0* 48.2±.6 63±5 0.39±.00 .39±.01 4.0 ±.3 26 ±.0 

SSSR-64-32-8-1-3-12-1 22.3± .3 5.0±.3 23.8± 1.3 159± 6 76±3 47.4±1.7 66±3 0.43±.00 .37±.05 4.1 ±.3 26.7 ±.1 

RRSR-33-187-3-2-6-8 22.4± .4 5.0±.2 25.1± 1.0 144± 23* 76±1 48.0±.4 64±2 0.38±.00* .33±.03 4.1 ±.1 27 ±.1 

Rialto 22.5± .1 5.0±.3 24.1± 1.4 157± 3 74±1 47.6±.7 66±0 0.42±.00 .37±.02 4.0 ±.3 26.7 ±.2 

SSRS-67-147-6-2-4B-2-3 22.5± .1 4.7±.3* 24.4± .1 168± 4* 71±2 47.9±.7 66±5 0.43±.01 .37±.04 4.0 ±.2 27 ±.0 

SR99-1-413-2-8 22.6± .2 4.9±.4 23.2± .8 172± 8* 70±1* 45.8±.9* 69±0 0.43±.02 .37±.03 3.9 ±.1 27.7 ±.4 

RRSR-33-187-3-2-6-5 22.6± .1 4.8±.3* 23.6± 2.1 172± 13 70±4* 47.0±.3 71±3** 0.44±.00 .32±.01** 4.0 ±.1 27.5 ±.3 

SR94-1-411-1-2 22.7± .1 4.8±.2 24.6± 1.5 165± 2* 70±3* 47.9±1.0 69±1 0.42±.01 .33±.04 4.0 ±.2 27.7 ±.4 

SSRS-64-84-4-2-18-1-5 22.7± .2 5.0±.5** 23.5± 1.3 173± 11** 68±5* 46.7±1.3 70±1 0.46±.00* .35±.01 3.8 ±.2 27.5 ±.3 

SR94-1-441-1-7 22.7± .2 4.8±.3* 23.5± 1.2 192± 4* 70±4* 46.9±.5 71±4** 0.43±.00 .32±.05* 3.8 ±.2 28 ±.0 

SSSR-67-147-6-2-4-8-4 22.7± .3 4.1±.2** 23.4± 1.3 176± 17* 66±2* 46.4±.7 71±1** 0.44±.01 .31±.04** 3.6±.2* 28.2 ±.1 

SSSR-64-32-8-1-3-18-1 22.7± .4 4.0±.2** 21.1± .8 177± 14* 67±1* 44.1±1.2* 73±1** 0.46±.00* .30±.05** 3.9 ±.2 28.6±.3** 

SR99-1-413-2-15 23.0± .1** 4.3±.0** 22.7± .6* 176± 8** 65±3** 45.7±.8* 75±2** 0.44±.01 .32±.04** 3.8±.3* 29.1±.1** 

RRSR-15-159-2-7-4-A-4 23.1± .1** 4.2±.1** 22.4± 1* 194± 17** 65±4** 45.5±.6* 72±1** 0.47±.01** .30±.05** 3.7±.1* 29.5±.3** 

The values are means ± SE. Mean value that is statistically significant different compared to the control “Rialto” is marked. * designates a significant difference at p< 0.05, 

and the 
**

 indicates the significance of difference at p< 0.01. The values for Δ
13

C are expressed in ‰, for WUEi in µmol CO2 mmol
⁻¹
 H2O, in cm

2
 g

-1
 for SLA,   in µmol CO2 m

2 

s
-1

 for An, in % for RWC, SPAD index for chlorophyll content, in number per mm
2
 for stomata density (SD on abaxial), and in mm for inter-vein distance (IVD). The gs 

expressed in mmol m² s⁻¹. The N content measured in %, and the Δ¹¸O expressed in ‰. N= 8.   
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Although the pattern of variation in leaf organic Δ
13

C appeared as though it may has been 

driven by SLA, the trend was also observed in variation with RWC and IVD: cultivars with 

low SLA tended to have both higher leaf RWC and short IVD, while low leaf RWC and larger 

IVD were generally observed in cultivars with higher SLA. The photosynthetic net 

assimilation rate varied between 31.9 ± 1.1µmol m² s⁻¹ and 22.4 ± 1.0 µmol m
2
 s⁻¹ (tab. 2.1). 

Plants tended to have higher stomata density on abaxial than adaxial side with stomata ratio 

in the range of 1.3 and 1.0.  

2.3.2 Relationships and Correlations between SLA and traits of photosynthetic rate 

The extent to which a trait is useful as a selection criterion depends upon its relationships 

with others traits of performance. The regression analysis and partial Pearson correlation 

depicted consistently the relationships between SLA and the traits of photosynthetic 

efficiency (fig.2.6).  

The experiment revealed an intimate positive association between SLA and Δ
13

C (fig.2.6). 

The linear regression accurately described the significant correlation of Δ
13

C to SLA 

(R
2
=0.89; p<0.01). The cultivars with low SLA exhibited lower values of Δ

13
C in their leaf 

matter than cultivars with higher SLA (fig.2.6). Because the value Δ¹³C in leaf organic matter 

mainly results either from the effects of photosynthetic capacity or stomata conductance, or 

covariance of both (Dawson et al., 2002); the regression analysis of the relationship between 

Δ
18

O and Δ
13

C was conducted and revealed a strong relationship (R²= 0.77). 
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Table 2.2 Pearson correlation between SLA, IVD, RWC, An, gs, N, Δ¹³C, Δ¹⁸O, WUEi, SD and 

chlorophyll Cont. (df = 20) 

Parameter Δ¹³C WUEi An SLA RWC 

Chloro 

cont. SD IVD gs leaf N 

WUEi  -.88
**

 

         An -.92
**

 .89
**

 

        SLA .95
**

 -.86
**

 -.88
**

 

       RWC  -.92
**

 .90
**

 .89
**

 -.88
**

 

      Chloro cont. -.92
**

 .89
**

 .92
**

 -.88
**

 .90
**

 

     SD  .92
**

 -.85
**

 -.86
**

 .91
**

 -.90
**

 -.87
**

 

    IVD  .87
**

 -.76
**

 -.81
**

 .85
**

 -.79
**

 -.82
**

 .91
**

 

   gs  -.89
**

 .89
**

 .86
**

 -.87
**

 .87
**

 .87
**

 -.88
**

 -.75
**

 

   leaf N -.89
**

 .81
**

 .77
**

 -.91
**

 .89
**

 .84
**

 -.87
**

 -.83
**

 .82
**

 

 Δ¹¸O  .97
**

 -.91
**

 -.90
**

 .94
**

 -.94
**

 -.92
**

 .94
**

 .84
**

 -.92
**

 -.90
**

 
**

. Correlation is significant at the .01 level (1-tailed). The values for Δ
13

C are expressed in ‰, for WUEi in µmol 

CO2 mmol
⁻¹
 H2O, in cm

2
 g

-1
 for SLA,   in µmol CO2 m

2 
s

-1
 for An, in % for RWC, SPAD index for chlorophyll 

content, in number per mm
2
 for stomata density (SD on abaxial), and in mm for inter-vein distance (IVD). The gs 

expressed in mmol m² s⁻¹. The N content measured in %, and the Δ¹¸O expressed in ‰.  

Significant statistical Pearson correlation (p<0.01) was observed between SLA and the flag 

leaf nitrogen content at anthesis (r= - 0.92). Similarly, the photosynthetic assimilation and 

chlorophyll content at anthesis were strongly related to SLA (R²=0.77; R²=0.78 respectively). 

The stomata conductance was significantly related both to An, and WUEi (R²=0.73; R²=0.80, 

respectively. All ps < .01). 
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The symbol represents individual measurement.  

Figure 2.6 Relationship between SLA and traits of photosynthetic efficiency 

2.3.3 Relationships and correlations between SLA and traits of water use efficiency  

The link between SLA, leaf RWC, WUEi, and IVD have been investigated, and the regression 

analysis indicated that SLA was significantly (p<.01) related both to the leaf RWC and IVD 

(R² = 0.78; R² = 0.72 respectively). 
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The symbol reprents individual measurement.  

Figure 2.7 Relationships between SLA, RWC, and IVD 

The variation of SLA among cultivars was associated with differences in leaf RWC, with 

dense leaves exhibiting relative higher water content than thin leaves. The values of SLA 

were statistically significant (p<.01) related to the WUEi (R
2
=0.75). Additionally, closer 

veins were associated and statistically significantly correlated with higher leaf relative water 

content, and lower SLA (fig. 2.7). Moreover, the Pearson correlation analysis indicated 

statistically significant correlation (p<.01) between IVD and leaf Δ¹³C (r=-0.87).  
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2.4 Discussion 

The research of this chapter dealt with the proxy-based approach to crop selection. The focus 

was particularly given to the proxies of photosynthesis and water use at the leaf level. The 

approach of „proxy-based crop selection‟ was introduced and defined. In contrast to the 

previous works (Ehleringer et al., 1993; Rebetzke et al., 2006; Bindumadhava et al., 2006) 

that tended to focus on single tool such Δ
13

C for selection, this study built on comprehensive 

examination of the interactions between physiological processes, to develop an integrated 

proxy of a particular physiological variable.  

Emphasis in discussion will be led on the following three aspects;  

i) Ranking for proxies and implications for selection of cultivars  

ii) SLA as an integrated proxy of photosynthesis and water use efficiency 

iii) The mechanism that links leaf venation to photosynthesis and water use 

2.4.1 Ranking for proxies and implication for crop selection 

Consistency of genotypic ranking is essential for breeding to be effective in selecting for a 

particular quantitative trait (Ehleringer et al., 1993). Ranking of the 23 Eps cultivars for low 

Δ
13

C based on leaf material, did show consistent pattern of variation, and were largely 

maintained in the ranking for low SLA (fig.2.6). In agreement with photosynthetic gas 

exchange results, the ranking for WUEi were mostly similar to the ranks for both low SLA and 

Δ
13

C in leaf organic matter; thus suggesting it is possible to relate WUEi in wheat genotype to 

both SLA and carbon discrimination values of leaf matter.  

The consistent pattern of ranking for SLA and Δ
13

C among cultivars is of particular interest in 

the way SLA is cheap and easy to measure than Δ¹³C: it provides indication that SLA could be 

used in place of Δ
13

C for selecting wheat cultivars. The results are in agreement with 

Farquhar et al. (1982) who first proposed that Δ
13

C is a promising parameter for assessing 

and eventually selecting plant genotypes for water use efficiency in C3 plants.  The results are 



60 
 

also consistent with Vogel (1993) who suggested the δ
13

C value in leaf matter of terrestrial C3 

plants growing under natural conditions range from - 22 to – 34 ‰; in close agreement, the 

δ
13

C of leaf dry matter among the 23 Eps cultivars tested in this study, varied between - 28 

and - 31 ‰. 

Many authors have exploited the ranking for selection of crop cultivars (Ehleringer et al., 

1993; Acquaah, 2012), and their results showed ranking could be a powerful tool to make 

inference in crop selection: for example, Hall et al. (1993) used the consistency of ranking for 

Δ
13

C and grain yield for selection of cowpeas, and they observed the ranking of accession for 

Δ
13

C was remarkably consistent when the same genotypes were grown over different drought 

conditions, years, and date of sampling, but at the same conditions. Similarly, Garnier et al. 

(2001) based on ranking of species for functional traits, found the species ranking for a given 

trait remained mostly consistent in space and time. Further, Condon et al. (2004) used the 

genotypic ranking for selecting broad sense heritability of Δ
13

C in wheat. Similary, Rajabi 

(2006) exploited ranking of leaf organic Δ
13

C for selecting sugar beet cultivars for drought 

tolerance, and observed the ranking was closely maintained over time. 

Overall, considering the consistent of the ranking for the proxies of photosynthetic rate and 

water use among the 23 Eps cultivars screened over the research of this chapter, and the 

statistically significant difference between each particular cultivar and the control „Rialto‟, 

five cultivars were proposed as selected for photosynthetic and water use efficiency, and to 

be submitted for further selection for earliness of flowering and yield. The selected cultivars 

were: BBC-91-232-4-1-16-1-4; BBCB-90-231-8-1-17-6-6; Badger; BBCB-91-232-4-1-5-5-1; 

SR96-1-412-1-11. 
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2.4.2 Specific leaf area (SLA, cm² g⁻¹): An integrated proxy of photosynthetic rate and 

water use in wheat 

Identification of physiological traits contributing to superior performance of crop has been a 

long term goal of plant improvement (Reynolds et al., 2011). The results in this chapter 

provided considerable evidence that SLA is a potential indicator of leaf photosynthetic rate 

and water use. In this section, the relationships between SLA and the traits of photosynthesis 

and water use are discussed and follow by the discussion of the patterns of trait of SLA and 

water use efficiency. 

2.4.2.1 SLA and leaf biochemical characteristics of photosynthesis 

The comparison of cultivars varying in SLA revealed a greater pattern of association between 

SLA and An (fig.2.6). Some sets of hypothesis could help explain the negative association 

between SLA and photosynthetic assimilation rate; the first explanation is by the mechanistic 

that links SLA to the leaf biochemical characteristics (Chlorophyll content, leaf N, Rubisco); 

According to Lambers et al. (2008) one mechanism leaves on a plant achieves a high Amax is 

by producing thicker (low SLA) leaves and which provide spaces for more chloroplasts per 

unit leaf area.  Similarly, Evans & Poorter (2001) indicated that thicker leaves (thus low SLA) 

are associated with increases in number of chloroplasts and the amount of photosynthetic 

enzymes; thereby may enhance the photosynthetic capacity per unit leaf area. The SLA was 

investigated and used in this thesis as a proxy of leaf thickness; therefore leaf thickness per se 

was not measured in this study. However, the Rebetzke‟s group has studied some technique 

for the measurement of leaf width (Zhang et al., 2014). In similar fashion, Farquhar & von 

Caemmerer (1980) argued that the capacity of the leaf tissue for photosynthetic CO2 

assimilation depends to a large extent on its Rubisco content. 

 Over the past years, a number of correlations have been uncovered relating photosynthetic 

capacity of the leaf to leaf N content (Evans, 1989; Schulze et al., 1994; Reich et al., 1994): 
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That is the higher leaf N content was found to be associated with higher rate of 

photosynthesis. The mechanistic causes of these relationships were attributed to the large 

amount organic N present in the chloroplasts, most of it in the photosynthetic machinery 

(Evans & Seemann, 1984). It had also been found that Rubisco and chlorophyll content both 

tend to increase with leaf N content (Evans & Terashima, 1988), they argued that with 

increased leaf N, the chlorophyll content and electron transport capacity increase. It was also 

observed that the amount of light absorbed by a leaf, and the diffusion of CO2 through its 

tissue depend, at least partially, on its thickness (Agustin et al., 1994; Syvertsen et al., 1995). 

Therefore, the strong relationships obtained between SLA and both leaf chlorophyll and 

nitrogen contents (fig.2.6); provide indication that SLA would possibly be a good proxy to 

distinguish variation in photosynthetic capacity in wheat.    

2.4.2.2 SLA and leaf water relations  

The SLA appeared to be a potential indicator of plant water use efficiency and related to Δ¹³C 

in this study (tab.2.3). In agreement with photosynthetic gas exchange results, the Δ¹³C 

measured in the leaf dry matter were also negatively correlated with WUEi as expected for C3 

plants (O‟ Leary, 1993; Farquhar et al., 1982). The relationships between Δ
13

C and WUEi 

indicated it is possible to relate instantaneous photosynthetic gas exchange to estimate water 

use efficiency in wheat genotypes with Δ
13

C values from leaf matter. Previous studies 

indicated there are several mechanisms by which Δ
13

C in the leaf is regulated:  According to 

Taiz & Zeiger (2010), in C3 plants, genotypic variations in Δ
13

C values in leaf results either 

from photosynthetic capacity or leaf conductance or the covariance of both.  

The strong positive relationships obtained between Δ¹³C and Δ
18

O in leaf matter was further 

evidence supporting the data that the relationships between WUEi and Δ
13

C values in this 

study were mainly caused by variation in photosynthetic capacity. This view corroborate with 

Barbour et al.(2000) who used the measurements of Δ
18

O in leaf matter to separate the 
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independent effect of photosynthetic capacity on carbon discrimination in C3 plants. The 

results are also in accordance with Scheidegger et al. (2000) who proposed the potential of 

measuring both δ
13

C and δ
18

O in leaf organic matter to separate the independent effects of 

photosynthetic capacity and stomatal conductance on Ci/Ca. According to Dawson et al. 

(2002), whereas leaf δ
13

C reflects Ci/Ca, δ
18

O in leaf matter varies with ambient humidity, 

which in turn reflects changes in water use. Additional evidence in support that the variation 

in Δ¹³C values among cultivars was due to difference in photosynthetic capacity came from 

the stomata conductance data: the cultivars with low values of Δ¹³C exhibited both relatively 

higher stomata conductance, and higher photosynthetic assimilation rate compared to the 

cultivars with relatively higher value of Δ¹³C (tab. 2.1). 

Moreover, the finding of consistent positive relationships between SLA and Δ
13

C is of 

particular interest (fig. 2.6): it linked indirectly the WUEi and SLA, and hence indicating the 

possibility of using SLA as surrogate measure of Δ
13

C in selection for WUEi in wheat. The 

proposition of using SLA as surrogate for Δ
13

C and WUEi is promising in the way it is easiest 

and cheap to measure while measurement of Δ¹³C requires expensive analytical device makes 

it more expensive proxy to obtain.   

Additionally, measurements based on SLA appears to be more repeatable than those based on 

biochemical: This can be deducted from the study of Hevia et al. (1999) who showed that 

SLA varied less than leaf phosphorus during the course of growing season. This conclusion 

can probably be extended to all foliar nutrients (Grimshaw & Allen, 1987). This finding is 

very important, because the discrepancies between reproducibility among experiment may 

well result in the unreliability of the results. 

Closer association between SLA and leaf RWC (fig. 2.7) was observed in this research. Leaf 

water content is known to be related to several leaf physiological variables (Kramer & Boyer, 

1995).  For instance, Farquhar et al. (1989) argued that the leaf RWC closely reflects the 
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balance between water supply and transpiration rate. The argument was supported by 

Yamasaki & Dillenburg (1999) who suggested that leaf RWC is a useful indicator of plant 

water balance. Similarly, Joy (1985) conducted research to address the question of which 

parameter of water status should be used to measure water stress, and found the leaf RWC 

reflected recent loss of water by transpiration and the rate of flow of water into and through 

the plant. Genetic variation in leaf RWC was also observed by Lafitte (2007) who detected 

significant difference in leaf RWC among cultivars exposed to the same period of water 

exclusion. 

Additional insights were provided by many authors that observed that decreasing of the leaf 

RWC of both C3 and C4 plants progressively decreased the photosynthetic CO2 assimilation 

(Chaves, 1991; Cornic, 1994; Cornic & Massaci, 1996; Lawlor & Cornic, 2002; Lawlor, 

2002). The data of this research are in agreement with those observations: the cultivars with 

low RWC exhibited both reduced photosynthetic assimilation rate and stomata conductance 

compared to the cultivars with relatively higher RWC (tab.2.1). The mechanistic causes of the 

relationship between leaf RWC and photosynthetic rate were provided by Lawlor (2002) who 

firstly suggested the decline in leaf RWC caused the decreases in stomatal conductance, 

slowing CO2 assimilation; secondly, he suggested that the limitation of RuBP might be 

among the causes of decreased photosynthetic rate at low leaf RWC. Thirdly, he observed that 

at low leaf RWC the amount of many proteins was decreased:  and he suggested that 

decreased ATP under low leaf RWC impaired proteins synthesis, through inadequate energy 

supply (Lawlor, 2002). 

Taken together, the strong relationships between SLA and leaf RWC, and Δ¹³C observed in 

this research, further confirmed the proposition that SLA constitutes a good estimate of plant 

water status.  
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2.4.3 The mechanism linking leaf venation to photosynthesis and water use   

Leaf veins form the transport network for water, nutrients, and carbon for nearly all plants 

(Brodribb et al., 2005). However, leaf venation is highly diverse within and across species 

(Cochard et al., 2004b; Sack & Frole, 2006; Ellis et al., 2009; Brodribb et al., 2005). The aim 

of this research was to investigate the link of the structural properties of leaf venation to the 

functional processes of water use and photosynthetic efficiency. The priori hypothesis was 

that the distance water must flow, as determined by the position of leaf veins, should 

influence the leaf hydraulic properties of the plant.  

Leaf venation in our study of 23 Eps cultivars fell into distinct groups: the group of closer 

veins which demonstrated a strong association with leaves of low SLA, and another group of 

larger IVD which was associated with leaves of higher SLA (fig.2.7). Additionally, our data 

indicated the leaves with low SLA (also with closer veins) to be associated with higher leaf 

RWC, higher An, and higher WUEi than leave with higher SLA and larger IVD.  

These results corroborate with Scoffoni et al. (2012) who found that xylem cavitation which 

is often observed during dehydration, was better tolerated in their study by leaf with higher 

vein density.  Another explanation was provided by Amiard et al. (2005) who argued that 

vein density would relate to photosynthetic functions because the vein surface area is thought 

to limit photosynthate transport away from the leaf.  

In conclusion, our data suggested the link of IVD to the photosynthetic rate would probably 

be rooted in the effect of IVD on leaf RWC. Finally, our data provided basis for suggesting 

that SLA potentially constitutes the reliable proxy of photosynthetic rate and water use 

efficiency. 
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Chapter 3 The physiological consequences of Rht genes in winter wheat 

“A wheat breeder who recently produced a high yielding variety of wheat, was asked what 

 attributes gave it such capacity for yield; he replied, “I do not know…but I will list 

the traits of the variety, and it is for the physiologist to judge whether these may be the 

reasons for the high yield” (Donald, 1968). 

Abstract 

Considerable progress in wheat yield has been achieved during the so-called green revolution 

by the development of dwarf varieties through introgression of the Rht genes. The straw-

shortening by these genes increased the harvest index (HI) by alteration of partitioning of dry 

matter and assimilates in favour of spike. However, the physiological basis of HI is not 

completely established yet. For example, comparative studies have shown that yield is 

reduced when plants are shortened beyond a threshold optimum. The aim of the investigation 

reported here was to identify the physiological attributes able to produce yield increases in 

Rht genotypes without further straw-shortening. Attention was given to examination in a 

controlled environment, the question of the mechanistic foundation that determine the 

relationship between plant height and yield in lines (Rht-B1b, Rht-D1b, Rht-B1c, Rht-D1c) 

with different Rht genes (b, c) when incorporated into contrasting background genomes (B, 

D); and the relative effects on C:N partitioning during grain filling. The results showed the 

straw-shortening was significantly associated with Amax and Kh (p<.01). The SLA decreased 

with the level of dwarfing; and Amax significantly correlated with Kh and SLA: we therefore 

proposed that straw-shortening may affect both Amax and Kh by exerting a controlling 

influence over SLA. Similarly, both the partitioning of N to spike and the flag leaf N content 

were correlated with plant height and growth stage; the leaf N was highest at GS65. The data 

also indicated that, in short genotypes, increases in grain number, kernel weight, and reduced 

partitioning to the roots were the main driver of the increased HI. Moreover, the increased 

post-anthesis partitioning of N to grain associated with high N uptake rate and high MRT of N 

were the traits behind increased NUE and NHI in this experiment with wheat of reduced 

height. In conclusion, selection for increased HI of Rht wheat should shift focus from reduced 

plant height to include increased grain number and kernel weight, reduced partitioning to 

roots, increased partitioning of N to spike, reduced peduncle length, and low SLA.  

Key words: Rht, wheat, HI, grain number, Partitioning to roots, N partitioning. 
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3.1 Introduction 

To date, progress in wheat yield has been spurred in part by the widespread introduction of 

dwarfing genes (Reynolds et al., 2011), and has been related to changes in plant morphology 

and function associated with the large increase in the HI (Fischer, 2011). From early 1960s, 

world-wide, wheat yield increased noticeably (at an average rate of 40 kg ha⁻¹ year⁻¹) from 1 

t ha⁻¹ in 1960 to 2.6 t ha⁻¹ in 2005 (Miralles & Slafer, 2007).   

However, challenges to wheat production are still considerable as highlighted at a symposium 

involving scientists from wheat producing countries (Reynolds et al., 2007).  For example, a 

closer look at the average wheat yield during the last few years give cause of concern: the 

rate of yield increases between 1980 and 2005 was 36 kg ha⁻¹ year⁻¹ (~14 % less that 

registered during the whole period from 1960), suggesting wheat yield might be leveling off 

(Miralles & Slafer, 2007). Moreover, global demand for wheat is predicted to increase at a 

faster rate (Rosegrant & Cline, 2003) than the annual gain in grain yield that are currently 

being realized (Shearman et al., 2005). In addition, climate change impacts on agriculture 

indicate that there is a real risk of global wheat yield shortfall.  

According to Calderini et al. (1995), one of the main attribute behind the increased wheat 

yield in the past, had been plant height, which has been systematically reduced as an 

immediate result of the introgression of Rht genes. Additionally, straw-shortening has also 

improved resistance to lodging (Paolillo & Niklas, 1996). However, a number of comparative 

studies have shown that wheat yield is reduced when plant are shortened too much, thus 

delimiting a range of plant height to optimum yield (Miralles & Slafer, 1995; Berry et al., 

2014). Therefore, the likelihood of further increasing wheat yield through additional 

reductions in plant height is rather low as several studies have indicated that most of modern 

wheat cultivars have reached the optimal heights (Reynolds et al., 2011; Fischer, 2011; 

Foulkes et al., 2007; Shearman et al., 2005). Thus, it is clear that the aim of future wheat 
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improvement should be to increase grain yield within the optimal plant height. On that, Uppal 

& Gooding (2013) examined the effect of tillage systems on Rht genotypes; they found no 

evidence that the optimal ultimate crop height as modified by dwarfing genes, varies with 

tillage systems. 

The investigation presented in this chapter aimed to identification of physiological traits able 

to produce wheat yield increases without further straw-shortening in lines (Rht-B1b, Rht-D1b, 

Rht-B1c, Rht-D1c) with Rht genes (b, c) of contrasting genomes background (B, D), and 

compared to the “Wild type” in Mercia background.  

Specifically, the study addressed the following questions and hypotheses: 

Research questions: (i) What is the mechanistic foundation that determines the   

    relationship between plant height and grain yield? 

   (ii) Which physiological traits related to grain yield and harvest index 

    in semi-dwarf wheat? 

Hypotheses: (i) The N partitioning to spike is a trait related to plant height. 

  (ii) The distance that water must flow could influence the leaf hydraulic  

   conductance and the photosynthetic rate of the crop. 

The present introduction consists of five sections. Firstly, it provides the theoretical 

background of Rht genes involved in this study; secondly, it reviews the basis of the HI; 

thirdly, it deals with tillering of wheat; fourth, it discusses the regulation of flowering in 

wheat; and lastly, it gives background on MRT of N and ¹µN labeling. 

 3.1.1 Theoretical background of Rht genes 

The worldwide adoption of the reduced height (Rht) genes in wheat has proceeded since the 

early 1960s (Flintham et al., 1997; Bonnet et al., 2001). These genes have been effective in 

reducing plant height by decreasing sensitivity of vegetative tissues to endogenous gibberellic 

acid (Keyes et al., 1989; Rebetzke et al., 2012). The mechanisms by which the Rht genes 
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effect a reduction in plant height are relatively well understood (Ellis et al., 2004). According 

to Wilhelm et al. (2013), the Rht genes encode copies of the DELLA protein, a growth 

repressor, and each Rht gene contains a single nucleotide polymorphism that introduces a 

premature stop codon. The resulting DELLA proteins have a reduced sensitivity to GA: 

because the Rht genes affect GA-signalling, and GAs are involved in many development 

processes. The Rht genes have a range of effects on plant including the reduced coleoptiles 

length, decreased internode length, and shorter plant height (Gale et al., 1985; Allen, 1989; 

Richards, 1992b; Peng et al., 1999; Rebetzke et al., 2004; Botwright et al., 2005). 

The height reductions arising from the presence of the Rht genes were associated with 

genotypic increases in HI and lodging resistance of wheat worldwide (Chapman et al., 2007; 

Berry et al., 2007), however, there has been no much precise physiological explanation of 

their effects on yield (Gale & Youssefian, 1985; Youssefian et al., 1992a, b).  

The genetics of final plant height is known to be complex, being determined by many genes. 

In wheat seventeen of the 21 chromosomes were found to determine genetical variation for 

height (Borner et al., 1996). According to Worland (1996), it is possible to classify genes for 

height into those which increase or promote height, and those which reduce or suppress this 

character. Related to their response to exogenously applied gibberellins (GAs), dwarf mutants 

can be divided into two categories (Reid et al., 1996): 

(i) GA sensitive mutants, where the absence or modified spectrum of endogenous 

gibberellins result in a dwarf plant, and in which normal growth can be restored 

by GA application. 

(ii) GA insensitive mutants, that show a reduced response or complete insensitivity to 

applied GA. According to Gale & Gregory (1977), the GA insensitive mutants 

exhibit a reduced internodes length without reducing the length of the spike. 
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The Rht-B1b, Rht-D1b, Rht-B1c and Rht-D1c are among the twenty or so major genes 

affecting the plant height in wheat (Li et al., 2012a, b). These four genes are genetically 

related, with Rht-B1b and Rht-B1c being alleles at a locus on chromosome 4B, and Rht-D1b 

and Rht-D1c being alleles at a locus 4D (Borner & Mettin, 1988; Pearce et al., 2011; 

Wilhelm et al., 2013). The greatest reductions in height are associated with Rht-B1c and Rht-

D1c (Izumi et al., 1981; Gale & Youssefian, 1985). 

 
Figure 3.1 The Rht lines tested in the experiment (Rht-B1b; Rht-D1b; Rht-B1c; Rht-D1c) 

 

3.1.2 The basis of the concept of “Harvest Index” 

3.1.2.1 Historical background of HI 

The increases in the fraction of above-ground biomass partitioned to useful parts of plant has 

been a feature of the selection and breeding of higher yield crops (Fitter & Hay, 1987). The 

HI appeared in the literature in the late 1950s (Hay, 1995), and it was linked with Donald‟s 

concept of the ideotype as a blueprint of wheat breading (Donald, 1968). Over the years since 

1962, the use of term HI became more widespread because of the introduction of shorter-

straw cereal varieties (wheat, rice, & barley), and the growing interest in the use of HI in 

interpreting the physiology of cereal crops (Hay & Walker, 1989). 
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Donald (1962) first defined the HI as the grain yield of a wheat crop expressed as a decimal 

fraction of total above-ground matter production. His definition has been criticized for 

ignoring the possibility of substantial variation in the partitioning of assimilates to below 

ground organs (Siddique et al., 1990). For instance, Barraclough (1984) indicated that about 

10 % of crop biomass is below ground at anthesis. To counteract this error associated with 

Donald‟s definition of HI, Akita (1989) used a correction factor of 5 % to allow for rice roots 

at harvest. In this context, some authors preferred to use two terms: Actual harvest index 

(following Donald‟s original concept), and Apparent harvest index, determined as a 

proportion of total dry matter including roots (Walker & Fioritto, 1984). 

The concept of harvest index has been extended to the partitioning of nutrients, in particular, 

the nitrogen harvest index of seed crops, as ratio of nitrogen in grain to total nitrogen content 

of the plant biomass (Austin, 1980). It seems likely, therefore, that the HI concept is to stay in 

world literature in the future. 

3.1.2.2 The mean residence time (MRT) and partitioning of N 

Hirose (2011) defined the MRT of N as the expected length of time that a unit of N newly 

taken up from soil is retained in the plant before being lost. The MRT of N is estimated by 

adding 
15

N labeled to soil, and its fate in plant is followed over time (Berendse & Aerts, 

1987; Silla & Escudero, 2004).  

The importance of grain nitrogen concentration to the baking quality and nutritional value of 

wheat is well established (Heitholt et al., 1990; Foulkes et al., 2009). Here, we are interested 

to examine the plant characteristics that display grain N concentration and exhibit genetic 

variability in Rht lines. We therefore hypothesized these characteristics in wheat are likely to 

be the NUE, N harvest index, and mean residence time of N, and they are likely related to 

plant height. Moreover, building on the concept of MRT of N, attention was also given to 

genetic variability in uptake rate of N among the semi-dwarf NILs. According to James & 
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Richards (2005), the ability to rapidly capture N from the soil, is expected to influence plant 

growth and competitive ability of plant in N limiting environment. Similarly, Golluscio 

(2007) argued that the MRT of N in plant would be an important indicator of plant adaptation 

to N stress. 

3.1.3 The physiology and control of tillering in wheat 

The importance of tillering capacity as a determinant of cereal yield has been recognized (Li 

et al., 2003; Kuraparthy et al., 2007).  In wheat, tillering is one of the most important traits, 

because the tiller number per plant ultimately determines the number of productive spikes 

(bearing grains) per unit area (Dreccer et al., 2013; Duggan et al., 2005a), thus, the 

development of crop varieties with optimal tiller number could be a target for improving 

wheat yield. However, there is still a gap in the physiological knowledge of the control 

mechanisms governing tillering (Kebrom et al., 2012; Dreccer et al., 2013). Therefore, the 

research of this chapter dealt with the question of whether straw-shortening is associated with 

tillering in wheat.   

In this section, we present a summary of the current knowledge of the factors controlling 

tillering. According to Assuero & Tognetti (2010), the process of outgrowth of axillary buds 

in grasses is known as “Tillering”.  Tillering is a two-steps process (Kebrom et al., 2012); 

initiation of a meristem in the axil of a developing leaf to form a bud, and its subsequent bud 

outgrowth. Tillering activity is quantified in term of “Tiller number” per plant; Bos & 

Neuteboon (1998) termed it “Specific site usage”.  

Tillering was found to be genetically regulated (Dreccer et al., 2013). Rebetzke et al. (2008) 

suggested that the QTLs were involved in regulation of productive tillers. Classic genetic 

analysis has also led to the conclusion that tiller number is controlled by quantitative trait loci 

(Tang et al., 2001). Moreover, a tiller inhibition gene (tin) was identified and mapped in 

wheat (Richards, 1988; Spielmeyer & Richards, 2004).  Kebrom et al.(2012) reported that the 
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tin gene regulates tillering indirectly by controlling the timing of elongation of basal 

internodes of the main stem. Reduced tillering has also been related to earlier flowering 

(Gomez et al., 1998). Hormonal control of tillering has also been revealed (Tomlinson & 

O‟Connor, 2004; McSteen, 2009). Tillering and tiller growth have been shown to be 

stimulated by ethylene (Harrison & Kaufman, 1982). This observation was supported by 

Rajala & Palotone (2001); they proposed that tillering promotion by ethylene might be the 

consequence of ethylene mediated inhibition of auxin biosynthesis and movement. 

The possible role of gibberellins in the tillering process has also been proposed; Raja & 

Peltone (2001), suggested that gibberellins tend to cause less development of axillary buds, 

and also to promote the elongation of already initiated tillers. Additionally, the role of 

photoperiod on tillering was proposed; Aamlid (1992) and Hay & Kirby (1991) suggested 

that photoperiod effect tillering mainly through the prolongation of tillering stage. The effect 

of the ratio of the red to far red light on tillering was observed (Ballarée et al., 1990); they 

suggested that a low ratio of red to far red light signals for competition for light, and plant 

responds by inhibiting axillary bud outgrowth. 

3.1.4 Basis of time to anthesis in wheat 

Wheat varieties are divided into winter and spring based on the presence or absence of a 

requirement for a long exposure to cold temperature to induce flowering (Vernalization). In 

both spring and vernalized winter wheat varieties, photoperiod and growing temperature are 

the main factors affecting development rate and time to anthesis (Lewis et al., 2008). 

According to Bentley et al. (2013), wheat is photoperiod sensitive, flowering only when 

daylength surpasses a critical length.  

The physiological and genetic basis of the regulation of flowering time by photoperiod and 

vernalization has been documented (Turner et al., 2005; Yan et al., 2006; Beales et al., 2007). 

On that, Hoogendoorn (1984) reported that sensitivity to photoperiod and vernalization are 
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controlled by major genes; he suggested that sensitivity to vernalization would be controlled 

by the presence or absence of insensitivity alleles on the major Vrn locus, while sensitivity to 

photoperiod would be regulated by insensitivity alleles at the Ppd locus. Additionally, 

Whilhem et al.(2013) showed that Ppd-D1 was associated with both reduction in days to 

anthesis and height. According to Beales et al. (2007), the Ppd-D1 is member of the Pseudo-

response regulator (PRR) gene family; the PRR have been reported to be components of 

circardian clock (Matsushika et al., 2007). Similarly, Ford et al.(1981) showed that 

sensitivity to photoperiod and vernalization was linked to the pattern of daylength and 

temperature in the region of the origin of the varieties. In accordance, Bentley et al. (2013) 

observed that photoperiod insensitive wheat flowered rapidly in both short and long days, 

whereas photoperiod sensitive wheat delayed in short days, and flowered rapidly in long 

days.  

This chapter examined the extent to which Rht genes influences the time to anthesis in wheat. 
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3.2 Material and methods 

This section focuses on proxies of yield components as consequences of straw-shortening of 

wheat. In addition to experimental setting in a growth chamber, and statistical analysis; 

attentions were given to the measurement of: (i) HI and partitioning of N; (ii) grain number 

and kernel weight; (iii) Tillering; and (iv) time to anthesis. 

3.2.1 Plant material and conditions in growth cabinet 

The measurements were collected on four set of near isogenic lines (NILs) in Mercia 

background: Rht-B1b (formerly Rht1) and Rht-B1c (formerly Rht3) being alleles on B-

Genome; Rht-D1b (formerly Rht2) and Rht-D1c (formerly Rht10) being alleles on D-

Genome; and wild type. The seeds were supplied to NIAB from the John Innes Centre (JIC) 

germplasm resources unit.  The vernalization requirement of winter adapted germplasm was 

satisfied at NIAB with 8 weeks cold treatment in a vernalizing cabinet at 6
0
C with an 8 hours 

photoperiod, applied to 2 weeks old seedlings for 6 weeks. 

Thereafter, the seedlings were moved to the plant growth facility (PGF) of the University of 

Cambridge (Bateman St., Cambridge, the UK). There, the plants were placed into controlled 

environment growth cabinet (Conviron Ltd, Winnipeg, Canada) (fig.3.2). Individual seedlings 

were transplanted in pots of 14 cm height, 11 cm base width, and of 16 cm diameter at top, 

and filled with Levingtons M3 compost (Scotts Professional, Bramford, UK). The pots were 

then arranged in randomized blocks with six replicates. 
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Figure 3.2 The Rht plants in the growth cabinet at PGF 

During the entire growth period, the climate in the cabinet was set at: Temperature of 

25
0
C/23

0
C (Day/night); PAR of 1200 µmol photons m⁻² s⁻¹ (measured at plant height); 

relative air humidity 40 %; 400 µmol CO2 s⁻¹; and 16 hours day length. Two automatic 

watering regimes of 3 minutes duration were used during the experiment: until anthesis, the 

watering was achieved by thoroughly wetting capillary matting underneath the pots every 8 

hours, and the second regime was set at GS65, where watering was only supplied at moisture 

limit of 50 % in pot, and the irrigation was suspended at GS83 (Appendix B). A basal 

fertilizer, Osmocote 14-9-11, was added at the rate of two tablets per pot at GS20. 

3.2.2 The ¹⁵N labeling and sampling  

The 
15

N label was applied to the plants in growth cabinet referred to in the section 3.2.1. In 

total 60 plants in pots were involved: 30 plants labeled with 
15

N, and the other 30 plants for 

the control. At GS65, 50 ml of 2.5 mmol l⁻¹ 15
N-labelled KNO3 (99.97 %) was applied to 

each pot of the 30 pots (6 replicates per line), after BassiriRad & Caldwell (1992). After the 

labeling, the control and the labeled plants were treated equally.  

For the recovery of ¹µN in the plant parts, half of the labeled plants were harvested 24 hours 

after the application of 
15

N label. Similarly, half of the control plants were harvested as well. 
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The other half of 
15

N labeled plants were retained for MRT of N measurement, and harvested 

at GS87. Any unused 
15

N after 24 hours, by the labeled plants, was removed by flushing four 

times with 2.5 liters (10 L) of tap water in each pot. The tillers with spike in each pot were 

harvested and dissected into roots, stem, leaves, and spikes. All root samples were triple 

rinsed with deionized water. 

Thereafter, a composite sample for each plant component was collected per replicate, 

weighed for fresh mass and immediately frozen in liquid nitrogen. Then, the samples were 

freeze-dried for 48 hours in Modulyo 4K Freeze dryer (Edwards High Vacuum International, 

West Sussex, UK). After then, they were weighed for dry mass, and ground using ball mill 

(MM200 Mixer Mill, Glen Creston Ltd, UK). For each sample, a sub-sample of 1 mg was 

weighed into tin capsule and analyzed for total N and 
15

N at the Godwin laboratory 

(University of Cambridge, the UK) as described in the section 2.2.4. 

3.2.3 The 
15

N-enrichment Calculations 

With the 
15

N data, we calculated the MRT of N, the N productivity, the nitrogen use 

efficiency (NUE), and the nitrogen harvest index (NHI). The 
15

N values in plant parts (root, 

stem, leaf, & spike) were converted to the absolute isotope ratio (R) and the molar fractional 

abundance (F) following Teste et al. (2014); 

𝑅 𝑠𝑎𝑚𝑝𝑙𝑒 =    
𝛿15𝑁

1000
 + 1 × 𝑅 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑      (3.1) 

The absolute value (0.003678) of the natural abundance of 
15

N in atmospheric N2 was used as 

R standard. 

𝐹 =
𝑅 𝑠𝑎𝑚𝑝𝑙𝑒

𝑅 𝑠𝑎𝑚𝑝𝑙𝑒 +1
          (3.2) 

Then the mass –based fractional abundance (MF) was calculated as: 

𝑀𝐹 =
𝐹×15

[ 𝐹×15 +(1−𝐹)×14]
        (3.3) 
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The sample MF values resulting from the 
15

N labeling were calculated by subtracting the MF 

of the control tissue from the MF of enriched sample, resulting in change in MF (ΔMF). 

Then, the excess sample tissue 
15

N was calculated as: 

Excess ¹⁵N (mg) = Tissue N concentration × tissue mass × ΔMF   (3.4) 

Thereafter, we expressed enrichment of plant as excess ¹´N equivalent to highlight that N 

partitioning are shown in the common N form that the plant uses. 

Excess ¹⁴N=Excess ¹⁵N× (
14

15
)        (3.5) 

The nitrogen productivity (NP) was calculated accordingly to Berendse & Aerts (1987), as 

the rate of dry matter production per unit of enriched 
15

N in the plant (g dw mg⁻¹ N).  

The mean residence time (MRT) of 
15

N was computed as per proposed by Hirose (2011) for 

both a steady and non steady system; 

𝑀𝑅𝑇 𝑜𝑓 𝑁 (#𝑑𝑎𝑦𝑠) = 𝑁⁻𝛥𝑇 𝛥𝑁         (3.6) 

where N⁻ and ΔN are, respectively, the plant  Excess
14

N amount at second harvest, and the 

total Excess ¹´N amount recovery after 24 hours, and ΔT is the number of days between the 

first and second harvest. 

The nitrogen use efficiency (NUE) of 
15

N was calculated as the product of the nitrogen 

productivity of 
15

N and the mean residence time of 
15

N in the plant (Berendse & Aerts, 1987): 

𝑁𝑈𝐸 (𝑔 𝑑𝑤 𝑚𝑔−1𝑁) = 𝑁𝑃 × 𝑀𝑅𝑇       (3.7)  

The 
15

N harvest index (
15

NHI) was computed following Andersson & Johansson (2006); 

¹⁵𝑁𝐻𝐼 =  𝐸𝑥𝑐𝑒𝑠𝑠 ¹⁴𝑁𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑡𝑕𝑒 𝑔𝑟𝑎𝑖𝑛 𝐸𝑥𝑐𝑒𝑠𝑠 ¹⁴𝑁𝑎𝑚𝑜𝑢𝑛𝑡 𝑖𝑛 𝑡𝑕𝑒 𝑤𝑕𝑜𝑙𝑒 𝑝𝑙𝑎𝑛𝑡    (3.8) 

3.2.4 The time to anthesis and plant height measurement 

The time to flowering was scored using the Zadoks scale (Zadoks et al., 1974), and recorded 

at GS65 as the number of the days by which 50 % of spikes of a line have extruded 50 % of 

their anthers. The plant height was measured at GS87, as the length (in cm) of individual 
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culms from the soil surface to the top of the spike. Similarly, the peduncle length (uppermost 

internode of the stem) was scored at GS87, as the length (cm) from the last node on the stem 

to spike collar. 

3.2.5 The measurement of the leaf hydraulic conductance (Kh) 

The Kh is a measure of how efficiently water is transported through the leaf, determined as 

the ratio of water flow rate through the leaf (mmol m² s⁻¹) to the driving force, the water 

potential difference across the leaf (Δψ, MPa⁻¹) (Sack & Holbrook, 2006). 

The Kh was measured using PMS pressure chamber by over-pressurizing method. The leaf 

was cut to fit the chamber, and weighed for fresh weigh on analytical balance. The chamber 

was gradually pressurized with compressed air until the bubble of sap appeared at the cut; at 

this point the balance pressure was note as ψ1. Subsequently, the leaf was over-pressurized at 

5 bars for five minutes in excess of initial balance pressure. The extruded sap was removed 

from the cut end of the leaf. Then the pressure was released from the chamber and waited for 

five minutes, after which the pressure was increased again till the sap extruded to the cut end 

of the leaf (noted as ψ2). Thereafter, the pressure was slowly released, and the leaf was 

removed from the chamber and weighed for saturated weight. Leaf was scanned and the leaf 

area was measured by means of imageJ. The dry weight was collected after oven drying of 

the leaf for 24 hours at 75
0
C. 

The Kh was computed as: 

Kh (mmol m² s⁻¹ MPa⁻¹) = Δ fresh weight х time (second) ⁻¹ х leaf area⁻¹ х Δψ⁻¹            (3.9) 

3.2.6 The A/Ci responses curve measurement and Amax determination 

The A/Ci response curve was measured on flag leaf (2 leaves per plant, and three replicates 

per line) at GS65 using a LI-COR -6400XT set in auto-programme mode. The parameters 

were set in the Li-COR as: The relative humidity to 60 %, the block temperature at 25
0
C, the 
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CO2 reference to 400 ppm, the PAR to 1200 µmol quanta m² s⁻¹, and the ambient CO2 value 

was set as (all in ppm): 50, 100, 150, 250, 350, 500,700, 900, 1200,700, 400. Once the 

measurement was completed, the data was downloaded from the LI-COR 6400XT to the 

computer. The data collected from the A/Ci response curve was entered into a programme 

called “Photosyn assistant windows software for analysis of photosynthesis, version 1.1” 

(Dundee Scientific, Dundee, UK) to derive Amax. The programme uses an iterative procedure 

to make an estimation of Amax from the A/Ci curve obtained through gas analysis (Harley et 

al., 1992; Wullschleger, 1993). 

3.2.7 The yield components and Harvest index measurements 

The pathways to yield are collectively called “yield components” (Acquaah, 2012). The grain 

crop producing tillers such as wheat, the yield components are: tillers with seeds bearing 

spikes, grain number and kernel (grain) weight. Breaking down a complex trait into 

components might facilitate the finding of selection criteria to improve this characteristic. 

The tiller number per plant was obtained as a count of tiller with seeds bearing spikes, and the 

average of the number of tillers per plant for each line was computed. The whole plant 

biomass (including the roots) was placed into an envelope and transported to the laboratory of 

physiological ecology (University of Cambridge, UK), there the samples were freeze dried 

for 48 hours in Modulyo 4K Freeze dryer (Edwards High Vacuum International, West Essex, 

UK). Thereafter, the sample was weighed before and after threshing. 

The harvest index (HI) was calculated as the ratio of grain yield to the whole plant dry weight 

(including roots) (Walker & Fioritto, 1984). The grain number per spike was determined by 

the total number of kernels of the spikes divided by total number of spikes (Fischer, 2011). 

The grain weight was calculated as the thousand grain weight (TGW) divided by 1000 

(Reynolds et al., 2001).   
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3.2.8 Statistical analysis 

All statistical analyses were performed using SPSS 16.0 for window (SPSS Inc., Chicago, IL, 

USA). Firstly, the data was explored for parametric assumptions of normal distribution and 

homogeneity of variance using Kolmogorrov-Smirnov (K-S) and Levene‟s tests respectively. 

Then, graphing of means was performed using bar charts, and the analysis for linear 

relationship was conducted by mean of scatter-plots. Thereafter, the data was subjected to the 

partial Pearson correlation analysis. The one-way-independent ANOVA was performed at 

p<.01, followed by the post hoc test using Bonferroni test at significance level p<.01. 

3.3 Results 

Here, the effect of straw-shortening on photosynthetic rate and leaf hydraulic conductance, 

yield components, and partitioning of N to grain are shown.  Firstly, the variation among the 

lines in Amax, Kh, SLA, and Δ
13

C are presented as compared to Wild type. Similarly, the 

consequences of those Rht genes on yield components (HI, grain number per spike, TGW, 

tillering, days to anthesis, and plant height) are shown. Lastly, the effects of straw-shortening 

on nitrogen use efficiency and partitioning (NP, MRT, NUE, flag leaf N at different GS, & 

NHI) are provided. 

3.3.1 The effects of straw-shortening on photosynthesis and leaf hydraulic conductance 

The Rht genes may have improved significantly (p<.01) both the photosynthetic capacity 

(33.5 ± 0.5 µmol; 37.2 ± 0.4 µmol; 35.7 ± 0.3 µmol, all per m² s⁻¹; for Rht-D1b; Rht-B1c; and 

Rht-D1c respectively) and the leaf hydraulic conductance with the level of straw-shortening 

(41 ± 1.0 mmol; 41.6 ± 0.9mmol, all per m² s⁻¹ MPa⁻¹; for Rht-B1c; and Rht-D1c 

respectively) compared to the control (30.3 ± 0.7 µmol m² s⁻¹; 33.5 ± 0.7 mmol m² s⁻¹ MPa⁻¹; 

for Amax; and Kh respectively). The K-S test for assumption of normal distribution showed 
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that the data did not deviate significantly from normal at p<.01. Similarly, the Levene‟s test 

indicated that the assumption of homogeneity of variance was tenable at p<.01. 

 
 

 
*
 The means difference is significant at p<.01. The bar represent the genotypic mean ± SE. N= 6 

Figure 3.3 Variation in traits of photosynthesis and water use among Rht lines 

 
*: The mean is significantly different to WT at p<.01 (Bonferroni test). The symbol represents 

individual measurement.  

Figure 3.4 Relationships of Amax, Kh and SLA 
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The Δ¹³C values in leaf organic matter (22.16 ± 0.18 ‰; 22.44 ± 0.28 ‰; for Rht-B1c; and 

Rht-D1c respectively) and the SLA (92.7 ± 3.1 cm² g⁻¹; 100.6 ± 1.9 cm² g⁻¹; for Rht-B1c; and 

Rht-D1c respectively) were significantly (p<.01) lower in shorter lines (Rht-B1c, Rht-D1c) 

than in taller ones (23.12 ± 0.37 ‰; 132.9 ± 10.5 cm² g⁻¹ for Rht-B1b; and 22.93 ± 0.55 ‰; 

116.6 ± 3.5 cm² g⁻¹ for Rht-D1b) and the wild type (23.62 ± 0.18 ‰; 164.8 ± 2.4 cm² g⁻¹; for 

Δ¹³C and SLA respectively) (Appendix D). The plant height varied cultivars; the tall wild type 

with 60.3 ± 1.5 cm and the shortest Rht-D1c with 32 ± 0.6 cm tall. The Rht-B1c was 37 ± 1.5 

cm, Rht-B1b was 58.7 ± 0.7 cm, and the Rht-D1b was 51.3 ± 0.9 cm. The height of Rht-B1b 

and the wild type did not differ significantly at p< 0.01. 

The one-way independent ANOVA revealed there was a significant (p<.01) effect of straw- 

shortening on the level of Amax, Kh, Δ¹³c and SLA. The Bonferroni post hoc test (all ps<.01) 

revealed (fig.3.3) that the Amax for Rht-B1b did not significantly differ to the wild type, and 

that Rht-D1b genes significantly increased the Amax compared both to Wild line and Rht-B1b. 

The Rht-B1c significantly increased the Amax compared to the wild type, Rht-B1b, and Rht-

D1b, but did not significantly differ to Rht-D1c.  Similarly, the same test (all ps<.01) showed 

that Kh for wild type, Rht-B1b, and Rht-D1b did not differ significantly (fig.3.3), but the Kh 

was significantly higher for Rht-B1c compared to Wild line, Rht-B1b, and Rht-D1b, but did 

not differ significantly to the Rht-D1c. 

The data also showed that Amax was related both to SLA (R
2
=0.72) and leaf hydraulic 

conductance (R
2
=0.78). 

3.3.2 The effects of straw shortening on yield components 

The straw-shortening may have significantly (All ps<.01) increased the HI, grain number, 

TGW, but did not influence the level of tillering (fig.3.5). The Bonferroni post hoc test (all 

ps<.01) revealed that the Rht-B1b displayed a significant increased HI (0.40 ± 0.01) 

compared to the wild type (0.35 ± 0.0) but did not differ to the Rht-D1b (0.41 ± 0.01), and 
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was significantly less than both Rht-B1c (0.47 ± 0.01) and Rht-D1c (0.45 ± 0.01). However, 

the grain numbers were not significant different from Wild type, and both Rht-B1b and Rht-

D1b (fig.3.5). The Rht-B1c yielded more grain number (41 ± 1) than Rht-D1c (40 ± 3), but 

did not significantly differ. 

The straw-shortening significantly (p<.01) lengthened the duration to anthesis (fig.3.5). The 

Rht-B1b days to anthesis (55 days) were significantly different (p<.01) to Rht-D1c (59 days) 

and the wild type (52 days), but did not differ to the time to anthesis of both Rht-D1b (56 

days) and Rht-B1c (56 days). The straw-shortening by Rht-D1c lengthened significantly the 

duration to anthesis compared to all other lines (fig.3.5).  

 

 
*
 The mean difference is significant at p<.01. Error bar represent SE of mean for HI and grain 

number. The bar for tiller represent Mean ± SE. N=6 

Figure 3.5 The impact of Rht genes on yield components 
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The Pearson correlation analysis showed that the HI was significantly related to plant height, 

grain number, TGW, and the peduncle length (tab.3.1). However, when the effect of grain 

number on HI was controlled (in the analysis), the HI did not significantly correlate to both 

plant height and the peduncle length, but significantly correlated with grain weight (r=-.73, 

p<.01). But, when the effect of plant height was controlled, the grain number on spike still 

did significantly correlate to the HI (r=.70, p<.01; one-tailed).  
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Table 3.1 The Pearson correlations for traits of performance  

 

Parameter SLA IVD Amax Δ¹³C Δ¹⁸O Kh 

# 

tiller 

# 

grain TGW DANT 

Ped 

L. HI RWC biomass NP NUE MRT NHI gs Height 

IVD .87
**

 

                   Amax -.85
**

 -.86
**

 

                  Δ¹³C .80
**

 .65
**

 -.71
**

 

                 Δ¹¸O .89
**

 .80
**

 -.88
**

 .88
**

 

                Kh -.77
**

 -.88
**

 .88
**

 -.56
*
 -.81

**
 

               # tiller .36 .12 -.34 .23 .32 -.19 

              # grain -.85
**

 -.89
**

 .86
**

 -.63
**

 -.84
**

 .88
**

 -.27 

             TGW  .94
**

 .88
**

 -.83
**

 .73
**

 .87
**

 -.83
**

 .36 -.92
**

 

            DANT -.80
**

 -.81
**

 .70
**

 -.51
*
 -.72

**
 .78

**
 -.29 .79

**
 -.81

**
 

           Ped L .63
**

 .79
**

 -.69
**

 .45
*
 .67

**
 -.85

**
 .06 -.90

**
 .79

**
 -.73

**
 

          HI -.94
**

 -.91
**

 .88
**

 -.69
**

 -.88
**

 .87
**

 -.36 .92
**

 -.96
**

 .82
**

 -.76
**

 

         RWC -.87
**

 -.90
**

 .92
**

 -.74
**

 -.86
**

 .84
**

 -.38 .84
**

 -.90
**

 .70
**

 -.71
**

 .91
**

 

        biomass  -.92
**

 -.92
**

 .91
**

 -.67
**

 -.87
**

 .88
**

 -.37 .90
**

 -.91
**

 .89
**

 -.74
**

 .91
**

 .90
**

 

       NP  -.88
**

 -.93
**

 .92
**

 -.66
**

 -.87
**

 .93
**

 -.24 .95
**

 -.90
**

 .83
**

 -.85
**

 .91
**

 .88
**

 .96
**

 

      NUE  -.86
**

 -.91
**

 .91
**

 -.70
**

 -.90
**

 .93
**

 -.21 .97
**

 -.90
**

 .79
**

 -.88
**

 .90
**

 .86
**

 .93
**

 .98
**

 

     MRT -.79
**

 -.81
**

 .81
**

 -.63
**

 -.83
**

 .85
**

 -.21 .85
**

 -.83
**

 .74
**

 -.84
**

 .85
**

 .81
**

 .82
**

 .91
**

 .89
**

 

    NHI -.91
**

 -.90
**

 .87
**

 -.62
**

 -.85
**

 .87
**

 -.42 .88
**

 -.92
**

 .88
**

 -.74
**

 .93
**

 .90
**

 .98
**

 .94
**

 .90
**

 .84
**

 

   gs  -.85
**

 -.83
**

 .89
**

 -.69
**

 -.84
**

 .81
**

 -.29 .94
**

 -.90
**

 .69
**

 -.79
**

 .89
**

 .85
**

 .85
**

 .86
**

 .90
**

 .73
**

 .82
**

 

  Height  .84
**

 .92
**

 -.90
**

 .64
**

 .84
**

 -.93
**

 .17 -.94
**

 .88
**

 -.85
**

 .87
**

 -.88
**

 -.84
**

 -.95
**

 -.98
**

 -.98
**

 -.86
**

 -.90
**

 -.87
**

 

 Grain mass -.92
**

 -.93
**

 .92
**

 -.66
**

 -.88
**

 .90
**

 -.33 .93
**

 -.92
**

 .89
**

 -.78
**

 .94
**

 .90
**

 .99
**

 .97
**

 .94
**

 .83
**

 .98
**

 .88
**

 -.96
**

 
**

. Correlation is significant at the .01 level (1-tailed). 
*
. Correlation is significant at the .05 level (1-tailed). The values for Δ

13
C are expressed in ‰, for WUEi in µmol CO2 

mmol
⁻¹
 H2O, in cm

2
 g

-1
 for SLA,   in µmol CO2 m

2 
s

-1
 for Amax, in % for RWC, SPAD index for chlorophyll content, in number per mm

2
 for stomata density (SD on abaxial), 

and in mm for inter-vein distance (IVD). The gs expressed in mmol m² s⁻¹. The Kh measured in mmol m² s⁻¹ MPa⁻¹.   The NUE is expressed in g dw mg⁻¹ N. The tiller in 

number, and grain in grain number per spike , and the Δ¹¸O expressed in ‰. The TGW is measured in g. The peduncle length is expressed in cm. The biomass is measured in 

kg, dw. The NP is expressed in g dw mg⁻¹ N. The height is measured in cm.  Both the MRT and day to anthesis are measured in days.  The grain mass is measured in kg dw. 



87 
 

3.3.3 The consequences of Rht genes on nitrogen partitioning 

The one-way independent ANOVA showed that the straw-shortening increased significantly 

(p<.01) both the ¹⁵NHI, and ¹⁵NUE, and that it influenced significantly the MRT of N. 

Additionally, the Bonferroni post hoc test (p<.01) indicated that Rht-B1c and Rht-D1c 

significantly increased the 
15

NUE (44.7 ± 2.2 g dw mg⁻¹ N; 46.0 ± 2.6 g dw mg⁻¹ N; for Rht-

B1c and Rht-D1c respectively) compared to the wild type (5.9 ± 0.8 g dw mg⁻¹ N). It also 

showed that the 
15

NHI for Rht-B1b did not significantly differ to the wild line (tab.3.2). The 

15
NHI and the 

15
NUE were linearly significantly related (fig.3.6). The experiment showed that 

the flag leaf nitrogen content was at its highest level at GS65 and exhibited genetic variability 

at anthesis, but did not differ significantly at GS87 (fig.3.6, & Appendix C). 

 
 
* 

The mean difference is statistically significant at p<.01. Error bar represent SE of the mean. N= 6. 

NUE is on total plant dry weight. 

Figure 3.6 The effects of straw-shortening on nitrogen partitioning 
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Table 3.2 The Bonferroni post hoc test for ¹⁵NHI 

Dependent Variable:15NHI  (N= 6) 

 
(I) Line (J) Line 

Mean 

Difference (I-J) 

Std. 

Error Sig. 

99% Confidence Interval 

Lower Bound Upper Bound 

Bonferroni Wild Rht-B1b -.11667 .02789 .019 -.2446 .0113 

Rht-D1b -.25333* .02789 .000 -.3813 -.1254 

Rht-B1c -.35333* .02789 .000 -.4813 -.2254 

Rht-D1c -.37000* .02789 .000 -.4979 -.2421 

Rht-B1b Rht-D1b -.13667* .02789 .006 -.2646 .-.0087 

Rht-B1c -.23667* .02789 .000 -.3646 -.1087 

Rht-D1c -.25333* .02789 .000 -.3813 -.1254 

Rht-D1b Rht-B1c -.10000 .02789 .050 -.2279 .0279 

Rht-D1c -.11667 .02789 .019 -.2446 .0113 

Rht-B1c Rht-D1c               -.1667 .02789 1.000 -.1446 .1113 

*. The mean difference is significant p<.01     
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3.4. Discussion 

The research of this chapter dealt with how the straw-shortening affects the traits of 

photosynthesis and leaf hydraulic conductance, yield components and partitioning. The aim 

was to identify the physiological traits able to produce yield increases without further straw-

shortening. Attention was also given to test the hypothesis that distance water must flow 

should influence the leaf hydraulic conductance and the photosynthetic rate of the crop. 

Moreover, considerations were given to develop proxies of these traits. Particularly, the 

research experimented the 
15

N labeling to the study of N partitioning.  

This section discusses the physiological traits that determine the relationship between plant 

height, and yield and how these traits can be applied to crop selection. Firstly, the implication 

of straw-shortening on photosynthetic capacity and leaf hydraulic conductance are discussed; 

then there is examination of the determinants of HI and how they are related to plant height; 

and finally, the consequences of straw-shortening for the partitioning of N are assessed. 

3.4.1 Implication of straw-shortening on photosynthesis and leaf hydraulic conductance 

Uncovering the mechanistic foundations that underlie the relationship between plant height 

and leaf hydraulic conductance would broaden the physiological understanding of straw-

shortening for crop improvement. The Kh is a key physiological variable for water relations 

(Sack & Scoffoni, 2012). We evaluated the new hypothesis that link plant height to leaf 

hydraulic conductance and photosynthetic capacity, in lines of different level of dwarfing. 

We hypothesized that the distance water must flow should influence the leaf hydraulic 

conductance and the photosynthetic rate of plant. This was based on Brodribb et al. (2005) 

who observed that the maximum net assimilation rate (Amax) was coupled to the capacity of 

the leaf vascular system to supply water to photosynthesing cells. 

We found an intimate association between level of dwarfing, leaf hydraulic conductance (Kh), 

the photosynthetic capacity (Amax) and SLA (fig.3.3 & 3.4). Combining these observed 
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relationships enabled us to uncover the mechanistic that links straw-shortening to 

photosynthetic rate.  Both leaf Kh and Amax increased with the level of dwarfing, Rht-B1c and 

Rht-D1c exhibiting the highest rate.  A single regression accurately showed that Amax related 

both to leaf Kh and SLA, increasing with increases in leaf Kh and decreases in SLA (fig.3.4). A 

similar analysis illustrated the effect of straw-shortening to both SLA and flag leaf Δ¹³C 

(fig.3.3). 

The results lead to the suggestion that the straw-shortening effects Amax by exerting a 

controlling influence over Kh and SLA. Primarily, there may be the physical control of leaf Kh 

by the distance to traverse by water; this may link secondarily the leaf Kh to Amax because of 

the coordination between Amax and leaf Kh (Brodribb et al., 2005).  

The second mechanistic that explains the link between straw-shortening and Amax, is by SLA: 

The Rht genes might affect the size of SLA, as a result, Amax would be affected as the research 

of the  second chapter of this thesis established the connection between SLA and Amax (also, 

fig.3.4). This finding corroborates with both Lecain et al. (1989) and Keyes et al. (1989) who 

observed that the flag leaf of dwarf wheat had thicker leaf than the tall one. In agreement, 

later, Morgan et al. (1990) found more chlorophyll, protein, and Rubisco content per unit leaf 

area in the dwarf than the tall isolines, and ascribed the effect of dwarfing genes on 

photosynthesis to a greater density of cells capable of photosynthesis. 

3.4.2 The determinants of Harvest Index of reduced height plant 

Historically, the increase in HI of Rht lines was seen as the effect of Rht genes to limit stem 

extension growth, decreasing assimilate demand for this organ and diverting it to the 

developing ear which is not itself dwarfed (Flintham et al., 1997). We evaluated the various 

physiological variables that may have effects over the HI, and the possible relationships 

among them. 
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Grain number and kernel weight 

We found that both grain numbers per spike and kernel weight significantly (p<.01) 

correlated to HI (tab.3.1). The increases in grain number on spike were consistently 

associated with the level of dwarfing (fig.3.5), with Rht-B1c and Rht-D1c exhibiting highest 

grain number compared to the other lines. However, the number of grain on spike was 

partially offset by reduction in kernel weight, indicating a trade-off between grain number 

and kernel weight on spike. Whether the reduced grain size is a competitive response to the 

increase in the number of kernels on spike or the primary effect of straw-shortening, was not 

clear. Based on the similar results of chapter four of this thesis, we suggest the former might 

be the cause. 

The height reduction arising from straw-shortening by the Rht genes has been proposed as the 

driver of the increases in HI (Rebetzke & Richards, 2000). The HI is an integrative trait 

including the net effect of many physiological processes (Li et al., 2012). Our data indicated 

that the HI significantly correlated with all these traits of plant height, peduncle length, grain 

number, kernel weight, and partitioning of dry matter to roots. But when the effect of grain 

number was held constant (partial correlation), the HI significantly correlated only with 

kernel weight and could not correlate with plant height (tab.3.1). However, when the effect of 

plant height was controlled, still the HI significantly correlated with both grain number and 

kernel weight, indicating they might be the key determinants of HI.  

Some of the possible explanation of the increased grain number in Rht lines was proposed by 

Youssefian et al. (1992a, b), they argued that it derives from increased partitioning of 

assimilates to the developing ear as a consequence of reduced demand for stem elongation 

therefore resulting into improved florets fertility. 
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Plant height  

One of the main attributes modified to increase the HI has been plant height, which has been 

systematically reduced (Slafer et al., 2005). Our results indicated the increased adding effect 

of Rht-B1b, Rht-D1b, Rht-B1c on Amax, HI, and grain number on spike, but with relative 

reduction for Rht-D1c compared to Rht-B1c (fig.3.3, & 3.5), thus, showing there might 

penalty for reducing height beyond Rht-B1c. This finding is in accordance with several other 

studies (Berry et al., 2014; Miralles & Slafer, 1995) that showed wheat yield is reduced when 

plant is shortened excessively. 

Nitrogen partitioning and use efficiency 

The concept of HI was extended to the partitioning of N, in particular, the nitrogen harvest 

index (NHI), as the ratio of nitrogen in grain to total nitrogen content of the plant biomass 

including roots (Austin, 1980). The grain NHI is important trait in relation to the baking 

quality and nutritional value of wheat. We therefore examined the extent the straw-shortening 

influences the NHI, using the 
15

N labeling as the experimental technique. The study indicated 

straw-shortening increased the 
15

NHI linearly with the level of dwarfing (fig.3.6). The 

inclusion of roots N in NHI calculation showed that the root N content varied from 10 - 20 % 

of the total N amount in the plant, indicating the partitioning of N to roots affect the NHI. The 

root N was influenced by straw-shortening, with the Rht-B1c and Rht-D1c showing the lowest 

partitioning of N to the roots compared to other lines. 

The study also examined the effect of straw-shortening on NUE and MRT of N. Our data 

indicated that NUE increased linearly with the level of dwarfing, and the shortest lines (Rht-

B1c; Rht-D1c) exhibited the highest MRT of N. According to Golluscio (2007), a high NUE 

and a high MRT of N in plant would be an important adaptation indicator of plant to N stress. 

The increased NUE is also important for plant breeding and crop production to meet the 

challenge of low input cost and low pollution to the environment (Delgado, 2002). 
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This study also confirmed that the post-anthesis partitioning is the driver of HI; at anthesis, 

the flag leaf nitrogen content exhibited genetic variability while at physiological maturity, 

there was no indication of such variability. This finding was consistent with the 
15

N labeling 

experiment results that indicated similar trend. 

The time to anthesis  

The current research also evaluated the effects of straw-shortening on earliness of flowering. 

The data indicated the Rht genes may lengthen the duration to flowering (fig. 3.5). We 

speculated that the effect of straw-shortening on lengthening the time to anthesis would be 

the consequences of Rht genes on lengthening the stem elongation phase. This is in 

agreement with Reynolds et al. (2009) who suggested that the variation in the lengthening of 

stem elongation phase means the cultivars may differ in their earliness of flowering.  

In conclusion, the study indicated that the partitioning of N to spike and roots are the 

characteristics related to plant height and growth stage. Moreover, the selection of wheat 

cultivars for increased HI should shift focus from reduced plant height to include increased 

grain number and kernel weight, reduced partitioning to roots and reduced peduncle length. 
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Chapter 4 Hydraulic lift and N2-fixing: Consequences of water and 

nitrogen effluxes for wheat production in agroforestry with Alnus 

acuminata 

“All the rivers run into the sea; yet the sea is not full; unto the place from which the rivers 

come, thither they return again” (Bible: Ecclesiastes 1:7) 

Abstract 

Whilst substantial information is available concerning both the process of hydraulic lift and 

N2 fixation, there is a gap in the knowledge of the extent and the magnitude of utilization by 

neighboring plants of the water and nitrogen redistributed in the top soil under the field 

conditions. We hypothesized that effluxes of water and nitrogen from plant roots systems in 

the topsoil profile may facilitate a number of physiological functions of neighboring plants. 

Therefore, a field experiment was conducted in an andic soil of high lands in northern 

Rwanda to address the questions of the extent and consequences of water and nitrogen efflux 

from tree roots for an intercropping system of wheat and Alnus acuminata. The study 

involved analyses of natural abundance of stable isotopes δ²H, δ¹⁸O, δ¹⁵N and an isotopic 

mixing model “IsoSource” to quantitatively determine the proportional contribution of water 

and nitrogen sources respectively to the crop isotope signatures at different distances from the 

trees (1 m, 3 m, 5 m, & 7 m). Similarly, other physiological proxies such as Δ¹³C, SLA, and 

grain number and yield were used to evaluate the consequences of water and nitrogen efflux 

from roots for crop water status and yield, respectively. We noted that Alnus acuminata 

exhibited the hydraulic lift and N redistribution. The data indicate significant (p<.01) gradient 

in depletion of wheat xylem water δ²H and δ¹⁵N signatures moving further away from the tree 

line. The results have also shown the improvement in both water status and chlorophyll 

content (as determined via proxies of Δ¹³C, SLA, and SPAD, respectively) for the crops 

nearest to the trees for a distance of up to 5 m. The study provided quantitative evidence that 

the improvement in water and nitrogen status may have been brought about by hydraulic lift 

and redistribution, likely to be associated with N2 fixation and transfer, and resulted in 

increased wheat grain number and yield nearest to the trees. 

Key words: Hydraulic lift & redistribution, water effluxes, N2 fixing & transfer, isotopic 

proportional sources, Alnus acuminata, Rwanda. 
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4.1 Introduction 

4.1.1 Hydraulic lift and redistribution 

Water transfer by roots between spatially separated soil compartments of differing water 

status has been shown by many authors (Dawson et al., 2002). The term “hydraulic lift” was 

coined to describe this process (Richards & Caldwell, 1987). The hydraulic lift was defined 

by Caldwell et al. (1998) as the passive movement of water from roots into soil layers with 

lower water potentials, while other parts of the root system in moister soil layers are 

absorbing water.  Burgess et al. (1998) named it “hydraulic redistribution” arguing it occurs 

throughout the root systems whenever a water potential gradient exists across soil layers 

spanned by roots. 

According to the hydraulic lift hypothesis (Caldwell, 1988), at night, when transpiration is 

reduced, root water potential rises above Ψs in drier soil layers, and water movement occurs 

passively down a water potential gradient (Jensen et al., 1961; Schippers et al., 1967; 

Dickson et al., 1979; Shone & Flood, 1980; Corak et al., 1987). Evidence in support of 

hydraulic lift is the result of stomata opening and closing comes from the study of plants 

having Crassulacean Acid Metabolism (CAM); Caldwell et al. (1998) observed CAM 

exhibited hydraulic lift during the day.  

The origins of hydraulic lift in plants remain an open question. Optimality theory (Givnish, 

1986) would suggest that if a plant is to pay a cost in terms of giving up water to the 

surrounding soils, then there should be some benefits for this behavior. A number of authors 

(Richards & Caldwell, 1987; Caldwell & Richards, 1989; Dawson, 1993) have pondered the 

possible benefits of hydraulic lift for the plant exhibiting it; they suggested the hydraulic lift 

can facilitate the day time transpiration by supplying water overnight to the upper soil layer 

where it can be re-utilized the following day.  
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Results from several experiments suggested that a considerable amount of water is lifted; 

Wan et al.(1993) estimated that hydraulically lifted water ranged from 14 % of daily ET to 

roughly 1/3 ET for the shrub Artemisia tridentata. For example, Emerman & Dawson (1996) 

estimated that a mature (~ 20 m tall) maple tree lifted 102 ± 54 l of water per night over the 

course of a 5 day period. These field estimates are in agreement with laboratory 

measurements of the amount of water that can be moved by hydraulic lift; Bovel & Baker 

(1985) and Baker & Bovel (1988) reported that an average of 42 % and 31 % of daily 

transpiration were supplied by water efflux by roots overnight into dry soil compartments of 

Bermudagrass and Cotton, respectively. 

In most plant communities, roots length density decreases exponentially with depth (Jackson 

et al., 1996). This root distribution combined with some direct evaporation from the soil 

surface results in drying of the soil profile from the surface downward (Caldwell et al., 1998). 

It has been argued that because soil tends to dry from the surface downward and nutrients are 

usually most plentiful in the upper soil layers, lifted water may provide moisture that 

facilitates favorable biogeochemical conditions for enhancing mineral nutrient availability, 

and the acquisition of nutrients by roots (Caldwell et al., 1998). Hydraulic lift may also 

prolong or enhance fine root activity by keeping them hydrated.  Also, release of water into 

upper soil layers provides a source of water for neighboring, shallow-rooted plants, to utilize 

as a source of water. 

Studies of localization of water efflux from roots indicated that much of water loss may occur 

in young roots (Watt et al., 1998). Work with graminoids (Watt et al., 1996), and trees 

(Dawson, 1993, 1996) and Eucalyptus (Phillips & Riha, 1994) showed that efflux of water 

into the soil is localized in the young portions of the root system where the casparian band 

and suberin lamellae of the hypodermis are not fully formed. According to Dawson (1998), 
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water efflux can also occur at junctions within the highly branched fine roots system where 

roots are less than 2.5 mm in diameter. 

Measurement of the isotope composition of water in the various components of the water has 

enabled the identification of water masses and the tracing of their interrelationships (Gat, 

1996). One of the applications is the use of the distinct isotopic signature of various sources 

to quantitatively determine their proportional contribution to the mixture signature in an end 

product (Phillips & Gregg, 2003). This application can be used to characterize the 

proportional source of water the plant is using. For instance, Yakir & Yechieli (1995) have 

exploited this feature to distinguish between saline groundwater and flash floods at the Dead 

Sea shore. According to Dawson et al. (2002), and Gat (1996), the stable isotope analyses of 

both hydrogen and Oxygen of different water sources provide a powerful tool towards 

quantifying the contribution of different sources to the plant water uptake.  

However, the magnitude of water redistribution by hydraulic lift under the field conditions is 

not fully understood yet. The research of this chapter aimed to elucidate the extent of water 

effluxes and its consequences on wheat intercrops in agroforestry system with Alnus 

acuminata.  

4.1.2 The N2 fixing and transfer 

The practice of agroforestry on agricultural land has been the subject of considerable research 

(Akinnifesi et al., 1998). There is a sense that resource use is increased under agroforestry 

systems (Vandermeer et al., 1998); for example, belowground transfer of nitrogen among 

plants has been hypothesized, from a N2-fixing source plant to a non-fixing plant sink 

(Haystead et al., 1998; Arnebrant et al., 1993; He et al., 2009). The nitrogen transfer from 

N2-fixing trees can be a major source for the associated crops in low-inputs farming system. 

According to Lal (2004) the N is the most important nutrient limiting crop production in the 

tropical small-scale farming; therefore integrating the N2-fixing trees into farmland may 
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improve the N supply of the cropping system. However, it remains uncertain of what 

mechanism drives N transfer. 

Several mechanisms involving N transfer from N2 fixation by plants have been hypothesized 

by different authors, via: roots grafts or root-to- root contacts (Caldwell & Richards, 1986);  

roots exudations (Teste et al., 2014); and mycorrhizal networks (He et al., 2003). But it is not 

clear how important it is quantitatively. It is also argued that after root exudation, two basic 

mechanisms may be transporting ions and simple amino acids to neighboring plants; the first 

is mass flow that moves ions along with the flow of water and the second is the diffusion of 

ions along concentration gradient without the flow of water (Teste et al., 2014). 

According to Evans (2001), whole plant and leaf N isotope composition are determined by 

the isotope ratio of the external N sources. The physiological mechanisms that influence plant 

N isotopic signature have been reviewed by Evans (2001), and earlier by Högberg (1997) and 

Handley & Raven (1992). 

The study of N transfer among plants could have potential in agro-farming under low external 

inputs (Jensen, 2005; Wichern et al., 2008). Scientists initially hoped that quantifying δ¹⁵N 

could be used to trace the relative contribution of N2 fixation to plants and soils (Michener & 

Lajtha, 2007). Many authors have used δ¹⁵N data to draw inferences regarding N sources 

(Garten et al., 2007; Evans et al., 2007; Phillips & Greggs, 2003). For example, Schulze et al. 

(1991) employed the natural abundance of δ¹µN values in Acacia savannas to estimate the 

nitrogen fixation by the Acacia melifera trees on aridity gradient in Namibia, and found that 

about 71 % of nitrogen was fixed. Similarly, Shear et al. (1983) used the natural abundance 

of δ¹µN in tissues of Prosopis grandulosa to estimate the N2-fixation by these trees, and 

concluded it is feasible to use variation in natural abundance of δ¹µN as an index of N2-

fixation. Additionally, studies in the California Sonaran desert indicated Prosopis woodland 

fixed a significant amount of N2 based on soil N accumulation beneath (Virginia & Jarrell, 
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1983); since desert soils are often deficient in nitrogen, they argued that N2-fixing by prosopis 

tree might be the basis of that soil N accumulation. 

There would be great deal to be learned from δ¹⁵N of plant tissues and their sources of N. The 

aim of this research was to experiment if the analyses of the natural abundance of δ¹µN, δ²H, 

δ¹¸O coupled to an isotopic mixing model “IsoSource” can be applied to determine the 

relative transfer of N from a N2 fixing tree to wheat and hydraulic redistribution in an 

agroforestry system in the field. 
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4.2 Material and Methods 

4.2.1. Description of research area 

The research described in this chapter took place between October 2013 and March 2014 at 

three sites located in Northern Rwanda (fig. 4.1, & 4.2). The site at Rurembo was located at 

01⁰ 53’S; 29⁰ 57’E and elevation 2245 m. The second site at Kirezi was at elevation of 2269 m 

and at 01⁰ 54’ S; 29⁰ 57’ E. The third site at Cyansure was located at 01⁰ 55’ S; 29⁰ 57’ E, and 

elevation of 2248 m. The area was selected for this research because it is the main wheat 

growing region of Rwanda, and the sites were selected based on the availability of bench 

terraces field with trees old enough to exhibit hydraulic lift and nitrogen fixing. The terraces 

were chosen in the middle of watershed in each site (avoiding the crest and valley floor). 

 

Figure 4.1 Location of the study area (field experiment) 

The rain distribution across the whole region is bimodal, characterized by long and short rain 

seasons that allow two cropping seasons a year (fig. 4.3). Based on climatic data of the local 
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weather station in Busogo, the average annual rainfall over the period 2011-2013 was 1640 

mm, with average annual temperature of 15⁰C (fig.4.3). The soils of the area are Alfisols 

(Ultic tropudalf), Inceptisols (Andic eutropept; Typic dystrandept; Entic eutrandept), and 

Mollisols (Cumulic hapludoll) (fig.4.2). However, the soil type in the actual all fields 

experiment was Ultic tropudalf. The pH (in water) of the soil was 6.7, and the dominant 

crops are wheat, potatoes, maize and peas. Potatoes and wheat are the main cash crops in the 

area. 

 
Figure 4.2 The soil taxonomy of the sites (Kirezi,Cyansure, Rurembo) (Data source: GIS unit 

MINAGRI, Rwanda) 

 
Figure 4.3 Distribution of temperature and rainfall over the period 2011-2013 on the study 

area 
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4.2.2 Experimental setting and data collection 

The experiment was conducted on the farmers‟ fields‟ terraces that were established in 2010 

with transplants of Alnus acuminata trees on the terrace risers. Two consecutive benches of 

the terraces are separated by a terrace riser (fig. 4.4) which may prevent the crop on the two 

benches to interact. The spacing between trees was 5 m, and the terrace width was 8 m with 

wheat (Variety Bisagi in all the fields of the study) grown on the bench (fig.4.4).  The wheat 

planting density was 150 plants m⁻².  DAP (Di-ammonium phosphate) was applied as basal 

fertilizer at the rate of 130 kg ha⁻¹, and the urea (46%) was applied as topdress fertilizer at the 

rate of 100 kg ha⁻¹. The trees on the terraces were regularly pruned (three time a year). 

 
Figure 4.4 Experimental field 

Initially, samples for each water sources (rain, soil, & tree) were collected in exetainer for 

isotopic measurements of δ²H and δ¹⁸O.  A total of 15 samples of rain water, 40 of soil water, 

and 15 twigs for tree water were collected.   

Soil was sampled from each plot at four points along the slope in the terrace at 1 m, 3 m, 5 m, 

and 7 m from tree, and three replicates. Soil samples were taken using a soil auger at depth of 

0-20 cm and a composite of three samples. A total number of 40 composite soil samples were 

taken. These soils were air dried and sieved to less than 2 mm for δ¹µN measurement. 

Additionally, three twigs were sampled for each plot, and stem of wheat at 1 m, 3 m, 5 m and 

7 m from the tree. Each twig and wheat stem sample was placed in an exetainer for water 

? 
? ? 

? 
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extraction later in the laboratory.  The flag wheat leaf samples for measurements of  SLA, and 

Δ¹³C and δ¹µN were collected at four points in the bench of the terrace further away from tree 

(1 m, 3 m, 5 m, 7 m) and three replicates at GS65 as per  described in section 2.2.3 of this 

thesis. The chlorophyll content of flag leaf was estimated using the chlorophyll meter SPAD-

502 as per section 2.2.2. The yield components (grain number, kernel weight, HI, grain yield) 

measurements were taken at GS87 as described in 3.2.4. The grain yield (kg ha⁻¹) was 

computed following Acquaah (2012):  

Grain yield (kg ha⁻¹) = number of spikes per m² *grain number/spike*(TGW/1000)*10      (4.1) 

4.2.3 Extraction and vacuum distillation of water  

The water was extracted by distillation from the twig, wheat stem, and soil samples using a 

vacuum manifold with five units (fig.4.5), by Mr. Glyn Jones, Technician, Physiological 

Ecology Group (Department of Plant Sciences, University of Cambridge, UK). Samples had 

been stored in exetainers, which were placed carefully onto needles, and initially frozen in 

polystyrene cups of liquid nitrogen. The residual air was removed from each exetainer one 

sample at a time by the vacuum system, each unit was isolated with a stopcock and the liquid 

nitrogen replaced with a beaker of hot water (~70⁰C). Dewars were placed on condensers and 

regularly refilled with liquid nitrogen. When the distillation was complete, the water in the 

condenser was transferred to central collection tube with liquid nitrogen, which could then be 

removed, warmed and transferred via Pasteur pipette to pre-labeled container. 
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Figure 4.5 Extraction and distillation of water by vacuum manifold with five units 

 

4.2.4 Isotopic analysis 

The water samples in vials with inserts were exported to the Center for stable isotopes 

biogeochemistry (University of California at Berkeley, USA) for analysis of δ²H and δ¹¸O. 

The δ²H in water was analyzed by IRMS. According to the Centre for isotopes (at UCB) 

protocol (http://nature.berkeley.edu/stableisotopelab/analyses/water-analysis/), each sample 

of 1 mL was analyzed in dual inlet (DI) using a hot chromium reactor unit (H/Device 
TM

) 

interfaced with a thermo Delta Plus XL mass spectrometer. Standards were added to every 

run and corrected for differential drift of standards with different isotope ratios. The δ¹¸O in 

water was analyzed by continuous flow (CF) using a Thermo Gas Bench II interfaced to a 

thermo Delta Plus XL mass spectrometer. In brief, 200μL of water for both standards and 

samples were pipette into 10 mL glass vials (Exetainer, Labco Ltd., UK) and quickly sealed. 

The vials were then purged with 0.2 % CO2 in helium and allowed to equilibrate at room 

temperature for at least 48 hours. The δ¹¸O in CO2 was then analyzed.  

http://nature.berkeley.edu/stableisotopelab/analyses/water-analysis/
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The δ¹³C and δ¹⁵N in leaf samples of wheat and Alnus acuminata, as well as the δ¹µN in soil 

samples were analyzed at Godwin laboratory (University of Cambridge, UK) as described in 

the section 2.2.4 of this thesis.  

4.2.5 Data analysis 

One of the aims of this research was the application of the distinct isotopic signatures of 

various sources (water sources, or nitrogen sources) to quantitatively determine their 

proportional contribution to the mixed signature in crop tissue. According to Phillips (2001), 

when n isotope systems are used to determine the proportional contributions of n+ 1 sources 

to a mixture, standard linear mixing models can be used to mathematically solve for the 

unique combination of source proportions that conserves mass balance for all n isotopes. For 

example, with one isotope system and three sources, following Phillips & Gregg (2003), such 

a system of mass balance equation can be solved to determine the proportions (∫A, ∫B, ∫C) of 

source isotopic signatures (δA, δB, δC) which coincide with the observed signature for the 

mixture (δM): 

δM= ∫AδA + ∫BδB + ∫CδC        (4.2) 

1= ∫A + ∫B + ∫C 

In this method, a programme called IsoSource performes this computation; the user inputs the 

isotopic signatures of the sources and crop, along with the source increment and the mass 

balance tolerance. Then, the programme firstly iteratively creates each possible combination 

of source proportions (that sum to 100 %) by some small increment (referred to as “source 

increment”) such as 1 %. Secondly, the predicted isotopic signature for the mixture is 

computed as each combination is created. Thirdly, these predicted mixtures are compared 

with the observed crop signature; if they are equal or within small tolerance (referred to as 

“mass balance tolerance”) such as ± 0.1 ‰, then this combination of source proportions 

represents a feasible solution and is stored in a data set. We inputted the isotopic signatures of 
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the sources and of the crops, obtained from the Berkeley analysis, into the IsoSource (which 

can handle up to ten sources). Thereafter, statistical analysis was conducted as described in 

the section 3.2.5 of this thesis. 

However, caution should be taken into account about the limitations of this method in that it 

assumes that source signatures that fall closest to that of the plant (mixture) provide greatest 

contribution; therefore, the reliability of the isotopic determined contribution depends on the 

similarity of sources and plant isotopic signatures (Phillips & Gregg, 2003). Nevertheless, 

these limitations do not undermine the validity of IsoSource, nor the analysis of natural 

abundance of stables isotope as it has been shown by Phillips & Gregg (2003), and Sierra et 

al. (2007). 

4.3 Results 

4.3.1 The hydraulic redistribution and uptake  

The crops in the proximity of trees up to 5 m exhibited significantly (p<.01) isotopic values 

of stem water δ²H and δ¹¸O (tab. 4.1) which were closer to those of tree twigs (- 1.60 ± 0.02 

‰; and - 4.88 ± 0.07 ‰ for δ¹¸O and δ²H respectively), indicating they were using the same 

source of water.  For the crop furthest from the trees at 7 m, the stem water isotopic signature 

was closer to that of precipitation. The wheat xylem water signature of δ²H and δ¹¸O 

consistently became more negative moving further from the trees (fig 4.6). Additionally, the 

wheat in the proximity of trees consistently showed relatively low values of leaf matter Δ¹³C 

(20.58 ± 0.12 ‰; 21.67 ± 0.11 ‰ at 1m and 7 m respectively) and SLA which increased 

moving out into the terrace (fig. 4.6, & Appendix E). 
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*
 Statistically significant different to 1m, 3m, 5m at (all ps<.01); Error bars represent SE of 

the mean. N=15 

Figure 4.6 Water effluxes from the tree roots and redistribution to wheat intercrops 

The isotopic mixing model indicated that water accessed by the tree accounted for 81 ± 2 % 

of the wheat stem water at 1 m, and that the contribution of the tree water to wheat water 

consistently declined as moving further from trees (fig.4.6). 

 

 

 

 



108 
 

Table 4.1 The isotopic values (Mean across sites) for crop at different distance from the tree, 

and for sources of water and nitrogen (N=15) 

Isotope Distance from tree(m) δ value of crop (Mean ± SE) δ Source (Mean ± SE) 

δ¹⁸O 1 -1.41 ± 0.11 Rain:-2.94 ± 0.01 

 

3 -1.79 ± 0.18 Twig water:-1.60 ± 0.02 

 

5 -2.33 ± 0.19 Soil water (0-20cm)= -2.18 ± 0.18 

  7 -2.84 ± 0.20   

δ²H 1 -4.40 ± 0.24 Rain:21.76 ± 0.25 

 

3 -4.92 ± 0.31 Twig water:-4.88 ± 0.07 

 

5 -5.64 ± 1.11  Soil water (0-20cm)= -10.02 ± 0.86 

  7 -7.64 ± 1.34   

δ¹⁵N 1 7.23 ± 0.52 Tree:7.50 ± 0.13 

 

3 6.62 ± 0.77 Soil (0-20cm) :1.38 ± 0.02 

 

5 5.98 ± 0.62 

   7 3.22 ± 0.83   

 

4.3.2 The redistribution of nitrogen and capture 

The δ¹µN of the crop indicated consistent gradient declining with the distance from the N₂ 

fixing trees (fig.4.7). The wheat nearest to trees showed the δ¹µN signature values closer to 

that of the tree; at 1m from the tree the wheat signature was 7.23 ± 0.52 ‰ relative to the tree 

(7.50  ± 0.13 ‰), while further at 7 m, the crop ¹µN signature was 3.22 ± 0.83 ‰. The isotopic 

mixing model indicated that tree N may have provided 33.6 ± 4.3 % of the crop N at 1 m.  

Additionally, the chlorophyll content of wheat leaf was significantly higher at 1 m and 3 m 

from the tree, which declined moving further out into the bench (fig.4.8). 

  
*
Statistically significant different (ps<.01); Bar represent Mean ± SE (across sites). N=15 

Figure 4.7 Nitrogen transfer from the N2 fixing trees to wheat 
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4.3.3 The effects of water and nitrogen efflux for wheat production 

Both the grain number per spike, and yield were consistently (p<.01) higher (4.4 ± 0.04 t ha⁻¹ 

grain yield; 31 ± 1 grain number) at 1 m from the tree and declined as moving further in the 

terrace. The lowest grain yield (3.3 ± 0.07 t ha⁻¹) and least grain number (24 ± 3 grain 

number) on spike were always registered at 7 m from the tree. Both grain number per spike 

and grain yield at 1 m, 3 m and 5 m did not significantly differ at p<0.01 (fig.4.8), but 

significantly differed to that at 7 m.   

 
*
Statistically significant different (all ps<.01); Error bar (for SLA, grain number, and grain 

yield) represents SE of mean; Bar for chlorophyll content represent Mean ± SE (across sites). 

N=15. 

Figure 4.8 Variation in water and nitrogen efflux for wheat at different distances from the 

trees 
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4.4 Discussion 

The use of stable isotopes to elucidate the physiological processes in plants has increased in 

the past three decades (Marshall et al., 2007; Teste et al., 2014). The understanding of the 

mechanistic underlying the physiological processes behind stable isotopic composition 

signatures gives new tools to encapsulate plant resources acquisition and use to inform 

agronomic development. For example, there is a sense that isotopic mixing model coupled to 

the physiological measurements could be a way to link water and nitrogen sources used by 

plant to other aspects of their water and nitrogen relation respectively.  We therefore tested 

the hypothesis that there might be practical application of the natural abundance of stable 

isotopes of δ²H, δ¹¸O, δ¹µN, and isotopic mixing modeling “IsoSource” to understanding of 

resources (in term of water and nitrogen) redistribution in agroforestry systems.  

The study dealt with the dynamics of water and nitrogen in intercrop of Alnus acuminata and 

wheat in the field. We focused on water and nitrogen because they are the most important 

resources influencing plant functions. The discussion of the main results raised out of this 

research will be led on: (i) Hydraulic lift and redistribution; (ii) the transfer of fixed N; and 

(iii) the implications of water redistribution and nitrogen transfer in the intercropping of 

wheat and Alnus acuminata.  

4.4.1 Hydraulic lift and redistribution 

The results of this research supported the hypothesis of hydraulic lift (Richards & Caldwell, 

1987) and indicated pattern of hydraulic redistribution within the agroforestry system of 

Alnus acuminata and wheat. A closer examination of wheat xylem water δ²H and δ¹¸O 

signatures showed such sequence: the xylem water of wheat nearest trees was enriched in 

both δ²H and δ¹¸O and became depleted linearly moving further from the trees (fig.4.6). This 

feature of the data also reflected a consistent pattern of isotopic values in wheat xylem water 
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in proximity to trees being similar to that of the tree twig water (tab.4.1), suggesting they 

were using the same source of water.  

These observations were strongly supported by the data of both Δ¹³C in wheat leaf organic 

matter, and SLA (fig.4.6): there was consistent observation of low carbon discrimination in 

the leaf matter of wheat and low SLA of wheat in the proximity of the trees for a distance up 

to 5 m; and values of these two parameters increased when moving further from the trees. 

Additional evidence of redistribution of water in this agroforestry system came from the 

isotopic mixing model data; it revealed that the crop in the proximity of the trees may have 

accessed considerably the water redistributed by trees (fig.4.6). Therefore we propose that the 

trend in isotopic signature of wheat xylem water at different distances from the trees was 

most likely the result of hydraulic efflux from the tree roots dispersed in the topsoil. 

This study showed that our understanding of plant interactions within a community could be 

enhanced through isotopic work. It also indicates that Alnus acuminata exhibits hydraulic lift. 

This idea is in accordance with the work of Caldira et al. (2001) on positive biodiversity-

production relationship: they used the Δ¹³C data to establish a relationship between species 

richness and productivity, and concluded that water use efficiency and productivity were 

higher when plants were grown in mixtures. In a related fashion, Dawson (1998) used 

isotopes of hydrogen and oxygen isotopes to determine the reliance of a species on winter 

precipitation versus fog. The application of stable isotopes of δ²H and δ¹¸O has also helped to 

distinguish time of day that plants use their water in relation to a transition between 

conditions of low soil moisture availability and short episode of high soil moisture 

availability (Plamboeck et al., 1999; Williams & Ehleringer, 2000b). 
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4.4.2 Nitrogen transfer 

The transfer of nitrogen has been hypothesized to exist where plants with contrasting 

nutrients-acquisition strategies (N2-fixing and non-fixing) co-occur (Dawson et al., 2002; He 

et al., 2009). However, there remains controversy about whether belowground N transfer 

occurs (Ikram et al., 1994; Johansen & Jensen, 1996); and so far research on N transfer in 

agroforestry has conventionally assumed that N transfer occur via the decomposition of 

legume litter and pruning residues in soil (Jalonen et al., 2009). We addressed these questions 

with assessment of natural abundance of δ¹µN and an isotopic mixing model to determine the 

proportional contribution of N sources to the crop N.  The literature has more recently been 

highlighting the need to study of N transfer among plants towards agro-farming under low 

external inputs (Hauggaard & Jensen, 2005; Wichern et al., 2008); therefore we aimed to 

inform options for optimizing the interactions of plants for improved production and efficient 

use of N resources. 

The data from this study provided an indication that N transfer from N2-fixing trees can be a 

considerable N source for the associated crop in agroforestry farming (fig.4.7).  Similarly, a 

comparison of the δ¹⁵N signatures of the tree and the wheat revealed that the crops in the 

proximity of trees exhibited value closer to the tree δ¹⁵N and declined as moving further in the 

terrace (tab.4.1). Our results are consistent with works of many authors (Handley & 

Scrimgeour, 1997; Robinson, 2001; Evans, 2001; Stewart, 2001) who suggested that the δ¹⁵N 

of leaf tissues reflect the net effect of δ¹⁵N of the sources used by that plant. Our findings are 

also in accordance with the works of both Moyer et al.(2006) and Lu et al.(2013) who 

showed that N transfer among plants can occurs through release of N compounds from the 

N2-fixing plant leading to uptake by a non N2-fixing plant. These findings are also in 

agreement with Hadley & Raven (1992) who suggested that there is no evidence of 
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fractionation either of δ¹4N or δ¹⁵N during its physical movement (passive and active uptake) 

across living membranes of plants. 

The relative N transfer of 33.6 ± 4.3 % at 1 m from the tree also agrees with Sierra & Daudin 

(2010) who assessed in situ the ¹µN transfer from stem-labeled trees to associated grass and 

found that the transfer of the added ¹µN was limited in space (up to 1m from trees) and was on 

average 33 %.  Similarly, Snoeck et al. (2000) noted 13 to 42 % of ¹µN transfer from the 

legume trees to coffee. Nevertheless, such data should be interpreted with caution; for 

example, Daudin & Sierra (2010) observed that grass presented a preferential uptake of N 

released by the tree; if that is the case, then this preferential N uptake may cause discrepancy 

in isotopic mixing model results. Similarly, Sierra et al (2007) argued that N transfer from N2 

fixing trees may involves direct and indirect pathways; i.e. N transfer could be indirect if N 

exudates from the roots of tree were taken by soil microorganisms and passed through 

microbial turnover (Høgh-Jensen, 2006); in that case the isotopic mixing model could not 

resolve such system because it takes into account only N sources. The pruning regime 

(frequency and intensity) was also argued to be another factor that may affect N transfer by 

limiting the rate of N2 fixation (Nygren et al., 2000).  

Moreover, Sanchez et al. (1997) argued that the roots of trees are often able to capture 

nutrients at the depths beyond the reach of most crop and redistribute them into topsoil, and 

this can be an additional nutrients input in an agroforestry system; in accordance with our 

data on hydraulic redistribution, this provides additional evidence to substantiate these 

connections between a direct transfer of N belowground.  

Finally, the question of which mechanisms drive the N transfer between plants remains 

unsolved up to date; several mechanisms have been hypothesized; release of N in exudates 

(Høgh-Jensen, 2006), roots-grafts (Caldwell & Richards, 1986), and mycorrhizal netwoks 
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(He et al., 2003). We therefore recommend further research into the mechanisms by which 

plants transfer N to their neighbors. 

4.4.3 Implications for wheat production 

This research has shown that hydraulic redistribution and nitrogen transfer by plant roots 

systems may facilitate a number of important physiological functions. We observed an 

improvement both in wheat grain number and yield nearest the tree, and a consistent decline 

moving further away from the trees (fig.4.8). A closer examination of the whole data lead us 

to suggest this pattern of improved number of grain and yield may has been brought about by 

hydraulic redistribution and nitrogen transfer in this agroforestry system of Alnus acuminata 

and wheat. 

The data of this work are supported by Lott et al. (2003) who observed the Grevillea robusta 

trees improved maize productivity by increasing the proportion of annual rainfall captured or 

accessing deep water reserves with the soil profile; and their observation was in accordance 

with Ong et al. (1992) that indicated improvement in annual rainfall utilization of 40 to 80 % 

in Cajanus cajana and groundnut agroforestry systems. In the same fashion, Rockstrom 

(1997) argued that there is considerable scope to improve agricultural productivity by 

agroforestry practice in dry region like Niger where only 6-16 % of rainfall was reported to 

be used by pearl millet, and most the reminder was lost by evaporation or deep drainage. 

Moreover, our results are in agreement with number of other authors who noted that 

improvement in water and nutrients in the top soil enhanced production factors: Long ago, 

Newbould et al. (1971) observed that uptake of nitrogen, phosphorous, and calcium from the 

topsoil by ryegrass was strongly influenced by the topsoil water content. Similarly, Richards 

& Caldwell (1987) noted that the persistence of hydraulic lift over appreciable periods in the 

topsoil layer had several implications for rhizosphere processes and plant nutrients 

acquisition (i.e. improving ion mobility, prolonging life span of fine roots).  
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Also, Rundel et al. (1982) noted that soil water and nitrogen content in the upper 60 cm 

beneath Prosopis glandulosa was increased and attributed that improvement to be the result 

of hydraulic lift and symbiotic nitrogen fixation. The findings of this study are also in 

agreement with the work of Muthuri et al. (2005) that observed some complementarities of 

resource use between Alnus acuminata and Maize at Thika, in semi-arid Kenya. Similarly, 

Peden et al. (1993) found that the yield of bean grown with Alnus acuminata was 50 % 

higher than in a field without trees: they attributed this effect to the ability of A. acuminata to 

fix N2 and which may have been transferred to associated crop via the soil. 
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Chapter 5 Major conclusions and Outlook for further research 

“The two methods of crop improvement: Physiological and conventional selections should 

not be considered as antipoles. In the breeding programme, they actually complement each 

other” (This thesis). 

The thesis presents findings of research that is all about physiology-driven crop improvement 

and wheat breeding. The physiological understanding of crop improvement is necessary for 

developing genotypes combining high yielding potential and agronomic traits of superior 

adaptation, and for understanding yield limiting factors.  

The research described in this dissertation aimed to address these challenges with three 

experimental research: Chapter 2 dealt with the proxy-based approach to physiological 

selection of traits; Chapter 3 addressed the physiological attributes determining increased HI 

in Rht genotypes and the consequences of Rht genes on yield components in winter wheat; 

and Chapter 4 focused on analyses of the natural abundance of stable isotopes (δ²H, δ¹¸O, 

δ¹³C, and δ¹µN) in an agronomic perspective in terms of hydraulic lift and redistribution, N 

availability and crop yield, in  agroforestry systems associated with N2 fixing trees. 

Further research is proposed at the end of the chapter. The major conclusions that are 

discussed are:  

(i) The proxy-based approach to physiology-driven breeding may have potential to 

identify optimal ideotypes for the combined trait package. 

(ii) Low SLA is a mechanism that may improve photosynthetic efficiency in wheat. 

(iii) The Rht genes benefit wheat yield beyond mere reduction of plant height. 

(iv) The understanding of plant interactions in terms of hydraulic and N redistribution 

and uptake in agronomic perspective may be enhanced by analyses of natural 

abundance of stable isotopes (δ²H, δ¹¸O, δ¹³C, and δ¹µN) coupled to an isotopic 

mixing model “IsoSource”. 
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The proxy-based approach to physiology-driven breeding may have potential to identify 

optimal ideotypes for the combined trait package. 

In contrast to previous works (Blum, 1990; Ehleringer et al., 1993; Condon et al., 2004; 

Rajabi, 2006) that tended to rely on a single tool (i.e., Δ¹³C) as an indirect selection criterion, 

this study stressed the importance of comprehensive examination of the interactions between 

physiological processes and crop environmental responses, to develop an integrated proxy of 

a particular physiological variable. The research also focused on the steps for incorporating 

physiological criteria into a breeding programme.  

It is possible to argue that the physiological approach to crop selection is of greater 

importance in terms of identification of traits that could be used either as selection criteria in 

core breeding or in introgression programme. The approach likely has clear benefit to be cost 

efficient and may achieve results quickly than genetic breeding. The cost of screening for a 

trait is of prime importance for breeder in term of gain from higher selection intensities. The 

research of this thesis aimed to contribute to advance of physiology-driven breeding; as the 

literature survey of crop physiology by Jackson et al. (1996) revealed that little effort is 

devoted to develop outputs and ideas from physiological research in the context of crop 

breeding. 

The proxy-based approach advocated in this thesis involves surrogate-based screening for 

morphological, anatomical, and physiological traits or crop environmental responses. The 

central attribute to a proxy is the quality to be easy to measure, affordable, and reliable. The 

research of chapter 2 introduced and defined the concept of “Proxy-based approach to 

physiological selection of trait”, and proposed steps for conducting a proxy-based crop 

selection programme. 

The approach described in this thesis should guide breeders working in physiology-driven 

breeding; this has also potential application in pre-breeding, and could be useful in fund-
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limited research programme. There is a sense that physiological approach to crop selection is 

needed as indicated by the survey of breeders by Jackson et al. (1996). 

Low SLA is a mechanism that may improve photosynthetic efficiency in wheat. 

The influence of leaf morphology and anatomy on photosynthetic and water relations has 

long been recognized (Wilson & Cooper, 1967; Sharkey, 1985). The research of chapter 2 

and 3 of this thesis have clearly shown how SLA significantly correlated with both 

photosynthetic (Amax, Δ¹³C, leaf N content, Chlorophyll content) and water use variables (leaf 

RWC, Kh, WUE, IVD). As indicated by Witkowski & Lamont (1991), SLA reflects the 

combined effects of both density (dry mass per unit volume) and thickness. Lambers et al. 

(2008) argued that thicker leaves (thus low SLA) have more chloroplast, proteins, 

photosynthesizing cells, and Rubisco content per unit area. Similarly, Lambers & Poorter 

(1992) indicated that thicker leaves have a high proportion of vascular tissue. 

As revealed by the research of this thesis, there is a sense that low SLA may be an important 

tool for screening for crop resources acquisition and use efficiency. First, it is likely that the 

boundary resistance to diffusion of CO2 decreases with low SLA thus permitting high 

photosynthetic uptake of CO2. Drawing from Murchie et al. (2008), low SLA may improve 

canopy structure and thus permit a higher leaf area index (LAI: leaf area per unit ground); this 

may increase light interception in the canopy, which may result into improved radiation 

capture and use efficiency. 

Selection for low SLA may be one route for improving photosynthesis through increasing the 

Rubisco content of leaves. In principle, the rate of photosynthesis can be increased further by 

increasing the total amount of photosynthetic machinery per unit leaf area. In practice, there 

is an optimal concentration of leaf N which is determined partly by leaf thickness (Murchie et 

al., 2008). Furthermore, light absorbance depends strongly on chlorophyll content per unit 
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leaf area (Evans, 1998), and chlorophyll concentration index (SPAD) varied systematically 

with SLA in this study. 

The findings of the research of this thesis raised the possibility to propose that low SLA may 

potentially be used for screening purposes in crop selection for photosynthetic efficiency in 

wheat. 

The Rht genes improve wheat beyond mere reduction of height. 

Uncovering the mechanism that underlies the relationship between plant height and harvest 

index would potentially inform the strategies for improvement of wheat with optimal height. 

The height reduction arising from straw-shortening by the Rht genes has long been proposed 

as the driver of the increases in HI of wheat (Youssefian et al., 1992a, b). The research of 

chapter 3 in this thesis has revealed three other mechanisms by which the Rht genes may also 

improve the HI of wheat: (i) Low SLA, (ii) increased MRT of N, (iii) and increased grain 

number on spike. 

The result of chapter 3 clearly indicated that the Rht genes may decrease the SLA and that 

there may be a threshold of level of dwarfing beyond which this effect could not happen (the 

SLA decreased with the level of dwarfing up to Rht-B1c, and the Rht-D1c exhibited the SLA a 

bit higher than the Rht-B1c). The lines with low SLA consistently exhibited both higher rate 

of Amax and Kh compared to that of higher SLA. Therefore, the thesis proposes that straw-

shortening may improve Amax through the effects of lowering the SLA: Three explanations 

support this proposition; (i) both the research of Chapter 2 and 3 have consistently shown 

strong correlation between low SLA and high Amax; the literature also indicates that low SLA 

is associated with higher photosynthetic machinery; (ii) the other explanation is the effect of 

low SLA on canopy structure, LAI, reduced boundary resistance to CO2 diffusion, and 

radiation capture (as explained in above section); (iii) the third mechanism is the association 

of low SLA and short IVD as shown in this thesis; this association is linked to increased 



120 
 

photosynthetic rate through the connection of short IVD and higher Kh as indicated by 

Brodribb et al.(2005), and it has been shown that increased Kh improves the efficiency of 

water delivery to photosynthesizing cells and allowing stomata to remain open (Scoffoni et 

al., 2012). 

Increasing the MRT of N is likely the other mechanism by which straw-shortening improves 

the HI of wheat: the research of chapter 3 has consistently shown that the shortest lines (Rht-

B1c, and Rht-D1c) exhibited increased the MRT of N than the relatively tall lines. Selection 

for increased MRT of N may also be important in enhancing the stay-green of the leaf, and 

therefore could provide an additional route to increase photosynthetic efficiency. The 

increased MRT of N also is a characteristic possibly related to NUE as indicated by the results 

of this research. The high MRT of N has been proposed to be an important indicator of plant 

to N stress (Golluscio, 2007). There is a sense that selection for high MRT of N may be one of 

the strategies to meet the challenge of low input cost and low pollution to the environment 

(Delgado, 2002). 

As shown in chapter 3, it is likely that the Rht genes benefit the HI by effect on grain number 

and kernel weight on spike. The grain number and kernel weight advantage of straw-

shortening apparently derives from increased partitioning of assimilates to spike as a 

consequences of reduced demand for the stem elongation; and Youssefian et al. (1992b) has 

shown this may increase the total number of florets viable at anthesis. However, there may be 

competition effects on kernel weight associated with increases in grain number on spike. This 

assertion may explain the notion of reduced grain yield associated with excessive dwarfing: It 

is possible that extreme straw-shortening increases grain number too far at the expense of 

kernel weight (resulting in lighter grains that may be caused by greater competition for 

assimilates due to greater number on spike), which may nullifies the yield benefit. Therefore, 

realizing the yield advantage of Rht dwarfs depends upon achieving a balance between the 
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increases in grain number and kernel weight. For this to be realized, selection for grain length 

in addition to grain number would be one of the strategies; an evidence in support come from 

Gegas et al.(2010) that shows grain length and grain volume are controlled independently. 

The understanding of plant interactions in terms of hydraulic and N redistribution and 

uptake in an agronomic perspective may be enhanced by analyses of natural abundance 

of stable isotopes (δ²H, δ¹⁸O, δ¹³C, and δ¹⁵N) coupled to an isotopic mixing model 

“IsoSource”. 

The understanding of physiological basis of stable isotope signatures of the critical plant 

resources water, carbon, and nitrogen may be an approach to encapsulate plant interactions, 

and resources acquisition in agroforestry systems. The research of chapter 4 employed the 

analyses of natural abundance of stable isotopes (δ²H, δ¹¸O, δ¹³C, and δ¹µN) supplemented 

with an isotopic mixing model “IsoSource” to investigate for the redistribution of water and 

nitrogen, and their effects on wheat production in intercropping of Alnus acuminata. The key 

to this research was that the distinct isotopic signatures of various sources of plant water and 

nitrogen can be identified, and their relative contribution to plant isotopic signatures could be 

determined by IsoSource. 

The results indicated that Alnus acuminata, a N2-fixing tree, may have exhibited hydraulic lift 

and redistribution of nitrogen. The evidence came from the realization that the crop in the 

proximity of tree has shown isotopic value of water and nitrogen closer to that of tree; 

indicating they may have been using the same source of water and nitrogen. This observation 

was strongly supported with the IsoSource data that indicated that the crop near the tree may 

have accessed considerably water and nitrogen from the tree. Based on these results, it is 

possible to argue that the analyses of natural abundance of stable isotopes coupled to 

IsoSource may be a potential approach (compared to enriched isotope approach which is 

difficult to apply in the field conditions) to plant physiological studies in the field. 



122 
 

The research has also shown that the wheat grain yield has increased in the proximity of tree 

compared to the distance further away in the bench: Three explanations may be possible; the 

improvement in grain yield near the tree may be either the result of the direct uptake by the 

crop of the water and nitrogen redistributed by the tree, or the effect of enhanced nutrients 

availability and acquisition facilitated by the moisture from hydraulic redistribution by tree. 

There is also indication that the roots of tree may able to capture nutrients at the depth 

beyond the reach of crop and redistribute them into the topsoil (Sanchez et al., 1997), and this 

can be an additional nutrients inputs that may result into improved crop yield in the proximity 

of tree. 

The findings of this research may have practical implications in agroforestry systems in terms 

of dimensioning of the width of alley or the terrace bench. 

Suggestions for further research 

Further research is needed to understand the mechanism by which extreme straw-shortening 

reduces yield. This could be supported by work for identification of QTL for reducing height 

without reducing grain yield or seeking independent control of kernel weight. Further work 

should also be carried out to better understand the genetic control of SLA and investigate 

whether reliable genetic marker can be identified.  Additional further studies are needed to 

determine (i) the root properties that may regulate efflux of water, and (ii) mechanism by 

which plants transfer N into the soil. The investigation on how the proxy-based selection 

approach could be integrated with markers development is needed: this may accelerate the 

deployment of trait in breeding programme. 
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Appendices 

Appendix A: List of EPS varieties  

BBCB-91-232-4-1-16-1-4 

BBCB-90-231-8-1-17-6-6 

Badger 

BBCB-91-232-4-1-5-5-1 

SR96-1-412-1-11 

SSRS-67-147-5-1-12-2-2 

SSSR-67-147-6-2-4-19-B-7 

SSSR-67-147-6-2-4-8-6 

BBCB-91-232-4-1-16-3-1 

Spark 

SSSR-64-32-8-1-3-12-1 

RRSR-33-187-3-2-6-8 

Rialto 

SSRS-67-147-6-2-4B-2-3 

SR99-1-413-2-8 

RRSR-33-187-3-2-6-5 

SR94-1-411-1-2 

SSRS-64-84-4-2-18-1-5 

SR94-1-441-1-7 

SSSR-67-147-6-2-4-8-4 

SSSR-64-32-8-1-3-18-1 

SR99-1-413-2-15 

RRSR-15-159-2-7-4-A-4 
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Appendix B: The Zadoks scale decimal code for growth stage (GS) of cereal  
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Appendix C: The flag leaf nitrogen concentration at different growth stages in Rht lines (Rht-

 B1b; Rht-D1b; Rht-B1c; Rht-D1c) and wild type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line N (%) at GS65 N (%) at GS75 N (%) at GS83 

Wild Type 2.12 1.5 1 

Wild Type 2.89 1.54 1.21 

Wild Type 2.04 1.93 1.36 

Rht-B1b 3.19 2.93 1.96 

Rht-B1b 3.38 2.91 2.44 

Rht-B1b 3.24 2.91 2.73 

Rht-D1b 3.81 3.07 2.94 

Rht-D1b 3.65 3.37 3.13 

Rht-D1b 3.91 3.65 3.36 

Rht-B1c 5.57 4.04 3.5 

Rht-B1c 5.21 4.73 3.61 

Rht-B1c 5.17 4.31 3.73 

Rht-D1c 5.6 4.78 3.64 

Rht-D1c 5.83 3.98 3.28 

Rht-D1c 5.46 4.54 3.51 
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Appendix D: Genetic variability of Rht lines (Rht-B1b; Rht-D1b; Rht-B1c; Rht-D1c) and wild type in the traits of 

 photosynthesis and partitioning.  

Line 

SLA 

 

(cm²g¯¹) 

 

IVD 

(mm) 

Amax 

 (µmol 

m² s¯¹) 

∆¹³C 

(‰) 

 

Δ¹⁸O 

(‰) 

Kh  

(mmol 

m²s¯¹ 

MPa⁻¹) 

Tiller 

(#) 

Grain 

(#) 

 

TGW 

(g) 

DAT 

(days) 

Ped.

L. 

(cm) HI 

 

 

Biomass 

(dw, kg) 

 

NP 

(g dw 

mg⁻¹N) 

¹⁵NUE 

(g dw 

mg¯¹N) 

MRT 

(days) ¹⁵NHI 

 

 

gs 

(mmol 

m² s⁻¹) 
Heigh

t (cm) 

Grain 

mass 

(dw, 

kg) 

WT 162.3 .38 31.6 23.35 27.96 32.6 30 30 41 52 18.3 .35 1.08 .47 6.9 13 .38 .26 60 .38 

WT 162.5 .37 29.97 23.97 29.52 35 31 31 38 52 14.8 .35 1.09 .46 6.3 12 .42 .28 58 .38 

WT 169.6 .35 29.31 23.53 28.25 33 36 29 39 52 16.9 .36 1.08 .36 4.4 12 .44 .24 63 .39 

Rht-B1b 138.1 .35 30.2 23.13 28.36 32.7 25 33 35 55 13.7 .4 1.30 .50 6.6 13 .48 .30 58 .52 

Rht-B1b 148.1 .38 29.05 23.75 27.49 34 15 33 36 55 14.2 .39 1.36 .79 11.5 14 .57 .26 60 .53 

Rht-B1b 112.7 .34 30.02 22.48 26.65 34.2 34 32 35 55 16.8 .41 1.40 .83 11.7 14 .54 .28 58 .57 

Rht-D1b 112.4 .33 32.56 23.32 27.68 34 19 34 35 56 18.6 .41 2.02 1.36 16 12 .66 .30 51 .83 

Rht-D1b 113.9 .35 34.08 21.85 25.36 34.2 17 32 34 55 17.8 .4 1.92 1.20 17.3 14 64 .31 53 .77 

Rht-D1b 123.7 .32 33.96 23.62 27.61 38 23 33 35 56 14.3 .42 1.91 1.77 18 16 .7 .27 50 .80 

Rht-B1c 87 .30 37.96 21.95 24.02 43 19 40 30 56 11.2 .48 2.35 2.63 43.4 16 .78 .38 38 1.1 

Rht-B1c 97.8 .29 36.95 22.51 24.85 40 19 42 31 57 8.8 .47 2.36 2.55 41.6 16 .79 .41 39 1.1 

Rht-B1c 93.2 .30 36.54 22.02 24.66 40 25 41 30 56 9.2 .46 2.25 2.82 49.1 17 .72 .37 34 1.0 

Rht-D1c 103.5 .29 36.11 22.15 24.92 43 21 39 32 60 9.1 .45 2.49 2.75 43.5 16 .77 .34 33 1.1 

Rht-D1c 97.1    .29 35.04 22.17 25.05 40 30 41 31 58 6.6 .44 2.48 3.04 48.3 17 .78 .35 32 1.1 

Rht-D1c 101.3 .30 36.05 23 25.06 41.9 31 40 31 60 8.6 .46 2.50 2.72 43.3 16 .8 .37 31 1.2 
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Appendix E: The crop SLA, Δ¹³C, grain number and yield and the proportion of 

 crop δ²H and δ¹⁵N accounted from trees at different distance.  

Location Replicate 
Distance  
(m) 

SLA  
(cm² g¯¹) 

Grain 
(#) 

Yield  
(t ha⁻¹) 

∆¹³C 
(‰) 

δ²H 
(%) 

δ¹⁵N 
(%) 

Rurembo I I 1 141 31 4.36 21.15 80 9.5 

 
I 3 138 30 4.16 21.22 77 8.4 

 
I 5 148 29 4.04 21.58 71 7 

 
I 7 163 22 3.39 21.89 43 3.9 

 
II 1 145 32 4.32 21.39 85 32.6 

 
II 3 149 30 4.12 21.44 83 26.8 

 
II 5 152 29 4.01 21.44 71 23.6 

 
II 7 165 24 3.29 21.62 47 20.5 

 
III 1 139 30 4.34 21.37 80 49.6 

 
III 3 141 29 4.20 21.37 73 40.5 

 
III 5 189 28 4.08 21.63 58 38.7 

 
III 7 189 22 3.35 21.74 42 35.2 

Rurembo II I 1 122 31 4.33 21.19 86 41 

 
I 3 155 29 4.27 22.16 67 27.1 

 
I 5 182 28 4.04 22.62 63 19.1 

 
I 7 289 23 3.26 22.69 34 4.9 

 
II 1 163 32 4.35 20.53 84 54.7 

 
II 3 167 30 4.19 21.17 77 42.7 

 
II 5 177 28 4.02 21.32 74 42 

 
II 7 227 25 3.36 21.95 35 34.6 

 
III 1 151 33 4.34 20.45 83 36.6 

 
III 3 163 31 4.06 20.53 75 17.4 

 
III 5 177 29 3.95 20.54 64 11.6 

 
III 7 227 24 3.40 22.25 31 0.2 

Kirezi I I 1 119 32 4.51 20.27 82 51.1 

 
I 3 127 31 4.29 20.73 86 27.3 

 
I 5 154 29 4.04 20.9 76 4.5 

 
I 7 164 23 3.47 21.39 38 0.9 

 
II 1 163 32 4.52 20.52 92 32.5 

 
II 3 166 31 4.30 21.08 84 32 

 
II 5 167 28 4.04 21.07 78 13 

 
II 7 205 30 3.46 21.35 32 11 

 
III 1 135 34 4.51 20.03 91 58.2 

 
III 3 138 28 4.16 20.38 57 30.6 

 
III 5 155 29 3.87 20.83 36 18 

 
III 7 167 29 3.46 21.59 27 3.3 

Kirezi II I 1 143 33 4.52 20.57 68 15.5 

 
I 3 147 32 4.20 20.65 66 12.5 

 
I 5 162 31 3.98 21.39 62 11.4 

 
I 7 203 22 3.47 21.41 34 9.4 
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II 1 159 33 4.53 20.41 73 25 

 
II 3 163 27 4.33 20.57 69 23 

 
II 5 169 28 3.84 21.23 65 23.6 

 
II 7 199 24 3.52 21.71 30 22.2 

 
III 1 138 30 4.54 20.24 88 13.8 

 
III 3 159 32 4.32 20.42 86 6.3 

 
III 5 195 29 3.87 21 58 4.8 

 
III 7 201 25 3.47 21.13 33 0.9 

Cyansure I 1 135 28 4.15 20.02 75 21.7 

 
I 3 142 25 4.05 20.29 70 21.1 

 
I 5 179 26 3.87 21.09 65 19.3 

 
I 7 199 24 3.26 21.63 42 16.6 

 
II 1 125 27 4.21 20.17 78 49.7 

 
II 3 159 26 4.07 20.37 68 41.1 

 
II 5 169 27 3.93 21.39 61 34.6 

 
II 7 196 25 2.33 21.59 39 21.6 

 
III 1 123 26 4.17 20.32 75 13.1 

 
III 3 129 24 4.07 20.35 69 10.8 

 
III 5 154 25 3.31 20.56 63 6.1 

  III 7 193 22 3.23 21.16 39 2.9 

 

 


